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Introduction

Solve: Ax = b

A is:
I Sparse

I Large

I Symmetric

I Indefinite

Algorithm should be:
I Fast

I Accurate

I Numerically Stable

I Bitwise-reproducible?
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Main focus of this talk

Indefinite to Positive-definite
Performance Gap

⇒ 20–60% depending on problem
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So what’s the problem?
Pivoting!

Cholesky pattern:

1. Factor diagonal Ajj = LjjL
−T
jj (Factor)

2. Apply pivot Lij = LijL
−T
jj (TRSM)

3. Update uneliminated Aik− = LijL
T
kj (GEMM)

Main difference:

I For LDLT pivoting requires all blocks in column

I Cholesky starts Factor/Apply/Update as soon as ready
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Stability
The problem

I Need to avoid loss of accuracy
I (achieve small backward errors)

Root cause
I “Small” number on diagonal
I “Big” number below diagonal
I Divide one by the other in floating point
I Add to something “small”
I ⇒ Lose accuracy
I Resultant large values have large “growth”

Solution
I Don’t do this (pivoting)

O(10−8)

O(104)
O(1)
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What’s been done before?
Traditional Partial Pivoting (TPP)

I Used in eg MA27, BCSLIB

I “Gold standard” numerical stability

I Not designed with parallelism in mind

Block Bunch-Kaufman (Richardson ’89)
I Used in PARDISO (Schenk ’04)

I Just apply dense pivoting in diagonal block

I Potentially unstable

I Preprocessing (scaling, reordering) to alleviate problem

A posteriori pivoting (Kim and Eijkhout ’12)
I Apply pivot, then check growth factor

I Can start Factor before entire column is ready

I Can’t start updates until pivot test passed
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Our solutions
A posteriori pivoting

I Kim and Eijkhout beat us to publishing the idea.

I Already limited version in SPRAL/SSIDS.

I But we want to take it further.

...with speculative execution
I Set in Cholesky task-DAG context

I Run updates speculatively

I Runtime system handles backtracking to previous version

...and fallback
I Detect (subtrees of) matrices with lots of delays

I Handle with new fallback strategy: compressed TPP
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Multi-level approach

Supernode level

Block level

Supernode and block level:
I Nested a posteriori pivoting

Vector level

Vector level:
I GPU warp or CPU vector

I Fully pivoted LDLT

I Extra cost is log2(vector size)

I Equivalent to TPP with u = 0.25.
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Fail in place?
Traditional approach:

I Column fails ⇒ search for column that works

I Swap good pivot with failed pivot and continue

I Lots of data movement. Bad!

I Need to keep collection of failed columns up-to-date.

Our approach:
I Fail in place. Leave failed columns where they are.

I Swapping occurs only at end

I Still need to keep failed columns up-to-date

I But fits better with task-based method ⇒ no swaps between
blocks!

10 / 27
Practical Manycore Pivoting
Jonathan Hogg, STFC Rutherford Appleton Laboratory



Fail in place?
Traditional approach:

I Column fails ⇒ search for column that works

I Swap good pivot with failed pivot and continue

I Lots of data movement. Bad!

I Need to keep collection of failed columns up-to-date.

Our approach:
I Fail in place. Leave failed columns where they are.

I Swapping occurs only at end

I Still need to keep failed columns up-to-date

I But fits better with task-based method ⇒ no swaps between
blocks!

10 / 27
Practical Manycore Pivoting
Jonathan Hogg, STFC Rutherford Appleton Laboratory



Coping with failure

Case 1

Case 2

Case 1:

I Row should be
eliminated at this node

I Just swap into a
diagonal block and
rerun

Case 2:

I Row can not be
eliminated at this node

I Heuristic decision:

1. Make other swaps and
try again

2. Swap to end and delay
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How much swapping?

Terminology
I One iteration = Multiple passes + one round of swapping

Across 25 difficult problems: Matching scaling
I 289 variables eliminated on second or later pass

I 2 variables eliminated on second or later iteration

I (But quite a few delayed to next node)

Might as well just delay them?
I Or consolidate and use TPP
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Straightforward: no scaling
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Difficult: Matching Scaling
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Difficult: Matching Ordering
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Numerical Accuracy

Consider scaled residual:

‖Ax − b‖∞
‖A‖∞‖x‖∞ + ‖b‖∞

I Results with best preprocessing (Matching-based ordering)

I Anything < 10−8 will probably converge using IR
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Difficult: Matching-based ordering
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GPU implementation

Still a work in progress...
I Dense Cholesky “prototype” finished

I Dense LDLT version currently being developed
I Sparse versions pending:

I “Drop in” to existing solver straightforward
I Fully task-driven with dynamic parallelism for the future
I Fully hybrid/multi-GPU code final target
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GPU Dense Cholesky: K40
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Conclusions: A Posteriori Pivoting

Aim: Symmetric Indefinite to be as cheap as Cholesky

I For many practical problems stability isn’t an issue

I ... so check it a posteriori

I Even for numerically difficult problems cost isn’t high

Codes will be forthcoming

I GPU code takes longer to develop than I would like

I http://www.numerical.rl.ac.uk/spral
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Fallback: Compressed pivoting

n

p

2p

p

I Compress information into small matrix

I Determine pivot order

I Execute pivoting

I O(log n) messages rather than O(p log n)

?
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Strategies

Strict Compressed Pivoting

I Provably numerically stable

I Expect worst case growth

I Very pessimistic ⇒ more delays

Relaxed Compressed Pivoting

I Demonstrably unstable on pathological examples

I Stable in practice — see results

I Similar performance to traditional TPP
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Results: numerical stability

