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1. Introduction

Some of the most precise determinations of the weak mixing angle sin2 θeff come from

measurements of asymmetries in fermion production on the Z peak [1]. In particular,

the forward-backward asymmetry of b quarks is measured with a precision of about

2%, allowing an extraction of sin2 θeff with almost per mille accuracy. However, since

we are dealing with quarks in the final state, we must ensure that QCD correc-

tions, both perturbative and non-perturbative, are understood to at least the same

precision. From simple power counting, it is clear that this necessitates including

O(α2S) perturbative and 1/Q non-perturbative effects. Even these will probably not
be enough in the future, when linear e+e− colliders are hoped to reach a precision of
order 0.1% [2].

The O(αS) perturbative corrections were first calculated in ref. [3] in the massless
approximation. The mass corrections to this result were first calculated in ref. [4]
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and were found to be significant ∼ αSmb/MZ. These calculations used a slightly
different definition of the asymmetry than the experimental measurements, which

use the thrust axis rather than the quark direction. This difference was rectified in

refs. [5, 6].

To date there have been two O(α2S) calculations, both in the massless approxi-
mation using the quark direction. The classic calculation of Altarelli and Lampe [7]

determined the O(α2S) coefficient numerically and found it to be small. This result
has been the basis of all the experimental analyses since. However, the recent analyt-

ical calculation by Ravindran and van Neerven [8] obtained a coefficient about four

times bigger. This discrepancy is comparable to the size of the experimental errors

and needs to be resolved before the final electroweak fits to the LEP1 data can be

made. The O(α2S)-calculation using the experimentally-used thrust axis definition,
would also be highly desirable.

In this paper we perform a numerical calculation of the O(α2S) corrections to the
forward-backward asymmetry, and compare our results with the existing calculations.

We also calculate for the first time the corrections using the thrust axis definition

rather than the quark direction.

The paper is set out as follows. In section 2 we define the forward-backward

asymmetry and the closely-related left-right forward-backward asymmetry [9] and

recall some features of the tree-level and O(αS) perturbative calculations. In sec-
tion 3 we discuss the general set-up of the O(α2S) calculation, and divide it into
several parts. We pay particular attention to the four-b final state, which will turn

out to play an important rôle in our calculation. In section 4 we make some final

remarks on the details of the calculation, before presenting our results for the O(α2S)
coefficients with the two axis definitions. We also compare our results with the ex-

isting calculations. We discuss the impact of our results in section 5, and try to

estimate the remaining theoretical errors. We leave some more technical details of

the calculation to appendices A and B.

2. Definition and perturbative calculation

The simplest definition of the b-quark1 forward-backward asymmetry AFB is

AFB =
NF −NB
NF +NB

, (2.1)

where NF and NB are the number of b quarks observed in the forward and backward

hemispheres, respectively.

1Throughout this paper we explicitly consider the case of the b-quark. The results for the charm

quark can be simply obtained by properly replacing the mass and the electroweak couplings of the

massive quark.
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The axis that identifies the forward direction can be defined in a variety of ways.

However, for the purpose of making AFB computable in QCD perturbation theory,

the axis must be defined in an infrared and collinear-safe manner. In this paper we

explicitly consider two different definitions: the b-quark direction, and the thrust

axis direction. The thrust axis has a two-fold ambiguity: we use the one that is

nearer the b-quark direction. In the following, the forward-backward asymmetries

with respect to the b-quark direction and to the thrust axis direction are denoted by

AbFB and A
T
FB, respectively.

According to the definition in eq. (2.1), AFB can be expressed in an equivalent

way in terms of the cross section

dσ(e+e− → b+X)
dx d cos θ

, (2.2)

for inclusive b-quark production, where x is the fraction of the electron energy carried

by the b quark and θ is the angle between the electron momentum and the direction

defining the forward hemisphere (both energies and angles are defined in the centre-

of-mass frame).

Starting from the distribution in eq. (2.2), we can introduce the forward and

backward cross sections σF and σB:

σF ≡
∫ 1
0

d cos θ

∫ 1
0

dx
dσ

dx d cos θ
, σB ≡

∫ 0
−1
d cos θ

∫ 1
0

dx
dσ

dx d cos θ
, (2.3)

and the symmetric and antisymmetric cross sections σS and σA:

σS = σF + σB , σA = σF − σB . (2.4)

We can then write the forward-backward asymmetry as

AFB =
σA

σS
. (2.5)

In the perturbative QCD calculation of σS and σA, we have to evaluate the cor-

responding matrix element squared, which is given by the product LµνT
µν of the

leptonic and hadronic tensors Lµν and T
µν . Then we could perform the integration

over the final-state parton momenta in T µν and finally the integration over the scat-

tering angle θ. Nonetheless, it is more convenient to use a simplified procedure. We

can indeed avoid having to explicitly integrate over the scattering angle, by first per-

forming the angular integration of the leptonic tensor. Doing this, we can compute

σS and σA by simply performing the integration over the final-state parton momenta

of the following projections of the hadronic tensor:

σS ∝ −gµνT µν , (2.6)

σA ∝ iεµνλρn
λQρ

n ·QT
µν , (2.7)

where Qµ is the total incoming momentum and the light-like (n2 = 0) vector nµ

identifies the forward direction.
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2.1 Leading order

At the leading order (LO) we have to consider the cross sections for the process

e+e− → bb̄ at the tree level and thus, the b-quark direction and the thrust direction
coincide. The tree-level cross sections σ

(0)
S and σ

(0)
A are straightforward to calculate

and the result is2

σ
(0)
S =

4πα2Nc
3Q2

{
e2ePve

2
b + 2

(
Q2 −M2Z

)
Q2

DZ(Q2)

(
Pveeve + Paeeae

)
ebvb +

+
Q4

DZ(Q2)

[(
v2e + a

2
e

)
Pv + 2Paveae

](
v2b + a

2
b

)}
, (2.8)

σ
(0)
A =

4πα2Nc
3Q2

3

4

{
2

(
Q2 −M2Z

)
Q2

DZ(Q2)

(
Pveeae + Paeeve

)
ebab +

+
Q4

DZ(Q2)

[
2Pvveae + Pa

(
v2e + a

2
e

)]
2vbab

}
, (2.9)

with

Pv = 1 + PLPR , (2.10)

Pa = PL + PR , (2.11)

where PL is the left-hand-polarization of the electron (+1 = fully left-handed, 0 =

unpolarized, −1 = fully right-handed) and PR is the right-hand-polarization of the
positron (+1 = fully right-handed and so forth),

DZ
(
Q2
)
=
(
Q2 −M2Z

)2
+
(
ΓZMZ

)2
, (2.12)

ei is the electric charge in units of the proton charge (i.e., ee = −1) and the elec-
troweak couplings are:

vi =
1

2 sin θw cos θw

(
t3i − 2ei sin2 θw

)
, (2.13)

ai =
1

2 sin θw cos θw
t3i . (2.14)

The ratio between eqs. (2.8) and (2.9) is insensitive to the fine structure constant α

and the number of coloursNc and thus, at LO the forward-backward asymmetry A
(0)
FB,

A
(0)
FB =

σ
(0)
A

σ
(0)
S

(2.15)

2Unless explicitly mentioned, we neglect the b-quark mass throughout this paper. At LO the

dominant mass corrections are proportional to m2b/Q
2 and can be found, for instance, in ref. [8].
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gives a direct measurement of the electroweak couplings. In particular, if we are ex-

actly on the resonance, Q2 =M2Z, and we neglect the photon contribution, we obtain

A
(0)
FB =

3

4

Ae + P
1 +AePAb , (2.16)

where

Ai = 2viai
v2i + a

2
i

, (2.17)

P = Pa
Pv
=
PL + PR
1 + PLPR

. (2.18)

Finally, for unpolarized beams, we obtain

A
(0)
FB =

3

4
AeAb . (2.19)

This is the form in which the forward-backward asymmetry is most often presented.

