
RAL-TR-2008-010

March 17, 2008

Zhong-Zhi Bai, Iain S. Duff and Jun-Feng Yin

Numerical study on incomplete

orthogonal factorization preconditioners

c© Science and Technology Facilities Council

Enquires about copyright, reproduction and requests for additional
copies of this report should be addressed to:

Library and Information Services
SFTC Rutherford Appleton Laboratory
Harwell Science and Innovation Campus
Didcot
OX11 0QX
UK
Tel: +44 (0)1235 445384
Fax: +44(0)1235 446403
Email: library@rl.ac.uk

The STFC ePublication archive (epubs), recording the scientific output of the
Chilbolton, Daresbury, and Rutherford Appleton Laboratories is available
online at: http://epubs.cclrc.ac.uk/

ISSN 1358-6254

Neither the Council nor the Laboratory accept any responsibility for loss or
damage arising from the use of information contained in any of their reports
or in any communication about their tests or investigation

RAL-TR-2008-010

Numerical study on incomplete orthogonal factorization

preconditioners1

Zhong-Zhi Bai2, Iain S. Duff3 and Jun-Feng Yin4

ABSTRACT

We design, analyse and test a class of incomplete orthogonal factorization preconditioners

constructed from Givens rotations, incorporating some dropping strategies and updating tricks,

for the solution of large sparse systems of linear equations. Comprehensive accounts about

how the preconditioners are coded, what storage is required and how the computation is

executed for a given accuracy are presented. A number of numerical experiments show

that these preconditioners are competitive with standard incomplete triangular factorization

preconditioners when they are applied to accelerate Krylov subspace iteration methods such as

GMRES and BiCGSTAB.

Keywords: preconditioning, IQR, ILU, Givens rotation, incomplete orthogonal

factorization, nonsymmetric matrix, least-squares, normal equations.

AMS(MOS) subject classifications: 65F05, 65F10, 65F50, 65F25.

1Current reports available by anonymous ftp to ftp.numerical.rl.ac.uk in directory

pub/reports. This report is in file badyRAL2008010.pdf. The report is also available through

the URL www.numerical.rl.ac.uk/reports/reports.html.
2email: bzz@lsec.cc.ac.cn. State Key Laboratory of Scientific/Engineering Computing, Institute

of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics

and Systems Science, Chinese Academy of Sciences, P.O. Box 2719, Beijing 100080, P.R.

China. Supported by The National Basic Research Program (No. 2005CB321702), The China

Outstanding Young Scientist Foundation (No. 10525102) and The National Natural Science

Foundation (No. 10471146), P.R. China
3email: i.s.duff@rl.ac.uk. The work of this author was supported by the EPSRC Grant

EP/E053351/1.
4email: yinjf@lsec.cc.ac.cn. Current address: Department of Mathematics, Tongji University,

Shanghai 200092, P.R.China. junfengyin@gmail.com.

Computational Science and Engineering Department

Atlas Centre

Rutherford Appleton Laboratory

Oxon OX11 0QX

March 17, 2008

Contents

1 Introduction 1

2 The Practical IGO Method 3

3 The Dropping Strategies 7

3.1 Dropping Fill-ins Based on Numerical Thresholds 8

3.2 Dropping Fill-ins Based on Sparsity Patterns 9

4 The Implementation Strategies 10

4.1 Sparse Matrix Storage and Operations . 10

4.2 Preconditioning of Iteration Methods . 11

5 Description of Experiments 11

5.1 The Convection-Diffusion Problem . 12

5.2 Matrices from Matrix Market . 13

6 Numerical Results 15

6.1 The Convection-Diffusion Problems . 15

6.2 Matrices from Matrix Market . 19

6.3 The Approach of Normal Equations . 21

7 Conclusions 22

i

1 Introduction

We consider solutions of large sparse systems of linear equations of the form

Ax = b, A ∈ Rm×n, x ∈ Rn and b ∈ Rm, (1.1)

where m ≥ n, A is a given real matrix, b is a given real right-hand-side vector, and x is

the unknown vector. Linear systems of this form often arise in many areas of scientific

computing and engineering applications; see [2, 4, 7, 11, 36, 41].

Throughout this paper, we assume that the matrix A is nonsingular when m = n, and

is of full column rank when m > n. For the latter case, we actually consider the least-

squares solution of the system of linear equations (1.1), which may be computed through

solving the normal equations

AT Ax = AT b, (1.2)

where AT represents the transpose of the matrix A. See [9, 15, 19].

Iterative methods, such as Krylov subspace methods combined with high-quality

preconditioners or preconditioning processes, are practical and effective solvers for

the system of linear equations (1.1), with respect to computation costs and memory

requirements [3, 34, 35]. The preconditioning process plays a crucial role for improving the

convergence property of the Krylov subspace method and for guaranteeing the numerical

accuracy of the computed solution when an appropriate stopping criterion is employed [1].

For preconditioning techniques, incomplete triangular (ILU) and incomplete orthogonal

(IQR) factorizations are attractive and popular candidates in actual applications [2, 26,

27, 32]. The ILU factorization, normally used only for square matrices, computes a sparse

unit lower-triangular matrix L and a sparse upper-triangular matrix U using Gaussian

elimination coupled with some dropping rules so that the error matrix E = LU − A

satisfies certain constraints, such as having zero entries in some positions [2, 27, 33]. One

important example is the incomplete Cholesky (IC) factorization for a symmetric positive

definite matrix [10, 12, 20, 24]. For general nonsymmetric matrices, although a number

of efficient ILU factorization techniques have been presented (see [2, 33, 34]), it is more

difficult to give theoretical assurance about the robustness, feasibility and efficiency of

these incomplete triangular factorization preconditioners. There can be breakdown in the

factorization process due to zero pivots, inaccuracy of the incomplete triangular factors due

to small pivots and inefficient dropping rules, as well as instability of the triangular solves

due to the poorly conditioned incomplete triangular factors. Most IQR factorizations,

which can be used for both square and rectangular matrices, compute a sparse and generally

non-orthogonal matrix Q and a sparse upper-triangular matrix R by the modified Gram-

Schmidt process incorporating some dropping rules. Recently, using a strategy that only

drops entries of the upper-triangular matrix R, the authors of [37] proved the existence and

stability of the associated IQR factorization preconditioner. For certain sparsity patterns,

this strategy produces an R factor identical to that produced by the IC factorization applied

1

to the normal equations (1.2). In addition to the drawbacks of breakdown, inaccuracy and

instability as in the ILU factorization, one major problem about the abovementioned IQR

factorization is that the matrix Q is not in general orthogonal, and nothing guarantees

that it is even nonsingular unless we adopt a strategy that does not drop many entries.

However, this makes the resulting incomplete factors Q and R likely to be too dense to be

useful in practice; see [32].

Considering the advantages and the power of the complete orthogonal factorization

process, Bai, Duff and Wathen [5] presented a class of incomplete orthogonal factorization

methods based upon Givens rotations that they call IGO methods. These IQR

factorizations can be used for both square and rectangular matrices, and they can always

produce a sparse nonsingular upper-triangular matrix R, and an orthogonal or a sparse

nonsingular matrix Q such that the error matrices E = QR − A and E0 = QT Q − I

are “small”, where I is the identity matrix. Here, the word “small” means that either

the values in the entries of E, E0 are small or the incomplete factors satisfy certain

prescribed nonzero patterns. That such incomplete Givens strategies can always compute

an orthogonal factor Q (orthogonal to the limits of finite precision arithmetic) is a particular

feature of this approach. One consequence is that the R factor is always an incomplete

Cholesky factor of the matrix AT A in the normal equations (1.2). For this situation,

Q is not generally required and therefore need not be stored. In [5], the IGO methods

were described in detail and their theoretical properties were analysed comprehensively,

however, no experimental results were given. We refer to [30, 40] for some implementation

strategies and numerical results, which demonstrate good performance of the IGO methods

used to precondition Krylov subspace iteration methods for certain problems, in particular

least-squares problems.

In this paper, we will focus on an incomplete orthogonal factorization based on Givens

rotations with some specially prescribed storage and sparsity-preserving techniques. We

call this factorization method the practical IGO method. After describing the basic

algorithm, we give a theoretical analysis and discuss the coding of the algorithm using

a high level language and storing the preconditioner using sparse matrix techniques. A

brief comparison of the new method with a few related existing ones is also given. Then,

we apply the practical IGO preconditioner to a range of matrices arising from finite-

difference discretizations of convection-diffusion equations and from the Harwell-Boeing

collection in the Matrix Market; see [7, 25]. Numerical results show that the practical IGO

preconditioner is accurate, robust and efficient for preconditioning the Krylov subspace

methods for solving large sparse systems of linear equations, and is generally superior to

the standard ILU preconditioner. We then show that our preconditioner is very competitive

with RIF and CIMGS preconditioners when solving least-squares problems.

