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Abstract  
Over the past 30 years or more information systems engineers have attempted to improve the cost 
effectiveness of systems development by improving requirements capture and analysis, by structured 
design, by utilising design languages that can be verified for consistency more or less formally and in 
some cases matched formally to requirements.  While data design methods improved significantly with 
relational and extended relational paradigms, program design was not so successful.  Jackson input-
process-output and hierarchic design methods gave way to functional.  Object-orientation soon came 
up against the inability of hierarchic / inheritance mechanisms to represent the real world requirements 
which has more complexity.  Aspect-oriented programming was intended to resolve this problem but 
appears to have caused even more confusion.  Meantime, a bringing together of functional and object-
oriented process design as service-oriented architecture, together with relational data design principles, 
has given some hope for progress.  
 
Early system design achieved device independence of programs and then (with relational technology) 
true data independence.  However, general virtualisation of computing, data storage and 
communications resources has hitherto not been possible.  The GRIDs paradigm achieves this latest 
step forward.  Starting with metacomputing (linked supercomputers) in the USA, the European vision 
of GRIDs is a general IT 'surface' with which the end-user interacts intelligently to determine her 
requirement and the system behind the surface offers a 'deal' to fulfil the request.  Beneath the 'surface' 
various architectures have been attempted.   
 
The GLOBUS architecture provides computational scheduling, but does not virtualise generally 
computation, data or network resources.  The bringing together of WS (web services) with the GRIDs 
environment led to OGSA (Open Grids Services Architecture).  Work with OGSA has exposed two 
major problems: the operating system facilities provided today are inadequate in various areas 
including security and resilience and the multiple layers in the service-oriented architecture expose too 
much complexity.  The latest thinking revolves around SOKU (Service Oriented Knowledge Utilities) 
which are composed of self-managing, self-assembling, self-organising and self-destroying processes 
with exposed parametric and data input/output interfaces as well as its service description including 
non-functional aspects.  The key is metadata (describing the SOKU processes and the data resources) 
and its use. 
 
 

1 A SHORT HISTORY OF COMPUTING: A PERSONAL VIEW 
 
From the earliest stages of using computers there has been the concept (although not the name) of 
systems engineering.  Even the earliest programmers planned out their program before coding it.  The 
software systems development methods developed along two parallel lines: one emphasising efficiency 
of developer time and fidelity to informally-defined user requirements with associated techniques of 
prototyping and fourth generation languages; the other emphasising correctness of the program, formal 
verification and formally-defined specifications.  The former led to the so-called design methodologies, 
the latter to formal methods in software engineering, proof systems and in particular their application in 
the safety-critical environment. 
 
An alternative and complementary viewpoint emerged in the sixties where systems development 
concentrated on the data.  This was no surprise since large corporations were using computers for 
business processing and required to represent their business world of interest.   
 



The problems with these approaches used in the seventies and eighties are well-documented.  Software 
development was slow and error-prone and the use of formal methods made it slower.  Data-centric 
approaches failed to map correctly the objects and their relationships in the real world: well-known 
examples include early database systems which could only map hierarchies, not fully-connected graph 
structures. 
 
With the relational theory of data, and attached concept of the relational algebra (and calculus) a new 
age dawned.  By the late eighties the first kind of software engineering came together with data 
engineering providing unprecedented speeds of system development, conformance to informally-stated 
user requirements and ability to adapt.  Security issues emerged and were solved and there were 
attempts at distribution and the provision of business continuity.  Furthermore, entity-relationship 
modelling based on the relational approach provided a further level of abstraction and a 
communications environment between the designer/developer and the end-user.  Earlier work on 
artificial intelligence became encapsulated as knowledge engineering and aided the modelling process 
by providing a formalism for expressing the semantics of the information and for specifying 
constraints.  In this era Arne Sølvberg and his team produced excellent R&D results demonstrating 
formal systems engineering from requirements specification to running system. 
 