It is worth pointing out however that all of our results will be universal multiplicative

corrections,3 so apply equally well to any of the forms (2.15), (2.16) or (2.19).

Another important variable is the so-called left-right forward-backward asym-

metry [9],

ALR,FB =
NF(P = +1)−NF(P = −1)−NB(P = +1) +NB(P = −1)
NF(P = +1) +NF(P = −1) +NB(P = +1) +NB(P = −1) . (2.20)

Its LO expression can be obtained from eqs. (2.8) and (2.9), and again neglecting

the photon contribution exactly on the Z resonance, it is given by:

A
(0)
LR,FB =

3

4
Ab . (2.21)

Our results apply equally well also to this observable.

2.2 Next-to-leading-order corrections

At next-to-leading order (NLO), we have to consider the one-loop cross sections

σ(1);one-loop for the two-parton process e+e− → bb̄ and the tree-level cross sections
σ(1);tree for the three-parton process e+e− → bb̄g. We obtain:

A
(1)
FB =

σ
(0)
A + σ

(1);one-loop
A + σ

(1);tree
A

σ
(0)
S + σ

(1);one-loop
S + σ

(1);tree
S

. (2.22)

Each of the cross sections at O(αS) is separately divergent, so they have to be reg-
ularized in some way before being combined together. In any regularization scheme

3At O(α2S) there are some non-universal corrections, but we do not explicitly compute them (see
the discussion in sections 3.2 and 3.1).

5



J
H
E
P
0
7
(
1
9
9
9
)
0
2
3

that preserves the helicity conservation of massless QCD4 (for example, dimensional

regularization), we have the property

σ
(1);one-loop
A

σ0A
=
σ
(1);one-loop
S

σ0S
, (2.23)

and hence, if we expand the ratio in eq. (2.22) up to O(αS), the one-loop corrections
cancel, and we obtain

A
(1)
FB =

σ
(0)
A

σ
(0)
S

(
1 +
σ
(1);tree
A

σ
(0)
A

− σ
(1);tree
S

σ
(0)
S

)
. (2.24)

Although σ
(1);tree
A and σ

(1);tree
S are each separately divergent in the soft and collinear

regions, the divergences cancel at the integrand level, and the whole thing can be

calculated in the unregularized theory.

At this order, the different definitions of the forward-backward asymmetry give

different results. As already anticipated, we consider two possible definitions of the

forward direction: the b-quark direction and the thrust axis direction.

It is straightforward to calculate the NLO corrections in eq. (2.24) analytically

with either definition. We obtain:

A
(1);b
FB = A

(0)
FB

(
1− 3
4
CF
αS
π

)
' A(0)FB

(
1− 0.318αS

)
, (2.25)

A
(1);T
FB = A

(0)
FB

(
1−

{
7

4
− 4 ln 3

2
+
π2

6
+ ln2 2− 5

8
ln 3 + 2Li2

(
−1
2

)}
CF
αS

π

)
(2.26)

' A(0)FB
(
1− 0.670CFαS

π

)
' A(0)FB

(
1− 0.285αS

)
. (2.27)

The result in eq. (2.25) is well known [3]. The analytical result in eq. (2.26) agrees

with the numerical calculation performed in refs. [5, 6]. The difference between the

two definitions is only about 0.4% for αS ∼ 0.12.
We remind the reader that the NLO QCD correction to the symmetric cross

section σS in the massless limit is equal to the correction to the e
+e− total cross

section, namely

σS = σ
(0)
S

(
1 +
3

4
CF
αS

π
+O(α2S)

)
. (2.28)

4Note that the relation (2.23) is explicitly violated for massive quarks.
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Thus, eqs. (2.25) and (2.26) imply the following results for the antisymmetric cross

sections

σbA = σ
(0)
A

(
1 +O(α2S)

)
, (2.29)

σTA = σ
(0)
A

(
1−

{
1− 4 ln 3

2
+
π2

6
+ ln2 2− 5

8
ln 3 + 2Li2

(
−1
2

)}
CF
αS

π
+O(α2S)

)
(2.30)

' σ(0)A
(
1 + 0.034αS +O(α2S)

)
. (2.31)

The vanishing of the O(αS)-correction to the antisymmetric cross section σbA with
respect to the b-quark axis in the massless case was first noticed in ref. [3].

Unlike at LO, the corrections to A
(1)
FB due to the finite mass of the b quark are

of O(mb/Q). The mass corrections have been computed in analytic form for the
b-quark direction [4] and numerically for the thrust direction [5].

3. Contributions at next-to-next-to-leading order

At next-to-next-to-leading order (NNLO) we have to consider the diagrams of fig-

ures 1–5. The single diagram drawn in figure 1(b) stands for all the one-loop dia-

grams with one virtual gluon. Analogously, the diagram in figure 3 stands for all the

tree-level diagrams contributing to the bb̄gg final state, and so forth.

We separate the contributions to the cross sections into three classes: flavour

non-singlet (NS ), flavour singlet (S), and interference (or triangle) (Tr). We thus

(a) (b) (c)

(d)

Figure 1: Some of the diagrams contributing to the bb̄ final state up to O(α2S). The
dashed line represents either the axial or vector current, the thick line the b and the thin

line another quark q, which must be summed over flavours, including the b- and t-quark

contributions.
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(a) (b) (c)

Figure 2: Some of the diagrams contributing to the bb̄g final state up to O(α2S). The
dashed line represents either the axial or vector current, the thick line the b and the

thin line another quark q, which must be summed over flavours, including the b- and

t-quark contributions.

write the cross sections as

σS = σS,NS + σ
(2)
S,S + σ

(2)
S,Tr +O

(
α3S
)
, (3.1)

σA = σA,NS + σ
(2)
A,Tr +O

(
α3S
)
. (3.2)

In this notation, up to O(αS) there are only non-singlet contributions. Thus, σ(2)S,S ,
σ
(2)
S,Tr and σ

(2)
A,Tr are proportional to α

2
S. Note also that there are no singlet contribu-

tions to the antisymmetric cross section σA.