The rest of the paper is organized as follows: Section 2 describes the practical IGO

method and analyses its theoretical properties. In Section 3 we discuss the dropping

strategies for the practical IGO method. Some considerations about implementation details

such as storage and dropping strategies are discussed in Section 4. Several classes of

2

experimental problems are described in Section 5, and numerical results are given and

discussed in Section 6. Finally, in Section 7 we end this paper with some remarks and

conclusions.

2 The Practical IGO Method

While general incomplete Givens orthogonalization (IGO) methods were constructed and

analysed in [5], in actual applications we may need to change and omit some of the

subordinate details so that a more practical and efficient version of the IGO method can

be obtained.

To give a precise description of the new practical IGO method, we first review the

well-known Givens rotation and some of its useful properties.

A Givens rotation (or plane rotation) G(i, j, θ) ∈ Rm×m is equal to the identity matrix

except that

G([i, j], [i, j]) =

(
c s

−s c

)
,

where c = cos θ and s = sin θ. The implementation y = G(i, j, θ)x rotates x through θ

radians clockwise in the (i, j)-plane. Algebraically,

yk =





xk, for k 6= i, j,

cxi + sxj, for k = i,

−sxi + cxj, for k = j,

1 ≤ k ≤ m.

So, yj = 0 if

s =
xj√

x2
i + x2

j

and c =
xi√

x2
i + x2

j

.

Givens rotations are therefore useful for introducing zeros into a vector one at a time. This

property is especially useful when we handle sparse matrices. Note that there is no need

to work out the angle θ, since s and c in the above are all that are needed to apply the

rotation. Hence, to simplify our discussion, a Givens rotation G(i, j, θ) is abbreviated as

G(i, j) in the sequel.

Let the sets of integer pairs

Pm,n = {(i, j) | 1 ≤ i ≤ m, 1 ≤ j ≤ n},

PL = {(i, j) | i ≥ j, 1 ≤ i ≤ m, 1 ≤ j ≤ n} and

PU = {(i, j) | i ≤ j, 1 ≤ i ≤ m, 1 ≤ j ≤ n}

represent the nonzero patterns of any general, lower-triangular and upper-triangular

matrices in Rm×n, respectively. For a given matrix A = (aij) ∈ Rm×n, we use PA to

3

denote its nonzero pattern, and PA,L and PA,U the nonzero patterns of its lower-triangular

and upper-triangular parts, respectively. That is to say,

PA = {(i, j) | aij 6= 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n},

PA,L = {(i, j) | aij 6= 0, i ≥ j, 1 ≤ i ≤ m, 1 ≤ j ≤ n}, and

PA,U = {(i, j) | aij 6= 0, i ≤ j, 1 ≤ i ≤ m, 1 ≤ j ≤ n}.

To define an IQR factorization (QincRinc of the matrix A based on Givens rotations, we let

PR be the chosen nonzero pattern for the matrix Rinc and PQ the index set of the chosen

Givens rotations used for rotating out the nonzero entries in the lower-triangular part of

the matrix A. Without causing any confusion, we also call PQ the nonzero pattern of the

incomplete orthogonal factor Qinc. See [5] for details.

The practical IGO method is a simplified and modified variant of the incomplete Givens

orthogonalization method, that is Method 3.1 proposed by Bai, Duff and Wathen in [5].

It essentially consists of the following two elementary processes:

(a) use Givens rotations to annihilate column by column the nonzero entries located at

the strictly lower-triangular part of the matrix A ∈ Rm×n from the bottom up to the

first sub-diagonal, and update the matrix A by applying a defined dropping strategy

P ;

(b) form the corresponding row of the incomplete upper-triangular matrix Rinc ∈ Rm×n

by applying some dropping rule PR.

In the process (a), when a Givens rotation, say G(i, j), is applied to rows i and j (i < j)

of the matrix A = (aij), it does not update all entries aik and ajk for k = i + 1, i + 2, . . . , n

as was done in [5], but it updates according to the following rule.

Givens-Updating Rule:

For k = i + 1, i + 2, . . . , n

1. If (i, k) ∈ P and (j, k) ∈ P then

2. If aik 6= 0 and ajk 6= 0 then

3. aik := caik + sajk

4. ajk := −saik + cajk

5. EndIf

6. else

7. Set aik := aik

8. Set ajk := ajk

9. EndIf

EndFor

In the process (b), the rows of the matrix Rinc are formed by applying the dropping strategy

PR.

4

The above Givens-updating rule used in process (a) can be intuitively illustrated by

the following example. Let the nonzero pattern of the matrix A be given as

A =




× 0 × ×

0 × 0 ×

× × × 0

× × 0 ×


 ,

where the symbol “×” indicates that the entry in this position is nonzero. Define the

nonzero patterns PQ and PR of the incomplete factors Qinc and Rinc as

PQ = {(3, 1), (4, 2), (3, 2)} and PR =




× 0 × 0

0 × 0 ×

0 0 × 0

0 0 0 ×


 ,

respectively. We should zero out the nonzero entries in the strictly lower-triangular part

of the matrix A, i.e., a41, a31, a42 and a32, to obtain the incomplete upper-triangular

factor Rinc. To this end, we first preprocess the matrix A by dropping “small” entries, say

a41, and then use three plane rotations, i.e., G(3, 1), G(4, 2) and G(3, 2), to complete the

incomplete orthogonal factorization process. Here, the word “small” means that either the

entry is numerically small or is subordinate in position. The following figure presents a

detailed illustration of this process:

A =




× 0 × 0

0 × 0 ×

× × × 0

× × 0 ×




Preproc
−−−−−−→




× 0 × ×

0 × 0 ×

× × × 0

0 × 0 ×




G(3, 1)
−−−−−→




∗ 0 ∗ ×

0 × 0 ×

0 × ∗ 0

0 × 0 ×




G(4, 2)
−−−−−→




∗ 0 ∗ 0

0 � 0 �

0 × ∗ 0

0 0 0 �




G(3, 2)
−−−−−→




∗ 0 ∗ 0

0 ⊗ 0 �

0 0 ∗ 0

0 0 0 �


 = Rinc.

From the above investigation, we have the following observations:

• when a Givens rotation G(i, j) is used to update the i-th and the j-th rows, we only

update those entries at (i, k) and (j, k) positions which are such that both aik and

5

ajk are nonzero and both (i, k) and (j, k) belong to P . As a result, after the Givens

transform with G(i, j), the updated matrix Ã := G(i, j)A still inherits the sparsity

pattern of the original matrix A and, thereby, the final incomplete upper-triangular

factor Rinc possesses the same sparsity pattern as the upper-triangular part PA,U of

the matrix A;

• for given indices i and j such that i < j, the Givens rotation G(i, j) may make a

contribution to the incomplete orthogonal factor Qinc only for (i, j) such that aij 6= 0;

• the sparsity patterns PQ and PR satisfy PQ ⊆ PA,L and PR ⊆ PA,U .

Given sets of integer pairs Pl and Pu satisfying PA,L ⊆ Pl ⊆ PL and PA,U ⊆ Pu ⊆ PU ,

we now give an algorithmic description of the new practical IGO method.

Method 2.1 (The Practical IGO Method)

For j = 1, 2, . . . , n − 1

1. For i = r := max{k|k > j, akj 6= 0} DownTo j + 1

2. If (i, j) ∈ Pl and aij 6= 0 then

3. Compute ρ :=
√

a2
jj + a2

ij

4. Compute c := ajj/ρ

5. Compute s := aij/ρ

6. Set ajj := ρ and aij := 0

7. Store c and s

8. For k = j + 1, j + 2, . . . , n

9. For (i, k) ∈ Pu and (j, k) ∈ Pu

10. If aik 6= 0 and ajk 6= 0

11. Compute temp := −sajk + caik

12. Compute ajk := cajk + saik

13. Set aik := temp

14. EndIf

15. EndFor

16. EndFor

17. EndIf

18. EndFor

EndFor

Before continuing, we make the following remarks about the practical IGO method:

(i) a dropping rule tells us which entries of the matrix are allowed to be kept or filled-in

during the incomplete orthogonal factorization process. The sets Pl and Pu in the

practical IGO method play a role of static dropping rules for Qinc and Rinc. In fact,

we can define the sets Pl and Pu by accepting more fill-ins based on the numerical

magnitude and/or the sparsity pattern during the factorization process, so that more

6

stable but more costly dynamic dropping rules can possibly be obtained. Of course,

different dropping rules may lead to different versions of the practical IGO method;

(ii) the incomplete orthogonal factor Qinc need not be explicitly computed; only the

(c, s)-pairs produced by the Givens rotations need to be stored. The lower-triangular

part of the matrix A can be used to save such (c, s)-pairs once an entry in this part

is annihilated by the corresponding Givens rotation;

(iii) the matrix A is updated immediately just after each Givens rotation and, finally, its

upper-triangular part gives the matrix Rinc. Therefore, it is unnecessary to update

and store Rinc separately, but it may be necessary to store the original matrix A

separately if it needs to be used again later;

(iv) the practical IGO method presented here is quite general. Some specific strategies

about its implementation such as the choices of the sparsity patterns PQ and PR, as

well as the dropping rules for the incomplete factors Qinc and Rinc, will be discussed

in Section 3.

