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Abstract

A kinetic approach is used for a description of a plasma in the presence
of a large amplitude wave (ie relativistic electrons). The case of a
“small” momentum spread around an average momentum is considered

and corrections to the cold plasma case (zero spread) are given.

A plasma is relativistic either in the presence of a wave of amplitude so large that
the electron quiver velocity is close to the velocity of light ¢ or when its temperature
is large (T>mc?). The latter case has been reviewed by Mikhailovskiil'l. The case
of a large amplitude wave has been solved by Tsytovichl?| sce also Akhiezer et
alll, for the cold plasma case and Mori and Katsouleas!*l have tried to incorporate
thermal effects using a water-bag model. This is not fully consistent: the problem
is that in the presence of a large amplitude wave the plasma cannot be assumed to
be close to thermal equilibrium and a plasma temperature for such a case cannot
be defined. In the present work we propose a kinetic approach, based on the Vlasov
equation, to investigate the effects of a “small” spread of electron momenta around
an average momentum (cold plasma case). The assumed model is the same as for
the cold plasma case: a collisionless, unmagnetized plasma with immobile ions;
the wave field is BY = B(¢), EL = E*(¢) where € = ' — Vt' in the laboratory
frame with z’ the direction of wave propagation; the electron distribution function
is fL = fE(¢,p'), where p' is the electron momentum, and is assumed to satisfy the
Vlasov relativistic equation. The wave is sub-luminous (V' < ¢) or super-luminous
(V> ¢): the case V = c is not considered here. The Vlasov-Maxwell system of
equations is most easily solved in a reference frame (zyzt) moving along the 2 = 2’

axis with velocity V, relative to the lab frame, where:

ViorV<e 2y, o
Vo = ) £= . 1% = (1-5;) yBo =Vo/c (1)
V-lforV>c¢c —ct(vy2 —1)"1/2

In the two cases the Vlasov Maxwell system becomes, in the new frame:
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Super-luminous
B=0 (2)
P+ Yopo=0 (3)
d . 5
aﬂ(t) . —47!'(1 - ﬂo'YocPou:) (4)
9f(p,t) of(t,p) -
k)~ % =0 (5)
Sub-luminous
"E,=E,=B,=0 (6)
Jz = Bovocpo =0 (7)
d
d_Er("') = 47(p + Yopo) (8)
z
d 4r
(l y(x) e —Jtl (9)
d 4
5 B:(2) = ——”Jz (10)
a.f(z",B) Vy v, ) Bf(:c,z) 3f of
vt 2B (E,+ %p,-2p,) T Bigy ~Big) =0 (11
where the four-current is:
(cp,d) = —e / &°p(c, 2(p)) f(p) (12)
and p, is the immobile ion background (in the lab frame).
Introducing the potentials:
Alt)=~e [ ‘E(#)dt'; ¢(z) = — [ Eela)ae! (13)
2= -'o = 5 y o

the solution to the Vlasov equations can be found, via Fourier transform, in general
(Transverse or Longitudinal wave) for the super-luminous case and for the case of

a Longitudinal wave for the sub-luminous case. It is:

ft,p)=1o (p - %A_(t)) (super — luminous) (14)




f(z,p) = 1o (% [(s —eg(z))? — pic? - m?c"] ik ,py,pz) (sub — luminous) (15)
where

e = (miet+pect +22) "t = )+ (16)

Here f, is the distribution function at an arbitrary time ¢, (A(?,) = 0) in the first

case and at an arbitrary point z,(¢(z,) = 0) in the second case. We stress again

that f, is not the “equilibrium” distribution function as no thermal equilibrium

situation exists in the presence of the wave. To find the four-current it is now

convenient to introduce the new variables:

qg=p-— il A(super — luminous) (17)
= & ¢

1/2
q: = % ((5(1_7) — e¢)2 - Eic2 ~ m%") signp,(sub — luminous) (18)