1e-20

1e-15

1e-10

1e-05

1

TSO
PF/TSO

PF
FS

b162
c1

TSO
PF/TSO

PF
FS

b39
c7

Schenk
IBM

N
A/c-64

GH
S
indef/ncvxqp1

Q
Y/case39

GH
S
indef/stokes128

GH
S
indef/cvxqp3

TSO
PF/TSO

PF
FS

b162
c3

TSO
PF/TSO

PF
FS

b39
c19

GH
S
indef/cont-201

TSO
PF/TSO

PF
FS

b162
c4

GH
S
indef/bratu3d

TSO
PF/TSO

PF
FS

b39
c30

GH
S
indef/darcy003

Schenk
IBM

N
A/c-62

TSO
PF/TSO

PF
FS

b300

TSO
PF/TSO

PF
FS

b300
c1

GH
S
indef/cont-300

GH
S
indef/ncvxqp5

GH
S
indef/turon

m

GH
S
indef/d

pretok

GH
S
indef/ncvxqp3

TSO
PF/TSO

PF
FS

b300
c2

GH
S
indef/ncvxqp7

TSO
PF/TSO

PF
FS

b300
c3

bw
d

er
r

TPP
Relaxed Compressed

Strict Compressed
Restricted

Lower is better 25 difficult
problems

I Strict and
TPP always
good

I Relaxed
better than
restricted

I Matching-
based
ordering helps

23 / 27
Practical Manycore Pivoting
Jonathan Hogg, STFC Rutherford Appleton Laboratory



Results: numerical stability

1e-20

1e-15

1e-10

1e-05

1

TSO
PF/TSO

PF
FS

b162
c1

TSO
PF/TSO

PF
FS

b39
c7

Schenk
IBM

N
A/c-64

GH
S
indef/ncvxqp1

Q
Y/case39

GH
S
indef/stokes128

GH
S
indef/cvxqp3

TSO
PF/TSO

PF
FS

b162
c3

TSO
PF/TSO

PF
FS

b39
c19

GH
S
indef/cont-201

TSO
PF/TSO

PF
FS

b162
c4

GH
S
indef/bratu3d

TSO
PF/TSO

PF
FS

b39
c30

GH
S
indef/darcy003

Schenk
IBM

N
A/c-62

TSO
PF/TSO

PF
FS

b300

TSO
PF/TSO

PF
FS

b300
c1

GH
S
indef/cont-300

GH
S
indef/ncvxqp5

GH
S
indef/turon

m

GH
S
indef/d

pretok

GH
S
indef/ncvxqp3

TSO
PF/TSO

PF
FS

b300
c2

GH
S
indef/ncvxqp7

TSO
PF/TSO

PF
FS

b300
c3

bw
d

er
r

TPP
Relaxed Compressed

Strict Compressed
Restricted

Lower is better 25 difficult
problems

I Strict and
TPP always
good

I Relaxed
better than
restricted

I Matching-
based
ordering helps

23 / 27
Practical Manycore Pivoting
Jonathan Hogg, STFC Rutherford Appleton Laboratory



Results: delays
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Compressed Pivoting: Conclusions

Summary
I CPU compressed pivoting 2+ times faster on large problems

I Restricted pivoting not good enough for all problems

I Strict compressed pivoting guarantees backwards stability

I Relaxed compressed pivoting works well and cheaper in
practice

I Good fallback method for when a posteriori pivoting
encounters lots of delays
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Thanks for listening!

Questions?

http://www.numerical.rl.ac.uk/spral
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Tasks

Cholesky-like
I Factor Diagonal Block

I Apply Block Pivot

I Update to Right

Revisit nodes
I Apply permutation to left

I Apply pivot to left (unelim only) + test?

I Consolidate uneliminated pivots
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Strict Compressed Pivoting
1. Partition rows into sets by column of maximum |aij |

2. Represent each set by single row: take maximum |aij |
3. Update using a “worst-case” formula

12 10 10

2 3 4

10 −3

4 −5 4

−6 8




Partitioned rows

12 10 10

4 10 4

2 6 8




Compressed matrix

I Provably backwards stable

I Sometimes too pessimistic
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Relaxed example
1. For each column, pick a “representative” row: largest |aij |
2. Apply standard threshold partial pivoting.
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I Not backwards stable!

I Stable in practice (see results)

3 / 3
Practical Manycore Pivoting
Jonathan Hogg, STFC Rutherford Appleton Laboratory



Relaxed example
1. For each column, pick a “representative” row: largest |aij |
2. Apply standard threshold partial pivoting.

12 10 10

2 3 4

10 −3

4 −5 4

−6 8




Partitioned rows

12 10 10

10 −3

−6 8




Compressed matrix

I Not backwards stable!

I Stable in practice (see results)

3 / 3
Practical Manycore Pivoting
Jonathan Hogg, STFC Rutherford Appleton Laboratory



Relaxed example
1. For each column, pick a “representative” row: largest |aij |
2. Apply standard threshold partial pivoting.

12 10 10

2 3 4

10 −3

4 −5 4

−6 8




Partitioned rows

12 10 10

10 −3

−6 8




Compressed matrix

I Not backwards stable!

I Stable in practice (see results)

3 / 3
Practical Manycore Pivoting
Jonathan Hogg, STFC Rutherford Appleton Laboratory


	Appendix