Now, assume all diagonal entries of the matrix A are nonzero. Then from the

construction of the practical IGO method we know that the first n − 1 diagonal entries

of the incomplete upper-triangular factor Rinc are positive. Therefore, if A is nonsingular,

then Rinc is also nonsingular. Qinc is orthogonal. These properties are restated precisely

in the following theorem, which can be proved in an analogous fashion to the proof in [5].

Theorem 2.1 Let m = n. Assume A ∈ Rn×n is nonsingular, and Qinc and Rinc ∈ Rn×n

are, respectively, the incomplete orthogonal and the incomplete upper-triangular factors

produced by the practical IGO method. Then

(i) Rinc is sparse and nonsingular, and its diagonal elements are positive, except possibly

for the last one;

(ii) Qinc is orthogonal.

This theorem shows that the practical IGO method can produce an incomplete

orthogonal factor Qinc and an incomplete upper-triangular factor Rinc, which are both

sparse and nonsingular. Here, the sparsity of Qinc can be understood in the sense that it

is based on the sparsity pattern PQ. Numerical results in Section 6 will show that this

practical IGO method can present a stable and efficient preconditioner for Krylov subspace

iteration methods in actual applications.

3 The Dropping Strategies

We recall that the error matrix E in an IGO method with respect to the matrix A is

defined as

E = A − QincRinc or A = QincRinc + E. (3.1)

7

The factorization error E is important because we should make the entries in E as small

as possible in the sense of magnitude or position in order to improve the computational

efficiency of the incomplete factorization used as a preconditioner for a Krylov subspace

iteration method. A number of typical dropping strategies will be described in detail in

this section so that economical and effective preconditioners can be obtained in actual

applications.

Generally speaking, the dropping strategies can be categorized as static or dynamic. A

static dropping strategy may result from a fixed threshold or sparsity pattern without

introducing or rejecting any fill-ins during the factorization process, while a dynamic

dropping strategy may result from changing a threshold or a sparsity pattern in which

the values of the stored entries or the locations of the permissible fill-ins are determined

during the factorization process.

For most matrices, the numerical behaviour of the IGO preconditioners obtained from

dropping nonzero entries according to the magnitude of value or the sparsity pattern

of the matrix are considerably different. Usually, the former may lead to more robust

and accurate preconditioners, although it may be more costly and more prone to give an

unstable triangular solve than the latter.

3.1 Dropping Fill-ins Based on Numerical Thresholds

This class of dropping strategies are useful especially for indefinite and non-diagonally

dominant matrices. For a dropping technique based on numerical magnitude, fill-in is

permitted only if the value of an entry is larger than a prescribed tolerance and/or the

number of nonzero entries in each row is not larger than a specified integer. The following

example gives a brief illustration about the fundamental principle of this threshold-based

dropping strategy.

Consider a basic IGO step
(

â b̂

d̂ ê

)
=

(
ĉ −ŝ

ŝ ĉ

)(
ĉâ + ŝd̂ ĉb̂ + ŝê

0 −ŝb̂ + ĉê

)
, (3.2)

with

ĉ =
â√

â2 + d̂2
and ŝ =

d̂√
â2 + d̂2

,

that aims to annihilate the (2, 1)-entry d̂ in the original matrix. The dropping strategy

either drops a small entry or fills in a larger entry once the entry ĉb̂ + ŝê is computed.

Here, for a given threshold droptol, entries less than droptol (or ‖w‖ × droptol) are

set to zero and those larger than droptol (or ‖w‖ × droptol) are kept, where w is often

chosen to be the largest entry in absolute value or the corresponding row of the matrix,

and ‖w‖ denotes either the absolute value of w when it is a real or the norm of w when it

is a vector.

Usually, the number of fill-ins generated during the factorization process is larger than

the number dropped. So, a practical implementation of the IGO method may introduce

8

another parameter lfil that is used to limit the maximum number of fill-ins allowed in

each row. The parameter lfil may make the storage of the IGO preconditioner acceptable

and known beforehand.

Sometimes, it may be desirable to adopt dropping strategies to make the upper-

triangular factor Rinc sparser or more approximate. To give an example of such a strategy,

we consider the factorization in (3.2) again. If |d̂| � |â|, then ĉ ≈ 1 and ŝ ≈ 0. By setting

ĉ := 1 and ŝ := 0 before the Givens rotation is used, we can see that (3.2) reduces to

(
â b̂

d̂ ê

)
=

(
1 0

0 1

)(
â b̂

0 ê

)
=

(
â b̂

0 ê

)
.

Hence, the factorization error is given by

(
â b̂

d̂ ê

)
−

(
1 0

0 1

)(
â b̂

0 ê

)
=

(
0 0

d̂ 0

)
,

which is small because d̂ is. However, if the dropping rule is applied after the factorization,

then the error is given by

(
â b̂

d̂ ê

)
−

(
ĉ −ŝ

ŝ ĉ

)(
ĉâ + ŝd̂ ĉb̂ + ŝê

0 −ŝb̂ + ĉê

)
=

(
ŝ2â − ĉŝd̂ 0

0 0

)
.

Because

|ŝ2â − ĉŝd̂| =
|âd̂(â − d̂)|

â2 + d̂2
=

|1 − d̂/â|

1 + (d̂/â)2
· d̂ ≈ d̂,

it is clear that the error from the first dropping strategy is about the same as that from the

second. This shows that it may be advantageous to immediately set d̂ := 0 and simply skip

a Givens rotation if the absolute value of the corresponding entry d̂ is less than droptol.

Of course, if a dropping strategy that skillfully combines the functions of both droptol

and lfil is employed, then an effective IGO method can be obtained, which will lead to

a more robust and accurate IGO preconditioner, although such an IGO process may have

the drawback of increasing the condition number and the degree of non-normality of the

matrices due to possible propagation of some large entries.

3.2 Dropping Fill-ins Based on Sparsity Patterns

Another class of dropping strategies is based on dropping small entries according to the

sparsity pattern of the matrix. It was originally developed for preconditioning finite-

difference matrices from elliptic partial differential equations using an ILU factorization, for

which the structure of the incomplete triangular factors was determined by a discretization

stencil for the partial differential operator; see [17, 20, 28, 29]. To make the incomplete

factorization more accurate, we often adopt a larger stencil for the triangular factors, or

9

in other words, accept more nonzero entries in their sub- or super-diagonals; see [2, 33] for

detailed descriptions.

These dropping strategies can be extended in a straightforward manner to the IQR

factorizations. In actual applications of the practical IGO method, we may allocate the

memory before the factorization process is started if the structures of the incomplete

orthogonal factor Qinc and the incomplete upper-triangular factor Rinc are already

determined. The most computationally efficient forms are probably the row-wise and

the column-wise forms, although they may be inappropriate for some classes of indefinite

matrices.

4 The Implementation Strategies

In Section 4 we describe several implementation strategies for the practical IGO method

when it is used to precondition Krylov subspace iteration methods for solving large sparse

systems of linear equations under limited memory and execution time.

4.1 Sparse Matrix Storage and Operations

Consider the sparse matrix A ∈ Rn×n with nnz nonzero entries. As is known, the easiest

way for storing the matrix A may be the so-called simple coordinate scheme, which uses

two integer arrays of length nnz to store the row and the column indices and a real array

of length nnz to store the values of the nonzero entries. In fact, this is exactly the storage

scheme used by the Matrix Market database for matrices and systems of linear equations;

see [25].

Cheaper and more useful techniques for storing sparse matrices are the compressed

sparse column (CSC) and the compressed sparse row (CSR) schemes [16], which usually

require less storage than the simple coordinate scheme and in which elementary operations

such as a matrix-vector product can be easily performed. In addition these two compressed

storage schemes have their own merits. For an algorithm that proceeds by columns (such

as column-wise annihilation of entries by Givens rotations) it is advantageous to use the

CSC format of a matrix, whereas for an algorithm that proceeds by rows (such as back

substitution), it is advantageous to use the CSR format. It turns out that in the sense of

execution time a more effective implementation of the practical IGO method may come

from appropriately using both storage formats in various parts of the algorithm. It is

fortunate that constructing a CSR format from an existing CSC format is easy and cheap.