However, early systems had problems with performance, and errors made in the data modelling led to 
many work-arounds and modifications to the associated software.  The systems became expensive to 
maintain.  Steps were taken to formalise requirements and to generate systems – both data structures 
and software – using predefined component software fragments.  The concept now known as services 
emerged. 
 
To overcome the data-process gap, object-orientation was introduced reaching acceptance in the late 
eighties.  Based on much earlier software engineering principles (eg those of Simula in the sixties) 
object-orientation encapsulated the static data model aspects of the application with the dynamic 
process aspects.  Information Systems developed using this paradigm proved to be lacking in 
performance and additionally there were problems in both data modelling (related to hierarchic 
restrictions on inheritance) and process-modelling (repetition of the same code for many objects).  The 
latter was to some extent overcome by aspect-oriented programming at the end of the nineties but by 
then the world was returning (indeed, many had never left) to relational database technology (improved 
with some object-oriented aspects). 
 
The emergence of the world-wide-web rekindled interest in old technologies in information retrieval 
and hypermedia.  Progressively the web systems developed and heightened the visibility of 
technologies such as mobile code, service-oriented architecture and hypermedia.  The web offered new 
possibilities in user interface design and in thin clients.  Linking with the emergence of wireless 
technology and widespread use of mobile phones it was a short step to the concept of ambient, 
pervasive computing.  Tim Berners-Lee emphasised the importance of semantics and trust rekindling 
interest in knowledge engineering and formalised systems respectively. 
 
In the USA in the late nineties the need for massive computation power to simulate various physical 
phenomena (from nuclear explosions to climate) led to the metacomputing (linked supercomputers) 
concept popularised as ‘the GRID’.   In Europe a wider concept emerged simultaneously – GRIDs.  It 
is in this context that systems engineering – and specifically information systems engineering - is now 
discussed.  

2 REQUIREMENTS TODAY AND TOMORROW 

2.1 User Perspective 
Users demand systems that are easy to use.  The end-user has a low attention span and requires 
immediate satisfaction.  The threshold barrier to achieve usage of the system must be very low, else 
impatience precludes usage. The system should be capable of handling heterogeneous character sets, 
languages (information syntax) and semantics (knowledge).  The system must be easy to understand 
and intuitive in its operation.  The system must be knowledge-assisted – providing contextual hints, 
help, explanation.  It must also be knowledge-assisted to assist in reducing the effort of input and 
update and to ensure constraints are in place to assure data quality.  The end-user must have choice in 
the end-user device used implying that the system must be device-independent, adaptive to changing 



user modes of interaction  through various media and be adaptable for  variously-abled persons.  
Naturally the system must handle the problems of intermittent connection, synchronisation and data 
transfer optimisation required in a mobile, ambient, pervasive environment.  This requires particular 
expertise in user interface design. 

2.2 System Perspective 
The system should provide adequate performance, achieved by (re-)scheduling, parallelism, and 
distribution with appropriate optimisations and reconfiguration.  The system should provide 
appropriate security, trust, privacy.  For security of future use, the system should provide appropriate 
curation, preservation, which may be linked with appropriate failover and business continuity facilities.  
All this implies that systems have to be ‘self-*’ or autonomic: self-managing, self-configuring, self-
organising, self-tuning, self-scheduling, self-maintaining, self-adapting.  With millions of nodes and 
massive processing requirements it will be simply uneconomic for persons to ‘be in the loop’ of 
systems management. 

3 THE GRIDS PARADIGM 

3.1 A brief history 
The concept of the GRID was initiated in the USA in the late 1990s.  Its prime purpose was to couple 
supercomputers in order to provide greater computational power and to utilise otherwise wasted central 
processor cycles.  Starting with computer-specialised closed systems that could not interoperate, the 
second generation consists essentially of middleware which schedules a computational task as batch 
jobs across multiple computers.   However, the end-user interface is procedural rather than fully 
declarative and the aspects of resource discovery, data interfacing and process-process interconnection 
(as in workflow for a business process) are primitive compared with work on information systems 
engineering involving, for example, databases and web services. 
 
