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Abstract

Attribute-based access control(ABAC) policies are
effective and flexible in governing the access to infor-
mation and resources in open computing environments.
However, ABAC policy rules are often complex making
them prone to conflicts. The complexity of dealing with
ABAC rules arises from using multiple attributes to de-
scribe subjects and objects.

This paper proposes an optimized method to detect
the conflicts between statistically conflicting rules in
an ABAC policy. This method includes two optimiza-
tion techniques: rule reduction and binary-search. The
first technique reduces the rules into a set of com-
pact, semantically equivalent rules through removing
redundant information among the rules. The binary-
search technique is then applied to discover the con-
flicts among them. We also detail the algorithms used
by these techmiques to achieve the optimized perfor-
mance. The time complezity for the proposed method
is O(nlgn), where n is the number of rules in a policy.
This is achieved at a cost of less than two times runtime
space increase. The experimental studies have shown
that a) our method can detect statically-conflicting
rules in near linear time cost proportional to the num-
ber of rules; and b) achieve good scalability, as shown,
by efficiently detecting the conflicts in an ABAC policy

*This work was carried out for the EchoGRID IST project
n°04552,funded by the European Commission. The work of the
first author was performed while visiting STFC e-Science Center,
Rutherford Appleton Laboratory, UK.

containing over 20,000 rules.

1 Introduction

Access control policies provide secure and controlled
service coordination and resource sharing in a variety of
applications including database federation [9, 7], Grid
systems [5, 12, 15, 18], Web services [21, 22]. Gov-
erned by the policies, access permissions are authorized
only to legitimate users and any unprivileged requests
are rejected. Recently attribute-based access control
(ABAC) [4] policies are gaining popularity in open dis-
tributed environments such as Grids. ABAC policies
govern user requests based on the characteristics of re-
questors and resources rather than their identies.

One important aspect of dealing with ABAC poli-
cies is to detect the conflicts among policy rules. Con-
flicting policy rules make different assertions for the
same set of user requests. Without the conflicts be-
ing detected and resolved, the access control may be
too open to guarantee the security of participating en-
tities or be too restrcitive to benefit from the collab-
oration and sharing of information and resourcesThe
conflicts between policy rules should be detected and
eliminated before the rules are deployed at Policy De-
cision Points(PDPs) through conflict detection tech-
niques. Some ABAC policies, such as XACML, use rule
combining algorithms[14] at a rule level, to automati-
cally resolve the conflicts among policy rules. However,
the consequence of using these algorithms to override



the access control decisions made by resource owners
can be unpredictable when the number of rules being
deployed at a PDP becomes too large to be compre-
hensable by resource administrators. This paper inves-
tigates the problem of automatically detect and remove
the conflicts among ABAC policy rules and proposes
techniques to efficiently resolve the problem.

Specifically, this paper focuses on statically-
conflicting rules where conflicts among rules are de-
tectable and can be removed without any evaluation
being done against user requests. Informally, two
statically-conflicting rules share the same set of sub-
ject and object attributes and there are intersections
between their shared attribute predicates and action
sets. However, they always give different decisions to a
user request. An example of such is illustrated by rule
4 and 6 in Table 1.

Our contributions are sumarised as follows.

e We propose a novel method to detect and remove
the conflicts among ABAC policy rules. This ap-
proach includes two techniques: rule reduction
and binary search. Based on the notation of
semantically-equivalent policies, rule reduction re-
duces the rules into a set of compact, semantically
equivalent rules through detecting and removing
the redundancy among policy rules. Upon the re-
duced rules, binary searching techniques can be
applied to search conflicting policy rules.

e We prove that this method is optimized and
show that the time complexity of the approach is
O(nlgn), where n is the number of rules in a pol-
icy, at cost of less than two times space increase
in terms of the number of attribute predicates.

e Our experimental results have shown that the
method can detect statically-conflicting rules in
nearly linear time and is scalable to deal with poli-
cies with over 20,000 rules.

The remainder of this paper is organized as follows.
Section 2 defines the policy model and its semantics.
Section 3 formally defines conflicts between ABAC pol-
icy rules and statically-conflicting rules. Section 4
presents the optimized method of detecting statically-
conflicting rules, and the implementation and analysis
of the alogrithms. Experimental studies are presented
in section 5, related work is discussed in section 6. Sec-
tion 7 concludes the paper and outlines the future work.

2 ABAC Policy Model

The formal syntax and semantics of our policy model
are based on those introduced by Bonatti [3] and
Wimmer[21]. In the policy model, an ABAC policy

comprises of rules, a rule contains four elements: sub-
ject,object, action and decision, and a decision specifies
whether users (i.e., subjects) are allowed or denied (i.e.,
decisions) to perform actions over given resources (i.e.,
objects). The subject and object elements of a rule are
defined as multiple attribute predicates, the action el-
ement as a set of action names that are allowed to be
performed over objects, the decision element as one of
the values allow or deny.

2.1 Model

The formal definitions of the ABAC policy model
are given as follows.

Definition 2.1 (Attribute predicate, multiple-
attribute set) .  An attribute predicate ap defines
an attribute comparison of the form (attribute-
identifier o constant). The comparison operator
o is in {<,<,=,>>}. A multiple-attribute set
is represented by a disjunction of conjunctions
of one or more attribute predicates in the form
(apria Ao ANapim) V..V (apra A ... A apr.m)), where
ap; ; is an attribute predicate.

Definition 2.2 (Rule and ABAC Policy) . A rule
R = (S,0,A,d) is a quadruple specifying that a set
of actions A performed by a set of subjects S over a
set of objects O is granted by decision d by the rule,
where S and O are specified by a multiple-attribute set.
A subject multiple-attribute set characterises a set of
subjects S and is represented as (s1,1 A ... AS1,m) V... V
(Sk1 A ... ASkm), where s; ; is an attribute predicate in
the i-th conjunction that uses the j-th subject attribute-
identifier. An object multiple-attribute set has a similar
representation. A is a set of action names, denoted by
ai,Q2,...,an. The decision d only takes two possible
values: allow or deny, which represents a positive or a
negative access decision respectively.

A policy P = {R1,Ry..., R, } is made up of a set of
rules Ry, Ra..., Ry,.

Compared with the policies specified with XACML,
this policy model is a simplified one, which only sup-
ports five basic operations and attribute predicates
containing attribute identifier and constant values.

2.2 Semantics

Access control policy systems guard the collabora-
tion and sharing of information and resources by ac-
cepting or declining the user requests according to the
decisions by the evaluation of policy rules. To evaluate



Table 1. Example of policy rules for an enterprise

# Subjects Objects Actions | Decisions
1 dep=market,hr fscope=maket,sales | write,read Allow
2 dep=r&d fscope=admin write Deny
3 dep=r&d,hr fscope=market read Allow
4 | 5 <workyear < 20 | fscope=special,norm read Allow
5 workyear < 10 fscope=norm read Allow
6 workyear < 8 fscope=special write,read Deny
7 workyear > 10 fscope=special write,read Allow

the policy rules, the evaluation context e is firstly ex-
tracted from the user request, which includes the sub-
ject and object sets of attribute-value pairs, and the
action of the request.

Definition 2.3 (Attribute Value Pair) . An attribute
value pair aid o val is a linked pair consisting of an
attribute identifier, denoted by aid, and an alpha-
numerical value, denoted by val. The comparison op-
erator o is an element in the set of {<,<,=,>,>}

Definition 2.4 (Evaluation context) . An evaluation
context e is defined as a triple (Sreq; Oreqs Greq), Where
Sreq s a set of attribute-value pairs of a subject (sa; =
valy), ..., (sap = valy), Oreq is a set of attribute-value
pairs of an object (oa1 = ovaly), ..., (oaq = valy), and
Greq @5 the action of a request.

The subjects and objects in the evaluation context
is modelled as sets of attribute-value pairs. Since most
user requests have only one action and it is possible
to decompose a complex request into multiple evalua-
tion contexts, only a single action is modelled in the
evaluation context.

All the rules in the ABAC policy are evaluated
against with e. A rule is applicable to e if the subject’s
and object’s attribute sets are within those specified
by e and the requested action falls within the rule’s
action set of eThe set of decisions of applicable rules is
returned as the result of rule evaluation.

Definition 2.5 (FEvaluation of Attribute Predicate(s))

Given a given attribute-value pair (aid = wval), an
attribute predicate ap is evaluated to be true if the at-
tribute identifier of ap is same as aid, and val falls
within the set specified by ap. This is represented as
llapll yigeva; = true. Otherwise, ||apl|,;y—pa = false.
For a given set of attribute-value pairs AV = {(aid; =
valy), ..., (aid, = wvaly)}, the evaluation result of at-
tribute predicate ap is true if there exists a attribute-
value pair evaluates ap to true,i.e., ||ap|| 4, = true &
I(aid = wval) € AV, | ap|| Otherwise
lapl 4, = fatse.

aid=val — true.

Given a set of attribute-value pair set AV =
(aidy = valy, ..., aid, = valy), the evaluation result of a
multiple-attribute set S = ((s1,1 Aee.AS1m) V..V (SE1 A
oo N Skm)) is defined as follows ||S|| 4, = ((Is1,11] 4/
Ao AMIstmll ay) Voo V ISkl gy A o AllSkym av))-

Given e, the evaluation result of a subject multiple-
attribute set S, represented as ||S||,, is equal to
IS1ls,.,: @elSlle = 1ISlls,.,- The evaluation result
of a object multiple-attribute set O is given in similar
way:||0||, = ”OHOWI' The evalution result of an ac-

tion set A, represented as || Al|,, is true if areq is in A,
i.e., |All, = true & ayeq € A

Definition 2.6 (Applicable rule and FEvaluation Re-
sult) . A rule R = (5,0, A,d) is applicable in an eval-
uation context e if: ||S||, A ||O]l, A ||A|l, = true

For a given evaluation contexrt e, a policy P =
{R1,Rs..., R,} returns a set of decisions D as
the evaluation results: D = ||P|, = {dR; =
(S,0,4,d), |S]|, A [O]l, A A, = true}.