In actual computations, the diagonal entries of the matrix A and the corresponding

entries of the incomplete factors are always assumed to be nonzero and stored, whether

they are zero or not. Also, it is implicitly assumed that each column (for CSC) or row

(for CSR) of the matrices contains at least one nonzero entry or, alternatively, a position

allowed to have a nonzero value. For nonsingular matrices, these assumptions are obviously

not restrictive.

10

4.2 Preconditioning of Iteration Methods

In this subsection, we estimate the computing cost for preconditioning a Krylov subspace

iteration method by using the practical IGO method and give a comparison with that for

using a standard ILU method.

Given a preconditioning matrix M ∈ Rn×n, we need to solve the generalized residual

equation

Mz = r (4.1)

at each step of a Krylov subspace iteration, where r ∈ Rn is the currently available

residual. For the practical IGO preconditioner, we have M = QincRinc, with Qinc ∈ Rn×n

orthogonal and Rinc ∈ Rn×n nonsingular and upper triangular. So, to solve (4.1) we only

need to compute the matrix-vector product QT
incr and solve the upper-triangular system

of linear equations

Rincz = QT
incr.

For the standard ILU preconditioner, we have M = LincUinc, with Linc ∈ Rn×n and

Uinc ∈ Rn×n lower- and upper-triangular. So, to solve (4.1) we need to solve the lower-

and the upper-triangular systems of linear equations

Lincz̃ = r and Uincz = z̃.

Recall that in the practical IGO factorization process, we use a Givens rotation once

when there is a nonzero entry below the diagonal of the matrix A and belonging to the

given sparsity pattern Pl; see Method 2.1. This is in spirit analogous to the use of a Gauss

transformation in a standard ILU factorization process. The difference is that by using

a Givens rotation two rows need to be updated while by using a Gauss transform only

one row needs to be updated. Therefore, to zero out an entry the practical IGO method

usually costs much more than a standard ILU method. However, when the percentage of

nonzero entries in the matrix A is small, these two methods may have about the same

computing cost. See some numerical evidence given in Section 6.

In the practical IGO factorization process, it is not necessary to store and compute the

incomplete orthogonal factor Qinc. All we need is to store the quantities c and s in two

arrays, compute the products of the Givens rotations with the currently available right-

hand-side vectors, and then solve an upper-triangular linear system with the coefficient

matrix Rinc by a BLAS routine. Note that for a standard ILU method, a lower- and an

upper-triangular linear system need to be solved by the BLAS routines. We should point

out that good properties of a preconditioner also depend on the good algebraic properties

and sparse structure of the target matrix A itself.

5 Description of Experiments

A number of numerical experiments have been performed to assess the stability, accuracy

and efficiency of the practical IGO method. This is achieved through comparisons between

11

the numerical behaviour of the practical IGO method and standard ILU preconditioners

applied to Krylov subspace iteration methods such as GMRES[31] and BiCGSTAB[35]

for solving systems of linear equations[32, 33, 5, 30]. The test matrices include finite

difference matrices from a convection-diffusion equation with different choices of the

problem parameters and matrices from the Harwell-Boeing collection in the Matrix Market.

Besides, the normal equation approach (1.2) is also implemented by employing the practical

IGO and the standard ILU preconditioners with the conjugate gradient method[19, 23].

In the experiments, the CSR format is used to store all the matrices and all codes are

written in C++ and compiled on a Linux system. We remark that similar numerical results

can be obtained for matrices stored in the CSC format. In addition, all initial guesses x0

for the iterative solvers are randomly generated with a uniform distribution such that their

entries belong to the interval [−1, 1], and the iterations are terminated either when the

number of iterations exceeds 1000 or when the current iterate satisfies ‖rk‖ ≤ 10−6‖r0‖,

where rk = b − Axk is the residual at the k-th iteration.

5.1 The Convection-Diffusion Problem

Consider the following variable-coefficient convection-diffusion equation





−∇ · (α(x, y)∇u) + q
(
β(x, y)∂u

∂x
+ γ(x, y)∂u

∂y

)
= f(x, y),

for (x, y) ∈ Ω,

u = g(x, y),

for (x, y) ∈ ∂Ω,

(5.1)

where α(x, y) is a uniformly positive/nonnegative function, β(x, y) and γ(x, y) are

sufficiently regular functions, and q is a positive parameter used to control the magnitude of

the convective term. The domain Ω is a square in R2. The functions f(x, y) and g(x, y) are

chosen such that x∗ = (1, 1, . . . , 1)T is the exact solution of the corresponding system of

linear equations whose coefficient matrix is the centered or the upwind finite-difference

matrix of the convection-diffusion equation (5.1) on a uniform N × N discretization

grid. We remark that this test problem was used in [13, 18] to perform and examine

the effectiveness of incomplete triangular factorization and sparse approximate inverse

preconditioners.

This class of linear systems becomes very difficult when the coefficient matrices are

strongly nonsymmetric, or in other words, when the convective term of the convection-

diffusion equation (5.1) is dominant. This can happen when q becomes very large.

For N = 64 and N = 128, we have implemented the abovementioned preconditioned

Krylov subspace iteration methods for various choices of the functions α(x, y), β(x, y) and

γ(x, y), which are listed in Table 5.1.

12

Table 5.1: Test Problems from the Convection-Diffusion Equation (5.1)

Prob. No. α(x, y) β(x, y) γ(x, y)

1 1 1 1

2 1 x + y x + y

3 1 ex+y ex+y

4 1 ex+y e−x−y

5 1 e−x−y ex+y

6 1 e−x−y e−x−y

7 x + y x + y x + y

8 ex+y ex+y ex+y

5.2 Matrices from Matrix Market

This group of test matrices includes twenty matrices selected from eleven sets (e.g.,

ASTROPH, BCSSTRUC1, BCSSTRUC2, BCSSTRUC3, CYLSHELL, etc.) of the

Harwell-Boeing collection in the Matrix Market, a repository organized by National

Institute of Standards and Technology; see [25]. The names and the characteristics

including: the number m of rows, the number nnz(A) of nonzeros, the density den(A), the

Frobenius norm (F -norm) and the estimated condition number cond(A), of these matrices

are given in Table 5.2. Note that the matrix A is square so that the number n of its columns

is equal to m. Here, the density of a matrix A ∈ Rm×n is defined as the percentage of its

nonzero entries, i.e., den(A) := nnz(A)
mn

× 100.

In Table 5.2, we classify the twenty matrices into five sub-groups according to their

symmetry and definiteness. Clearly, most of the matrices are very ill-conditioned with

very large F -norms, with only a few exceptions, for example NNC1374 and PDE2961. The

sizes of the matrices vary significantly in terms of both dimension (138 ≤ m ≤ 90449) and

number of nonzeros (696 ≤ m ≤ 1921955), the density ranges approximately from 0.02%

to 8%, and the F -norm increases from 1.3e02 to 2.3e19.

The first sub-group includes eight matrices, which are symmetric positive definite;

among them BCSSTK10, BCSSTK12 and BCSSTK14 are from the BCSSTRUC set from

structural engineering applications, NOS1, NOS2 and NOS6 are from the LANPRO set

from finite-element approximation to the biharmonic operator on a beam with one end

free and one end fixed, and S3DKT3M2 and S3RMT3M1 are from the CYLSHELL set

from the finite-element discretization of the octant of a cylindrical shell. The second

sub-group includes three symmetric indefinite matrices, BCSSTK19, BCSSTK20 and

BCSSTK26 that are from the BCSSTRUC set. The third sub-group includes two

symmetric semidefinite matrices, BCSSTM10 and BCSSTM12, from the BCSSTRUC set.