Through GGF (Global GRID Forum, now OGF Open GRID Forum) a dialogue has evolved the 
original GRID architecture to include concepts from the web services environment.  OGSA (Open Grid 
Services Architecture) with attendant interfaces (OGSI) is now accepted by the GRID community and 
OGSA/DAI (Data Access interface) provides an interface to databases at rather low level. 
 
In parallel with this metacomputing GRID development, an initiative started in UK has developed an 
architecture for GRIDs that combines metacomputing (i.e. computation) with information systems.  It 
is based on the argument that database R&D (research and development) – or more generally ISE 
(Information Systems Engineering) R&D - has not kept pace with the user expectations raised by 
WWW.  Tim Berners-Lee threw down the challenge of the semantic web and the web of trust [1].  The 
EC (European Commission) has argued for the information society, the knowledge society and the 
ERA (European Research Area) – all of which are dependent on database R&D in the ISE sense.  This 
requires an open architecture embracing both computation and information handling, with integrated 
detection systems using instruments and with an advanced user interface providing ‘martini’ (anytime, 
anyhow, anywhere) access to the facilities.  The GRIDs concept [6] addresses this challenge, and 
further elaboration by a team of experts has produced the EC-sponsored document ‘Next Generation 
GRID’ [3]. 
 
It is time for the database community (in the widest sense, i.e. the information systems engineering 
community) to take stock of the research challenges and plan a campaign to meet them with excellent 
solutions, not only academically or theoretically correct but also well-engineered for end-user 
acceptance and use. 

3.2 The Idea 
In 1998-1999 the UK Research Council community was proposing future programmes for R&D.  The 
author was asked to propose an integrating IT architecture [6].  The proposal was based on concepts 
including distributed computing, metacomputing, metadata, agent- and broker-based middleware, 
client-server migrating to three-layer and then peer-to-peer architectures and integrated knowledge-
based assists.  The novelty lay in the integration of various techniques into one architectural 
framework. 
 



Fig. 1. Grids Architecture 

 

3.3 The Requirement 
The UK Research Council community of researchers was facing several IT-based problems.   Their 
ambitions for scientific discovery included post-genomic discoveries, climate change understanding, 
oceanographic studies, environmental pollution monitoring and modelling, precise materials science, 
studies of combustion processes, advanced engineering, pharmaceutical design, and particle physics 
data handling and simulation.  They needed more processor power, more data storage capacity, better 
analysis and visualisation – all supported by easy-to-use tools controlled through an intuitive user 
interface. 
 
On the other hand, much of commercial IT (Information Technology) including process plant control, 
management information and decision support systems, IT-assisted business processes and their re-
engineering, entertainment and media systems and diagnosis support systems all require ever-
increasing computational power and expedited information access, ideally through a uniform system 
providing a seamless information and computation landscape to the end-user.  Thus there is a large 
potential market for GRIDs systems.   
 
The original proposal based the academic development of the GRIDs architecture and facilities on 
scientific challenging applications, then involving IT companies as the middleware stabilised to 
produce products which in turn could be taken up by the commercial world.  During 2000 the UK e-
Science programme was elaborated with funding starting in April 2001. 

3.4 Architecture Overview 
The architecture proposed consists of three layers (Fig.1).  The computation / data grid has 
supercomputers, large servers, massive data storage facilities and specialised devices and facilities (e.g. 
for VR (Virtual Reality)) all linked by high-speed networking and forms the lowest layer.  The main 
functions include compute load sharing / algorithm partitioning, resolution of data source addresses, 
security, replication and message rerouting.  This layer also provides connectivity to detectors and 
instruments.  The information grid is superimposed on the computation / data grid and resolves 
homogeneous access to heterogeneous information sources mainly through the use of metadata and 
middleware.  Finally, the uppermost layer is the knowledge grid which utilises knowledge discovery in 
database technology to generate knowledge and also allows for representation of knowledge through 
scholarly works, peer-reviewed (publications) and grey literature, the latter especially hyperlinked to 
information and data to sustain the assertions in the knowledge. 
 