Based on the above definitions, policies with differ-
ent number of rules or rule specifications may always
make the same set of decisions for any given evalua-
tion contexts. These policies are interesting because
a simplified policy may found to give the same eval-
uation results but more efficiently for an equivalent,
complex policy. Therefore, it is possible to make an
efficient analysis of a given policy. The polcies are
called semantically equivalent policies. Based on the
basic operations of multiple-attribute set, the formal
definiation of semantically equivalent policies is given
as follows

Definition 2.7 (Operations of multiple-attribute set)
A multiple-attribute set S = (ap; A ... A ap;,) is a sub-
set of another multiple-attribute set S = (apiA...Aapy),
denoted as S C S if the following conditions are sat-
isfied:

(1)The two sets have the same set of attribute
identifiers, i.c., Yap in S Jap in S such that
Aid(ap) = Aid(ap/), and Vap in S,3ap’ in S such
that Aid(ap’) = Aid(ap).



(2)The value set of attribute predicate ap/ inS isa
subset of the value set of attribute predicate ap in S with
the same attribute identifier, i.e., Aid(ap,) = Aid(ap),
Vap, € Vap.

A multiple-attribute set S is a subset of the inter-
section of two multiple-attribute sets S’ and S if Sy is
the subset of both sets S’ and S,i.e., Ss CS' NS <
(Ss CS)A(Ss C9).

A multiple-attribute set Ss is a subset of the union of
two multiple-attribute sets S’ and S if Ss is the subset
of either set S’ or set Sji.e., Ss C S'US < (S5 C
S)V(Ss C 9.

Theorem 2.8 The multiple-attribute set Sy is a subset
of multiple-attribute set S. For any evaluation context
e such that ||Ss||, = true, then ||S||, = true.

Definition 2.9 (Semantically
cies) Two policies P = {Ry,Rs..,R,} and
P = {R|,R,..R,} are semantically equiva-
lent if for a given tuple (S,0,A), any decision
specified by one policy can also be found in an-
OthET‘, i.e. V(S, O, A, d), (HRz = (SZ, Oi, Ai,
d) € PSNS #odN0O, N0 # oNANA #
¢ Adi =d) = 3R; = (S;,0;,A;,d;)) C P ,S;NS #
Qﬁ/\OjﬂO;'éd)/\AjﬁA#d)/\dj =d).

Equivalent poli-

Theorem 2.10 If two policies P = {Ry, Ra...,R,}
and P' = {R\,R,..., R} are semantically equivalent,
then any evaluation context e can be evaluated to the
same set of decisions,i.e. Ve, | P|, = | P'],-

Proof 1 We can prove ||P||, = ||P’||, in two parts:
Vd € |P||, = d e ||P'||, and Vd € ||P'||, = d € || P||,.
Because they are symmetry, we can prove only one of
them. Let us prove the first part. For a given evalu-
ation context e = (Sreq, Oreq, Greq), if d € ||P||,, then
3R; = (Si, O, Ay, d;) such that ||Si]|, = |04]|, = || Aill,
= true. |[|Si||, = true means Vap; in S;, there ex-
ists an subject attribute-value pair (sa; = val;) € Sreq
such that Haijsaj:wlj = true. Make a new subject
multiple-attribute set S, which is a conjunction of all
attribute predicates from the attribute-value pairs, i.e.,
Sy = ((sa1 = valy) A ... A (sap = valy)). Obuiously
ISk, = true, thus S, NS; # ¢. Similiarly we can
make a multiple-attribute set O, such that O.NO; # ¢.
|As|l, = true means aroq € A;. Therefore the tuple
(S, Or,{areq},d) is specified by R; € P, according to
the definition there exists R; = (S;,0;,4;,d) € P’
such that S, N S; # $,0, N O; # ¢ and A, N A; # ¢.
Because S, contains only attribute predicates with op-
erator "=",5. N S; = S, which means S, C 9;.
From ||S;||, = true, we have ||S;||, = true. Similarly
|0;ll, = true, and ||A;||, = true. Therefore rule R;

is applicable for the given evaluation context e and has
the decision d, which implies d € | P'||,.

Semantically, a given rule R = (S,0,A,d),S =
((51,1/\~~~/\51,m)\/~~\/(sk,1/\“'/\sk,m))»O = ((01,1/\.../\
01,n)V...V(0p1A... Aoy p,)) is equaivalent to a set of rules
{Ri7j|Ri7j = (S“ Oj,A, d), S; = (Si,l N A Si,m)7 Oj =
(0jn N oo N0jn) 11 <@ < k,1 < j < n. The conflicts
among rules R; ; can be analyzed more easily than for
the rule R, and the results of R can be synthesized by
the individual results of rules R; ;. Therefore, witout
loss of generality, our discussion of conflicts is limited
to the rules of form R;;, i.e., the multiple-attribute
sets contain only conjunctions of attribute predicates
for a single subject and a single object in the following
sections. For the convenience of discussion, notations
are summerized in table 2.

3 Conflicts between ABAC policy rules

An ABAC policy contains a set of rules, each of
which specifies the positive or negative decision for the
user requests. For the flexiblity of rule specification,
different rules may be applicable to the same set of
user requests. Therefore, the access control result of a
given user request may depend on the decisions speci-
fied by multiple applicable rules. Problems arise if the
decisions of the applicable rules are not same, i.e., for
a given user request some of the rules assert positive
while others assert negative. When the problem hap-
pens, the decision of the user request may be resolved
automatically by the policy system according to the
predefined mechnisms, e.g. the least priviledge princi-
ple or combination algorithms[14]. However, both res-
olution methods may make too rigid or too loose ac-
cess control that introduces obstacles or threats to the
collaboration and sharing of resources in distributed
environment.

The problem that a single user request is applied to
both positive (allow) and negative (deny) decisions by
an ABAC policy is called a conflict. The root of a con-
flict is that some of the applicable rules for the given
user request are incompatible. In this paper, we divide
the relationships of two given ABAC policy rules into
two categories: compatible and incompatible. For the
same set of user requests(or evaluation contexts), com-
patible rules are policy rules that they give the same de-
cisions or are never applicable at the same time, while
incompatible rules may give distinct decisions and lead
to conflicts. The formal definition of the conflicts of
the rules are given as follow.

Definition 3.1 (Conflicts between ABAC policy rules
and conflicting rules) A conflict between rules R; and



Table 2. Notations

Symbols Meaning
S(R),0(R),A(R),d(R) The subject,object multiple-attribute sets, action set and decision of the rule R
(sa = wval) an attribute-value pair with attribute identifier sa and value val
Aid(ap) The attribute identifier of the given attribute predicate ap
apin S ap is one of the attribute predicates of multiple-attribute set S = (ap1 A ... Aapy)
1Sl Evaluate multiple-attribute set S by the evaluation context e
lapll, , lap|lsopar Evaluate attribute predicate ap by the evaluation context e, attribute-value pair (sa = val)
Vap the value set of attribute predicate ap
{(sa1 = valy), ..., (sa, = valy)} a set of p attribute-value pair

R; of an ABAC policy P occurs if there exists an eval-
uation context e such that:

(1)The two rules are applicable for the given evalu-
ation conteati.e., ||[S(R;)||, A ||O(R:)|l. AN AR, =
ISR, MO, AAR)I, = true,and

(2)the two rules’ decisions are different,i.e.,d(R;) #
d(Rj).

Two rules are conflicting if there is any conflict that
occurs between the them.

3.1 Non-conflicting rules

Not any rules conflict. Given a ABAC policy P =
{R1, Ry..., R, }, the relationships between policy rules,
according to whether they conflict, can be divided into
two categories: mon-conflicting and conflicting. Two
rules are non-conflicting if they never conflict, i.e., they
never give distinct decisions for any evaluation con-
texts, while they are conflicting if they may lead to con-
flicts under some evaluation contexts. Two cases make
two rules non-conflicting which breaks either of the two
conflicting conditions: the rules either specify the same
(positive or negative) decision or can not be applicable
for any evaluation context at the same time. For exam-
ple in Table 1, rules 1 and 3 are non-conflicting because
they all make positive ("allow”) decision, rules 2 and
3 are so because their action elements do not overlap.
The formal definition of non-conflicting rules is given
as follows.