The fourth sub-group includes two pattern symmetric indefinite matrices, CAN 445 and

CAN 838, from the LANPRO set of structural problems in aircraft design. And the fifth

sub-group includes five nonsymmetric matrices from five different sets: CDDE5 is a model

finite-difference matrix of a two-dimensional (2D) convection-diffusion operator, MCCA is

13

Table 5.2: Description of the Matrix Market Matrices
Matrix No. Matrix Name m nnz(A) den(A) F -norm cond(A)

Symmetric Positive Definite Matrices

1 BCSSTK10 1086 22070 1.87 3.0e08 1.3e06

2 BCSSTK12 1473 34241 1.58 4.7e09 5.3e08

3 BCSSTK14 1086 63454 5.38 6.5e10 1.3e10

4 NOS1 237 1017 1.81 1.3e10 2.5e07

5 NOS2 957 4137 0.45 1.7e12 6.3e09

6 NOS6 675 3255 0.71 4.5e07 8.0e06

7 S3RMT3M1 5489 217669 0.72 1.7e05 1.3e10

8 S3DKT3M2 90449 1921955 0.02 0.6e06 3.6e11

Symmetric Indefinite Matrices

9 BCSSTK19 817 6853 1.03 9.6e14 2.8e11

10 BCSSTK22 138 696 3.65 2.1e07 1.7e05

11 BCSSTK26 1922 30336 0.11 4.0e11 2.3e08

Symmetric Positive Semidefinite Matrices

12 BCSSTM10 1086 22092 1.87 3.0e05 2.4e05

13 BCSSTM12 1473 19659 0.91 82 8.9e05

Pattern Symmetric Indefinite Matrices

14 CAN 445 445 3809 1.92 – –

15 CAN 838 838 10010 1.43 – –

Nonsymmetric Matrices

16 CDDE5 961 4681 0.51 1.3e02 5.3e04

17 MCCA 180 2659 8.21 2.3e19 3.6e17

18 NNC1374 1374 8588 1.67 9.6e03 1.0e02

19 PDE2961 2961 14585 0.17 2.2e02 9.5e02

20 SHERMAN2 1080 23094 1.98 7.0e09 1.4e12

from nonlinear radiative transfer and statistical equilibrium in astrophysics, NNC1374 is

from models of nuclear reactor, PDE2961 is a five-point central difference matrix of 2D

variable-coefficient linear elliptic equation, and SHERMAN2 is from the SHERMAN set

of oil reservoir simulation challenge matrices.

For generating systems of linear equations for these coefficient matrices, we choose

right-hand-side vectors such that their exact solutions are all equal to x∗ = (1, 1, . . . , 1)T .

This set-up allows us to easily check the accuracy of the computed solution by using both

the residual vector norm ‖Axk − b‖2 and the absolute solution error ‖xk − x∗‖2.

14

6 Numerical Results

We examine the robustness, effectiveness and stability of the practical IGO preconditioner

by numerically comparing it with the standard ILU preconditioner, which is used to

accelerate GMRES [31] (without restarting) and BiCGSTAB [35]. We compare the

methods with respect to the preconditioning time (CPUp), the iteration time (CPUit),

the total number of iteration steps (IT) and the total CPU time (CPU); see detailed

descriptions about these notations in Table 6.1.

Table 6.1: Notations
Notation Description

N the number of discretization points

CPUp the CPU time for constructing the preconditioner

CPUit the CPU time for executing the iterative scheme

IT the total number of iterations for the iterative scheme

CPU the total CPU time for the iteration

6.1 The Convection-Diffusion Problems

The numerical results in this subsection concern the IGO- and the ILU-preconditioned

GMRES and BiCGSTAB methods, denoted as IGO-GMRES, ILU-GMRES and IGO-

BiCGSTAB, ILU-BiCGSTAB, respectively, for solving systems of linear equations arising

from the centered finite-difference discretization of the convection-diffusion equation (5.1);

see Table 5.1.

In Table 6.2, we list the total number of iteration steps and the total CPU times for

IGO-GMRES and ILU-GMRES, when N = 64, 128 and when q = 500, 1000, respectively.

Clearly, all the IGO-GMRES iterations converge fast and accurately to the exact solution

x∗. When q grows from 500 to 1000, the number of iteration steps increases by about a

factor of 2 and the CPU time correspondingly increases by about two or three times. The

ILU-GMRES iterations converge very slowly for N = 64, and they even diverge for the

case N = 128 and q = 1000. Here, an iteration is termed divergent if it cannot achieve

the stopping criterion within the prescribed number of iteration steps (1000). For the

convergent iterations, IGO-GMRES is always less costly in computing time and requires

fewer iteration steps than ILU-GMRES.

We plot the curves of IT and CPU for the eight test problems given in Table 5.1 for both

IGO-GMRES and ILU-GMRES in Figures 6.1 and 6.2 when q = 500 and in Figures 6.3 and

6.4 when q = 1000, respectively. To identify the matrix sizes, we use IGO-GMRES(N) and

ILU-GMRES(N) to denote IGO-GMRES and ILU-GMRES corresponding to the number

m = N ×N of discretization points. These figures show that both kinds of curves are very

flat and smooth for the IGO-GMRES iteration, but are drastically steep and oscillating

for ILU-GMRES iteration. It is evident that the practical IGO preconditioner is more

15

robust, stable and efficient than the standard ILU preconditioner when they are employed

to precondition the GMRES method.

Table 6.2: IT and CPU for GMRES when N = 64, 128 and when q = 500, 1000

q = 500 q = 1000

Prob. No. N IGO-GMRES ILU-GMRES IGO-GMRES ILU-GMRES

CPU IT CPU IT CPU IT CPU IT

64 0.28 40 0.72 72 0.75 71 8.31 260
1

128 1.12 39 2.20 58 2.80 67 – –

64 0.39 49 0.78 75 1.29 96 1.48 106
2

128 1.83 52 2.98 71 3.41 74 – –

64 0.60 62 4.80 190 2.02 120 98.31 891
3

128 2.10 55 441.59 933 5.39 92 – –

64 0.36 46 0.75 70 0.69 66 4.77 192
4

128 1.72 49 2.40 62 3.48 73 287.56 740

64 0.24 36 0.64 68 0.64 65 7.17 239
5

128 1.50 46 2.13 59 2.18 57 308.31 780

64 0.20 32 0.49 58 0.56 60 2.12 127
6

128 0.62 25 0.63 28 1.81 51 – –

64 0.31 43 0.61 66 0.93 80 5.54 211
7

128 1.33 41 2.20 60 3.26 70 – –

64 0.31 40 0.83 74 0.88 73 5.84 205
8

128 1.28 39 2.50 61 3.10 68 – –

1 2 3 4 5 6 7 8
0

50

100

150

200

250

300

Prob. No.

IT

IGO−GMRES(64)
IGO−GMRES(128)
ILU−GMRES(64)
ILU−GMRES(128)

Figure 6.1: Curves of IT versus

problem for GMRES when q = 500

1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

14

Prob. No.

C
P

U

IGO−GMRES(64)
IGO−GMRES(128)
ILU−GMRES(64)
ILU−GMRES(128)

Figure 6.2: Curves of CPU versus

problem for GMRES when q = 500

16

1 2 3 4 5 6 7 8
0

100

200

300

400

500

600

700

800

900

1000

Prob. No.

IT

IGO−GMRES(64)
IGO−GMRES(128)
ILU−GMRES(64)
ILU−GMRES(128)

Figure 6.3: Curves of IT versus

problem for GMRES when q = 1000

1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

90

100

Prob. No.

C
P

U

IGO−GMRES(64)
IGO−GMRES(128)
ILU−GMRES(64)
ILU−GMRES(128)

Figure 6.4: Curves of CPU versus

problem for GMRES when q = 1000

The above observations are further confirmed by the curves of the relative residual

norm (in the natural logarithm) versus the total iteration number plotted in Figures 6.5

and 6.6 for Problem 7, when N = 128 and q = 500, 1000, respectively.

0 50 100 150 200 250 300 350 400
−12

−10

−8

−6

−4

−2

0

2

4

6

IT

L
O

G
(R

E
S

)

IGO−GMRES
ILU−GMRES

Figure 6.5: Curves of the relative

residual norm (in the natural

logarithm) versus the number of

iterations for Problem 7 when

N = 128 and q = 500

0 50 100 150 200 250 300 350 400
−15

−10

−5

0

5

10

15

20

25

IT

L
O

G
(R

E
S

)

IGO−GMRES
ILU−GMRES

Figure 6.6: Curves of the relative

residual norm (in the natural

logarithm) versus the number of

iterations for Problem 7 when

N = 128 and q = 1000

Instead of GMRES, we can also use BiCGSTAB preconditioned by the IGO and the

ILU methods to solve this class of linear systems.

In Table 6.3, we list the total iteration steps and the total CPU times for IGO-

BiCGSTAB and ILU-BiCGSTAB, when N = 64, 128 and when q = 500, 1000, respectively.

The data show similar numerical phenomenon to those in Table 6.2. From Table 6.3, we can

17

see that the IGO-BiCGSTAB iteration converges very quickly with high accuracy to the

exact solution x∗ for most cases, except for Problems 2 and 3 when N = 64 and q = 1000.

However, the ILU-BiCGSTAB iteration either converges slowly in general, or even diverges

for some cases of q = 500 and for most cases of N = 128 and q = 1000. For the convergent

iterations, the IGO-BiCGSTAB iteration is often much faster than the ILU-BiCGSTAB

iteration especially for Problems 1, 3, 7 and 8, and the number of iteration steps of the

former is also less than that of the latter. In addition, the number of iterations decreases

but the CPU time increases with an increasing number of discretization points, and these

two quantities increase with increasing q.