The concept is based on the idea of a uniform landscape within the GRIDs domain, the complexity of 
which is masked by easy-to-use interfaces.   
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3.5 The GRID 
In 1998 – in parallel with the initial UK thinking on GRIDs -  Ian Foster and Carl Kesselman published 
a collection of papers in a book generally known as ‘The GRID Bible’ [4].  The essential idea is to 
connect together supercomputers to provide more power – the metacomputing technique.  However, 
the major contribution lies in the systems and protocols for compute resource scheduling.  
Additionally, the designers of the GRID realised that these linked supercomputers would need fast data 
feeds so developed GRIDFTP.  Finally, basic systems for authentication and authorisation are 
described.  The GRID has encompassed the use of SRB (Storage Request Broker) from SDSC (San 
Diego Supercomputer Centre) for massive data handling. SRB has its proprietary metadata system to 
assist in locating relevant data resources.  It also uses LDAP as its directory of resources.  The GRID 
corresponds to the lowest grid layer (computation / data layer) of the GRIDs architecture. 

4 THE GRIDS ARCHITECTURE 

4.1 Introduction 
The idea behind GRIDs is to provide an IT environment that interacts with the user to determine the 
user requirement for service and then, having obtained the user’s agreement to ‘the deal’ satisfies that 
requirement across a heterogeneous environment of data stores, processing power, special facilities for 
display and data collection systems (including triggered automatic detection instruments) thus making 
the IT environment appear homogeneous to the end-user.  
 
Referring to Fig. 2, the major components external to the GRIDs environment are: 
a) users: each being a human or another system; 
b) sources: data, information or software 
c) resources: such as computers, sensors, detectors, visualisation or VR (virtual reality) facilities 
 
Each of these three major components is represented continuously and actively within the GRIDs 
environment by: 
1) metadata: which describes the external component and which is changed with changes in 
circumstances through events 
2) an agent: which acts on behalf of the external resource representing it within the GRIDs 
environment. 
As a simple example, the agent could be regarded as the answering service of a person’s mobile phone 
and the metadata as the instructions given to the service such as ‘divert to service when busy’ and / or 
‘divert to service if unanswered’. 
 
Finally there is a component which acts as a ‘go between’ between the agents.  These are brokers 
which, as software components, act much in the same way as human brokers by arranging agreements 
and deals between agents, by acting themselves (or using other agents) to locate sources and resources, 
to manage data integration, to ensure authentication of external components and authorisation of rights 
to use by an authenticated component and to monitor the overall system. 
From this it is clear that they key components are the metadata, the agents and the brokers.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

 

 

 

 

 

 

 

 

   

 

Fig. 2. The GRIDs Components 

 
 

5 SYSTEMS DEVELOPMENT IN A GRIDS ENVIRONMENT 

5.1 Introduction 
The architecture sketched above depicts the middleware necessary for applications to be constructed 
and executed.  The EC NGG1 (Next Generation Grids Expert Group 1) confirmed this set of 
requirements and architecture characterised as ‘the invisible GRID’ i.e. hidden from the end-user but 
available and performing. However the requirements outlined earlier demand ‘so-called non-
functional’ characteristics of the system which are not at this level but which concern the lower levels 
of the architecture – in particular the provision of performance and trust /security.  This led the NGG2 
expert group of the EC to an architecture for systems development with operating systems enhanced 
with foundationware to bring them up to the required interface standard including provision of trust and 
security, performance and self-* features.  Above the foundationware is the service-oriented 
middleware providing the basic services required by end-user applications which themselves sit on top 
of the middleware layer and are developed essentially by composition of services including, where 
necessary because of unavailability, the provision of new services. 
 