Definition 3.2 (Non-conflicting rules) Two rules R;
and R; are non-conflicting if either of the following
conditions holds:

(1)The rules’ decisions are the same, i.e. d(R;) =
d(R]) Or

(2)The decisions are different, but no evaluation
context e to which the two rules can be applicable at
the same time, i.e., d(R;) # d(R;), and —3e such
that | S(R), = |S(R), = I0R)], = [0y, =
JACR), = AR, = true

Two rules R; and R; can not be applicable for any
evaluation contexts e at the same time if they meet one
of the following conditions:

(1)Their action sets do not overlap, i.e.,A(R;) N
A(Rj) = ¢. Or,

(2)The subject multiple-attribute sets of the two
rules can never be applicable to any evaluation context
at the same time. The condition can be satisfied when
both the two rules have subject attribute predicates
with a special attribute identifier and the attribute
predicates have non-overlapped value sets. The at-
tribute identifier sa is special that any evaluation con-
text e contains only one attribute-value pair sa = wval
with the identifier, i.e., V(sa’ = val’) € e, Aid(sd’) =
Aid(sa) < val = val’. That attribute predicates ap; in
S(R;) and ap; in S(R;) have the same attribute iden-
tifier and their value sets do not overlap is formally
defined as Aid(ap;) = Aid(ap;) and Vop, N Vap, = &.
Or,

(3)The object multiple-attribute sets of the two rules
can never be applicable to any evaluation context at
the same time. The condition can be held when both
the two rules have object attribute predicates with a
special attribute identifier and the attribute predicates
have non-overlapped value sets, as defined similiarly
with previous condition.

Any evaluation context can not be applied by the
rules without overlapped action sets, which can be rea-
soned as follows. Suppose there exists an evaluation
context € = (Sreq, Oreq, req) such that [|A(R))|, =
|A(R;)||, = true, then a,.q € A(R;) and areq € A(R;),
which means the two action sets overlap because a,.cq €
A(R;) N A(R;) # ¢, contradicting that the two rules
have the non-overlapped action sets.

Another condition that the rules can not be appli-
cable for any evaluation context at the same time is
examplified by rules 6 and 7 in table 1, where any
evaluation context can only contain one attribute-value
pair with attribute workyear and the attribute predi-
cates (workyear < 8 and workyear > 10) in subject
multiple-attribute sets have no overlaped value sets.



The reasoning can be given as follows: suppose there
exists an evaluation context e = (Syeq, Oreq, Greq) 1S ap-
plied by the rules R; and R; satisfying such a condition,
then [|S(R;)||, = [|S(R;)|l, = true, which implies that
there exists an attribute-value pair (sa = val) € Sreq
such that the attribute predicates ap; and ap; with
the special attribute identifier sa in rules R; and R,
have Ha’pi”sa:val = Haijsa:val = true. The evalua-
tion of the attribute predicates to true also means that
val € Vap, N Vap, # ¢, which contradict the condition
Vap, Vi, = 6.

3.2 Conflicting rules

Conflicting rules are those may give different deci-
sions for some evaluation contexts and lead to conflicts.
Conflicting rules not only have different decisions and
overlapped action sets, but also their subject and ob-
ject multiple-attribute sets can be evaluated to true
by some evaluation contexts. The formal definition of
conflicting rules are given in definition 3.1.

To eliminate conflicts in the ABAC policy, all
the conflicting rules should be first found out and
revised into non-conflicting ones or adjust them based
on the predefined conflict resolution mechanisms.
Particularly, it is desirable to detect and remove
conflicting rules before they are put into enforcement.
However, it is difficult and overkill to capture all
the conflicting rules between ABAC policy rules
before runtime. In fact, any two rules that do not
determine to be non-conflicting may cause conflicts
under some evaluation contexts, though their attribute
predicates seem to be quite irrelevant. For exam-
ple in table 1 rule 1 (dep = market|hr, fscope =
market|sales, write|read, allow) and rule 6
(workyear < 8, fscope = special,write|read, deny)
are applicable for the evaluation context
e = ({(dep = market), (workyear = 6)},{(fscope =
special), fscope = market)}, read) and lead to con-
flicting decisions, and therefore they are conflicting.
The conflicts between the two rules are special that
they occur only under a small set of special evaluation
contexts and the rules are not impractical to be revised
into non-conflicting ones because the revision may
affect a majority of user requests that the rules are
specified to goven on purpose.

A more interesting category of conflicting rules
in an ABAC policy is those rules share attribute
identifiers and the attribute predicates of two rules
with same identifiers have intersected value sets. Es-
pecially, the rules called statically-confiicting that
one rule shares all attribute identifiers with another
rules, and the attribute predicates of shared identi-

fiers have intersected value sets. Statically-conflicting
rules are common in a set of policy rules and re-
sult in conflict more frequently than other conflicting
rules. In addition, they are detectable and the con-
flicts caused the rules are removable before runtime.
One example of conflicting rules is rule (dep = hr A
workyear > 10, fscope = special, read||write, allow)
and rule (workyear > 2, fscope, read, deny). The defi-
nition of statically-conflicting rules is formally given as
follows:

Definition 3.3 (Statically-conflicting  rules) Two
rules R; and R; are statically-conflicting if:

(1) Their decisons are dinstinct,i.e.,d(R;) # d(R;).

(2) Their action sets overlap, i.e., A(R;) N A(R;) #
0.

(8)One of the rules shares all attribute identifiers

with other rule. Without loss of generality, suppose Tule
R; shares all attribute predicates with rule R;. For-
mally the two rules satisfy Yap in S(R;) (or O(R;) ), 3ap’
in S(R;)(or O(R;)) such that Aid(ap) = Aid(ap’).

(4)The attribute predicates with shared identifiers
have intersected wvalue sets, i.e., Yap in S(R;)(or
O(R;)) and Yap' in S(Rj)(or O(R;)), Aid(ap) =
Aid(ap’) = Vop N Vap # 6.

Theorem 3.4 Statically-conflicting rules R; and R;
cause conflicts.

Proof 2 To prove that the two rules cause conflicts,
the evaluation contexts that can be applied by both the
two rules should be found. Without loss of generality,
suppose rule R; shares all its attribute predicates with
rule R;.

Firstly we make an evaluation context e =
(Sreqs Oreq, req) Satisfying the four following condi-
tions:

(1) The requested action is in the intersection of the
two rules’ action sets, i.e. areq € A(R;) NA(R;). and,

(2)For each of the shared subject attribute iden-
tifier sa, there exists a subject attribute-value pair
(sa = val) in Syeq that evaluates both attribute predi-
cates ap in S(R;) and ap’ in S(R;) with the identifier
sa to true, i.e., Yap in S(R;) and ap’ in S(R;) and
Aid(ap) = Aid(ap’) = sa, I(sa = val) € Syeq such
that ||ap||(sa:val) = ||a’le(sa:val) = true. and

(8)For each of the shared object attribute identifier
oa, there exists an object attribute-value pair (oa =
oval) in Oyeq that evaluates both attribute predicates
oap in O(R;) and oap’ in O(R;) with the identifier
oa to true,i.e., Yoap in O(R;) and oap’ in O(R;) and
Aid(oap) = Aid(oap’) = oa, I(oa = oval) € Oyeq such

that ||Oa’p||(oa:oval) = HoapI”(oa:oval) = true. and,



(4)Other subject and object attribute predicates with
no shared attribute identifiers are evaluated to true
by the evaluation context e, i.e., Vap” in S(R;)(or
O(Ry)), lap"||, = true.

Then both rule R; and rule R; can be applicable to
such an evaluation context e: (a)Rule R; is applicable
for such an evaluation context e satisfying the above
conditions because (1)areq € A(R;) N A(R;) = Gpeq €
A(R;) = || A(R)|, = [JA(R;)] aye, = tTUE. (2)For each
subject attribute predicates ap, since I(sa = wval) €
Sreq such that ||ap|| so—pay = true, thus [|Sg,

e

ISk ls,,, = true (8)For each object attribute pred-
icates oap, since I(oa = oval) € Opeq such that
||Oa’p||(oa:oval) = true, thus ||OR1 e — ||OR¢ Oreq =
true.

(b)Rule R; is applicable to such an evaluation con-
text e satisfying the above conditions because (1)ayeq €
A(R) N AR)) = arey € AR) = AR, =
||A(Rj)||ar€q = true.(2)Both rule R;’s subject element
S(R;) and object elements O(R;) are evaluated to
true by the evaluation context e because all its sub-
ject and object attribute predicates are evaluated to
true by e: (i)The subject(or object) attribute predicates
with shared attribute identifiers are evaluated to true
since for each ap there exists an attribute-value pair
(sa = wal) in Sreq(or Oreq) such that |ap| so—yary =
true; (ii) The subject(or object) attribute predicates ap
without shared attribute identifiers are evaluated to true
by the evaluation context e according the fourth condi-
tion of the evaluation context e.

Because d(R;) # d(R;) and ||Ri||, = ||R;]|, = true,
the two rules cause conflicts by one of such evaluation
contexts e.

In practice, statically-conflicting rules are com-
monly seen in policy rules in the form that one
rule with less attribute predicates governing the gen-
eral case and other rules with more attribute predi-
cates for the special cases. For example, rules R; =
(workyear < 10, fscope = special,read,deny) and
R; = (workyear < 10 A dep = r&d, fscope = special,
read, allow) are statically-conflicting rules for the gen-
eral case and the special cases respecitvely. Many
conflicts caused by these statically-conflict rules are
not real problems under predefined conflict resolution
mechanisms, but analysis of the rules are worthy in
order to verify the arrangement of rules are reason-
able to be automatically resolved properly (E.g., put
the special rules first under first-applicable resolution
mechanisms).