The forward-backward asymmetry is decomposed in a

Figure 3: One of

the diagrams contribut-

ing to the bb̄gg final

state at O(α2S). The

dashed line represents

either the axial or vec-

tor current.

similar way. Expanding the ratio σA/σS up to O(α2S), we
write

A
(2)
FB = A

(2)
FB,NS +

σ
(0)
A

σ
(0)
S

(
σ
(2)
A,Tr

σ
(0)
A

− σ
(2)
S,Tr

σ
(0)
S

− σ
(2)
S,S

σ
(0)
S

)
, (3.3)

where A
(2)
FB,NS denotes the non-singlet component:

A
(2)
FB,NS =

σA,NS

σS,NS
. (3.4)

We now discuss our treatment of each contribution in

turn. The classification of the four-b contribution of figure 5

also warrants additional discussion.

3.1 Triangle contributions

In this class we group all the cross section contributions consisting of two quark tri-

angles, one attached to each current. These correspond to the interference between

the diagrams in figures 1(d) and 1(a), between those in figures 2(c) and 2(a), and be-

tween those in figures 4(b) and 4(a). They give non-universal (i.e., non-factorizable)

corrections to both the symmetric and antisymmetric cross sections. They are cal-

culated in ref. [7] for the b-quark axis definition and found to be very small. To our
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(a) (b)

Figure 4: Some of the diagrams contributing to the bb̄qq̄ final state at O(α2S). The dashed
line represents either the axial or vector current, the thick line the b and the thin line some

other quark flavour q, with q 6= b.

knowledge their contribution to the thrust axis definition has never been calculated,

but we expect it to be similarly small. We therefore neglect it, i.e., σ
(2)
S,Tr and σ

(2)
A,Tr

in eq. (3.3), from our calculation.5

3.2 Singlet contributions

In this class we group the square

(a)

+

(b)

+

Figure 5: One of the diagrams contributing to

the bb̄bb̄ final state at O(α2S). The dashed line
represents either the axial or vector current. The

cross indicates which of the two b quarks is trig-

gered on: both contributions must be summed.

of the diagrams of figure 4(b), where

the final-state b quark is not coupled

to the current. In these contribu-

tions the b and b̄ are produced in

a definite state of charge conjuga-

tion, C = +1. They therefore can-

not contribute to the antisymmet-

ric cross section, σA. Their contri-

bution to the symmetric cross sec-

tion, σS, is logarithmically enhanced

in the small-mass limit and propor-

tional to α2S ln
3Q2/m2b . An approximate expression for it, denoted by F

Branco, was

used in ref. [7]. It is calculated exactly to O(α2S) in refs. [10, 11], and the leading and
next-to-leading logarithms are summed to all orders in αS in ref. [11].

Note that the singlet contributions to σS include an additional term coming

from the bb̄bb̄ final state. As discussed in section 3.3, this term is very similar to that

described above. It was missing in the expression denoted by FBranco in ref. [7].

In some sense the singlet component is a ‘background’ to the forward-backward

asymmetry measurement and, in fact, in the experimental analyses (see, e.g., ref. [12])

it is statistically subtracted using Monte Carlo event generators. We therefore neglect

it, i.e., σ
(2)
S,S in eq. (3.3), from our calculation.

5We remind the reader that the triangle contributions to both σS and σA are finite in the massless

limit mb → 0, provided that the sums over quark flavour q in the diagrams of figures 1(d) and 2(c)
run over complete SU(2) doublets.
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3.3 Four-b contributions

The classification of the four-b diagrams of figure 5 deserves special mention. Let

us first point out a basic fact. The four-b diagrams of figure 5 contribute to both

the b-quark cross sections σS and σA and the e
+e− total cross section. However,

they appear with different multiplicity factors in the two cases. In the case of the

e+e− total cross section the multiplicity factor is simply equal to unity. In the
contribution to the inclusive b-quark cross sections σS and σA, these diagrams count

twice since there are two b quarks in the final state. This observation is relevant in

the discussion that follows and, in particular, it is important in understanding the

results for the non-singlet component of the symmetric cross section σS discussed in

section 3.4.

After summing and squaring the diagrams in figure 5, we obtain two types of

contribution: (i) those that are identical to the contributions of figure 4 but with the

other quark q replaced by an untriggered-on b quark, and (ii) those that are genuine

interference terms arising from the fact that the two antiquarks are indistinguishable,

called the E-term in ref. [13]. The squared diagrams of type (i) are treated as

those of figure 4, that is, we lump them together with the corresponding terms from

figure 4 in the singlet (σ
(2)
S,S in eq. (3.1), non-singlet (σS,NS and σA,NS in eqs. (3.1)

and (3.2) or triangle (σ
(2)
S,Tr and σ

(2)
A,Tr in eqs. (3.1) and (3.2) contributions. The

squared diagrams of type (ii), which give a universal (i.e., factorizable) correction to

both the antisymmetric and symmetric cross sections, can be considered part of the

non-singlet contributions.

It is not entirely clear how four-quark final states are actually treated in the

different experimental analyses, i.e., the extent to which they are genuinely mea-

suring the inclusive cross sections. Often some vague statement like “a four-b final

state is more likely to be tagged than a two-b one, but less than twice as likely”

is made. To know what to calculate one must understand the corrections that are

applied for this difference in tagging efficiency, which are not usually explicitly stated

in the papers. In the absence of a unique experimental procedure and of a defini-

tive statement from the experiments on what they are measuring, we make this

ambiguity explicit by multiplying the E-term by an arbitrary weight factor WE .
6

An inclusive definition would correspond to WE = 2 (each b quark contributing

once), while an exclusive definition (the cross section for events containing at least

one b quark) would correspond to WE = 1. Since the forward-backward asymme-

try is defined to be the asymmetry of a differential cross section, it is clear that

we must use the same cross section definition in the numerator and denominator,

6Note that we use the same normalization as in ref. [13] (see also eq. (B.1)) in which the E-term

already includes an identical-particle factor of 1/(2!)2 because there are two identical quarks and

two identical antiquarks in the final state. Thus, when we setWE = 2 we actually include an overall

factor of WE/(2!)
2 = 1/2!.
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i.e. that WE must be the same in the symmetric and antisymmetric cross sections.

We return to the rôle of the weight factor WE after discussing the general form

of the non-singlet contributions.

3.4 Non-singlet contributions

Here we consider all the other contributions that have not yet been treated, namely all

the diagrams in figure 1 except those in figure 1(d), the diagrams in figures 2(a), 2(b),

3, 4(a) and 5(a), as well as the E-term defined above. All these terms are included in

the non-singlet components σS,NS and σA,NS of eqs. (3.1) and (3.2). Actually, intro-

ducing the weight factor WE for the E-term, we can define the following symmetric

and antisymmetric cross sections

σS,NS (WE) = σS,NS (WE = 0) +WEσ
(0)
S

∫
ES , (3.5)

σA,NS (WE) = σA,NS (WE = 0) +WEσ
(0)
A

∫
EA , (3.6)

where
∫
ES and

∫
EA denote the integral of the symmetric and antisymmetric E-

term, respectively. We recall that the ‘truly’ inclusive cross sections in eq. (2.4)

correspond to the definition with WE = 2, i.e., σS,NS = σS,NS (WE = 2) and σA,NS =

σA,NS (WE = 2).