It was then realised by the NGG3 expert group of the EC that this layered architecture was too complex 
and that a simplification was possible.  The foundationware and middleware layers could both be 
implemented as components providing services, and these components had to have certain 
characteristics.  Essentially the components had to be active, that is they had to be themselves self-
motivating such that they could compose themselves into applications based on requirements, and since 
they are self-managing they could reorganise (self-tune, self-schedule) with changing resource 
availability opportunities and changing user requirements.  The SOKU (service-oriented knowledge 
utility) concept was defined. 
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5.2 SOKU 
The concept of SOKU is based on a service. The service can be discovered, composed into larger-scale 
services, replicated for parallelism and distributed, modified by parametric input.  In order for this to be 
achieved the service needs to be wrapped by rich metadata such that these actions can be automated 
and not require human intervention.  The key question then is what metadata is required for these 
autonomic actions to be achievable at execute time, and for systems development at system build time. 

5.3 Environment 
The problem is how to specify, design and construct such systems – or system components – based on 
SOKUs.  Traditional system development technologies are only partly appropriate to this new 
environment.  Instead of the traditional requirements specification, iterative development and delivery 
of an end-to-end system - which may or may not include preconstructed components – the emphasis is 
on the development of preconstructed components that can be automatically or semi-automatically 
composed at both system development time and at execute time.  This requires a different kind of 
analysis of requirements utilising an approach that considers a much wider context than the system 
being specified in order to optimise the future utilisation of components being developed. In other 
words the requirement is for the development of generic components that meet the specification of the 
system currently being developed but also can be re-used in other systems.  This approach has been 
discussed in the past – usually in an object oriented environment with the class concept – but has rarely 
if ever been achieved.  The contention of this paper is that this is because the metadata associated with 
the components was inadequate for the re-use purpose. 

6 METADATA IS THE KEY TECHNOLOGY 

6.1 Introduction 
Metadata is data about data [7].  An example might be a product tag attached to a product (e.g. a tag 
attached to a piece of clothing) that is available for sale.  The metadata on the product tag tells the end-
user (human considering purchasing the article of clothing) data about the article itself – such as the 
fibres from which it is made, the way it should be cleaned, its size (possibly in different classification 
schemes such as European, British, American) and maybe style, designer and other useful data.  The 
metadata tag may be attached directly to the garment, or it may appear in a catalogue of clothing 
articles offered for sale (or, more usually, both).   The metadata may be used to make a selection of 
potentially interesting articles of clothing before the actual articles are inspected, thus improving 
convenience.  Today this concept is widely-used.  Much e-commerce is based on B2C (Business to 
Customer) transactions based on an online catalogue (metadata) of goods offered.  One well-known 
example is www.amazon.com.  B2B (Business to Business) is more complex, often involving 
negotiation to reconcile metadata differences in syntax and semantics including metadata associated 
with trust and security. 
 
What is metadata to one application may be data to another.  For example, an electronic library 
catalogue card is metadata to a person searching for a book on a particular topic, but data to the 
catalogue system of the library which will be grouping books in various ways: by author, classification 
code, shelf position, title – depending on the purpose required. 

6.2 Current Availability and Usage 
A database schema is a well-known example of metadata. However, it does little more than provide an 
interface to provide independence between software and data and a naming system for data objects to 
be used in software.  Database schemas do provide information on syntax (structure) at both logical and 
physical levels but fail to address the semantic (meaning) level. 
 
A URI provides metadata pointing to the actual object of interest.  URIs can be rather complex, 
including not just an internet address but also parameters or even a query. 
 
DC (Dublin Core) is a well-known metadata standard for describing objects, initially designed to 
describe web pages. It has a set of extensions (qualified DC) which makes interoperation difficult as 
different developers interpret differently the semantics (and in some cases the syntax) of DC. 
 