Table 6.3: IT and CPU for BiCGSTAB when N = 64, 128 and when q = 500, 1000

q = 500 q = 1000

Prob. No. N IGO-BiCGSTAB ILU-BiCGSTAB IGO-BiCGSTAB ILU-BiCGSTAB

CPU IT CPU IT CPU IT CPU IT

64 0.14 27 0.29 83 0.53 102 – –
1

128 0.70 31 1.70 107 1.41 62 3.19 202

64 0.22 42 0.2 60 – – – –
2

128 0.82 36 0.84 53 1.44 63 – –

64 0.30 57 – – – – – –
3

128 1.01 43 3.03 186 3.37 143 – –

64 0.17 34 0.14 41 0.39 73 – –
4

128 0.91 40 0.77 49 1.37 60 2.41 153

64 0.14 25 0.14 40 0.53 102 – –
5

128 0.89 39 0.84 53 1.14 50 1.93 122

64 0.13 23 0.13 37 0.37 71 – –
6

128 0.43 19 0.46 29 0.94 41 2.35 149

64 0.14 28 0.25 73 0.26 49 – –
7

128 0.68 30 1.52 97 1.33 58 3.70 234

64 0.14 28 0.27 78 0.54 104 – –
8

128 0.72 32 1.41 90 1.43 63 3.75 237

We plot the curves of IT and CPU with respect to the eight test problems given in

Table 5.1 for both IGO-BiCGSTAB and ILU-BiCGSTAB in Figures 6.7 and 6.8 when

q = 500 and in Figures 6.9 and 6.10 when q = 1000, respectively. In an analogous

fashion, to identify the matrix sizes we use IGO-BiCGSTAB(N) and ILU-BiCGSTAB(N)

to denote IGO-BiCGSTAB and ILU-BiCGSTAB corresponding to the number m = N×N

of discretization points. These figures show that both curves are very flat and smooth for

the IGO-BiCGSTAB iteration but are very steep and oscillating for the ILU-BiCGSTAB

iteration. It is evident that the practical IGO preconditioner is much more robust, stable

18

and efficient than the standard ILU preconditioner when it is used to precondition the

BiCGSTAB method.

The above observations are further confirmed by the curves of the relative residual norm

(in the natural logarithm) versus the total number of iterations plotted in Figures 6.11 and

6.12 for Problem 7, when N = 128 and q = 500, 1000, respectively.

1 2 3 4 5 6 7 8
0

50

100

150

200

250

300

350

400

Prob. No.

IT

IGO−BiCGSTAB(64)
IGO−BiCGSTAB(128)
ILU−BiCGSTAB(64)
ILU−BiCGSTAB(128)

Figure 6.7: Curves of IT versus

problem for BiCGSTAB when q =

500

1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

9

10

Prob. No.

C
P

U

IGO−BiCGSTAB(64)
IGO−BiCGSTAB(128)
ILU−BiCGSTAB(64)
ILU−BiCGSTAB(128)

Figure 6.8: Curves of CPU versus

problem for BiCGSTAB when q =

500

1 2 3 4 5 6 7 8
0

100

200

300

400

500

600

700

800

900

1000

Prob. No.

IT

IGO−BiCGSTAB(64)
IGO−BiCGSTAB(128)
ILU−BiCGSTAB(64)
ILU−BiCGSTAB(128)

Figure 6.9: Curves of IT versus

problem for BiCGSTAB when q =

1000

1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

9

10

Prob. No.

C
P

U

IGO−BiCGSTAB(64)
IGO−BiCGSTAB(128)
ILU−BiCGSTAB(64)
ILU−BiCGSTAB(128)

Figure 6.10: Curves of CPU versus

problem for BiCGSTAB when q =

1000

6.2 Matrices from Matrix Market

The numerical results in this subsection concern IGO-GMRES and ILU-GMRES for solving

systems of linear equations with coefficient matrices from the Matrix Market; see Table 5.2.

19

0 20 40 60 80 100 120
−15

−10

−5

0

5

10

15

IT

L
O

G
(R

E
S

)

IGO−BiCGSTAB
ILU−BiCGSTAB

Figure 6.11: Curves of the relative

residual norm (in the natural

logarithm) versus the number of

iterations for Problem 7 when

N = 128 and q = 500

0 50 100 150 200 250 300 350 400
−15

−10

−5

0

5

10

15

20

25

30

IT

L
O

G
(R

E
S

)

IGO−BiCGSTAB
ILU−BiCGSTAB

Figure 6.12: Curves of the relative

residual norm (in the natural

logarithm) versus the number of

iterations for Problem 7 when

N = 128 and q = 1000

In Table 6.4, we list the preconditioning time, the iteration time, the total number

of iteration steps and the total CPU time for IGO-GMRES and ILU-GMRES. From this

table, we can see that the construction times for the practical IGO and the standard ILU

preconditioners are quite comparable, but the execution times of the IGO-preconditoned

GMRES iterations are much less than those of the ILU-preconditoned GMRES iterations.

In general, IGO-GMRES outperforms ILU-GMRES in total computing time and total

number of iterations. Note that ILU-GMRES fails to compute acceptable approximate

solutions for the three systems of linear equations with the coefficient matrices CAN 445,

CAN 838 and NNC1374, as these matrices are more difficult than the others. This

evidently shows that the practical IGO method can lead to more robust, accurate and

efficient preconditioners than the standard ILU method for the GMRES method.

We plot the curves of IT and CPU with respect to the twenty test matrices given in

Table 5.2 for both IGO-GMRES and ILU-GMRES in Figures 6.13 and 6.14, respectively.

These figures show that both kinds of curves may be steep and oscillating for the IGO-

GMRES and the ILU-GMRES iterations, but those for the latter behave worse than those

for the former. Evidently, the practical IGO preconditioner is more robust, stable and

efficient than the standard ILU preconditioner when they are employed to precondition

the GMRES method.

The above observations are further illustrated by the curves of the relative residual norm

(in the natural logarithm) versus the total number of iterations plotted in Figures 6.15 and

6.16 for matrices NOS1 and NOS2, respectively. It is clear that IGO-GMRES converges

much more rapidly and accurately than ILU-GMRES.

20

0 2 4 6 8 10 12 14 16 18 20
0

100

200

300

400

500

600

700

800

900

1000

Matrix No.

IT

IGO−GMRES
ILU−GMRES

Figure 6.13: Curves of IT versus

matrix for the matrices in Table 6.4

for GMRES

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

120

140

160

180

200

Matrix No.

C
P

U

IGO−GMRES
ILU−GMRES

Figure 6.14: Curves of CPU versus

matrix for the matrices in Table 6.4

for GMRES

6.3 The Approach of Normal Equations

The preconditioned conjugate gradient (CG) method is usually the best solver for the

normal equations (1.2), giving rise to the CGNR (conjugate gradient on normal residual)

method for computing the least-squares solution of the rectangular system of linear

equations (1.1). We remark that it can also be used for square systems of linear equations.

As we have mentioned before, the practical IGO method can be used to produce an effective

incomplete Cholesky factorization and, thereby, lead to a high-quality preconditioner for

the symmetric positive definite matrix AT A. In fact, if A = QincRinc is the practical IGO

factorization of the matrix A ∈ Rm×n, with Qinc ∈ Rm×n and Rinc ∈ Rn×n, then we can

precondition the matrix AT A by

M := RT
incRinc = (QincRinc)

T (QincRinc) ≈ AT A.

Of course, the standard ILU factorization M = LincUinc can also be used to precondition

the CGNR method when the matrix A ∈ Rm×n is square, i.e., m = n. This is often

achieved by applying the CG method to the preconditioned linear system

(A(LincUinc)
−1)T (A(LincUinc)

−1)y = (A(LincUinc)
−1)T b,

with y = (LincUinc)x. This kind of preconditioned CGNR method is also termed as the

preconditioned CGLS method in [15, page 288]; see also [21].

The numerical results in this subsection concern IGO-CGNR and ILU-CGNR for

solving systems of linear equations arising from the centred or the upwind finite-difference

discretization of the convection-diffusion equation (5.1); see Table 5.1.