In addition to statically-confiicting rules, there are
other ABAC policy rules may result in conflicts, for
example the conflicts occured between rule 1 and rule

6 in table 1. However the conflicts caused by statically-
conflicting rules are special in two ways. Firstly, the
root of conflicts is special. The conflicts of statically-
incompatible rules are caused by the potential mis-
takes in rule specifications; the conflicts of other rules
are caused by the special evaluation contexts with
attribute-value pairs satisfying multiple rules by acci-
dent. Secondly, the conflicts of statically-incompatible
rules are detectable before runtime by analyzing the
relationship between rules, and the real conflicts can
be removed by revising the elements (e.g., the subject,
object, action and decision) of rules; the conflicts of
other rules are detectable only when the special eval-
uation contexts accidently occur at runtime, and are
not removable from rules themselves because the real
root of conflicts are the special user requests. For
the system administrators, the conflicts of statically-
conflicting rules are explicit while the conflicts of other
rules are implicit.

4 Efficent detection of
conflicting rules

statically-

The conflicts between the policy rules give the con-
flicted evaluation contexts opposite decisions, which
are both specified by system administrators and but
only one of the access control decisions can be taken.
Generally both of the decisions are possible to be
choosed as the evaluation result, depending on which
automatical resolution mechanism is applied. How-
ever, any resoultion mechanisms, whether the least
priviledge principle or deny override, may undermine
the security of collaboration and sharing by returning
a wrong decision as the evaluation result. In particu-
lar, the wrongly resolved decisions may lead to a too
loose or too tight access control. Conflict detection is
necessary because it provides valuable information for
specifying and correcting rules so that the evaluation
results are always correctly returned to meet the secu-
rity requirements.

Since statically-conflicting rules frequently result in
conflicts in a given set of ABAC policy rules, the con-
flict detection in this paper focuses on the subset of the
conflicting rules. The task of conflict detection detects
all possible statically-conficiting rules in the given set
of ABAC policy rules, which helps system administra-
tors revise the pairs of rules to non-conflicting ones or
adjust them based on the automatical resolution mech-
anisms.

The naive method of detecting conflicts is obvi-
ous. The method takes brute-force strategy to compare
any pair of rules to check whether they are statically-
conflicting by testing whether the rules satisfy the four



conditions given in the definitio. The problem of the
method is its complexity in time and does not scale well
to deal with the large number of rules with complex
multiple-attribute sets. In fact, the rules in an ABAC
policy for open distributed environment may number
thousands [23] and the multiple-attribute sets of each
rule may contain complex several attribute predicates.
Therefore, more efficient methods of conflict dection
are needed for statically-conflicting ABAC policy rules.
In this section, we first present and analyze the native
method, and then propose, based on the lessons, the
optimized method that efficiently detects the statically-
conflicting rules.

4.1 Naive algorithm

Algorithm 1 gives the details of the naive detec-
tion of statically-conflicting rules. Based on the def-
inition 3.3, the algorithm is straight-forward that for
each of the rule pairs in the given ABAC policy it
examines whether they are statically-conflicting, i.e.,
whether they satisify the four defined conditions at the
same time(Line 5). The function MAS_shared_contains
checks whether one of the input multiple-attribute sets
shares all attribute identifiers with another set and the
attribute predicates with shared identifiers have in-
tersected value sets. Lines 13-18 check for the shar-
ing of attribute identifiers, lines 19-34 for the over-
lapped of value sets. For each pair of rules, the time
complexity of MAS_shared_contains is O(N,) where
N, =1+ |A(R;)| + |A(R;)|+ total number of the two
rules’ attribute predicates. Since the total number of
rule pairs is (§) = n(n + 1)/2, the time complexity of
algorithm 1 is O(n? * N,).

Based on the time complexity, the cost of naive algo-
rithm can be high for large number of policy rules and
complex multiple-attribute sets with many attribute
predicates. The reason behind the high cost of naive
algorithm is that the detection of conflicting rules for
every rule comprises of examinations with any other
rules in the ABAC policy, most of which are usefu-
less, especially when the number of rules in the given
policy is large. The rule examinations are essentially
vertical and brute-force. By Vertical examinations,
the naive detection does not explore and make good
use of the relationships (e.g., redundancy among rules)
among rules, assuming rules are totally irrevalent. By
brute-force examiniations, naive method spends a large
portion of the execution time on examining the unre-
lated rules, especially when the ABAC policy has thou-
sands of rules with multiple-attribute sets of complex
attribute predicates. In fact, the related rules, conflict-
ing or applicable, for a given rule are only a tiny part

Algorithm 1: naive_static_conflict(P)
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Input: P = {Ry,Rs....,R,}
Output: the pairs of statically-conflicting rules

in the policy P

ret={};

fori+— 1ton—1do
for j«—i+1tondo

A(R) NV A(R;) # ¢ and
MAS _shared_contains(S(R;), S(R;) =
MAS _shared_contains(O(R;), O(R;)
and
M AS _shared_contains(O(R;), O(R;)! =
0) then

ret +={(Ri.R;)};
end

end

end

return ret;
MAS _shared_contains(S;,5;) Input: Two

multiple-attribute-sets .S; and S;

Output: return 1 if S; shares all attribute

begin

identifiers with S; and their value
sets with shared identifers intersect,
return -1 if S; shares all attribute
identifiers with S; and their value
sets with shared identifers intersect,
otherwise return 0

attr_ids; = attribute_identifers(S;) ;
attr_ids; = attribute_identifers(S;) ;
attr_ids = attr_ids; N attr_ids;;

if attr_ids # attr_ids; and

attr_ids # attr_ids; then

return O;

end
for ap; in S; do

ret = false;
Sy = (Vap; in S; and
Aid(ap;) = Aid(ap;) );
if IsEmpty(S;) then
continue;
end
for ap; € S; do
if Vip, N Vap, # ¢ then
ret = true;
break;
end
end
if ret = false then
return O;
end

end
if attr_ids # attr_ids; then

return I;

end
return -1;

end



of the whole set of policy rules.
4.2 Optimized method

Naive detection of statically-conflicting rules is less
efficient because of the vertical and brute-force exam-
inations. This paper proposes an optimized method
that performs well even for conflict detection for ten
thousands rules. The method achieves efficient conflict
detection by exploring the relationships among rules
and avoiding unecessary rule examinations as much as
possible.

The optimized method detects conflicting rules for
a target rule in two steps: rule reduction and binary-
search based conflict detection. The method doesn’t
detect directly conflicts on the original policy rules but
instead on the reduced rules generated by rule reduc-
tion. The reduced rules are semantically equivalent
to the original rules, but they can be performed pol-
icy analysis such as conflict detection more efficiently.
The idea of rule reduction is to explore and make
good use of the redundancy among rules. Rule re-
duction transforms the redundant orginal rules into re-
duced rules, whose attribute predicates with same iden-
tifiers either identical or non-intersected. For exam-
ple the orginal rules R; = (workyear < 10, fscope =
norm, read, allow) and R; = (workyear < 8, fscope =
special, write||read, allow) is by rule reduction turned
into three reduced rules R, = (workyear <
8, fscope = mnorm,read,allow), R, = (8 <=
workyear < 10, fscope = norm, read, allow) and R, =
(workyear < 8, fscope = special, write||read, allow).
The optimized method examines reduced rules hori-
zontally that it checks one attribute identifier for com-
paring all the reduced rules’ attribute predicates afters
another, rather than one rule by another. By organiz-
ing the identical attribute predicates (e.g. rule R,’s
attribute predicate workyear < 8 and rule R.’s at-
tribute predicate workyear < 8) of different reduced
rules into one attribute predicate(e.g. attribute pred-
icate workyear < 8), the optimized method examines
every attribute predicate no more than once, even it
is shared by multiple rules. Furthmore, the multiple-
attribute sets can be compared efficiently since their
attribute predicates with same identifiers are made
non-intersected. For this reason, the reduced rules
are structured into multiple attribute predicate lists.
Every list presents a list of attribute predicates with
a given attribute identifier and an attribute predicate
point to a list of original rules that can be reduced into
rules containing such an attribute predicate, as shown
in figure 1.

The second step of the optimized method is detect

Figure 1. Example of structured reduced
rules

the conflicting rules over the reduced rules. The detec-
tion needs to compare the attribute predicates of both
subject and object multiple-attribute sets. The opti-
mized method uses binary-search to avoid the brute-
force comparisons of the rules’ attribute predicates. In-
stead of comparing the list of attribute predicates with
a given attribute identifier one by one, the optimized
method sorts the attribute predicates and bases upons
binary search to efficiently find those attribute pred-
icates intersect with the target rule. The sorting of
the list of attribute predicates is possible because the
attribute predicates in the list do not intersect with
each other, which is guaranteed by the rule reduction
step. For a given attribute predicate of the target
rule, binary-search of the intersected attribute pred-
icates in the list firstly compares the given attribute
predicate with the middle one in the list, then halves
the search scope by using the low half or the high
half as the new list of attribute predicates for search-
ing, until the intersected middle attribute predicate is
found or is determined to be none. Since binary-search
halves the search scope and compares only the middle
attribute predicates, the total number of comparisons
of attribute predicates is supposed decreased exponen-
tially. Therefore, binary search based conflict detection
scales well for detecting conflicting rules among a large
number of rules.

4.2.1 Rule reduction

The motivation of the technique is that among the
given ABAC policy rules there is redundancy: many
rules govern access control decisions for the same set
of subjects and/or objects. For example in table 1, the
access control decisions of subjects with workyear no
less than 5 and less than 8 are governed by rules 4,5 and
6. The redundancy of multiple-attribute sets forces the
naive methods to examine rules in brute-force way, ev-
ery rules should be examined at least once to prevent
missing a single conflict. Intuitively, the subjects that
can not satisfy rule 4’s subject attribute predicate with
attribute identifier workyear can never satisfy the sub-



ject attribute predicates with the same attribute iden-
tifier of rules 5 and 6, thus the examiniations of rules
5 and 6 could be avoided. Rule reduction turns the
given ABAC policy rules into a reduced set of policy
rules that are compact but semantically equivalent to
the given rules which make the conflict detection give
the same outputs. Since the reduced rules are compact
and structured, the unnecessary rule examinations can
be thus minimized that only a subset of the reduced
rules are examined and no more once. The formal def-
inition of reduced policy rules is given as below.