The O(α2S)-calculation of the cross sections in eqs. (3.5), (3.6) and of the cor-
responding forward-backward asymmetry in the case of a finite b-quark mass is ex-

tremely complicated, and we are not able to perform it. It is thus convenient to

separate the calculation into a piece that is finite in the massless limit and a simpler

piece that is not. Then, the (although, cumbersome) finite piece can be more easily

computed in the massless approximation, while the simpler non-finite piece can be

computed in the massive theory.

It is possible to show (appendix A) that the inclusive definition, with WE = 2,

results in an antisymmetric cross section σA (or, analogously, σA,NS) that is finite

in the massless limit, at least at O(α2S). However, in the same limit, the inclusive
symmetric cross section is divergent at O(α2S), even if we only consider its non-singlet
component. The corrections to (the non-singlet component of) the forward-backward

asymmetry itself must therefore also be divergent in the massless limit.

This final statement remains true for any value of WE > 0. For example, with

WE = 1, the non-singlet part of the symmetric cross section is finite (see eq. (3.10)),

but the antisymmetric cross section contains logarithmically-enhanced terms.

The divergences in the non-singlet components correspond to logarithmically-

enhanced terms α2S lnQ
2/m2b coming from the E-term in the triple-collinear limit,

i.e., when three fermions of the four-quark final state become simultaneously parallel

(appendix B). The integral of the symmetric E-term is calculated for finite values of
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the quark mass in appendix B. Neglecting corrections of O(mb/Q), the final result is∫
ES = CF

(
CF − CA

2

)(αS
2π

)2 [
2

(
13

4
− π

2

2
+ 2ζ3

)
ln
Q2

m2b
− 8.1790± 0.0013

]
.

(3.7)

As expected from the singular behaviour in the triple-collinear limit, the analytic

coefficient in front of lnQ2/m2b is proportional to the integral of the non-singlet

Altarelli-Parisi probability PNSqq̄ (z, αS) (see, for instance, the first paper in ref. [14]):∫ 1
0

dzPNSqq̄ (z, αS) =
(αS
2π

)2
CF

(
CF − 1

2
CA

)(
13

4
− π

2

2
+ 2ζ3

)
, (3.8)

'
(αS
2π

)2
CF

(
CF − 1

2
CA

)
0.7193 . (3.9)

The constant term in the square bracket on the right-hand side of eq. (3.7) is the

result of our numerical calculation.

Having pointed out that the symmetric E-term is divergent in the massless limit,

it is very simple to show how the divergence appears in the inclusive symmetric cross

section. According to the definition of the non-singlet component of σS, the virtual

diagrams that contribute to σS,NS are exactly those that contribute to the e
+e− total

cross section. As for the real diagrams, they only differ by the contributions coming

from the E-term. In the total cross section, the E-term enters with a multiplicity

factor WE = 1, and its divergence is cancelled by that of the virtual diagrams. In

the inclusive b-quark cross section, the multiplicity factor of the E-term is WE = 2

and, thus, the cancellation of the divergence with the virtual terms is spoiled.

This argument also allows us to directly compute the O(α2S)-correction to
eq. (3.5). Exploiting the fact that the massless QCD correction to σS,NS (WE = 1) is

equal to the correction Re+e− to the total cross section, we write

σS,NS (WE = 1) = σ
(0)
S

[
Re+e− +O

(
α3S
)]
, (3.10)

and, more generally,

σS,NS (WE) = σ
(0)
S

[
Re+e− + (WE − 1)

∫
ES +O

(
α3S
)]
. (3.11)

Then, we obtain an explicit expression for σS,NS (WE) by simply introducing in

eq. (3.11) our result in eq. (3.7) for
∫
ES and the well-known result [15] for Re+e−:

Re+e− = 1 +
3

4
CF
αS(Q

2)

π
+

(
αS(Q

2)

2π

)2
× (3.12)

× CF
{
− 3
8
CF + CA

(
123

8
− 11ζ3

)
+ TRNf

(
4ζ3 − 11

2

)}
+O(α3S) ,

(3.13)

where TR = 1/2 and Nf is the number of light flavours (e.g., Nf = 5 at LEP).
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In particular, for the inclusive symmetric cross section we obtain

σS,NS = σS,NS (WE = 2) = σ
(0)
S

[
Re+e− +

∫
ES +O

(
α3S
)]
. (3.14)

The explicit O(α2S)-calculation of the antisymmetric cross section σA,NS and of
the forward-backward asymmetry is described in the next section.

Note that our result in eq. (3.14) for the inclusive symmetric cross section dis-

agrees with the corresponding result of Ravindran and van Neerven [8]. Their ex-

pression for the correction to the symmetric cross section (fT + fL in their eqs. (31)

and (32)) is equal to the result in eq. (3.13) for the O(α2S)-correction to Re+e− .
The disagreement thus regards the additional logarithmically-enhanced term

∫
ES

included in our expression. The multiplicity of b-quarks is not required to be finite

in massless QCD (even in the non-singlet sector), and thus we cannot find any reason

why this logarithmically-enhanced term can disappear from the inclusive symmetric

cross section.

The results of ref. [8] for σS,NS = σS,NS (WE = 2) are based on the calcula-

tion of the single-particle inclusive distribution performed in refs. [16]. Our re-

sult is consistent with those in refs. [16]. In fact, we have evaluated the integral

over the longitudinal-momentum fraction z of the non-singlet coefficient function

CNSS,q (z, αS(Q
2), Q2/µ2F) = C

NS
T,q + C

NS
L,q , computed there. This integral is propor-

tional to σS,NS = σS,NS(WE = 2) in massless QCD after factorization of collinearly-

divergent contributions at the factorization scale µF. We find that the integral ex-

plicitly depends on lnQ2/µ2F, thus proving that σS,NS is not finite in massless QCD.

The coefficient of lnQ2/µ2F exactly agrees with the coefficient of lnQ
2/m2b in our

eqs. (3.7) and (3.14).

4. Calculation of the non-singlet contribution at O(α2S)
As discussed in section 3.4, the NNLO corrections to the non-singlet component of

the forward-backward asymmetry, AFB,NS , are divergent in the massless limit. The

divergent behaviour remains true also if we abandon the fully inclusive definition

by introducing the arbitrary weight WE for the E-term. Thus, AFB,NS cannot be

computed at O(α2S) by using the massless approximation.
Nonetheless, since both σA,NS (WE = 2) and σS,NS (WE = 1) are finite when

mb → 0, we can use the dependence on WE to construct an unphysical observable
that is finite in the massless limit:

A
(2);finite
FB ≡ σA,NS(WE = 2)

σS,NS (WE = 1)
. (4.1)

The physical result for WE = 2 is then given by

A
(2)
FB,NS = A

(2);finite
FB − σ

(0)
A

σ
(0)
S

∫
ES = A

(2);finite
FB − A(0)FB

∫
ES , (4.2)
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where
∫
ES is the integral of the symmetric E-term, given in eq. (3.7).

