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ABSTRACT

Global convergence to �rst-order critical points is proved for two trust-region SQP-�lter

algorithms of the type introduced by Fletcher and Ley�er (1997). The algorithms

allow for an approximate solution of the quadratic subproblem and incorporate the

safeguarding tests described in Fletcher, Ley�er and Toint (1998). The �rst algorithm

decomposes the step into its normal and tangential components, while the second

replaces this decomposition by a stronger condition on the associated model decrease.
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1 Introduction

We analyze an algorithm for solving optimization problems where a smooth objective

function is to be minimized subject to smooth nonlinear constraints. No convexity

assumption is made. More formally, we consider the problem

minimize f(x)

subject to cE(x) = 0

cI(x) � 0;

(1.1)

where f is a twice continuously di�erentiable real valued function of the variables

x 2 IRn and cE(x) and cI(x) are a twice continuously di�erentiable functions from IRn

into IRm and from IRn into IRp, respectively. Let c(x)T = (cE(x)
T cI(x)

T ).

The class of algorithms that we discuss belongs to the class of trust-region methods

and, more speci�cally, to that of �lter methods introduced by Fletcher and Ley�er

(1997), in which the use of a penalty function, a common feature of the large majority

of the algorithms for constrained optimization, is replaced by the introduction of a

so-called \�lter".

A global convergence theory for an algorithm of this class is proposed in Fletcher et

al. (1998), in which the objective function is locally approximated by a linear function,

leading, at each iteration, to the (exact) solution of a linear program. This algorithm

therefore mixes the use of the �lter with sequential linear programming (SLP). In this

paper, we consider approximating the objective function by a quadratic model, which

results in a sequential quadratic programming (SQP) technique. This in turn leads

us to modi�cations of the algorithm discussed in Fletcher et al. (1998). Besides the

very important fact that the objective function's model is quadratic instead of linear,

the method discussed here has a di�erent mechanism for deciding on the compatibility

of the associated (QP) subproblem. It also allows for an approximate solution of this

subproblem at each iteration.

2 A Class of Trust-Region SQP-Filter Algorithms

2.1 An approximate SQP framework

Sequential quadratic programming methods are iterative. At a given iterate xk, they

implicitly apply Newton's method to solve (a local version of) the �rst-order necessary

optimality conditions by solving the quadratic programming subproblem QP(xk) given

by

minimize fk + hgk; si+ 1
2
hs;Hksi

subject to cE(xk) +AE(xk)s = 0

cI(xk) +AI(xk)s � 0;

(2.1)

where fk = f(xk) , where AE(xk) and AI(xk) are the Jacobians of the constraint

functions cE and cI at xk and whereHk is a symmetric matrix. We will not immediately

be concerned about how Hk is obtained, but we will return to this point in Section 3.
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Assuming a suitable value of Hk can be found, the solution of QP(xk) then yields a

step sk.

Unfortunately, due to the locally convergent nature of Newton's iteration, the step

sk may not always be very good. One possible way to cope with this di�culty is

to perform a linesearch with respect to an appropriate merit function along the step

sk, which is where penalty functions typically play a role. However, as one of our

objectives is to avoid penalty functions (and the need to update the associated penalty

parameter), we instead consider a trust-region approach that will not use any penalty

function. In such an approach, the objective function of QP(xk) is only intended to be

of local interest, that is we restrict the step sk in norm to ensure that xk + sk remains

in a trust-region centred at xk . In other words, we replace QP(xk) by the subproblem

TRQP(xk;�k) given by

minimize mk(s)

subject to cE(xk) +AE(xk)s = 0;

cI(xk) +AI(xk)s � 0;

and ksk � �k;

(2.2)

for some (positive) value of the trust-region radius �k, where we have de�ned

mk(s) = fk + hgk; si+ 1
2
hs;Hksi; (2.3)

and where k � k denotes the Euclidean norm.

Remarkably, most of the existing SQP algorithms assume that an exact local so-

lution of QP(xk) or TRQP(xk;�k) is found, although attempts have been made by

Dembo and Tulowitzki (1983) and Murray and Prieto (1995) to design conditions under

which an approximate solution of the subproblem is acceptable. We revisit this issue

in what follows, and start by noting that the step sk may be viewed as the sum of two

distinct components, a normal step nk, such that xk + nk satis�es the constraints of

TRQP(xk;�k), and a tangential step tk, whose purpose is to obtain reduction of the ob-

jective function's model while continuing to satisfy those constraints. This framework

is therefore similar in spirit to the Byrd-Omojokun technique proposed by Omojokun

(1989) and later developed by several authors, including Biegler, Nocedal and Schmid

(1995), El-Alem (1995, 1996), Byrd, Gilbert and Nocedal (1996), Byrd, Hribar and No-

cedal (1997), Bielschowsky and Gomes (1998), Liu and Yuan (1998) and Lalee, Nocedal

and Plantenga (1998). More formally, we write

sk = nk + tk (2.4)

and assume that

cE(xk) +AE(xk)nk = 0; cI(xk) +AI(xk)nk � 0; knkk � �k; (2.5)

kskk � �k; (2.6)

and

cE(xk) +AE(xk)sk = 0; cI(xk) +AI(xk)sk � 0: (2.7)
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Of course, this is a strong assumption, since in particular (2.5) may not have a feasible

point. We shall return to this possibility shortly. Given our assumption, there are

many ways to compute nk and tk. For instance, we could compute nk from

nk = Pk[xk ]� xk ; (2.8)

where Pk is the orthogonal projector onto the feasible set of QP(xk). In what follows,

we do not make any speci�c choice for nk, but we shall make the assumptions that

nk exists when the maximum violation of the nonlinear constraints at the k-th iterate

�k
def
= �(xk), where

�(x) = max

�
0;max

i2E
jci(x)j;max

i2I
�ci(x)

�
; (2.9)

is su�ciently small, and that nk is reasonably scaled with respect to the values of the

constraints in that

knkk � �usc�k (2.10)

for some constant �usc > 0, whenever �k is su�ciently small. We can interpret this

assumption in terms of the constraint functions themselves and the geometry of the

boundary of the feasible set. For instance, if we de�ne

F(x)
def
= fv 2 IRn j cE(x) +AE(x)(v � x) = 0; cI(x) +AI(x)(v � x) � 0g

and assume that, at every limit point x� of the sequence of iterates, the relative interior

of the linearized constraints rifF(x�)g is non-empty, we know, by applying a continuity

argument, that the same must be true for any iterate xk that is close enough to x�.