Definition 4.1 (Reduced rules and policy) . Two pol-
icy rules R; and R; are reduced if they satisfy one of
the following conditions:

(1)All the shared subject and object attribute identi-
fiers have the value sets of the corresponding attribute
predicates identical, i.e., Yap;,ap; such that ((ap; in
S(R:)) A (ap; in S(R;))) or ((aps in O(R)) A (ap;
in O(Rj))), and Aid(ap;) = Aid(ap;), they must hold
V(api) = V(ap;). Or

(2)At least one of their shared subject or object at-
tribute identifier has the value sets of the correspond-
ing attribute predicates do not intersect, i.e., Jap;, ap;
such that ((ap; in S(R;)) A (ap; in S(R;))) or ((ap; in
O(R:)) A (ap; in O(Ry))), Aid(ap;) — Aid(ap;), they
must hold V (ap;) NV (ap;) = ¢.

If any pair of rules in an ABAC Policy P =
{R1, Rs..., R,} are reduced, then the policy is a reduced
policy.

For example in table 1, rules 5 and 6 are reduced
because the attribute predicates with the shared at-
tribute identifier fscope have value sets do not inter-
sect, but rules 4 and 5 are not reduced because both
value sets of attribute predicates with shared attribute
identifiers (i.e.,workyear and fscope) interset, and thus
the policy in the example is not reduced.

Rule reduction is to transform the original rules into
reduced rules that have no intersected attribute pred-
icates. Given two rules that have redundancy, the re-
duction needs only transform the attribute predicates
with shared identifiers. This is because an attribute
identifier only existing in one of the two rules has the
attribute predicates trivially non-intersected (because
Vap N¢® = ¢). For one of the shared identifiers, the
two rules’ attribute predicates are reduced into several
non-intersected ones. Suppose two rules R; and R; are
not reduced, and the attribute predicates with shared
identifiers {aidy, aida,...,aid,} are ap; 1, ap; 2, ...ap;,p in
rule R; and apj 1,ap;2,...ap;p in rule R;, as showed
in figure ?7?. For each of the shared attribute identi-
fiers aidy, their value sets are made up of three sub-
sets that do not intersect: Vip,, — Vap, o N Vap, o,

Vapi o Wap,, and Vap.  —Vap,  (Wap. . Suppose the at-
tribute predicates corresponding to value sets are apr;,
apr;;,and apr;, according to the above decomposition
of intersected value sets, the attribute predicates with
a shared attribute identifier can be reduced into non-
intersected attribute predicates apr;, apr;;,and apr;.
In particular, attribute predicate ap; is reduced into
attribute predicates apr; and apr;;, and attribute pred-
icate ap; into attribute predicates apr;; and apr;. For
example, intersected attribute predicates ap; = (5 <
workyear < 20) and ap; = (workyear < 10) can be
reduced into three non-intersected attribute predicates
apr; = (workyear < 5),apri; = (5 < workyear <
10),apr; = (10 < workyear < 20). The attribute pred-
icate workyear < 10 is reduced into attribute pred-
icates workyear < 5 and 5 < workyear < 10, and
attribute predicate 5 < workyear < 20 into attribute
predicates 5 < workyear < 10 and 10 < workyear <
20.

The two rules are transformed into reduced rules
by reducing every attribute predicate with shared at-
tribute identifiers to non-intersected attribute predi-
cates and then making reduced rules using the re-
duced attribute predicates. Given the reduced at-
tribute predicates with shared attribute identifer aidy
are apri ,Gpra, i,aprs ., corresponding to value sets of
Vapi,k - Vapi,k N Vapj,m Vllpi,k n Vapj,k and Vllpj,k -
Vapiw N Vap; ., the original rule R; can be reduced
into 2P reduced rules for p shared attribute iden-

tifiers, which replace attribute predicates ap;; of
R; with reduced attribute predicate either apryj or
apra . For example, rules R; = (5 < workyear <
20, fscope = market|sales, read, allow) and R; =
(workyear < 10, fscope = sales||ladmin, read, allow)
are reduced to 4 rules Rll = (10 < workyear <
20, fscope = market,read, allow), R/2 = (5 <

workyear < 10, fscope = market, read, allow),Ré
(10 < workyear < 20, fscope = sales,read, allow
and R; = (5 < workyear < 10, fscope
sales, read, allow). Similarly the original rule R; can
be reduced into 2P reduced rules for p shared attribute
identifiers, which replace attribute predicates apj of
R; with reduced attribute predicate either aprsj or
aprs . For example, the original rule R; also be re-

~—

duced into 4 rules Rll/ = (workyear < 5, fscope

admin,read,allow), Ry, = (5 < workyear <
10, fscope = admin,read, allow),R; = (workyear <
5, fscope = sales,read,allow) and RZ = (5 <

workyear < 10, fscope = sales, read, allow).

The reduced rules have the attribute predicates with
shared attribute identifiers equal or non-intersected,
which is ensured by the method that the attribute pred-
icates are transformed. The reduced rules are also se-



mantically equivalent to the original rules, as stated in
the following theroem.

Theorem 4.2 The orignal policy P = {R;,R;} and
the reduced rules P° = {Ry, Ry..., Rp},1 < k < 2PF1
are semantically equivalent.

Proof 3 (1)prove any tuple (S,0,A,d) specified by
the original policy P also is specified by the reduced
policy P'. Given the tuple (S,0,A,d), without loss
of generality suppose rule R; satisfies S(R;) NS #
dANOR)NO # dNAR;)NA # ¢ NdAR;) = d.
According to the rule reduction, the attribute predi-
cate ap; , with shared attribute identifier of S(R;) is
divided into non-intersected attribute predicates apri j
and apra,i.e.  Vip, Vapri o U Vapry,,-  Since
SN S(R;) # ¢, there exists an attribute predicate
Vaprs s, 8 = 1 or 2 should have its value set intersected
with Vope, , the value set of attribute predicate apty, of S.
Otherwise Vap, .. N Vapt, = Vapry . U Vapry ) N Vapt, =
Vapri e N Vapt) U Vapry o 0 Vapt,) = ¢, contradicating
with S N S(R;) # ¢. Similarly for every object at-
tribute predicate apty with shared object attribute iden-
tifier of O, there exists Vypr, ., 8 = 1 or 2 should inter-
sect with Vopy, . Therefore, the required reduced rule R
can be found by substituting rule R;’s subject or object
attribute predicate ap; . with shared attribute identifier
by an attribute predicate aprs,s =1 or 2, and keep-
ing other attribute predicates, action sets and decisions
untouched. According to definition, the reduced rule R
satisfies S(R NS # ¢ ANO(R NO # ¢. Based on the
making of rule R, we have A(R NA = A(R; N A #
$NA(R) = d(R;) = d).

(2)Prove any tuple (S,0,A,d) specified by the re-
duced policy P is also specified by the original policy P.
Given the tuple (S, 0, A, d), suppose the reduced rule R
satisfies S(RYNS £ pANOR)NO £ pNA(R)NA #
o N d(R/) = d. Without loss of generality, suppose rule
R is generated by transforming rule R; € P. According
to the rule reduction, we have S(R') C S(R;)AO(R') C
O(R)NA(R') = A(R;) Nd(R) = d(R;). According to
the definition 2.7, the value set of any subject or ob-
ject attribute predicate aprsy,s =1 or 2 of rule R is
the subset of the value set of attribute predicate ap; k
with same identifier of rule R;, i.e. Vapr,, S Vap, .-
Therefore Vapr, ., 0 Vapt, # ¢ = Vap,, N Vapt, # @,
which further implies S(R)YNS # ¢ = S(R) NS # ¢
and O(R)NO # ¢ = O(R;) N O # ¢. Furthermore,
ARNNA=ARINA# ¢ and d(R;) = d(R) = d.

According to definition 2.9, (1) and (2) implies that
policy P is equivalent to policy P

The basic principle of rule reduction is to divide
the rules’ intersected attribute predicates into several

non-intersected attribute predicates and make the re-
duced rules by substituting the original rules’ attribute
predicates of shared identifiers with the generated at-
tribute predicates by the division. Given a set of policy
P ={R1,Rs...,R,} with more than 2 rules, the rules
are not directly reduced on basis of pairs of two rules
because the pairs of rules of reduction is n(n — 1)/2,
high for large number of rules, and the generated rules
from two different pairs may be not reduced too so
that the reduction may require many loops before it
ends. Instead, we follow the basic principle of the rule
reduction and reducing the given set of rules in policy
P ={Ry, Rs..., R, } on basis of rules by reducing a rule
after another against the already reduced rules hori-
zontally, utile all the rules being reduced. The whole
reduction process comprises of n loops. The generated
rules after the last reduction of rule R, are reduced
that they have attribute predicates with same identi-
fiers identical or non-intersected. Every loop of the
reduction is to reduce the rule R;(1 < ¢ < n) against
the already reduced rules. The reduction of a rule is
performed on the basis of attribute predicates.