The massless calculation of A
(2);finite
FB can be performed in a similar way to the

NLO calculation of section 2.2. The total contribution can be written as

A
(2);finite
FB =

σ
(0)
A + σ

(1)
A + σ

(2);two-loop
A + σ

(2);one-loop
A + σ

(2);tree
A (WE = 2)

σ
(0)
S + σ

(1)
S + σ

(2);two-loop
S + σ

(2);one-loop
S + σ

(2);tree
S (WE = 1)

, (4.3)

where σ
(1)
A and σ

(1)
S are the complete contributions to the antisymmetric and sym-

metric cross sections at O(αS). The non-singlet O(α2S)-contributions from the two-
parton, three-parton and four-parton final states are denoted by σ(2);two-loop,

σ(2);one-loop and σ(2);tree respectively. Of course, the dependence on WE enters only

through the four-parton terms σ
(2);tree
A (WE = 2) and σ

(2);tree
S (WE = 1).

If we continue to use a regularization scheme that preserves the helicity conser-

vation of massless QCD, like dimensional regularization, the two-loop corrections are

again proportional to the tree-level results

σ
(2);two-loop
A

σ
(0)
A

=
σ
(2);two-loop
S

σ
(0)
S

, (4.4)

so that if we expand the ratio in eq. (4.3) up to O(α2S), the two-loop corrections
cancel, and we obtain

A
(2);finite
FB =

σ
(0)
A

σ
(0)
S

[
1 +

(
1− σ

(1)
S

σ
(0)
S

)(
σ
(1)
A

σ
(0)
A

− σ
(1)
S

σ
(0)
S

)
+
σ
(2);one-loop
A

σ
(0)
A

−

− σ
(2);one-loop
S

σ
(0)
S

+
σ
(2);tree
A (WE = 2)

σ
(0)
A

− σ
(2);tree
S (WE = 1)

σ
(0)
S

]
. (4.5)

The first line can be calculated analytically (see section 2.2), but the second line is

too complicated to be able to, so must be done numerically. Since the two-loop terms

have cancelled, this has the structure of a NLO three-jet calculation, as first noticed

by Altarelli and Lampe [7]. Thus the calculation can be performed using known tech-

niques (we use the dipole-formalism version of the subtraction method [17]). One

simply has to replace the full matrix element squared by the appropriate contrac-

tions of the hadronic tensor, as in eqs. (2.6) and (2.7). We have obtained simplified

analytical expressions for these contractions by using the matrix elements originally

computed by the Leiden group [18]. We have also checked that these expressions

numerically agree with the code of ref. [19].

4.1 Numerical results

We are finally ready to present our numerical results. We start with the unphysical,

but finite, quantity defined in eq. (4.1), and separate out the different colour factors,
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b-quark axis C N T

AL [7] 4.4± 0.5 −10.3± 0.3 5.68± 0.04
RvN [8] 3

8
= 0.375 −123

8
= −15.375 11

2
= 5.5

Our Calculation 0.3765± 0.0038 −15.3769± 0.0034 5.5002± 0.0008
Table 1: Results for the coefficients of the O(α2S) correction to the finite part of the
forward-backward asymmetry with the b-quark axis definition, eqs. (4.2) and (4.6).

as in refs. [7, 8]:

A
(2);finite;b
FB = A

(0)
FB

[
1− αS
2π

(
1− αS
2π

3

2
CF

)(
3

2
CF

)
+

+
(αS
2π

)2
CF (CCF +NNC + TTRNf)

]
, (4.6)

with αS ≡ αS(Q2). Our numerical results are shown in table 1, in comparison with the
previous calculations. It is clear that we disagree badly with the results of Altarelli

and Lampe [7], but are in excellent agreement with Ravindran and van Neerven [8],

who give the coefficients analytically. However, we should recall that this must have

subtracted from it the logarithmically-enhanced term of eqs. (4.2) and (3.7), which is

not present in the result of ref. [8]. In fact, in section 3.4 we have already pointed out

that their expression for the correction to the symmetric cross section does not agree

with ours, but, rather, it is actually equal to our σ
(2)
S,NS (WE = 1). So, the fact that

their result for the complete A
(2)
FB agrees with our A

(2);finite
FB means that we confirm

their result [20, 8] for the inclusive antisymmetric cross section σ
(2)
A = σ

(2)
A (WE = 2)

(fA in equation (33) of ref. [8]).

The disagreement with the result of ref. [7] may be related to the poor nu-

merical convergence of their calculational method (i.e., the effect of large numerical

cancellations).

Using our numerical program it is straightforward to calculate the forward-

backward asymmetry with any other axis definition (or cuts, for example on the

value of the thrust). With the thrust axis definition, we obtain

A
(2);finite;T
FB = A

(0)
FB

[
1− αS
2π

(
1− αS
2π

3

2
CF
)
(1.34CF) +

+
(αS
2π

)2
CF (CCF +NNC + TTRNf )

]
, (4.7)

with αS ≡ αS(Q2) and the coefficients given in table 2. The logarithmically-enhanced
piece that has to be added to this is identical to that in the b-quark axis definition,

namely eqs. (4.2), (3.7). It is worth noting that the difference between the two

definitions is the same size and in the same direction as at O(αS), leading to an
overall difference of 0.8% for αS ∼ 0.12.
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thrust axis C N T

Our Calculation −3.7212± 0.0065 −9.6011± 0.0049 4.4144± 0.0006
Table 2: Results for the coefficients of the O(α2S) correction to the finite part of the
forward-backward asymmetry with the thrust axis definition, eqs. (4.2) and (4.7).

Since A
(2);finite;T
FB is defined by the ratio in eq. (4.1), using the expression in

eq. (3.10) for σS,NS (WE = 1), we can translate our result in eq. (4.7) into an equiv-

alent result for the antisymmetric cross section defined with respect to the thrust

axis. We have:

σTA,NS = σ
(0)
A

{
1 + 0.034αS(Q

2) +

(
αS(Q

2)

2π

)2
CF

[(
−3
8
+ C

)
CF +

+

(
123

8
− 11ζ3 +N

)
CA +

(
4ζ3 − 11

2
+ T

)
TRNf

]
+O(α3S)

}
.