Qy = Pysq: = P:

and from equation (12) we have:
| . (g+gd)e |

(ep,j) = —e/d afo(q) | c, 7z (super — luminous)  (19)

o+l

: Vi(q) :

8 Je) = —e/ d’q(c, v, fo(q)(sub — luminous 20
(cpyiz) - (@0)—=3 ola) (g)( ) (20)

where D(¢) is the domain of definition of the new variables:

1 5 4 2 2\1/2 2 . ) 4 1/2
|(Ix|2.z([(mc +pJ_c) —ed)] —-pc —mc) (21)
and V;(q)/vz(q) is the Jacobian of the transformation (18) with:

- Csz'\(qr)
£(p(a))

The “solution” (19) or (20) for the four-current must then be used with equations

,E(p) = e(p) —e¢ (22)

(3,4) in the super-luminous case and (7,8) in the sub-luminous case.



For the cold-plasma case f,(p) = n,6(p — p ) the well known solutions, given

eg. by Akhiezer et all®l, are recovered.

We look for corrections to the cold plasma results assuming that the electron
momenta have a “small” spread around an average momentum p , defined at ¢ = {,
(or z = z,) as:

p,= / ®ppfo(p)/ / d°pfo(p) (23)
We assume that the distribution function at time ¢ = t, (or ¢ = z,) is peaked

around p , so that:
/ Epfo(p)(pi — Poi)(Pi = Poj) = [mr:’ / dspﬂ»(z)] cijy el <1

/ Epfo(p)(Pir = Poir)* ++ (Pin — Poin) = 0 for n > 2 (24)
The seccond moments c;; represent (small) “thermal” corrections to the cold plasma
case, taking into account a momentum spread around the average. We can now
expand the integrands around p_ in equations (19) and (20), integrate term by

term using equations (23,24) and then use equations (3,4) or (7,8) to find:

(a) super-luminous wave:

e, s e L o? 1+ u2)-1/2 25
dt2 o _wo‘Yo IBO + ul’( + u ) + ECiJa‘Ug’au]’ 'U.I( +£ ) ] (H )

d*u, . 1 g —
i = = {11+ 40+ Fo D a2 ”2]} R

where
1 e medu

- hd . R 27
4 me (£°+cé) » E(t) e dt (27)

(b) Sub-luminous wave:

62% = —wlv, {1 - Bou(u® - 1)-‘1/2 + 6, [k2(u2 . 1)—3/2(% — ) — Byu(u? — 1)-5/2 (1 B
(28)
where
_ (p2c? + m2c)V/? + e ah _medu -

mc? e dz

il




and

3 ky
ki == S ko = —
1 2C s 2 ug

i 1

1
T 3(ny + ¢.:) (30)

The constant u, can be determined from equation (7) and the expansion for
Jat
=12 . k
Uo = (1 - V:(po)/cg) 7 Jz = —€No (1 . u_22> Vz(po) = BoopoC (31)

(]

For the super-luminous wave consider now the two cases of transverse or longitu-

dinal wave:
1) Super-luminous, transverse wave: E; = 0,u, = constant = mu?=n%+u?

Then equation (25) becomes:
5 3 ;
(14222 Bo+ (1 + 1) = Seaen(l+ul) = cryuy(1+ul = 20) —caana(l +u} —27°)+

1 1
+ 3cynuyu; — Ecwn(l +7t +ul - 21:3) - Ec,,n(l +72 + “3 -2u?) =0 (32)

As for the cold plasma case, linearly polarized waves are not allowed: if for instance

E, =0 (ie. u, = constant) then from (32) it follows u. = constant ie. E, =0.