As illustrated in figure 2, the reduced rules are rep-
resented as nodes of attribute identifiers which have
a list of non-intersected attribute predicates. Every
attribute predicate in the list has a rule set contain-
ing the original rules one of whose attribute predicates
are divided into this attribute predicates. For exam-
ple in figure 2.b, rule Rg = (workyear < 8, fscope =
special, write||read, deny) has its attribute predicate
workyear < 8 divided into two attribute predicate
(min,5) and [5,8] in the list of attribute identifier
node workyear. The representation of reduced rules
presents the redundancy relationship among rules in it
that the rules in the rule set of every attribute predicate
show that they share the attribute predicate. Since the
attribute predicates in a list do not intersect, brute-
force search of intersecting attribute predicate with the
given rule can be avoid.

Figures 2.b is the final result of reduction of ABAC
policy rules given in table 1. The details of reducing
rules in a given policy P = {Ry, Rs..., R, } is given as
follows.

(1)(Reudction of rule R;) As shown in figure 2.a,
for each attribute predicate ap of rule R;, make an
attribute identifier node with Aid(ap) as the key, and
attribute predicate ap as only item in the node’s at-
tribute predicate list. The attribute predicate ap adds
R; into its rule set.

(2)(Reduction of rule R;,2 < i < n) For each at-
tribute predicate ap of rule R;, if the attribute identifier
node with Aid(ap) as the key does not exist, make it
and add attribute predicate ap to the node’s attribute
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Figure 2. Example of reduction of policy rules

predicate list; otherwise, find in the node’s list the in-
tersected attribute predicate with ap and directly add
ap to the list if none is found or divide the found at-
tribute predicates against ap and add the generated
attribute predictes back into the list. Figures 2.c and
figure 2.d illustrate the representations before and after
reduction rule R5 in table 1.

The dection of all statically-conflicting rules among
the given ABAC policy P = {R;y,Rs,...R,} can be
performed by suming up all conflicting rules with rules
R;;1 < ¢ < n. For a given rule R;, only rules
Ry, Ry, ...R;_1 are required to be examined for con-
flicts. This is due to by summing up all the examina-
tions every pair of two rules is checked once and only
once for possible conflicting. With reduction, the de-
tection of conflicting rules of rule R; can be performed
when the rule is reducing. The reduction of rule R; is
based on the represention result of rules Ry, Ro,...R;_1.
For each attribute predicate of rule R; finds and re-
duces the intersected attribute predicates in the list
of corresponding attribute identifier node and gets the
original rules in rule set of intersected attribute pred-
icates as intermediate results of examination. After
all of rule R;’s attribute predicates are processed, the
possible conflicting rules are concluded by summeriz-
ing all the results and examining the original rules ac-
tion sets and decisions. For example in figure 2, the
conflicting rules with rule R5 is found when the rule

is reduced as shown in figure 2.d where it is reduced
against the reduction result of rules Ri, Ro,...R4. The
figure shows rule Rs’s attribute predicate with identi-
fer workyear intersects with the attribute predicate of
original rule Ry, and the attribute predicate with iden-
tifier fscope intersects with attribute predicate of Ry
too. Furtherly, the action sets of rule R4 and Ry are ex-
amined to intersect with each other, but their decisions
are the same, therefore none of rules Ry, Rs, ..., R4 are
statically-conflicting with rule Rs.

However, some improvements should be made for
efficiency reasons. Firstly, rule reduction does not con-
sider the rules’ action sets, which can be examined effi-
ciently when detecting statically-conflicting rules. Sec-
ondly, the intermediate results can not be summer-
ized efficiently when the rules have different number
of subject or object attribute predicates. For example
given a rule r; = (dep = market A rank < 4,fscope =
market,write,deny) have the intermediate result {rs}
for attribute predicate dep = market, {rs,ra} for at-
tribute predicate rank < 4 and {rs,ro} for attribute
predicate fscope = market. According to definition
of statically-conflicting rules, rule r3 is conflicting with
rule r; if their action sets intersect and decisions are
different, but the conflicting relationship between rules
ro and r; further depends on the number of subject and
object attribute predicate of rule ro: they are conflict-
ing only when rule ro has only one subject attribute
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Figure 3. Improved rule reduction of rules in
table 1

predicate and one object attribute predicate.

The first improvement is to include the rules’ action
sets in the reduction representation. Since a rule’s ac-
tion set comprises of a set of action names, the action
set can be divided into several action names which are
placed into the hash table to facilitate the searching
of interaction of action sets. The hash table of action
sets takes an action name as the key and the set of
rules that contain the action name as the value of the
key. As illustrated in figure 3, the action name read is
hashed to the value {R1, R2, R¢, R7}.

The second improvement is to sort the policy rules
based on the number of attribute predicates , and the
sorted rules are input to the rule reduction in order.
The larger number of attribute predicates a rule has,
the earlier it is reduced. The summerization of con-
flicting rules based on the intermediate results is now
easier: When reducing a given rule, the rules that exist
in all the intermediate results for every attribute predi-
cates should be the statically-conflicting rules with the
given rule. This is because the given rule has all its at-
tribute predicates intersected with the rules’ attribute
predicates with same identifiers, and the sorting as-
sures the rules have larger or equal number of subject
or object attribute predicates as the given rule.

Algorithm 2 gives the details of turning a set of
ABAC policy rules into the reduced rules represented
in the attribute identifiers nodes. Firstly, the policy
rules are sorted based on the rules’ numbers of attribute
predicates (Line 2) in order to ease the summary of the
conflicting rules. Then each of the sorted policy rules
is reduced one by one(Lines 3-21). The first step of a
rule’s reduction is to reduce the action sets with hash
table(Lines 4-7), each action name hashing into a rule
set. The second step is to reduce the rule’s subject
and object attribute predicates(Lines 8-20). Lines 8-9
collect the attribute predicates of the rule. Every at-
tribute predicate is reduced against the list of attribute
predicates of the attribute identifer node by finding in-

tersected attribute predicates (Lines 12-13) and divid-
ing them into non-intersected ones (Lines 14-16). The
last step of a rule’s reduction is to add the rule into the
rule sets of attribute predicates (Lines 18-20).

The time complexity of the algorithm can be an-
alyzed as follows. The sorting of the n policy rules
can be done in nlgn time with comparison-based al-
gorithms. The time cost for the reduction of rule
R;(1 < i < n) is the sum of reduction cost of ac-
tion set, subject and object attribute predicate. Due
to the hashing nature of action set reduction, the cost
depends on the number of action sets, i.e., the cost is
O(JA(R;)]). For every subject or object attribute pred-
icate of rule R;, the time cost sums up the cost of find-
ing and reducing the intersected attribute predicates,
and updating the rule sets for the reduced attribute
predicates of rule R;. Generally the finding cost de-
pends on both the number of attribute predicates in
the list and the number of intersected attribute predi-
cates. Suppose the cost for rule R;’s attribute predicate
ap; . to reduce against a list of attribute predicates of
size s; ; and get t; , intersected attribute predicates is
O(f(sl ko bik))- The dividing cost is proportional to the
number of intersected attribute predicates,i.e., O(t; k).
The updating cost of the rule sets is determined by
the total number of intersected attribute predicates,

O(> i tik). In summary, the time complex-
ity of the algorithm is O(nlgn) + > (O(JA(R;)|) +
S (O(f (i, tik)) + Olti) + O(tix)).  The  time
complexity largely depends on the efficiency of find-
ing intersected attribute predicates because in prac-
tice both the number of intersected attribute predicates
O(t; 1) and the size of action sets O(|A(R;)|) can be as-
sumed to be less than a big enough constant. The op-
timized method utilizes efficient binary-search to lower
the time complexity so that the algorithm scales to
even large number of policy rules.

The space complexity of the algorithm depends on
how many attribute predicates are added for dividing
intersected attribute predicates into non-intersected
ones. Though the exact number of added attribute
predicates depends on the given rules in the policy P,
the number can not grow more than two times because
the dividing only changes the size of value sets of at-
tribute predicates, not the end points of value sets. For
example, attribute predicates 5 < workyear < 8 and
7 < workyear < 10 share the endpoints 5, 7,8, 10 with
their reduced attribute predicates 5 < workyear < 7,
7 < workyear < 8 and 8 < workyear < 10. The di-
viding of attribute predicates can be analyzed in two
cases for the increasing number of attribute predicates:
the dividing results in point value sets of attribute
predicates or not. If no point value sets are gener-



ated, given m endpoints, the division can result in
m — 1 interval value sets from m/2 attribute predi-
cates due to 2 points to form a value set. In this case
the maximum growth of the number of attribute pred-
icates is (m — 1)/(m/2) < 2. In another case sup-
pose the dividing results in p point value sets and and
m — 1 interval value sets, then the minimum number
of attribute predicates generating the interval value
sets is m/2, and the p point value sets are generated
for at least other p/2 attribute predicates share end-
points with the same m/2 attribute predicates. Thus,
the growth ratio of attribute predicates in this case
is (m—1+4p)/(m/2 + p/2) < 2. Since the number
of added attribute predicates after dividing grows less
than two times, the algorithm is efficient in space cost
that makes itself scalable for large number of policy
rules.