There have been various attempts at trust negotiation and rights management/trading using metadata 
and standards for recording rights have been proposed.  The management of rights associated with 



created works has been discussed extensively [8].  This extends to IPR (intellectual property rights) as 
understood in this environment.  However, the management of rights in a B2B transaction (or a 
business relationship with multiple transactions e.g. within a supply chain) is more complex.  Setting 
up the relationship involves trust negotiations which in turn require access to conditions of business, 
background information on the organisation and possibly references concerning the organisation.  From 
this basis an appropriate trust/security policy can be put in place for transactions with the organisation 
concerned and encoded as metadata which wraps the transactional information in order to ensure the 
security systems in the organisation operate correctly.  A basic trust model is presented in [9] while a 
more business-oriented approach is that of the TrustCom project [10]. 
 
Dictionaries, thesauri, domain ontologies are all required for interpretation of semantics and are used in 
association with other metadata to support the IT processes, and their users, in understanding and 
interaction.  They are also used for interoperation between heterogeneous systems. 
 
Procedure calls and functional signatures provide some metadata information about the functional 
properties of a software component. However the information is usually very limited and commonly 
the information is only encoded as comments within the component.  A further problem is that, in 
general, non-functional properties (such as performance, limitations of use, precision / accuracy etc) 
are not declared and documented. 
 
O-O classes and  KE frames provide metadata again concerning the properties of a software component 
or software / data component.  Herein lies the problem, the confusion between software and data 
properties and how they should be described or exposed for utilisation by other systems.  In general 
these technologies are being superseded by service-oriented components. 

6.3 Kinds of Metadata 
It is increasingly accepted that there are several kinds of metadata.  The classification proposed (Fig. 3) 
is gaining wide acceptance and is detailed below. 
  
 
 

 

 

 

 

 

 

Fig. 3. Metadata Classification 
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Schema Metadata. Schema metadata constrains the associated data.  It defines the intension whereas 
instances of data are the extension.  From the intension a theoretical universal extension can be created, 
constrained only by the intension.  Conversely, any observed instance should be a subset of the 
theoretical extension and should obey the constraints defined in the intension (schema).  One problem 
with existing schema metadata (e.g. schemas for relational DBMS) is that they lack certain intensional 
information that is required [11].  Systems for information retrieval based on, e.g. the SGML (Standard 
Generalised Markup Language) DTD (Document Type Definition) experience similar problems. 
 
It is noticeable that many ad hoc systems for data exchange between systems send with the data 
instances a schema that is richer than that in conventional DBMS – to assist the software (and people) 
handling the exchange to utilise the exchanged data to best advantage. 

Navigational Metadata. Navigational metadata provides the pathway or routing to the data described 
by the schema metadata or associative metadata.  In the RDF model it is a URL (universal resource 
locator), or more accurately, a URI (Universal Resource Identifier).  With increasing use of databases 
to store resources, the most common navigational metadata now is a URL with associated query 
parameters embedded in the string to be used by CGI (Common Gateway Interface) software or 
proprietary software for a particular DBMS product or DBMS-Webserver software pairing. 
 
The navigational metadata describes only the physical access path.  Naturally, associated with a 
particular URI are other properties such as: 
a) security and privacy (e.g. a password required to access the target of the URI); 
b) access rights and charges (e.g. does one have to pay to access the resource at the URI target); 
c) constraints over traversing the hyperlink mapped by the URI (e.g. the target of the URI is only 
available if previously a field on a form has been input with a value between 10 and 20).  Another 
example would be the hypermedia equivalent of referential integrity in a relational database; 
d) semantics describing the hyperlink such as ‘the target resource describes the son of the person 
described in the origin resource’ 
However, these properties are best described by associative metadata which then allows more 
convenient co-processing in context of metadata describing both resources and hyperlinks between 
them and – if appropriate - events. 
 