Consider circularly polarized waves. Assume a solution:

EL = —_E,coswyT !
Y ’ Tt — % (33)
EL = —E,sinwT

corresponding in the moving frame to:

E, = —Eacoswt , u, = asinwt , u} = a*
y Yo » Yy y Yl
(34)
E.=+Eesinwt , u, =acoswt , a= B, _ eBs
Yo ’ ’ mcwyo mcwp,

Then from (32) it is:
c,y=c,,=cy,=0; Cyy = €2z = €L j Cax = €|

3 1
(147 +a2)* 2B, + (1 +n* + a®)? = Seyn(1 + @) — can(l +n* = 5a*) = 0 (35)
2 i 2

ﬁ
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which is an equation for n = n(cy, ¢, B,,a*) and a dispersion relation follows from

(26) for the assumed solution:

1
u.,2 — WZ’Yo {(1 o 772 o1 a2)—1/2 o ;(1 +1’2 +a2)—5/2 [C“(?,r]:, s a2) _ C.L(4 o 4,’72 o a2)}}-
(36)
Eliminating n between (35) and (36) we find. to lowest order in the thermal coef-

ficients ¢, ¢y, for the dispersion relation in the Lab system:

2 _ .2
Wy =W,

1 c 2 .
(et i L2 1) [cll = 1] —uA(1+a?) e, (3T)

showing that the frequency is lower than in the cold plasma case (¢ = ¢, = 0).
2) Super-luminous, longitudinal wave: E, = E. = 0, u,, u, constants

The system can now be reduced to v, = u. = 0 and

d*u, ow . . i
B O s W) = wy, [ﬂou, +(1+ uz)l/2 + (1 + ui)':’/' +c (1 + ui)“/z]—i-ﬂ "
dt? O,
(38)

where

1
C] = Czx sy C1L = ;(ny T c::)

As for the cold plasma case (¢ = ¢, = 0) the solution can be found in terms of

elliptic integrals.

To conclude the super-luminous case it should be mentioned that the “thermal”
coeflicients ¢ ¢, which represent the corrections to the cold plasma results, can
be expressed in terms of more “physical” quantities, namely the parallel and per-
pendicular (with respect to wave propagation) average kinetic energies (or “tem-

peratures”). Defining:

T-L= (< (‘1y‘Pu)2>+<(Qz—pz)2 >)/21TL= (< q3>_<qy >2+<q3>_‘<(j; >2)/.2,”

T, = (< (4= — pz)’ >) [2m = (< ¢ > — < p, >)/2m-




where p =< ¢ > and < ¢[* >= [d% qf/ [ d®qf and calculating the averages
using the assumption (24) one finds:

2 T, = 2
o 2 (T—Wave) © % (L=Wave) (39)

Ty = yme’yo (cll teiga '3373) T, = zmcey/7d

T, =me

The “thermal” state of the plasma, far from equilibrium in the presence of a large
amplitude wave, is given through the T and T}, coefficients, with T ; <« mc? for

the validity of the expansions in the present model.

Finally let us consider the case of the sub-luminous wave. For the cold plasma
case k; = k; = 0 equation (28) can be written as:
d*u oU(u)

dr? du

JU(1) = wly, [u — Bo(u® - 1)1/2] oF = wife

which is formally equivalent to the 1 — D motion of a particle (“coordinate” u) in

a potential U(u), interpreting 7 as “time”.

It is well known that extending this analogy to “conservation of mechanical

energy”, that is:

()" o= vt

it is possible to find the maximum “velocity” of particle “motion”, corresponding

to a wave-breaking field
E max = \/§r_n£wo(% —1)1/?
e

For the present case equation (28) can again be written in the form (40) introdﬁcing
a generalized potential U(u,k;,k;) but the same analysis is no longer possible
because as the field increases the domain D(¢) changes (see equations 20,21) with
the result that part of the region whére fo # 0 could be left out of the integration

for some value of ¢ and the result of the integral (20) would no longer be valid.

The conclusion is that a discussion of wave-breaking for a “warm” plasma
requires a detailed knowledge of the distribution function and is not possible in

any “fluid” approximation.




As for the wave-forms it can be shown that equation (28). in analogy with the

cold plasma case of Tsytovich(?, can be solved with elliptic integrals.

o
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