Hence the feasible set of QP(xk) is non-empty for such an xk , which implies that Pk

is well de�ned and that a normal step nk of the form (2.8) exists. Furthermore, if the

singular values of the Jacobian of constraints active at x�, AA(x�)(x�), are bounded

away from zero, the same must be true by continuity for AA(x�)(xk), and the projection

operator

Pk = AT
A(x�)

(xk)
h
AA(x�)(xk)A

T
A(x�)

(xk)
i�1

AA(x�)(xk)

must be bounded in norm for all xk su�ciently close to x�. Since only the constraints

active at x� can be active in a su�ciently small neighbourhood of this limit point, the

boundedness of the projection operator in turn guarantees that (2.10) holds for the

normal step

�AT
A(x�)

(xk)
h
AA(x�)(xk)A

T
A(x�)

(xk)
i�1

cA(x�)(xk);

for all k su�ciently large, provided the sequence of iterates remains bounded, because

this latter assumption ensures that xk must be arbitrarily close to a least one limit point

of the sequence fxkg for such k. Thus we see that (2.10) does not impose conditions

on the constraints or the normal step itself that are unduly restrictive.

Having de�ned the normal step, we write

xNk = xk + nk; (2.11)
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and observe that xNk satis�es the constraints of TRQP(xk;�k) and thus also of QP(xk).

It is crucial to note, at this stage, that nk may fail to exist because the constraints of

QP(xk) may be incompatible, in which case Pk is unde�ned.

Let us continue to consider the case where this problem does not arise, and a normal

step nk has been found. We then have to �nd a tangential step tk, starting from xNk
and satisfying (2.6) and (2.7), with the aim of decreasing the value of the objective

function. As always in trust-region methods, this is achieved by computing a step that

produces a su�cient decrease in mk, which is to say that we wish mk(x
N

k )�mk(xk+sk)

to be \su�ciently large". Of course, this is only possible if the maximum size of tk is

not too small, which is to say that xNk is not too close to the trust-region boundary.

We formalize this condition by requiring that

knkk � ���kmin[1; ���
�
k ]; (2.12)

for some �� 2 (0; 1), some �� > 0 and some � 2 (0; 1). If condition (2.12) does

not hold, we assume that the computation of tk is unlikely to produce a satisfactory

decrease in mk, and proceed just as if the feasible set of TRQP(xk;�k) were empty. If

nk can be computed and (2.12) holds, we shall say that TRQP(xk;�k) is compatible.

In this case at least a su�cient decrease seems possible. In order to formalize what we

mean, we recall that the feasible set of TRQP(xk;�k) is convex, and we can therefore

introduce the �rst-order criticality measure

�k = �(xk) = j min
cE(xk)+AE (xk)d=0

cI(xk)+AI(xk)d�0
kdk�1

hgk; dij (2.13)

(see Conn, Gould, Sartenaer and Toint, 1993). Note that this function is continuous

in its argument because both the gradient of the objective function and the Jacobian

of the constraints are continuous. We also observe that �k = 0 when xNk is a �rst-order

critical point of TRQP(xk;�k), and if xk = xNk and �k = 0; xk is itself a �rst-order

critical point for the original problem.

Having already considered the conditions we require for the normal step, we now

formulate our requirement that the tangential step yields a su�cient model decrease in

the form of a familiar Cauchy-point condition and assume that there exists a constant

�tmd > 0 such that

mk(x
N

k )�mk(x
N

k + tk) � �tmd�kmin

�
�k
�k

;�k

�
; (2.14)

where �k = 1 + kHkk. We know from Toint (1988) and Conn et al. (1993) that this

condition holds if the model reduction exceeds that which would be obtained at the

generalized Cauchy point, that is the point resulting from a backtracking curvilinear

search along the projected gradient path from xNk , that is

xk(�) = Pk[x
N

k � �rxmk(x
N

k )]:

Let us now return to the case where TRQP(xk;�k) is not compatible, that is when

the feasible set determined by the constraints of QP(xk) is empty, or the freedom left
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to reduce mk within the trust region is too small in the sense that (2.12) fails. In

this situation, solving TRQP(xk;�k) is most likely pointless, and we must consider an

alternative. We base this on the intuitive observation that, if c(xk) is su�ciently small

and the true nonlinear constraints are locally compatible, the linearized constraints

should also be compatible, since they approximate the nonlinear constraints (locally)

correctly. Furthermore, the feasible region for the linearized constraints should then

be close enough to xk for there to be some room to reduce mk, at least if �k is

large enough. If the nonlinear constraints are locally incompatible, we have to �nd

a neighbourhood where this is not the case, since the problem (1.1) does not make

sense in the current one. We thus rely on a restoration procedure, whose aim is to

produce a new point xk + rk for which TRQP(xk + rk;�k+1) is compatible for some

�k+1 > 0|we will actually need another condition which we will discuss shortly.

The idea of the restoration procedure is to (approximately) solve

min
x2IRn

�(x) (2.15)

starting from xk, the current iterate. This is a non-smooth problem, but we know that

there exist methods, possibly of trust-region type (such as that suggested by Yuan,

1994), which can be successfully applied to solve it. Thus we will not describe the

restoration procedure in detail. Note that we have chosen here to reduce the in�nity

norm of the constraint violation, but we could equally well consider other norms, such

as `1 or `2, in which case the methods of Fletcher and Ley�er (1998) or of El-Hallabi

and Tapia (1995) and Dennis, El-Alem and Williamson (1999) can respectively be

considered). Of course, this technique only guarantees convergence to a �rst-order

critical point of the chosen measure of constraint violation, which means that, in fact,

the restoration procedure may fail as this critical point may not be feasible for the

constraints of (1.1). However, even in this case, the result of the procedure is of interest

because it typically produces a local minimizer of �(x), or of whatever other measure

of constraint violation we choose for the restoration, yielding a point of locally-least

infeasibility.