(4.8)

with the coefficients C,N and T given in table 2.7

We finally recall that we include an arbitrary factor WE in front of the four-

b contribution to account for the way in which it is treated in the experimental

analyses. For a fully inclusive definition, in which each b quark contributes once,

WE should be set equal to 2, while for an exclusive definition, WE should be set

equal to 1. Our final result for the non-singlet component of the forward-backward

asymmetry, is then:

A
(2)
FB,NS(WE) ≡

σA,NS (WE)

σS,NS (WE)
=

= A
(2);finite
FB − A(0)FB

[(
1− 1
2
WE

)(
2

∫
EA −

∫
ES

)
+
1

2
WE

∫
ES

]
,

(4.9)

where A
(2);finite
FB is given in eqs. (4.6), (4.7) and tables 1 and 2,

∫
ES is given in eq. (3.7)

and (see appendix B)

2

∫
EA −

∫
ES =

(αS
2π

)2
CF

(
CF − 1

2
CA

)(
0.3620± 0.0007), quark axis, (4.10)

2

∫
EA −

∫
ES =

(αS
2π

)2
CF

(
CF − 1

2
CA

)(
0.1144± 0.0009), thrust axis. (4.11)

Note that the combinations of E-term contributions in eqs. (4.10) and 4.11 are finite

in the massless limit (see the discussion in appendix B).
7In the analogous expression for σbA,NS , the coefficient of αS(Q

2) vanishes and C,N and T are

those given in table 1, which exactly cancel the rational numbers in eq. (4.8), leaving only 3β0ζ3,

with β0 =
11
3 CA − 43TRNf , as pointed out in ref. [20].
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AL [7] RvN [8] Our calculation Our calculation

quark axis quark axis quark axis thrust axis

Correction, A
(2)
FB/A

(0)
FB 0.962 0.952 0.952 0.956

Table 3: Total QCD correction to the forward-backward asymmetry in the small-mass

limit, with αS = 0.12. In each case, the thrust axis definition is used for the O(αS)
correction and the definition shown is used for theO(α2S) correction, as discussed in the text.

Putting all these numbers together, and setting Nf = 5, we write the forward-

backward asymmetry according to the two definitions as:

A
(2);b
FB,NS(WE) = A

(0)
FB

[
1− 0.318αS − 0.973α2S +WEα2S

(
0.00405 ln

Q2

m2b
− 0.0240

)]
,

(4.12)

A
(2);T
FB,NS(WE) = A

(0)
FB

[
1− 0.284αS − 0.676α2S +WEα2S

(
0.00405 ln

Q2

m2b
− 0.0233

)]
.

(4.13)

5. Conclusion

We have calculated the second-order corrections to the non-singlet component of

the forward-backward asymmetry in e+e− annihilation. We have retained all terms
that do not vanish in the small-mass limit (constants and logarithmically-enhanced

terms). Our result is also valid for the left-right forward-backward asymmetry.

Using the quark axis definition we do not agree with any existing calculation.

Separating the asymmetry into its symmetric and antisymmetric parts, we find that

we agree with Ravindran and van Neerven [8] for the antisymmetric part, which

is finite in massless QCD. For the symmetric part we disagree by a term that is

divergent in massless QCD, so is logarithmically-enhanced in the full theory.

We have obtained results for the first time with the thrust axis definition, which

is actually what is used in the experimental measurements. After including the

second-order contributions, the difference between the two axis definitions is twice

as large as at first order, amounting to 0.8%.

We summarize the total QCD correction according to the various available cal-

culations in table 3. We continue to neglect all terms that vanish in the massless

limit, and discuss the effect of mass corrections below. Since in the existing experi-

mental analyses (see for example ref. [12]), the known O(αS) correction for the thrust
axis definition was included, together with the Altarelli and Lampe quark axis value

for the O(α2S) corrections, we do the same in table 3.
We find that the difference between the Ravindran and van Neerven calcula-

tion and ours is numerically irrelevant, being smaller than 10−4 for b quarks and
∼ 2.5× 10−4 for c quarks. Therefore at the numerical precision required by current
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or any foreseen experiments, we agree with their result—the difference is only one

of principle. The difference between the Altarelli and Lampe calculation and ours

for the quark axis definition is more significant though, at around 1%. However, the

error in their calculation and the effect of using the thrust axis definition partially

cancel, and the total difference is around 0.6%.

Before quantifying the impact of these differences, we mention the important

fact, discussed in ref. [12], that the experimental procedures introduce a bias towards

more two-jet-like events. This actually decreases the size of the QCD corrections

considerably, so our numbers should be considered as upper bounds. In fact at

present the effect of this bias is typically taken into account using Monte Carlo

event generators. Using our numerical calculation, it is straightforward to apply

any infrared-safe cuts, for example on the thrust of the event (this effect was first

considered at O(αS) in ref. [5]). This could be used to reduce the reliance on the
generators, or at the least to calibrate their reliability.

To quantify the impact of the differences shown in table 3, we recall a few

figures from the latest global electroweak fit [1]. The total error on the LEP av-

erage forward-backward asymmetry of b-quarks AFB is 2.1%. The second-order

QCD corrections are used to convert the measured value into a measurement of

the tree-level asymmetry, A
(0)
FB, at present using the Altarelli and Lampe result.

This is then used as input into the fit for the effective weak mixing angle, sin2 θeff ,

and eventually into the global fit to all electroweak data. Following through this

process, our smaller value of the correction in table 3 results in a larger value of

A
(0)
FB and hence a smaller value of sin

2 θeff , by about a third of its experimental

error.

This has a direct bearing on the fitted value of the Higgs mass, (see figure 9 of

ref. [1]). To find the effect of using our corrections would require a complete refitting

of all the electroweak data. However, we can get a rough idea simply by fitting the

data in figure 9 of ref. [1] alone. We find a roughly linear relation: for each per mille

that the corrected value of the quark asymmetries is increased, we obtain a per cent

decrease in the central value of the Higgs mass (and its upper bound). Therefore

with our 0.6% difference, we expect a reduction of about 5 GeV in the central value.

While this is certainly not statistically significant, given the importance that some

people attach to this value, it is not irrelevant either.

In trying to estimate the remaining uncertainties in the forward-backward asym-

metry, we recall the ingredients still missing from our analysis. We should bear in

mind that while the 2% precision of current experiments is close to their final limit,

a future linear collider could be capable of experimental errors on the left-right

forward-backward asymmetry of order 0.1% [2].

Within small-mass perturbation theory, the first terms that we neglect areO(α3S).
To estimate their size, we assume that the coefficient grows as much in going from

O(α2S) to O(α3S) as it did from O(αS) to O(α2S), and get 0.3%. The more conven-

18



J
H
E
P
0
7
(
1
9
9
9
)
0
2
3

tional method, varying the renormalization scale from Q/2 to 2Q results in a similar

estimate of 0.2%. A variation in the input value of αS of ±0.004 gives only 0.1%.
Within the O(α2S) calculation, we neglected the effect of triangle diagrams. For

the quark axis definition, these were calculated in ref. [7], and amount to about 0.1%.

We have no reason to suppose they would be larger for the thrust axis definition,

and in any case it would not be difficult to calculate them.

We have also neglected linear mass corrections of the type mb/Q, which are

absent at tree level, but arise at higher orders. The full mass correction at O(αS) is
well known, and is reasonably well approximated by its leading term, 4CFαS/πmb/Q.