Algorithm 2: rule_reduction(P)

Input: P = {Ry,Rs....,R,}
Output: the reduced represenation
attributeldentifer Nodes
1 begin
2 sort the rules in policy P in descended order
based on the number of a rule’s attribute
predicates;
for R; in P do
for act in A(R;) do
rule_set=actionMap.get (act);
rule_set.add(R;);
end
aplist = S(R;).aplist ;
aplist.add All(O(R;).aplist);
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10 reslist = {};

11 for ap in aplist do

12 node=attributeldentifer Nodes.get(Aid(ap));

13 aps=findIntersected AP (ap,node.list,0,
node.list.length-1);

14 for apt in aps do

15 reslist.addAll(reduce(apt,ap));

16 end

17 end

18 for ap in reslist do

19 ap.rule_set.add(R;);

20 end

21 end

22 return attributeldentifier Nodes;

23 end

non-intersected attribute predicates, continuous.
Binary search attribute predicates.

4.2.2 Binary search and its complexity

The optimized method uses binary serch to improve
the efficiency of searching intersected attribute predi-
cates, and futher the efficiency of conflict detection. As
discussed before, search opertions are common both in
rule reduction and in conflict detection and the time
cost of search operations has significant impact on their
complexity. Expensive search operations lead to high
cost of the algorithms, and cheaper search operations
make both rule reduction and conflict detection more
efficient. Binary search decreases the time cost of these
search operations, which finds in a given list those at-
tribute predicates whose value sets intersect with a
given attribute predicate.

Given a list of attribute predicates ap_list and a tar-
get attribute predicte ap, the naive search operation is
to examine every attribute predicates one by one which
results in a time complxity of O(|ap_list]). Generally
two techniques that both improve search operations are
binary search and hash. Hash is more efficient than bi-
nary search because it finds in a list an object in con-
stant time by mapping directly the key to the location
of the qualified object. However, hash technique is dif-
ficult to be applied to the search operations of the opti-
mized method because the hash function, which maps
the given attribute predicate(e.g. the attribute predi-
cate 4 < workyear < 6) and its multiple intersected,
not identical, attribute predicates(e.g., the attributes
workyear < 5 and 5 < workyear < 8) into the same
location, is hard to design.

Binary search is a recursive search procedure that
halves the list of objects in the middle after comparing
the given object with the middle object util the qual-
ified object is found or the lenth of list reaches zero.
Binary search assumes that the objects in the given
list are comparable and sortable. Generally the at-
tribute predicates are not comparable for two reasons:
(1)an attribute predicate can predicate on categorical
value, e.g., dep = market;(2)two attribute predicates
may have intersected value sets, e.g. 2 < workyear < 8
and workyear > 6. Fortunately, the solution exists
that represents every value set of attribute predicates
as an interval because our policy model consider only
five basic operators in attribute predicates: (1) A num-
berical attribute predicate directly represents the lower
and upper boundary of the value set as the lower and
upper boundary of the interval, e.g., the value set of
5 < workyear < 20 is represented as the interval
[5,20]; (2)A categorical attribute predicate (e.g. the
attribute predicate dep = market) can be represented
as an interval if we give every categorical value of a
specified identifier a distinct index, e.g., if the index of
value market is 1, the value set of dep = market is de-



Algorithm 3: binary_search(res,ap,ap_list,l,h)

Input: The result of searching res,the target
attribute predicate ap, a list of sorted
attribute predicates ap_list, and the
lowest position [ and highest position A in
the list to search

Output: return true if attribute predicates are

found, otherwise return false

1 begin
2 Low = ap_list[l];High=ap_list[h];
3 if Low > ap then
4 res.insertpoint=I;
5 return false;
6 end
7 else if High < ap then
8 res.insertpoint=nh,;
9 return false;
10 end
11 m = (14 h)/2;Mid = ap_list[m];
12 if Mid > ap then
13 return binary search(res,ap_list,l;m — 1);
14 end
15 else if Mid < ap then
16 return binary_search(res,ap-list,m + 1,h);
17 end
18 res.ap_list.insert At(0, Mid);pos=m ;
19 while — — pos >=1 do
20 Mid = ap_list[pos];
21 if not intersected(Mid,ap) then
22 break;
23 end
24 res.ap-list.insert At(0, Mid);
25 end
26 while + + pos < h do
27 Mid = ap_list[pos];
28 if not intersected(Mid,ap) then
29 break;
30 end
31 res.ap-list.insert AtTail( Mid);
32 end
33 return true;
34 end

L=0,H=4,M=2

L=0H=1,M=1

010 ] [120301] [B5501 [185.601] |[[70.80]]

List[0]1]2]3]4] Target[1570) Visited: |

Figure 4. Example of binary search

noted by the interval [1,1]. In addition, the attribute
predicates in the list are reduced to have no intersected
value sets so that they are comparable and sortable
based on their interval representation. The compari-
son between two non-intersected attribute predicates
is formally given as follows.

Definition 4.3 (Comparison between two attribute
predicates) Attribute predicate ap; is greater than at-
tribute predicate ap;, denoted as ap; > ap;, if either of
the following conditions holds:

(1) the lower boundary of V(ap;) is greater than
the upper boundary of V(ap;), ie. V(ap;).low >
V(ap;).high;

(2) the lower boundary of V(ap;) is equal to the
upper boundary of V(ap;), but one of the boundary
flags are open, i.e., V(ap;).low = V(ap;).high,
—(V(ap;).low_flag == V(ap;).high_flag ==
CLOSE);

Two attribute predicates ap; and ap; are equal, de-
noted as ap; = apj, if (V(ap;).low = V(ap;).low A
(V(ap;).low flag = V(ap;).low_flag AV (ap;).high =
V(ap;).high) AV (ap;).high_flag = V (ap;).high_flag).

Two attribute predicates ap; and ap; are comparable
if one of the following conditions holds:

(1) ap; > apj, or (2) ap; > ap;, or (3) ap; = ap;

Different from general binary search technique, bi-
nary search in the optimized method gets in the list
one or more attribute predicates whose value sets in-
tersect with the given attribute predicates as a result.
For example in figure 4, binary search returns three
attribute predicates [20, 30],[35, 50] and [55, 60] for the
given attribute predicate [15,70). Furthmore, the re-
turned attribute predicates are always adjacent in the
list due to the given attribute predicate is in nature
one continuous interval.

Algorithm 3 gives the details of binary search. Given
a list of sorted attribute predicates ap_list and an at-
tribute predicte ap, and the scope of the list to search
defined by the lowest [ and highest position A, the steps



of the algorithm can be summarized as follows: (1)it
tests whether even the attribute predicate at position [
is greater than the given attribute predicate ap (Line 3-
6), or the given attribute predicate ap is greater than
the one at position h (Line 7-10) by comparing, and
sets the insert position if they do and returns immedi-
ately without finding any attribute predicates; (2)Oth-
erwise it picks up the attribute predicate at middle
position m and compares it with the given attribute
predicates ap(Line 12-17). If the given attribute pred-
icate ap is less than the middle one Mid, it sets new
searching scope to [I,m — 1] and calls the algorithm
resursively and returns immediately (Line 12-14). If the
middle attribute predicate Mid is less than the given
attribute predicate ap, it sets new searching scope to
[m + 1,h] and calls the algorithm resursively and re-
turns immediately (Line 15-17);(3)Otherwise the mid-
dle attribute predicate Mid intersects with the given
attribute predicate ap, and inserts the middle attribute
predicate as one of the intersected attribute predi-
cates(Line 18);(4)Since the attribute predicates adja-
cent to the middle one are also possible to intersect
with the given predicates, it also looks backward and
foreward to search other instersected attribute predi-
cates as results(Line 19-37). The algorithm returns a
list of sorted intersected attribute predicates if they ex-
ist or returns the insert position for the given attribute
predicate to be inserted in the list as sorted.

Like the general binary search technique, Algorithm
3 halves the searching scope in the middle after com-
paring with the middle attribute predicates. The time
cost to find the first intersected middle attribute pred-
icate depends on where the intersected attribute pred-
icates positioned in the list. For example in figure 4,
one of the intersected attribute predicates [35, 50] hap-
pens to at middle position 3, so it is found in the first
call to binary_search(res,ap,ap_list,0,ap_list.size()—1),
and other answers at found by looking backward and
foreward around the middle attribute predicates. Gen-
erally, the algorithm finds the first answer in time
complexity of O(lgn) for n attribute predicates in the
list, and other answers in time complexity O(m — 1)
for m total intersected attribute predicates. There-
fore, the overall time complexity for the algorithm is
O(lgn+m — 1),also O(lgn +m — 1) for m intersected
attribute predicates in a list of n sorted attribute pred-
icates.

4.2.3 Algorithm of efficient conflict detection
and complexity

Algorithm 4 gives the details of detecting statically-
confliting rules in a given an ABAC policy P =

{R1,Rs...,R,}. The conflicting rules of rule R; are
found using the representation of the already reduced
rules Ry, Ro, ..., R;_1 when the rule is being reduced.
Therefore, the algorithm is based on algorithm 2
added with the detection of conflicting rules. the al-
gorithm also uses binary_search to improve the effi-
ciency of searching intersected attribute predicates in
the list(Line 17). For every attribute predicate of rule
R;, the rule sets of its intersected attribute predicate
are kept in set rule_set (Line 20). And the conflicting
rules are summarized by intersecting all the rule sets in
rule_sets which contains the rule sets of every attribute
predicates of rule R;. The rules left in the intersection
result s_rule_set with different decisions with rule R;
are statically-conflicting rules(Lines 27-30) due to rule
R; shares all its ation sets, and attribute predicates
with these rules but specifying different decisions.
The time complexity of the algorithm is the time
complexity of algorithm 2 plus the time complexity
of extra detection of conflicting rules. With the
efficient implementation of set operations such as
bitmap-based set, the operations of rule sets can
be completed in the constant time O(1). More-
over, binary_search-based searching of intersected
attribute predicates is efficient in time complexity
of O(lgn + m — 1). Therefore, the time complexity
of the algorithm is O(nlgn) + > ., (O(JA(R;)|) +
5L (O(g(si) + tie — 1)) + Olti) + Olti) + O(1))):
Because the size of list s;j are less than 2 x n for n
rules, in the given policy P, and suppose the number
of intersected attribute predicates ¢;; is less than a
big enough constant O(1), the time complexity is less
than O(nlgn) + n * Ni = (Ign + O(1) + 3 x« O(1)) =
O(Ny * nlgn) = O(nlgn). Therefore the time
complexity of the algorithm is considered as O(nlgn).