There is no easy way to circumvent this drawback, as it is known that �nding a

feasible point or proving that no such point exists is a global optimization problem and

can be just as di�cult as the optimization problem (1.1) itself1. We therefore accept

two possible outcomes of the restoration procedure: either the procedure fails in that

it does not produce a sequence of iterates converging to feasibility, or a point xk + rk

is produced such that �(xk + rk) is as small as we wish. We will shortly see that this

is all we need.

2.2 The Notion of a Filter

Having computed a step sk = nk + tk (or rk), we still need to decide whether the trial

point xk+sk (or xk+rk) is any better than xk as an approximate solution to our original

1In practice, this is rarely the case since the solution set for the former is almost always far bigger

than that for the latter.
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Figure 2.1: A �lter with four pairs.

problem (1.1). We shall use a concept borrowed from multi-criteria optimization. We

say that a point x1 dominates a point x2 whenever

�(x1) � �(x2) and f(x1) � f(x2):

Thus, if iterates xk dominates iterate xj , the latter is of no real interest to us since xk

is at least as good as xj on account of both feasibility and optimality. All we need to

do now is to remember iterates that are not dominated by any other iterates using a

structure called a �lter. A �lter is a list F of pairs of the form (�i; fi) such that

�i < �j or fi < fj

for i 6= j. We thus aim to accept a new iterate xi only if it is not dominated by any

other iterate in the �lter. In the vocabulary of multi-criteria optimization, this amounts

to building elements of the e�cient frontier associated with the bi-criteria problem of

reducing infeasibility and the objective function value. Figure 2.1 illustrates the

concept of a �lter by showing the pairs (�k; fk) as black dots in the (�; f) space. Each

such pair is called the (�; f)-pair associated with xk. The lines radiating from each

(�; f)-pair indicate that any iterate whose associated (�; f)-pair occurs above and to

the right of that of a given �lter point is dominated by this (�; f)-pair.

While the idea of not accepting dominated trial points is simple and elegant, it needs

to be re�ned a little in order to provide an e�cient algorithmic tool. In particular, we

do not wish to accept xk + sk if its (�; f)-pair is arbitrarily close to that of a point

already in the �lter. Thus we set a small \margin" around the border of the dominated
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part of the (�; f)-space in which we shall also reject trial points. Formally, we say that

a point x is acceptable for the �lter if and only if

�(x) < (1� 
�)�j or f(x) < fj � 
��j for all (�j ; fj) 2 F ; (2.16)

for some 
� 2 (0; 1). In Figure 2.1, the set of acceptable points corresponds to the set

of (�; f)-pairs below the thin line. We thus move from xk to xk + sk only if xk + sk is

acceptable for the �lter.

As the algorithm progresses, we may want to add a (�; f)-pair to the �lter. If an

iterate xk is acceptable for F , we do this by adding the pair (�k; fk) to the �lter and

by removing from it every other pair (�j ; fj) such that �j � 
��k and f(x) � fk�
��k.

We also refer to this operation as \adding xk to the �lter" although, strictly speaking,

it is the (�; f)-pair which is added.

2.3 An SQP-Filter Algorithm

We have now discussed the main ingredients of the class of algorithms we wish to

consider, and we are now ready to de�ne it formally.

A 
ow-chart of the algorithm is given in Appendix. Reasonable values for the constants

might be


0 = 0:1; 
1 = 0:5; 
2 = 2; �1 = 0:01; �2 = 0:9;


� = 0:01; �� = 0:7; �� = 100; � = 0:01; �� = 1; and �tmd = 0:01:

but it is too early to know if these are even close to the best possible choices.

Observe that the restoration step rk cannot be zero, that is restoration cannot

simply entail enlarging the trust-region radius to ensure (2.12), even if nk exists. This

is because xk is added to the �lter before rk is computed, and xk+rk must be acceptable

for the �lter which now contains xk.

For the restoration procedure in Step 1 to succeed, we have to evaluate whether

TRQP(xk + rk;�k+1) is compatible for a suitable value of �k+1. This requires that a

suitable normal step be computed which successfully passes the test (2.12). Of course,

once this is achieved, this normal step may be reused at iteration k+1. Thus we shall

require the normal step calculated to verify compatibility of TRQP(xk + rk;�k+1)

should actually be used as nk+1.

As it stands, the algorithm is not speci�c about how to choose �k+1 during a

restoration iteration. On one hand, there is an advantage to choosing a large �k+1,

since this allows a large step and one hopes good progress. On the other, it may be

unwise to choose it to be too large, as this may possibly result in a large number of

unsuccessful iterations, during which the radius is reduced, before the algorithm can

make any progress. A possible choice might be to restart from the radius obtained

during the restoration iteration itself, if it uses a trust-region method. Reasonable

alternatives would be to use the average radius observed during past successful itera-

tions, or to apply the internal doubling strategy of Byrd, Schnabel and Shultz (1987)



8 R. Fletcher, N. I. M. Gould, S. Ley�er and Ph. L. Toint

Algorithm 2.1: SQP-Filter Algorithm

Step 0: Initialization. Let an initial point x0, an initial trust-region radius

�0 > 0 and an initial symmetric matrix H0 be given, as well as constants


0 < 
1 � 1 � 
2, 0 < �1 � �2 < 1, 
� 2 (0; 1), �� 2 (0; 1), �� 2 (0; 1],

�� > 0, � 2 (0; 1), and �tmd 2 (0; 1]. Compute f(x0) and c(x0) and set F = ;

and k = 0.

Step 1: Ensure compatibility. Attempt to compute a step nk. If TRQP

(xk;�k) is compatible, go to Step 2. Otherwise, include xk in the �lter

and compute a restoration step rk for which TRQP(xk + rk;�k+1) is com-

patible for some �k+1 > 0, and xk + rk is acceptable for the �lter. If this

proves impossible, stop. Otherwise, de�ne xk+1 = xk + rk and go to Step 6.

Step 2: Determine a trial step. Compute a step tk for which (2.14) holds, and

set sk = nk + tk.

Step 3: Tests to accept the trial step.

� Evaluate c(xk + sk) and f(xk + sk).