Since we do not have any higher order corrections to this linear mass term, its

renormalization group dependence is not under control, so to estimate the effect

of higher order corrections, we vary mb from its running value in the MS scheme

(∼ 3 GeV) to its pole value (∼ 5 GeV), resulting in a 0.4% variation in AFB.
Finally, at higher orders it is quite possible that the leading mass term could

become logarithmically enhanced, for instance, as ∼ α2Smb/Q lnn(Q2/m2b) at the
second order. Terms like this certainly arise with n = 1 simply from the renor-

malization group effects just mentioned, but the question is whether additional

terms can arise from other dynamic effects. A possible additional source of single-

logarithmic enhancement is collinear emission, as in the case of the E-term con-

tributions discussed earlier. Owing to the inclusiveness of the forward-backward

asymmetry with respect to soft emission, we think that higher powers of logs are

unlikely to be present in the non-singlet component at O(α2S). Although this point
deserves further investigation, assuming n ≤ 1 we estimate a resulting uncertainty
of 0.5%.

We have not made any attempt to estimate the uncertainty due to non-pertur-

bative corrections. In ref. [12], this is done using Monte Carlo event generators.

They find a correction of 0.25% and conservatively assign the whole of this as a

systematic error.

To summarize, there are several sources of uncertainty that all contribute at

the few per mille level. While this is certainly sufficient for the current precision of

the data, matching the precision of a future linear collider measurement could be

extremely difficult. It is likely that this could only be done by making even more

stringent two-jet cuts in order to work in a region in which the corrections and their

uncertainties are smaller.
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A. The antisymmetric cross section in massless QCD

In this appendix we show that, up to O(α2S), the perturbative-QCD corrections to
the heavy-quark antisymmetric cross section σA are finite in the limit of vanishing

quark masses.

We are interested in the analogue of the cross section in eq. (2.2) for the inclusive

process e+e− → a +X where a = qf , q̄f , g denotes a generic massless QCD parton.
We thus define the antisymmetric8 cross section dσaA/dx as follows

dσaA
dx
=

∫ 1
0

d cos θ
dσ(e+e− → a+X)

dx d cos θ
−
∫ 0
−1
d cos θ

dσ(e+e− → a+X)
dx d cos θ

. (A.1)

It is also convenient to introduce the N -moments σaA,N defined by

σaA,N =

∫ 1
0

dx xN−1
dσaA
dx
, (A.2)

and likewise for any other function of the energy fraction x. Note that the massless

limit of the b-quark antisymmetric cross section in eq. (2.4) coincides with the N = 1

moment of dσ
qf
A /dx, i.e., σA = σ

qf
A,N=1.

Since we are working in massless QCD, the antisymmetric cross section dσaA/dx

is not finite in perturbation theory and, more precisely, it is collinear divergent.

Nonetheless, because of the factorization theorem of mass singularities, once the

divergences have been regularized (by using, for instance, dimensional regularization)

they can be factorized. The N -moments can be written as

σaA,N =
∑

b=qf ,q̄f ,g

σ̂bA,NΓba,N , (A.3)

where σ̂bA,N is a finite contribution to the cross section and the factor Γab,N contains all

the collinear singularities (see, e.g., ref. [14]). This factor depends on the factorization

(or regularization) scale µ and the factorization scheme, but it is universal (process

independent). Moreover, it fulfils the Altarelli-Parisi evolution equations

∂

∂ lnµ2
Γab,N =

∑
c

Pac,N

(
αS
(
µ2
))
Γcb,N , (A.4)

with the initial condition Γab,N(µ
2 = 0) = δab and where Pac,N(αS) are the N -

moments of the Altarelli-Parisi probabilities, whose power series expansion in αS can

be computed at any perturbative order.

Note that the antisymmetric cross section σaA,N is an odd quantity under charge

conjugation. Thus we have σaA,N = −σāA,N and, in particular, σqfA,N = −σq̄fA,N and
σgA,N = 0. Analogous relations are valid for σ̂

a
A,N .

8Exactly analogous definitions hold for the symmetric cross section dσaS/dx and its N -

moments σaS,N .
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We can now consider in detail the massless limit of the b-quark antisymmetric

cross section σA, that is, the first moment σ
qf
A,N=1. Since σ̂

a
A,N is C-odd, eq. (A.3) gives

σ
qf
A,N=1 =

∑
f ′
σ̂
qf ′
A,N=1Γf ′f,N=1 , (A.5)

where

Γf ′f,N=1 ≡ Γqf ′qf ,N=1 − Γq̄f ′qf ,N=1 . (A.6)

Using eq. (A.4) and the property Pac(αS) = Pāc̄(αS), which follows from the charge-

conjugation invariance of QCD, we obtain the following evolution equation for the

singular collinear factor on the right-hand side of eq. (A.5)

∂

∂ lnµ2
Γf ′f,N=1 =

∑
f ′′

[
Pqf ′qf ′′ ,N=1

(
αS
(
µ2
))− Pq̄f ′qf ′′ ,N=1(αS(µ2))]Γf ′′f,N=1 , (A.7)

Note that the combination of first moments of the Altarelli-Parisi probabilities on

the right-hand side of eq. (A.7) vanishes up to O(α2S):
Pqf ′qf ′′ ,N=1

(
αS
(
µ2
))− Pq̄f ′qf ′′ ,N=1(αS(µ2)) = O(α3S) . (A.8)

This result follows from fermion-number conservation and it can be explicitly checked

by using the known LO and NLO expressions [14] of the Altarelli-Parisi probabilities.

Equation (A.8) implies that Γf ′f,N=1 = δf ′f + O(α3S) and, thus, the massless-quark
antisymmetric cross section σ

qf
A,N=1 is free from collinear singularities up to NNLO

accuracy:

σ
qf
A,N=1 = σ̂

qf
A,N=1 +O

(
α3S
)
. (A.9)

To conclude our argument on the finiteness of σ
qf
A,N=1, we have to discuss the

effect of soft singularities. The QCD factorization theorem guarantees that the short-

distance cross section σ̂
qf
A,N is finite for any value of the moment index N > 1. The

limit N → 1 of eqs. (A.2) and (A.3) has to be dealt with with care because it is
sensitive to possible soft singularities of the type dσ

qf
A /dx ∼ 1/x in the inclusive quark

spectrum. These singularities can arise when qf is produced by the fragmentation

of a soft gluon. At O(αS) there are no such fragmentation subprocesses. At O(α2S),
there is only the subprocess g → qf q̄f . In this O(α2S)-subprocess, however, the pair
qf q̄f is produced in a definite state of positive charge conjugation and, thus, it gives

a vanishing contribution to the C-odd cross section σ
qf
A . It follows that up to O(α2S)

the limit N → 1 can be safely performed and the right-hand side of eq. (A.9) is finite.
The antisymmetric cross section σA is the integral of a single-particle (parton)

inclusive distribution and thus, the finiteness of eq. (A.9) may appear surprising.

However, this result is not accidental. The collinear safety of σ
qf
A,N=1 follows from

fermion-number conservation, i.e., eq. (A.8), and this is exactly the same equation

that, up to O(α2S), guarantees the finiteness of the Adler, Gross-Llewellyn-Smith and
unpolarized-Bjorken sums in Deep-Inelastic-Scattering.
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B. Integrating the E-terms

In this appendix we give some details of the integration of the E-terms appearing in,

for example, eq. (4.9).