In Table 6.5, for N = 32 and 64 and for q ranging from 100 to 800, we list the

number of iterations and the CPU times for IGO-CGNR and ILU-CGNR, when they

are used to solve systems of linear equations whose coefficient matrices are obtained by

21

0 20 40 60 80 100 120 140 160
−12

−10

−8

−6

−4

−2

0

IT

L
O

G
(R

E
S

)

IGO−GMRES
ILU−GMRES

Figure 6.15: Curves of the relative

residual norm (in the natural

logarithm) versus the number of

iterations for NOS1

0 100 200 300 400 500 600 700
−12

−10

−8

−6

−4

−2

0

IT

L
O

G
(R

E
S

)

IGO−GMRES
ILU−GMRES

Figure 6.16: Curves of the relative

residual norm (in the natural

logarithm) versus the number of

iterations for NOS2

the centred finite-difference discretization scheme. Clearly, when q is growing, the IGO-

CGNR iteration converges very fast and accurately to the exact solution x∗ for all problems

except for Problem 7, and both the number of iterations and the CPU time decrease very

quickly. However, the ILU-GMRES iteration converges very slowly for most of the problems

when q is small, and it even diverges for all test problems when q is large. Hence, the

practical IGO preconditioner is much more robust, stable and efficient than the standard

ILU preconditioner when they are used to precondition the CGNR method.

There are other efficient incomplete factorization preconditioning methods for solving

linear least-squares problems. For example, the robust incomplete factorization (RIF) in

[14] and the compressed incomplete modified Gram-Schmidt (CIMGS) procedure in [37].

For numerical implementations and comparisons of the CGNR method preconditioned by

IGO, RIF and CIMGS, we refer to [38, 14, 22]. However, we include some numerical results

on systems of linear equations arising from the upwind finite-difference discretization of

the convection-diffusion equation (5.1) in Table 6.6. These test problems are defined in

Table 5.1. Clearly, as a preconditioner to CGNR, IGO outperforms RIF and CIMGS for

both number of iterations and CPU time.

7 Conclusions

We have modified and tested numerically a class of incomplete orthogonal factorization

preconditioners based on Givens rotations. Our numerical experiments have shown that

these practical preconditioners outperform the standard incomplete triangular factorization

preconditioners on aspects of solution accuracy, computation time and number of

iterations when they are used to accelerate the Krylov subspace iteration methods

22

such as GMRES and BiCGSTAB for several problems. In particular, the incomplete

orthogonal factorization preconditioners can produce incomplete Cholesky factorization

preconditioners of high-quality for the CGNR methods.

The Givens-updating rule introduced in Section 2 can be analogously applied to modify

other IGO-type methods such as GIGO, TIGO(τ) and GTIGO(τ, p) established in [5], and

the theoretical analyses about the correspondingly obtained practical IGO-type methods

can be done in a similar fashion to Theorem 2.1.

Further research may be carried out on dropping strategies and ordering techniques

for the incomplete orthogonal factorization methods, which can take into account both

numerical values and sparse structures of the matrices, as well as numerical comparisons

with other competitive splitting preconditioners such as HSS [7], NSS [8] and BTSS [6].

Also, efficient parallel implementation of this class of incomplete orthogonal factorization

preconditioners is an important topic that needs in-depth study on algorithmic design,

theoretical analysis, and practical applications; see [38, 39].

Acknowledgements: The authors are very thankful to Andrew Wathen from Oxford

for many valuable suggestions and thorough modifications which greatly improved the

original manuscript of this paper. They are very much indebted to the referees and the

editor, Lothar Reichel, for their useful comments.

References

[1] M. Arioli, D. Loghin and A.J. Wathen, Stopping criteria for iterations in finite element

methods, Numer. Math. 99 (2005) 381–410.

[2] O. Axelsson, Iterative Solution Methods, Cambridge University Press, Cambridge,

1997.

[3] Z.-Z. Bai, Sharp error bounds of some Krylov subspace methods for non-Hermitian

linear systems, Appl. Math. Comput. 109 (2000) 273–285.

[4] Z.-Z. Bai, Splitting iteration methods for non-Hermitian positive definite systems of

linear equations, Hokkaido Math. J. 36 (2007) 801–814.

[5] Z.-Z. Bai, I.S. Duff and A.J. Wathen, A class of incomplete orthogonal factorization

methods. I: methods and theories, BIT Numer. Math. 41 (2001) 53–70.

[6] Z.-Z. Bai, G.H. Golub, L.-Z. Lu and J.-F. Yin, Block triangular and skew-Hermitian

splitting methods for positive-definite linear systems, SIAM J. Sci. Comput. 26 (2005)

844–863.

[7] Z.-Z. Bai, G.H. Golub and M.K. Ng, Hermitian and skew-Hermitian splitting methods

for non-Hermitian positive definite linear systems, SIAM J. Matrix Anal. Appl. 24

(2003) 603–626.

23

[8] Z.-Z. Bai, G.H. Golub and M.K. Ng, On successive-overrelaxation acceleration of the

Hermitian and skew-Hermitian splitting iterations, Numer. Linear Algebra Appl. 14

(2007) 319–335.

[9] Z.-Z. Bai and C.-H. Jin, Column-decomposed relaxation methods for the

overdetermined systems of linear equations, Intern. J. Appl. Math. 13 (2003) 71–

82.

[10] Z.-Z. Bai, G.-Q. Li and L.-Z. Lu, Combinative preconditioners of modified incomplete

Cholesky factorization and Sherman-Morrison-Woodbury update for self-adjoint

elliptic Dirichlet-periodic boundary value problems, J. Comput. Math. 22 (2004)

833–856.

[11] Z.-Z. Bai, J.-F. Yin and Y.-F. Su, A shift-splitting preconditioner for non-Hermitian

positive definite matrices, J. Comput. Math. 24 (2006) 539–552.

[12] Z.-Z. Bai and S.-L. Zhang, A regularized conjugate gradient method for symmetric

positive definite system of linear equations, J. Comput. Math. 20 (2002) 437–448.

[13] M. Benzi and M. Tůma, Ordering for factorized sparse approximate inverse

preconditioners, SIAM J. Sci. Comput. 21 (2000) 1851–1868.

[14] M. Benzi and M. Tůma, A robust preconditioner with low memory requirements for

large sparse least squares problems, SIAM J. Sci. Comput. 25 (2003) 499–512.

[15] A. Björck, Numerical Methods for Least Squares Problems, SIAM , Philadelphia,

1996.

[16] I.S. Duff, A.M. Erisman and J.K. Reid, Direct Methods for Sparse Matrices, Oxford

University Press, London, 1986.

[17] T. Dupont, R. Kendall and H.H. Rachford, Jr., An approximate factorization

procedure for solving selfadjoint elliptic difference equations, SIAM J. Numer. Anal.

5 (1968) 559–573.

[18] H.C. Elman, Relaxed and stabilized incomplete factorizations for non-self-adjoint

linear systems, BIT Numer. Math. 29 (1989) 890–915.

[19] G.H. Golub and C.F. Van Loan, Matrix Computations, The 3rd Edition, The Johns

Hopkins University Press, Baltimore and London, 1996.

[20] I. Gustafsson, A class of first order factorization methods, BIT Numer. Math. 18

(1978) 142–156.

[21] K. Hayami and T. Ito, Solutions of least squares problems using generalized minimal

residual methods, Proc. Inst. Statist. Math. 53 (2005) 331–348. (In Japanese)

24

[22] K. Hayami, J.-F. Yin and T. Ito, GMRES Methods for Least Squares Problems, NII

Technical Report , NII-2007-009E, National Institute of Informatics, Tokyo, Japan,

2007.

[23] M.R. Hestenes and E.L. Stiefel, Methods of conjugate gradients for solving linear

systems, J. Research National Bureau Standards, Section B 49 (1952) 409–436.

[24] T.A. Manteuffel, An incomplete factorization technique for positive definite linear

systems, Math. Comput. 34 (1980) 473–497.

[25] Matrix Market, http://math.nist.gov/MatrixMarket/data/, Test Matrices Database

Maintained by NIST , Gaithersburg, MD.

[26] J.A. Meijerink and H.A. Van der Vorst, An iterative solution method for linear systems

of which the coefficient matrix is a symmetric M -matrix, Math. Comput. 31 (1977)

148–162.

[27] J.A. Meijerink and H.A. Van der Vorst, Guidelines for the usage of incomplete

decompositions in solving sets of linear equations as they occur in practical problems,

J. Comp. Phys. 44 (1981) 134–155.

[28] P. Saylor, Second order strongly implicit symmetric factorization methods for the

solution of elliptic difference equations, SIAM J. Numer. Anal. 11 (1974) 894–908.

[29] H.L. Stone, Iterative solution of implicit approximations of multidimensional partial

differential equations, SIAM J. Numer. Anal. 5 (1968) 530–558.

[30] A.T. Papadopoulos, I.S. Duff and A.J. Wathen, A class of incomplete orthogonal

factorization methods. II: implementation and results, BIT Numer. Math. 45 (2005)

159–179.

[31] Y. Saad and M.H. Schultz, GMRES: A generalized minimal residual algorithm for

solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput. 7 (1986) 856–839.