� If xk + sk is not acceptable for the �lter, set xk+1 = xk, choose �k+1 2

[
0�k; 
1�k], increment k by one and go to Step 1.

� If

mk(xk)�mk(xk + sk) � ���
2
k; (2.17)

and

�k
def
=

f(xk)� f(xk + sk)

mk(xk)�mk(xk + sk)
< �1; (2.18)

again set xk+1 = xk, choose �k+1 2 [
0�k; 
1�k], increment k by one

and go to Step 1.

Step 4: Test to include the current iterate in the �lter. If (2.17) fails, in-

clude xk in the �lter F .

Step 5: Move to the new iterate. Set xk+1 = xk + sk and choose

�k+1 2

(
[
1�k;�k] if �k 2 [�1; �2);

[�k; 
2�k] if �k � �2:

Step 6: Update the Hessian approximation. Determine Hk+1. Increment k

by one and go to Step 1.

to increase the new radius, or even to consider the technique described by Sartenaer

(1997). However, we recognize that numerical experience with the algorithm is too

limited at this stage to make de�nite recommendations.
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If the iterate xk is feasible, then xk = xNk and we obtain that

0 = ���
2
k � mk(x

N

k )�mk(xk + sk) = mk(xk)�mk(xk + sk):

As a consequence no feasible iterate is ever included in the �lter, which is crucial in

allowing �nite termination of the restoration procedure. Indeed, if the restoration

procedure is required at iteration k of the �lter algorithm and produces a sequence of

points fxk;jg converging to feasibility, there must be an iterate xk;j for which

�k;j
def
= �(xk;j) � min

�
(1� 
�)�

min

k ;
�usc
��

�k+1min[1; ���
�
k+1]

�
;

for any given �k+1 > 0, where

�min

k = min
i2Z; i�k

�i > 0

and

Z = fk j xk is added to the �lterg:

Moreover, �k;j must eventually be small enough to ensure, using our assumption on

the normal step, the existence of a normal step nk;j from xk;j . In other words, the

restoration iteration must eventually �nd an iterate xk;j which is acceptable for the

�lter and for which the normal step exists and satis�es (2.12), i.e. an iterate xj which

is both acceptable and compatible. As a consequence, the restoration procedure will

terminate in a �nite number of steps, and the �lter algorithm may then proceed. Note

that the restoration step may not terminate in a �nite number of iterations if we do not

assume the existence of the normal step when the constraint violation is small enough,

even if this violation converges to zero (see Fletcher et al., 1998, for an example).

Notice also that (2.17) ensures that the denominator of �k in (2.18) will be strictly

positive whenever �k is. If �k = 0, then xk = xNk , and the denominator of (2.18) will

be strictly positive unless xk is a �rst-order critical point because of (2.14).

Finally, we recognise that (2.14) may be di�cult to verify in practice, since it may

be expensive to compute xNk and Pk. We shall consider a possibly cheaper alternative

in Section 4.

3 Convergence to First-Order Critical Points

We now prove that our algorithm generates a globally convergent sequence of iterates,

at least if the restoration iteration always succeeds. For the purpose of our analysis,

we shall consider

S = fk j xk+1 = xk + skg;

the set of (indices of) successful iterations, and

R = fk j nk does not exist or knkk > ���kmin[1; ���
�
k ]g;

the set of restoration iterations; we shall refer to those iterations whose indices do not

lie in R as normal iterations. In order to obtain our global convergence result, we will

use the assumptions
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AS1: f and the constraint functions cE and cI are twice continuously di�erentiable;

AS2: there exists �umh > 1 such that

kHkk � �umh � 1 < �umh for all k;

AS3: the iterates fxkg remain in a bounded domain X � IRn.

If, for example, Hk is chosen as an approximation of the Hessian of the Lagrangian

function

`(x; y) = f(x) + hyE ; cE(x)i + hyI ; cI(x)i

at xk, in that

Hk = rxxf(xk) +
X

i2E[I

[yk]irxxci(xk); (3.1)

where [yk]i denotes the i-th component of the vector of Lagrange multipliers yTk =

(yTE;k yTI;k), then we see from AS1 and AS3 that AS2 is satis�ed when these multipliers

remain bounded. The same is true if the Hessian matrices in (3.1) are replaced by

bounded approximations.

A �rst immediate consequence of AS1 is that there exists a constant �ubh > 1 such

that, for all k,

jf(xk + sk)�mk(xk + sk)j � �ubh�
2
k: (3.2)

A proof of this property, based on Taylor expansion, may be found, for instance, in

Toint (1988). A second important consequence of our assumptions is that AS1 and

AS3 together directly ensure that, for all k,

fmin � f(xk) � fmax and 0 � �k � �max (3.3)

for some constants fmin, fmax and �max > 0. Thus the part of the (�; f)-space in which

the (�; f)-pairs associated with the �lter iterates lie is restricted to the rectangle

A0 = [0; �max]� [fmin; fmax];

whose area, surf(A0), is clearly �nite. If there are (�; f)-pairs in the �lter F at iteration

k, we let Ak be the part of A0 in which the (�; f)-pairs associated with a new iterate

must fall for this iterate to be acceptable, that is

Ak = f(�(x); f(x)) 2 A0 j (2:16) holds g:

We also note the following simple consequence of (2.10) and AS3.
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Lemma 3.1 Suppose that (2.10) and AS3 hold, and that fxkig is a subsequence

of iterates for which

lim
i!1

�ki = 0:

Then there exists a constant �lsc > 0 such that

�lsc�ki � knkik (3.4)

for i su�ciently large.

Proof. Consider an iterate xki for which �ki > 0 and for which nki exists (as a

consequence of (2.10)), and de�ne

Vki
def
= fj 2 E j �ki = jcj(xki)jg

[
fj 2 I j �ki = �cj(xki )g;

that is the subset of most-violated constraints. From the de�nitions of �ki in (2.9)

and of the normal step in (2.5) we obtain, using the Cauchy-Schwartz inequality,

that

�ki � jhrxcj(xki ); nkiij � krxcj(xki )k knkik (3.5)

for all j 2 Vki . But AS3 ensures that there exists a constant �lsc > 0 such that

max
j2E[I

max
x2X

krxcj(x)k
def
=

1

�lsc
:

We then obtain the desired conclusion by substituting this bound in (3.5). 2

We start our analysis by examining what happens when an in�nite number of iterates

(that is, their (�; f)-pairs) are added to the �lter.