Associative Metadata.  In the data and information domain associative metadata can describe: 
a) a set of data (e.g. a database, a relation (table) or a collection of documents or a retrieved subset).  
An example would be a description of a dataset collected as part of a scientific mission; 
b) an individual instance (record, tuple, document).  An example would be a library catalogue record 
describing a book ; 
c) an attribute (column in a table, field in a set of records, named element in a set of documents).  An 
example would be the accuracy / precision of instances of the attribute in a particular scientific 
experiment ; 
d) domain information (e.g. value range) of an attribute.  An example would be the range of acceptable 
values in a numeric field such as the capacity of a car engine or the list of valid values in an 
enumerated list such as the list of names of car manufacturers; 
e) a record / field intersection unique value (i.e. value of one attribute in one instance)  This would be 
used to explain an apparently anomalous value.   
 
In the relationship domain, associative metadata can describe relationships between sets of data e.g. 
hyperlinks.  Associative metadata can – with more flexibility and expressivity than available in e.g. 
relational database technology or hypermedia document system technology – describe the semantics of 
a relationship, the constraints, the roles of the entities (objects) involved and additional constraints. 
 
In the process domain, associative metadata can describe (among other things) the functionality of the 
process, its external interface characteristics, restrictions on utilisation of the process and its 
performance requirements / characteristics.  
 
In the event domain, associative metadata can describe the event, the temporal constraints associated 
with it, the other constraints associated with it and actions arising from the event occurring. 
 



Associative metadata can also be personalised: given clear relationships between them that can be 
resolved automatically and unambiguously, different metadata describing the same base data may be 
used by different users. 
 
Taking an orthogonal view over these different kinds of information system objects to be described, 
associative metadata may be classified as follows: 
1) descriptive: provides additional information about the object to assist in understanding and using it; 
2) restrictive: provides additional information about the object to restrict access to authorised users and 
is related to security, privacy, access rights, copyright and IPR (Intellectual Property Rights); 
3) supportive: a separate and general information resource that can be cross-linked to an individual 
object to provide additional information e.g. translation to a different  language, super- or sub-terms to 
improve a query – the kind of support provided by a thesaurus or domain ontology; 
Most examples of metadata in use today include some components of most of these kinds but neither 
structured formally nor specified formally so that the metadata tends to be of limited use for automated 
operations – particularly interoperation – thus requiring additional human interpretation. 
 

6.4 What is Needed Now 
The roadmap for moving forward requires several components: 

1. a generally agreed understanding of the purposes, uses and needs for metadata in a GRIDs / 
ambient environment 

2. the definition of metadata that is machine understandable as well as machine readable 
3. the definition of metadata for description, restriction, correctness, navigational access and 

system support 
4. standardisation of (2) and (3) with widespread deployment and use 
5. a process for updating (4) 

 
Clearly (1), (2) and (3) will require more research and development including extensive testing for 
effectiveness before we can move to (4).   I foresee this R&D effort lasting for some years, and keeping 
active researchers in the area very busy! 

7 CONCLUSION 
The GRIDs architecture will provide an IT infrastructure to revolutionise and expedite the way in 
which we do business and achieve leisure.  The Ambient Computing environment will revolutionise the 
way in which the IT infrastructure intersects with our lives, both professional and social.  The two 
architectures in combination will provide the springboard for the greatest advances yet in Information 
Technology.  This can only be achieved by excellent R&D leading to commercial take-up and 
development of suitable products, to agreed standards, ideally within an environment such as W3C (the 
World Wide Web Consortium) and/or OGF (Open GRID Forum).  The current efforts in GRID 
computing have moved some way away from metacomputing and towards the architecture described 
here with the adoption of OGSA (Open Grids Services Architecture).   However, there is a general 
feeling that Next Generation GRID requires an architecture rather like that described here, as reported 
in the Report of the EC Expert Group on the subject [3].  To develop instances of this architecture will 
require advanced information systems engineering.  The key is advanced, machine-understandable 
metadata to describe the architectural components. 
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vice-president of ERCIM.  Arne has been mentor and guide, opponent and partner (in discussions and 



debate), supporter and critic.  We have worked together on developing a strategy for IT in Europe (and 
wider) and we have worked together on research projects.  Whether in a professional context, or as host 
(and raconteur) Arne is always excellent company.   He has surely been a major influence on my 
career. 
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