5 Experiments

In order to evaluate the efficiency of the optimized
method, we implemented both naive and optimized
methods, and compared them with rules produced by
an attribute-based policy rule generator. Our exper-
iments focus on the time cost of detecting all the
statically-conflicting rules in a given ABAC policy us-
ing different methods. Efficiency of the methods are
examined under different number of rules and different
number of attribute predicates of the rules.

5.1 Experiment Setup
The algorithms of naive and efficient detection of

conflicts are both developed in Java language. Naive
method is implemented in direct manner according to



Algorithm 4: efficient_conflict_detection(P)

1
2
3
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10
11
12
13
14
15
16
17

18
19
20

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

Input: P = {Ry,Rs....R,}
Output: the statically-conflicting rules
con flicting in the given policy
begin
conflicting = {};
sort the rules in policy P in descended order
based on the number of a rule’s attribute
predicates;
for R; in P do
s_rule_set = {};
for act in A(R;) do
rule_set=actionMap.get (act);
s_rule_set+ = rule_set;
rule_set.add(R;);
end
aplist = S(R;).aplist ;
aplist.add All(O(R;).aplist);
reslist = {};
rule_sets = {};
for ap in aplist do
node=attributeldentifer Nodes.get(Aid(ap));
binary_search(aps,ap,node.list,0,
node.list.length-1);
rule_set = {};
for apt in aps do
rule_set += apt.rule_set;
reslist.addAll(reduce(apt,ap));
end
rule_sets+ = rule_set;
end
for rs in rule_sets do
s_rule_set = s_rule_set Nrs;
end
for r in s_rule_set do
if r.decision! = R;.decision then
conflicting+ = {r, R; };
end
end
for ap in reslist do
ap.rule_set.add(R;);
end
end
return conflicting;
end

algorithm 1. The optimized method implementation
comprises of rule reduction, binary-search and bitmap-
based set operations. In bitmap-based set, every rule
in the given ABAC policy P = {Ry, Ra,...R,,} is in-
dexed from 0 to n — 1, and each rule set of the reduced
attribute predicate is represented as a bitmap of an ar-
ray of integers where a bit is set for the corresponding
rule in the rule set and is clear otherwise. The basic
set operations such as union and intersection can be
completed in constant time.

We built a rule generator which can produce a
ABAC policy with a given number of rules using the
predefined settings: (1) the set of attribute identifiers
and the value ranges of the attributes; (2) the action
names. A multiple-attribute set of a rule contains sev-
eral attribute predicates that the identifiers and the
value sets are picked uniformly at random according to
the predefined setting (1). The actions of a rule are
also uniformly picked based on setting (2). The deci-
sion of a rule is generated by randomly choosing the
value allow or deny.

The experiments are conducted on a Pentium M
1.7GHz, 1 Gb RAM machine.

5.2 Results

In the experiments, three different groups of ABAC
policy rules with 1, 3 and 5 attribute predicates in a
multiple-attribute set respectively are used. Figure 5
shows the results of the experiments, where #attr de-
notes the number of attribute predicates per multiple-
attribute set.

The results of all three groups of experiments show
that the optimized method outperforms the naive
method, especially when the policy has more than
10000 rules. In particular, the time cost of conflict
detection increases squarely with the number of rules
using the naive method, but increases linearly using
the optimized method. For example when #attr=3, the
cost using naive method is about 40000 milliseconds for
10000 rules and grows to about 160000 milliseconds for
20000 rules. While for the same value of #attr the cost
using optimized method increases from 5258 millisec-
onds to 12298 milliseconds. Consider that the number
of pairs of rules for detecting conflicts grows squarely
with #attr, the optimized method takes less time to
process each pair of rules for a larger number of rules.

Compare the results of different groups of experi-
ment, larger #attr results in smaller time cost of con-
flict detection. For example for 10000 rules, the opti-
mized method takes 5448 milliseconds when #attr=1
and takes 3746 milliseconds when #attr=5. The rea-
son behind is that the same number of policy rules
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Figure 5. Time costs of conflict detection

produced by the rule generator have more statically-
conflicting rules when #attr is smaller and the high
conflicting ratio policy raises the time cost of con-
flict detection. When the conflicting ratio is constant,
larger #attr should cost more time to detect the con-
flicting rules in the given policy.

6 Related work

Conflicts of policy have been studied extensively
in previous research work [7, 9, 17]. However, they
mainly addresses the cyclic inheritance and separation
of duties(SOD) conflicts of hierachical policies(e.g.,
RBAC and LBAC). Two recent approaches proposed
to analyze conflicts between policy rules are model-
checking[8] based and logical reasoning based[1]. But
both approaches are not computationally complex.
Model-checking based approach explodes in the size of
policy representation nodes for a large scale policies.
Logical reasoning based approach [1] models the prob-
lem of conflict detection as five categories of boolean
expressions and presents algorithms to examine if the
satifiable solutions exist in the policy rules. Though
the algorithms are applicable for a variety of policy
constraints, they are expensive and only determine the
existence of conflicts not the exact conflicting rules.
Since a policy contains a large number of rules [23]
and contains many attributes[8], conflict of policy rules
should be analyzed efficiently in terms of time cost.

Previous work on conflict detection and resolution
have mainly been performed in the context of Role-
based Access control(RBAC) and Lattice-based access
control(LBAC) systems. Mediator-based approaches
are proposed in [9, 17]. [9] charaterizes the security and
autonomy principles, and investigates the theoretical
complexity of security interoperations that has proved
the general case and optimization of secure interoper-
ation are intractable. [17] presents an policy integra-
tion algorithms for construting a global non-conflicting
multiple-domain collaborating policy. [17] formulates
the secure interoperation as an optimization problem
of an objective of maximazing interoperability without
violating security of collaborating domains when two
principles of interoperation can be be guarateed simul-
taneously, and employs the Integer-based approach for
optimal resolution of such conflicts. [16] proposes a
mediator-free approach for making conflictless access
control decisions across multiple domains using both
basic and extended path links rules. [7] addresses the
conflicts in establishing secure interoperation among
LBAC systems. Since the conflicts in these work, such
as cyclic inheritance and separation of duties, are spe-
cific to hierachical policies (e.g. RBAC and LBAC),



their approaches are not applicable in attribute-based
access control policies. [1] dicusses conflicts as one of
the rule interactions as domainance and coverage and
provides algorithms like domain elimination, linear in-
equalities and solution trees to detect the existences
of conflicts among the policy rules. Whereas the al-
gorithms are applicable to more general access control
policy rules, they can not find the exact conflicting
rules thus be less helpful for conflicts elimination.

[21] specially provides solutions to consolidating ac-
cess control of composite applications based on the
policies of sub-applications in context of application
interoperation. Our ABAC policy model is partially
based on the policy model in [21]. The policy that
doesn’t fulfill the Least priviledge (LP) and Maximum
set of subjects (MS) criteria is considered to be con-
flicting, which coincides with security and autonomy
principles[9] in RBAC. This definition ignores the con-
flicting rules in the policies of sub-applications that
give different decisions for the same user requests. [21]
use the notation of reduced policies for policies that
can be efficiently consolidated. The subject elements
of all rules in a reduced policy are equal and the ob-
ject and action elements specify disjoint priveges. This
paper not only proposes more general definition of re-
duced policies for detecting statically-conflicting rules,
but also presents the algorithm of reducing ABAC pol-
icy rules based on notation of semantically-equivalence.
Besides conflict detection, the proposed rule reduction
in this paper is applicable to efficient analysis of policy
rules such as policy dominance and similarity.

7 Conclusions

ABAC policy rules are subject to conflicts that make
contradicting decisions for the same user requests. This
paper formally defines the conflicts between ABAC pol-
icy rules. Because of the nature of attribute-based
rule specification with multiple-attribute sets, the pol-
icy rules are special that two seemingly unrelated rules
may conflict which make the conflicts undetectable and
removable prior to runtime. The paper focuses on
statically-conflicting rules and investigates how to ef-
ficient detect all statically-confiicting rules in a given
ABAC policy. The main contributions of the paper
include:

(1)Formal definition of conflicts between ABAC pol-
icy rules and the notation of statically-conflicting rules
whose conflicts are detectable and removed without
evaluation any user requests.

(2)Two techniques that make the conflict detection
in a given policy more efficient: rule reduction and
binary search. Rule reduction transforms the policy

rules into a set of compact, semantically equivalent
reduced rules that simplify the analysis of statically-
conflicting rules. Binary search technique is used to
search m intersected attribute predicates in a list of
n non-intersected attribute predicates with time com-
plexity O(lgn +m — 1).

(3)The comprehensive alogrithm of the optimized
method to detect all statically-conflicting rules in a
given ABAC policy. The time complexity of the al-
gorithm is O(nlgn), and the experiments have shown
it can handle complex ABAC policies with over 20,000
rules in nearly linear time.
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