Lemma 3.2 Suppose that AS1 and AS3 hold and that fkig is any in�nite subse-

quence at which the iterate xki is added to the �lter. Then

lim
i!1

�ki = 0:

Proof. Suppose, for the purpose of obtaining a contradiction, that there exists

an in�nite subsequence fkjg � fkig for which

�kj � � (3.6)

for some � > 0. At each iteration kj , the (�; f)-pair associated with xkj , that is

(�kj ; fkj ), is added to the �lter. This means that no other (�; f)-pair can be added

to the �lter at a later stage within the square

[(1� 
�)�kj ; �kj ]� [fkj � 
��kj ; fkj ];
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or with the intersection of this square with A0. But the area of each of these

squares is at least (1 � 
�)
2�2. Thus the set A0 is completely covered by at most

dsurf(A0)=(1 � 
�)
2�2e such squares, where d�e is the smallest integer larger or

equal to �, that is � rounded up. This puts a �nite upper bound on the number

of iterations in fkjg. Hence (3.6) is impossible for any in�nite subsequence of fkig,

and the conclusion follows. 2

We next examine the size of the constraint violation before and after a normal iteration.

Lemma 3.3 Suppose that AS1 and AS3 hold, that k 62 R and that nk satis�es

(3.4). Then

�k � �ubt�
1+�
k (3.7)

and

�(xk + sk) � �ubt�
2
k : (3.8)

for some constant �ubt � 0.

Proof. If k 62 R, we have, from (3.4) and (2.12) that

�lsc�k � knkk � �����
1+�
k : (3.9)

Now, the i-th constraint function at xk + sk can be expressed as

ci(xk + sk) = ci(xk) + hei; Akski+ 1
2
hsk;rxxci(�k)ski;

for i 2 E [ I, where we have used AS1, the mean-value theorem, and where �k

belongs to the segment [xk; xk + sk]. Using AS3, we may bound the Hessian of the

constraint functions and we obtain from (2.7), the Cauchy-Schwartz inequality, and

(2.6) we have that

jci(xk + sk)j � 1
2
max
x2X

krxxci(x)k kskk
2 � �1�

2
k;

if i 2 E , or

�ci(xk + sk) � 1
2
max
x2X

krxxci(x)k kskk
2 � �1�

2
k;

if i 2 I, where we have de�ned

�1
def
= 1

2
max
i2E[I

max
x2X

krxxci(x)k:

This gives the desired bound with

�ubt = max[�1; ����=�lsc]:

2
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We next assess the model decrease when the trust-region radius is su�ciently small.

Lemma 3.4 Suppose that AS1, (2.14), AS3 and AS2 hold, that k 62 R, that

�k � �; (3.10)

and that

�k � min

"
�

�umh

;

�
2

�ubg
�umh����

� 1
1+�

;

�
�tmd�

4�ubg����

� 1
�

#
def
= �m; (3.11)

where �ubg
def
= maxx2X krxf(x)k. Then

mk(xk)�mk(xk + sk) � 1
2
�tmd��k:

Proof. We �rst note that, by (2.14), AS2, (3.10) and (3.11),

mk(x
N

k )�mk(xk + sk) � �tmd�kmin

�
�k
�umh

;�k

�
� �tmd��k: (3.12)

Now

mk(x
N

k ) = mk(xk) + hgk; nki+ 1
2
hnk; Hknki

and therefore, using the Cauchy-Schwartz inequality, (2.12) and (3.11) that

jmk(xk)�mk(x
N

k )j � knkk kgkk+ 1
2
kHkk knkk2

� �ubgknkk+ 1
2
�umhknkk2

� �ubg�����
1+�
k + 1

2
�umh�

2
��

2
��

2(1+�)
k

� 2�ubg�����
1+�
k

� 1
2
�tmd��k:

We thus conclude from this last inequality and (3.12) that the desired conclusion

holds. 2

We continue our analysis by showing, as the reader has grown to expect, that iterations

have to be very successful when the trust-region radius is su�ciently small.

Lemma 3.5 Suppose that AS1, (2.14), AS3, AS2 and (3.10) hold, that k 62 R,

and that

�k � min

�
�m;

(1� �2)�tmd�

2�ubh

�
def
= ��: (3.13)

Then

�k � �2:
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Proof. Using (2.18), (3.2), Lemma 3.4 and (3.13), we �nd that

j�k � 1j �
jf(xk + sk)�mk(xk + sk)j

jmk(xk)�mk(xk + sk)j
�

�ubh�
2
k

1
2
�tmd��k

� 1� �2;

from which the conclusion immediately follows. 2

Now, we also show that the test (2.17) will always be satis�ed in the above circum-

stances.

Lemma 3.6 Suppose that AS1, (2.14), AS3, AS2 and (3.10) hold, that k 62 R,

that nk satis�es (3.4), and that

�k � min

"
�m;

�
�tmd�

2���2ubt

� 1
1+2�

#
def
= �f : (3.14)

Then

mk(xk)�mk(xk + sk) � ���
2
k:

Proof. This directly results from the inequalities

���
2
k � ���

2
ubt
�
2(1+�)
k � 1

2
�tmd��k � mk(xk)�mk(xk + sk);

where we successively used Lemma 3.3, (3.14) and Lemma 3.4. 2

We may also guarantee a decrease in the objective function, large enough to ensure

that the trial point is acceptable with respect to the (�; f)-pair associated with xk, so

long as the constraint violation is itself su�ciently small.

Lemma 3.7 Suppose that AS1, (2.14), AS3, AS2, (3.10) and (3.13) hold, that

k 62 R, that nk satis�es (3.4), and that

�k � �
� 1

�

ubt

�
�2�tmd�

2
�

� 1+�
�

def
= ��: (3.15)

Then

f(xk + sk) � f(xk)� 
��k:
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Proof. Applying Lemmas 3.3{3.5|which is possible because of (3.10), (3.13),

k 62 R and nk satis�es (3.4)|and (3.15), we obtain that

f(xk)� f(xk + sk) � �2[mk(xk)�mk(xk + sk)]

� 1
2
�2�tmd��k

� 1
2
�2�tmd�

�
�k
�ubt

� 1
1+�

� 
��k

and the desired inequality follows. 2

We now establish that if the trust-region radius and the constraint violation are both

small at a non-critical iterate xk, TRQP(xk;�k) must be compatible.