We begin with the symmetric term
∫
ES, which is equal to the total contribu-

tion to Re+e− from four-b final states. We label the quark (antiquark) momenta as

p1,2(p3,4) and retain all mass terms. The integral is then analogous to eq. (B.2) of

ref. [13], but with the massless phase space replaced by that with four equal final-

state masses:∫
ES =

1

(2!)2
CF
(αS
2π

)2 1
Q2

∫
dΦ4

(
Q2;m2b , m

2
b , m

2
b , m

2
b

)×
×
[
ES
(
p1, p2, p3, p4

)
+
(
p1 ↔ p2

)
+
(
p3 ↔ p4

)
+
(
p1 ↔ p2, p3 ↔ p4

)]
,

(B.1)

and with the E-term itself in eq. (B.7) of ref. [13] replaced by:

ES =

(
CF − CA

2

){[((
s12s23s34 − s12s24s34 + s12s14s34 + s12s13s34 + s13s224 −

− s14s23s24 + s13s23s24 + s13s14s24 + s213s24 − s14s223 − s214s23 − s13s14s23
)
−

− 2m2b
(
2s12s13 + 3s12s14 + s12s23 − s12s24 − s12s34 + 2s13s14 + s13s24 +

+ s213 + s14s23 + s14s24 + s14s34 − s23s24 − s23s34 − s223 − 3s24s34 − s234
)
+

+ 4m4b

(
s12 + 2s13 + 5s14 + s23 − 2s24 − 3s34

)
− 16m6b

)/(
s13s23s123s134

)
−

−
(
s12

(
s12s34 − s23s24 − s13s24 − s14s23 − s14s13

)
− 2m2b

(
4s12s34 + 2s

2
12 −

− 2s13s14 − 2s13s23 − 2s13s24 − s213 − 2s14s23 − 2s23s24 − s223
)
−

− 4m4b
(
− 6s12 + 2s13 + s14 + 2s23 + s24 − 3s34

)
− 24m6b

)/(
s13s23s

2
123

)
−

−
((
s14 + s13

)(
s24 + s23

)
s34 −m2b

(
2s12s13 + 2s12s23 + s12s34 + s

2
12 +

+ 4s13s23 + s13s24 + s13s34 + s
2
13 + s14s23 − s14s34 + s23s34 + s223 − s24s34

)
−

− 2m4b
(
− 2s12 − s13 + 3s14 − s23 + 3s24 + 2s34

)
+ 24m6b

)/(
s13s23s134s234

)]
+

+

[(
p1 ↔ p3, p2 ↔ p4

)]}
, (B.2)

where sij = (pi + pj)
2 and sijk = (pi + pj + pk)

2 −m2b . Note that by setting mb = 0
we trivially recover the result of ref. [13].
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Figure 6: The term c in eq. (B.4) as a function of mass. The errors are purely from Monte

Carlo statistics. The solid line is our fit to the limiting value and the dotted lines its error.

In the massless case, the integral is divergent in all four triple-collinear limits.

When i, j and k are all collinear, we have sij ∼ sik ∼ sjk ∼ sijk → 0 and the
leading behaviour of the squared matrix element is ∼ 1/s2ijk. Since the volume of
three-body phase space is ∼ sijk, we obtain a logarithmic divergence. Its coefficient
is the integral of the corresponding Altarelli-Parisi splitting function (either PNSqq̄ or

PNSq̄q , which are equal because of the charge-conjugation invariance of QCD). After

summing over the four singular regions, we obtain one singular contribution for each

of the two partons in the tree-level contribution, so we expect the coefficient of the

logarithmically-enhanced term in eq. (B.1) to be

2

∫ 1
0

dz PNSqq̄ (z) = 2

(
13

4
− π

2

2
+ 2ζ3

)
. (B.3)

That is, we expect the result retaining the quark mass to be of the form∫
ES = CF

(
CF − CA

2

)(αS
2π

)2 [
2

(
13

4
− π

2

2
+ 2ζ3

)
ln
Q2

m2b
+ c

]
, (B.4)

with c tending to a constant at small masses. Our numerical results confirm the

coefficient of the log. For the constant term we obtain the results shown in figure 6.

To obtain the limiting value, we have tried fitting various degree polynomials in

mb/Q to the points mb/Q ≤ µmax, reducing µmax until the fit is acceptable. We call
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the range of values from the different fits a systematic error, which is comparable to

the statistical error, and add them in quadrature, to give:

c = −8.7190± 0.0013. (B.5)

At the Z peak, logs of the bottom quark mass are not yet asymptotic. Using the

log-plus-constant approximation, we obtain∫
ES

(
mb

Q
=
5

91

)
≈ CF

(
CF − CA

2

)(αS
2π

)2 [− 0.3719± 0.0015], (B.6)

while direct integration gives∫
ES

(
mb

Q
=
5

91

)
= CF

(
CF − CA

2

)(αS
2π

)2 [
+ 0.8174± 0.0001]. (B.7)

Even so, the difference between the two results is still an order of magnitude smaller

than α2Smb/MZ, the anticipated size of mass corrections.

For charm quarks however, the log-plus-constant approximation works quite well:∫
ES

(
mc

Q
=
1.5

91

)
≈ CF

(
CF − CA

2

)(αS
2π

)2 [
3.0922± 0.0015], (B.8)

∫
ES

(
mc

Q
=
1.5

91

)
= CF(CF − CA/2)

(αS
2π

)2 [
3.3527± 0.0003]. (B.9)

We turn now to the integral (2
∫
EA−

∫
ES), which we claim is finite in massless

QCD. If it is defined in the most natural way, eq. (B.10), the integrand is not piece-

wise finite, making it unsuitable for numerical integration. However, we can rewrite

it in a form in which it is, proving the finiteness of the whole integral, and allowing

it to be performed numerically.

If we define EA(n) to be the E-term contribution that is antisymmetric with

respect to the direction n, then our integral for the quark axis definition is∫ (
EA(p1) + EA(p2)−ES

)
. (B.10)

In each of the four triple-collinear limits sijk → 0, the integrand diverges like 1/s2ijk,
again yielding a logarithmic divergence. The coefficient of this divergence is either

positive or negative, depending on whether the collinear partons ijk are qqq̄ or qq̄q̄.

However, using the fact that EA is C-odd, we have the relation∫
EA(p1) =

∫
EA(p2) = −

∫
EA(p3) = −

∫
EA(p4) , (B.11)

which we can exploit to rewrite eq. (B.10) as∫ (
1

2
EA(p1) +

1

2
EA(p2)− 1

2
EA(p3)− 1

2
EA(p4)− ES

)
. (B.12)
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In each of the four collinear limits, two of the EA terms have equal and opposite

divergences to each other and two of them have equal and opposite divergences to

ES, yielding an integrable integrand with a finite result. We have thus proved that

eq. (B.10) is finite.

Although this argument was formulated in terms of the b-quark axis definition,

it applies equally well to any infrared-safe definition, like the thrust axis, since they

must become equal in the triple-collinear limit.

Since the integrand is everywhere integrable, we can use the same numerical

program as for the rest of the non-singlet contributions, and obtain the results in

eqs. (4.10) and (4.11).
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