[32] Y. Saad, Preconditioning techniques for nonsymmetric and indefinite linear systems,

J. Comput. Appl. Math. 24 (1988) 89–105.

[33] Y. Saad, ILUT: A dual threshold incomplete ILU factorization, Numer. Linear Algebra

Appl. 1 (1994) 387–402.

[34] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Publishing Company ,

Boston, 1996.

[35] H.A. Van der Vorst, Iterative Krylov Methods for Large Linear Systems, Cambridge

University Press, Cambridge, 2003.

[36] R.S. Varga, Matrix Iterative Analysis, Prentice-Hall , Englewoods Cliffs, N.J., 1962.

25

[37] X.-G. Wang, K.A. Gallivan and R. Bramley, CIMGS: An incomplete orthogonal

factorization preconditioner, SIAM J. Sci. Comput. 18 (1997) 516–536.

[38] T. Washio and K. Hayami, Parallel block preconditioning based on SSOR and MILU,

Numer. Linear Algebra Appl. 1 (1994) 533–553.

[39] T. Washio and K. Hayami, Overlapped multicolor MILU preconditioning, SIAM J.

Sci. Comput. 16 (1995) 636–650.

[40] J.-F. Yin and Z.-Z. Bai, The restrictively preconditioned conjugate gradient methods

on normal residual for block two-by-two linear systems, J. Comput. Math. 26 (2008)

240–249.

[41] D.M. Young, Iterative Solution of Large Linear Systems, Academic Press, New York,

1971.

26

Table 6.4: IT and CPU for GMRES for Matrices in Table 5.2

IGO-GMRES ILU-GMRES
Matrix No.

CPUp CPUit IT CPU CPUp CPUit IT CPU

Symmetric Positive Definite Matrices

BCSSTK10 0.02 0.10 32 0.12 0.02 0.19 70 0.21

BCSSTK12 0.03 0.53 82 0.56 0.03 0.54 103 0.57

BCSSTK14 0.10 0.21 31 0.31 0.08 0.54 87 0.62

NOS1 0.00 0.00 6 0.00 0.00 0.11 121 0.11

NOS2 0.00 0.00 5 0.00 0.00 1.93 268 0.00

NOS6 0.00 0.01 13 0.01 0.00 0.02 23 0.01

S3DKT3M2 6.05 72.36 115 78.41 4.74 1349.69 622 1354.43

S3RMT3M1 0.35 0.50 23 0.85 0.28 13.24 279 13.52

Symmetric Indefinite Matrices

BCSSTK19 0.16 0.14 12 0.30 0.14 1.85 115 1.99

BCSSTK22 0.16 0.14 12 0.30 0.14 1.85 115 1.99

BCSSTK26 0.02 0.22 42 0.24 0.02 0.91 121 0.93

Symmetric Positive Semidefinite Matrices

BCSSTM10 0.02 0.13 42 0.15 0.02 0.19 69 0.21

BCSSTM12 0.02 0.01 2 0.03 0.02 0.02 11 0.04

Pattern Symmetric Indefinite Matrices

CAN 445 0.00 2.52 424 2.52 – – – –

CAN 838 0.01 0.04 27 0.05 – – – –

Nonsymmetric Matrices

CDDE5 0.00 0.07 41 0.07 0.00 0.22 83 0.22

MCCA 0.00 0.00 4 0.00 0.00 0.01 7 0.01

NNC1374 0.00 0.43 89 0.43 – – – –

PDE2961 0.01 0.09 25 0.10 0.01 0.23 48 0.24

SHERMAN2 0.02 0.01 4 0.03 0.02 0.02 10 0.04

27

Table 6.5: IT and CPU for CGNR for various q when N = 32 and 64

Prob. q = 100 q = 200 q = 400 q = 600 q = 800

No.
N

IT CPU IT CPU IT CPU IT CPU IT CPU

IGO-CGNR 50 0.03 16 0.01 9 0.01 7 0.01 6 0.01
32

ILU-CGNR 49 0.01 48 0.03 – – – – – –
1

IGO-CGNR 162 0.37 89 0.21 17 0.05 10 0.03 9 0.03
64

ILU-CGNR 211 0.65 88 0.24 102 0.28 – – – –

IGO-CGNR 61 0.04 32 0.02 19 0.01 12 0.01 11 0.01
32

ILU-CGNR – – 177 0.13 197 0.17 – – – –
2

IGO-CGNR 162 0.37 106 0.25 58 0.14 36 0.10 30 0.07
64

ILU-CGNR – – – – – – – – – –

IGO-CGNR 35 0.02 12 0.01 8 0.01 6 0.01 6 0.01
32

ILU-CGNR 43 0.03 – – – – – – – –
3

IGO-CGNR 131 0.31 56 0.14 13 0.04 9 0.03 8 0.02
64

ILU-CGNR 148 0.40 75 0.21 – – – – – –

IGO-CGNR 43 0.02 15 0.01 8 0.01 7 0.01 6 0.01
32

ILU-CGNR 43 0.03 28 0.02 – – – – – –
4

IGO-CGNR 149 0.35 71 0.17 16 0.04 10 0.04 8 0.02
64

ILU-CGNR 171 0.46 76 0.21 49 0.14 191 0.63 – –

IGO-CGNR 43 0.03 14 0.01 8 0.01 7 0.01 6 0.01
32

ILU-CGNR 43 0.03 28 0.02 – – – – – –
5

IGO-CGNR 150 0.35 71 0.17 15 0.05 10 0.04 8 0.02
64

ILU-CGNR 171 0.46 76 0.21 49 0.14 191 0.63 – –

IGO-CGNR 61 0.04 30 0.02 11 0.01 8 0.01 7 0.01
32

ILU-CGNR 81 0.05 39 0.02 – – – – – –
6

IGO-CGNR 179 0.42 119 0.28 45 0.11 16 0.04 12 0.04
64

ILU-CGNR – – 191 0.54 72 0.20 109 0.30 – –

IGO-CGNR – – – – – – – – – –
32

ILU-CGNR – – – – – – – – – –
7

IGO-CGNR – – – – – – – – – –
64

ILU-CGNR – – – – – – – – – –

IGO-CGNR 35 0.02 12 0.01 8 0.01 6 0.01 6 0.01
32

ILU-CGNR 40 0.03 34 0.02 – – – – – –
8

IGO-CGNR 116 0.27 59 0.14 14 0.04 9 0.02 8 0.02
64

ILU-CGNR 131 0.36 70 0.19 65 0.18 – – – –

28

Table 6.6: IT and CPU for CGNR preconditioned by IGO, RIF and CIMGS for various q

when N = 32 and 64

Prob. q = 100 q = 200 q = 400 q = 600 q = 800

NO.
m

IT CPU IT CPU IT CPU IT CPU IT CPU

IGO 36 0.02 35 0.02 34 0.02 34 0.02 34 0.02

32 RIF 41 0.02 40 0.02 40 0.02 39 0.02 32 0.02

CIMGS 64 0.03 64 0.03 64 0.03 64 0.03 64 0.03
1

IGO 62 0.53 61 0.53 60 0.52 60 0.52 60 0.52

64 RIF 77 0.59 77 0.59 76 0.59 76 0.59 74 0.58

CIMGS 128 0.63 128 0.63 128 0.63 128 0.63 128 0.63

IGO 37 0.02 37 0.02 37 0.02 37 0.02 37 0.02

32 RIF 44 0.02 43 0.02 42 0.02 41 0.02 35 0.02

CIMGS 65 0.03 65 0.03 64 0.03 63 0.03 63 0.03
3

IGO 77 0.53 77 0.53 76 0.52 76 0.52 75 0.52

64 RIF 79 0.59 78 0.59 77 0.59 77 0.59 77 0.59

CIMGS 130 0.63 130 0.63 129 0.63 127 0.63 127 0.63

IGO 34 0.02 33 0.02 33 0.02 33 0.02 33 0.02

32 RIF 44 0.02 43 0.02 42 0.02 41 0.02 35 0.02

CIMGS 65 0.03 65 0.03 65 0.03 63 0.03 63 0.03
4

IGO 54 0.52 54 0.52 54 0.52 54 0.52 53 0.52

64 RIF 79 0.59 78 0.59 77 0.59 77 0.59 77 0.59

CIMGS 130 0.63 130 0.63 130 0.63 127 0.63 127 0.63

IGO 34 0.02 33 0.02 33 0.02 33 0.02 33 0.02

32 RIF 44 0.02 43 0.02 42 0.02 42 0.02 41 0.02

CIMGS 64 0.03 64 0.03 63 0.03 59 0.03 57 0.03
8

IGO 54 0.52 54 0.52 54 0.52 53 0.52 53 0.52

64 RIF 79 0.59 78 0.59 78 0.59 77 0.59 77 0.59

CIMGS 128 0.63 128 0.63 120 0.63 113 0.63 108 0.62

29