Lemma 3.8 Suppose that AS1, (2.10), (2.14), AS3, AS2, and (3.10) hold, and

that

�k � min

"

0��;

�
1

��

� 1
�

;

�

20(1� 
�)����

�usc�ubt

� 1
1��

#
: (3.16)

Suppose furthermore that �k is arbitrarily small. Then k 62 R.

Proof. Because �k is arbitrarily small, we know from (2.10) and Lemma 3.1 that

nk exists and satis�es (2.10) and (3.4), and also that (3.15) holds. Assume, for the

purpose of deriving a contradiction, that k 2 R, that is

knkk > �����
1+�
k ; (3.17)

where we have used (2.12) and the fact that �k � 1. In this case, the mechanism

of the algorithm then ensures that k � 1 62 R. Now assume that iteration k � 1 is

unsuccessful. Because of Lemmas 3.5 and 3.7, which hold at iteration k � 1 62 R

because of (3.16), the fact that �k = �k�1, (2.10), and (3.15), we obtain that

�k�1 � �2 and f(xk�1 + sk�1) � f(xk�1)� 
��k�1:

Hence, if iteration k � 1 is unsuccessful, it must be because

�(xk�1 + sk�1) > (1� 
�)�k�1 = (1� 
�)�k:

But Lemma 3.3 and the mechanism of the algorithm then imply that

(1� 
�)�k � �ubt�
2
k�1 �

�ubt

20

�2
k:

Combining this last bound with (3.17) and (2.10), we deduce that

�����
1+�
k < knkk � �usc�k �

�usc�ubt

20(1� 
�)

�2
k
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and hence that

�1��
k >


20(1� 
�)����
�usc�ubt

:

Since this last inequality contradicts (3.16) , our assumption that iteration k� 1 is

unsuccessful must be false. Thus iteration k�1 is successful and �k = �(xk�1+sk�1).

We then obtain from (3.17), (2.10) and (3.8) that

�����
1+�
k < knkk � �usc�k � �usc�ubt�

2
k�1 �

�usc�ubt

20

�2
k;

which is again impossible because of (3.16) and because (1 � 
�) < 1. Hence our

initial assumption (3.17) must be false, which yields the desired conclusion. 2

We now distinguish two mutually exclusive cases. For the �rst, we consider what

happens if there happens to be an in�nite subsequence of iterates belonging to the

�lter.

Lemma 3.9 Suppose that AS1, (2.10), (2.14), AS3 and AS2 hold. Suppose fur-

thermore that there exists an in�nite subsequence fkjg 2 Z . Then we have that,

either the restoration procedure terminates unsuccessfully, or

lim
j!1

�kj = 0 (3.18)

and

lim
j!1

�kj = 0: (3.19)

Proof. Suppose that the restoration procedure always terminates successfully.

Let fkig be any in�nite subsequence of fkjg. We observe that (3.18) follows from

Lemma 3.2. Combining this with (2.10) ensures that nki exists and satis�es (2.10)

for i � i0, say, and therefore that

lim
i!1

knkik = 0: (3.20)

As we noted in the proof of Lemma 3.4,

jmki(xki )�mki(x
N

ki
)j � �ubgknkik+ 1

2
�umhknkik

2;

which in turn, with (3.20), yields that

lim
i!1

[mki(xki)�mki(x
N

ki
)] = 0: (3.21)

Suppose now that

�ki � �2 > 0 (3.22)

for all i and some �2 > 0. Suppose furthermore that there exists �3 > 0 such that,

for all i � i0,

�ki � �3: (3.23)
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Then we deduce from (2.14) and AS2 that

mki(x
N

ki
)�mki(xki + ski) � �tmd�2min

�
�2

�umh

; �3

�
def
= � > 0: (3.24)

We now decompose the model decrease in its normal and tangential components,

that is

mki(xki )�mki(xki + ski) = mki(xki )�mki(x
N

ki
) +mki(x

N

ki
)�mki(xki + ski):

Substituting (3.21) and (3.24) into this decomposition, we �nd that

lim
i!1

[mki(xki )�mki(xki + ski)] � � > 0: (3.25)

We now observe that, because xki is added to the �lter at iteration ki, we know

from the mechanism of the algorithm and from Lemma 3.8 that either iteration

ki 2 R or (2.17) must fail. If ki 2 R for i � i0, we obtain from (2.12) that,

knkik > �����
1+�
ki

;

and (3.20) then implies that �ki is arbitrarily small for i su�ciently large. This

contradicts (3.23) and, hence, (2.17) must fail for i su�ciently large, that is

mki(xki )�mki(xki + ski) < ���
2
ki
: (3.26)

Combining this bound with (3.25), we �nd that �ki is bounded away from zero for

i su�ciently large, which is impossible in view of (3.18). We therefore deduce that

(3.23) cannot hold and obtain that there is a subsequence fk`g � fkig for which

lim
`!1

�k` = 0:

We now restrict our attention to the tail of this subsequence, that is to the set of

indices k` that are large enough to ensure that (3.16) holds (with � replaced by �2)

and that (3.15) also holds, which is possible because of (3.18). For these indices, we

may therefore apply Lemma 3.8, and deduce that iteration k` 62 R for ` su�ciently

large. Hence, as above, (3.26) must hold for ` su�ciently large. However, we may

also apply Lemma 3.6, which contradicts (3.26), and therefore (3.22) cannot hold,

yielding that

lim inf
i!1

�ki = 0:

The required result the follows since fkig is any in�nite subsequence of fkjg. 2

Thus, if an in�nite subsequence of iterates is added to the �lter, this subsequence

converges to a �rst-order critical point. Our remaining analysis then naturally concen-

trates on the possibility that there may be no such in�nite subsequence. In this case,

no further iterates are added to the �lter for k su�ciently large. In particular, this

means that the number of restoration iterations, jRj, must be �nite. In what follows,

we assume that k0 � 0 is the last iteration for which xk0�1 is added to the �lter.
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Lemma 3.10 Suppose that AS1, (2.10), (2.14), AS3 and AS2 hold. Suppose

furthermore that (2.17) holds for all k � k0. Then we have that

lim
k!1

�k = 0: (3.27)

Furthermore, nk exists and satis�es (2.10) and (3.4) for all k su�ciently large.

Proof. Consider any successful iterate with k � k0. Then we have that

f(xk)� f(xk+1) � �1[mk(xk)�mk(xk + sk)] � �1���
2
k � 0: (3.28)

Thus the objective function does not increase for all successful iterations with k �

k0. But AS1 and AS3 imply (3.3) and therefore we must have, from the �rst part

of this statement, that

lim
k!1

f(xk)� f(xk+1) = 0: (3.29)

(3.27) then immediately follows from (3.28) and the fact that �j = �k for all unsuc-

cessful iterations j that immediately follow the successful iteration k, if any. The

last conclusion then results from (2.10). 2

We now show that the trust-region radius cannot become arbitrarily small if the

(asymptotically feasible) iterates stay away from �rst-order critical points.

Lemma 3.11 Suppose that AS1, (2.10), (2.14), AS3 and AS2 hold. Suppose

furthermore that (2.17) and (3.10) hold for all k � k0. Then there exists a �min > 0

such that

�k � �min

for all k.

Proof. Suppose that k1 � k0 is chosen su�ciently large to ensure that (3.15)

holds and that nk exists and satis�es (2.10) for all k � k1, which is possible because

of Lemma 3.10. Suppose also, for the purpose of obtaining a contradiction, that

iteration j is the �rst iteration following iteration k1 for which

�j � 
0min

2
4��;

s
(1� 
�)�F

�ubt
;�k1

3
5 def
= 
0�s; (3.30)

where

�F
def
= min

i2Z
�i

is the smallest constraint violation appearing in the �lter. Note that the inequality

�j � 
0�k1 , which is implied by (3.30), ensures that j � k1 + 1 and hence that
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j � 1 � k1. Then the mechanism of the algorithm implies that

�j�1 � �s (3.31)

and Lemma 3.5, which is applicable because (3.30) and (3.31) together imply (3.13)

with k replaced by j � 1, then ensures that

�j�1 � �2: (3.32)

Furthermore, Lemma 3.3, (3.30) and (3.31) give that

�(xj�1 + sj�1) � �ubt�
2
j�1 � (1� 
�)�

F: (3.33)

We may also apply Lemma 3.7 because (3.30) and (3.31) ensure that (3.13) holds

and because (3.15) also holds for j � k1. Hence we deduce that

f(xj�1 + sj�1) � f(xj�1)� 
��j�1:

This last relation and (3.33) ensure that xj�1 + sj�1 is acceptable for the �lter.

Combining this conclusion with (3.32), the fact that (2.17) holds for iteration j � 1

and the mechanism of the algorithm, we obtain that �j � �j�1. As a consequence,

and since (2.17) also holds at iteration j�1, iteration j cannot be the �rst iteration

following k1 for which (3.30) holds. This contradiction shows that �k � 
0�s for

all k > k1, and the desired result follows if we de�ne

�min = min[�0; : : : ;�k1 ; 
0�s]:

2

We may now analyze the convergence of �k itself.

Lemma 3.12 Suppose that AS1, (2.10), (2.14), AS3 and AS2 hold. Suppose

furthermore that (2.17) holds for all k � k0. Then

lim inf
k!1

�k = 0: (3.34)

Proof. We start by observing that, as in Lemma 3.10, we obtain (3.28) and

therefore (3.29) for each k 2 S, k � k0. Suppose now, for the purpose of obtaining

a contradiction, that (3.10) holds and, as for the case where a subsequence of iterates

is included in the �lter, notice that

mk(xk)�mk(xk + sk) = mk(xk)�mk(x
N

k ) +mk(x
N

k )�mk(xk + sk): (3.35)

Moreover, note, as in Lemma 3.4, that

jmk(xk)�mk(x
N

k )j � �ubgknkk+ �umhknkk
2;
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which in turn yields that

lim
k!1

[mki(xki)�mki(x
N

ki
)] = 0

because of Lemma 3.10 and (2.10). This limit, together with (3.28), (3.29) and

(3.35), then gives that

lim
k!1
k2S

[mk(x
N

k )�mk(xk + sk)] = 0: (3.36)

But (2.14), (3.10), AS2 and Lemma 3.11 together imply that, for all k � k0

mk(x
N

k )�mk(xk + sk) � �tmd�kmin

�
�k
�k

;�k

�
� �tmd�min

�
�

�umh

;�min

�
; (3.37)

immediately giving a contradiction with (3.36). Hence (3.10) cannot hold and the

desired result follows. 2

We may summarize all of the above in our main global convergence result.

Theorem 3.13 Suppose that AS1, (2.10), (2.14), AS3 and AS2 hold. Let fxkg a

sequence of iterates produced by Algorithm 2.1. Then either the restoration pro-

cedure terminates unsuccessfully by converging to an infeasible �rst-order critical

point of problem (2.15), or there is a subsequence fkjg for which

lim
j!1

xkj = x�

and x� is a �rst-order critical point for problem (1.1).

Proof. Suppose that the restoration iteration always terminates successfully.

From Lemmas 3.9, 3.10 and 3.12, we obtain that, for some subsequence fkjg,

lim
j!1

�kj = lim
j!1

�kj = 0:

The convergence of �kj to zero and (2.10) then give that

lim
j!1

knkjk = 0;

and therefore that

lim
j!1

kxNkj � xkjk = 0:

The conclusion then follows from the continuity of both � and �. 2

Can we dispense with AS3 to obtain this result? Firstly, this assumption ensures that

the objective and constraint functions remain bounded above and below (see (3.3)).

This is crucial for the rest of the analysis because the convergence of the iterates to
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feasibility depends on the fact that the area of the �lter is �nite. Thus, if AS3 does

not hold, we have to verify that (3.3) holds for other reasons. The second part of this

statement may be ensured quite simply by initializing the �lter to (�max;�1), for some

�max > �0, in Step 0 of the algorithm. This has the e�ect of putting an upper bound

on the infeasibility of all iterates, which may be useful in practice. However, this does

not prevent the objective function from being unbounded below in

C(�max) = fx 2 IRn j �(x) � �maxg

and we cannot exclude the possibility that a sequence of infeasible iterates might both

continue to improve the value of the objective function and satisfy (2.17). If C(�max) is

bounded, AS3 is most certainly satis�ed. If this is not the case, we could assume that

fmin � f(x) � fmax and 0 � �(x) � �max for x 2 C(�max) (3.38)

for some values of fmin and fmax and simply monitor that the values f(xk) are

reasonable|in view of the problem being solved|as the algorithm proceeds. To sum-

marize, we may replace AS1 and AS3 by the following assumption.

AS4: The functions f and c are twice continuously di�erentiable on an open set con-

taining C(�max) and (3.38) holds.

The reader should note that the comments following the statement of (2.10) no longer

apply if limit points at in�nity are allowed.

4 An Alternative Step Strategy

It is also interesting to return to the question of whether it is possible to �nd a cheaper

alternative to computing a normal step, �nding a generalized Cauchy point and explic-

itly checking (2.14). Suppose, for now, that it is possible to compute a point xk + s0k
directly to satisfy the constraints of TRQP(xk;�k) and for which

mk(xk)�mk(xk + s0k) � �1min[�k;�k] (4.1)

for a small positive constant �1 and �k = �(xk), where � is a continuous function of its

argument. Furthermore, consider the following algorithm.

Interestingly, most of the properties of Algorithm 2.1 remain true for the modi�ed

Algorithm 4.1, as we shall now see by reconsidering the convergence theory of the

previous section. Lemmas 3.1 and 3.3 are unmodi�ed. Replacing nk by s
0
k in Lemma 3.2

yields (3.7) with � = 0| if s0k can be computed, this implies that we do not have to

worry about the existence of nk. As the proof of (3.8) is also unmodi�ed, we conclude

that Lemma 3.3 remains true with � = 0. We now suppose, instead of (3.10), that

�k � � (4.2)



22 R. Fletcher, N. I. M. Gould, S. Ley�er and Ph. L. Toint

Algorithm 4.1: Single-step SQP-Filter Algorithm

As Algorithm 2.1 (with sk replaced by s0k), except that Step 1 and 2 are replaced

by the following.

Step 1: Ensure compatibility. If the feasible set of TRQP(xk;�k) is empty,

include xk in the �lter and compute a restoration step rk such that

TRQP(xk + rk;�k+1) is compatible for some �k+1 > 0, and xk + rk is

acceptable for the �lter. If this proves impossible, stop. Otherwise, de�ne

xk+1 to be xk + rk and go to Step 6.

Step 2: Determine a trial step. Compute a step s0k that is feasible for this

subproblem and such that (4.1) holds.

and obtain the conclusion of Lemma 3.4 immediately from (4.1). Lemma 3.5 is

again unmodi�ed, while Lemma 3.6 remains true if one uses the modi�ed version of

Lemma 3.3 (with � = 0) to deduce its conclusion. The same applies to Lemma 3.7.

The proof of Lemma 3.8 remains true but needs a slightly less trivial modi�cation. In

particular, the bound in (3.16) needs to be understood with the particular values

� = 0 and �� = �� = 1: (4.3)

The existence of nk at the beginning of the proof is a direct result of the existence of

s0k. The rest of the proof follows immediately using (4.3). We may dispense with its

�rst part of the proof of Lemma 3.9, and immediately assume that

�ki � �2 (4.4)

(instead of (3.22)). We may then continue the proof of this lemma as stated using (4.3),

except that we do not have to consider the decomposition of the step into tangential and

normal components to obtain (3.25) from (3.24), and that we should substitute s0ki for

nki when necessary. Lemma 3.10 and 3.11 are unmodi�ed. The proof of Lemma 3.12

simpli�es because we may deduce (3.37) directly from (4.4) (instead of (3.22)) and

(4.1). Gathering those results, we may therefore deduce the following result.

Theorem 4.1 Suppose that AS1, AS2 and AS3 hold. Let fxkg be a sequence

of iterates produced by Algorithm 4.1. Then either the restoration procedure

terminates unsuccessfully by converging to an infeasible �rst-order critical point

of problem (2.15), or there is a subsequence fkjg for which

lim
j!1

�kj = 0
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and

lim
j!1

�kj = 0:

Thus we have established convergence of a subsequence to a �rst-order critical point

provided we can exhibit a continuous function �(x) such that

�(x�) = �(x�) = 0

is equivalent to the �rst-order criticality of x� and such that a step satisfying (4.1) can

always be found. For instance, we might consider

�(x) = kg(x)�A(x)T yLS(x)k

where yLS(x) is the vector of least-squares multipliers at x. We may even replace this

vector at iteration k by any yk provided we can guarantee that kyk � yLSk k converges

to zero when �k converges to zero. Of course, the main di�culty is still to �nd a

step s0k satisfying (4.1). If we have di�culty in �nding such a step for a particular

iteration, we can always return to the composite-step technique we considered in the

previous section. This then results in a somewhat hybrid but potentially more e�cient

algorithm.

5 Conclusion and Perspectives

We have de�ned two variants of a trust-region SQP-�lter algorithm for general non-

linear programming, and have shown these algorithms to be globally convergent to

�rst-order critical points. Since Fletcher and Ley�er (1997) indicates that such algo-

rithms may be very e�cient in practice, the theory developed in this paper provides the

reassurance that they also have reasonable convergence properties, which then makes

these methods very attractive.

We are however aware that the convergence study is not complete, as we have not

discussed local convergence properties. It is very likely that such a study will have

to introduce second-order corrections (see Fletcher, 1987, Section 14.4) to ensure that

the Maratos e�ect does not take place and that a fast (quadratic) rate of convergence

can be achieved. Moreover, convergence to a second-order critical points also remains,

for now, an open question. These questions are the subject of ongoing work, and will

hopefully be reported on in the near future.
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Figure 6.1: Flowchart of the algorithm.
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