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Abstract 

A kinetic approach is used for a description of a plasma in the presence 

of a large amplitude wave (ie relativistic electrons). The case of a 

"sma,.11" momentum spread around an average momentum is considered 

and corrections to the cold plasma case (zero spread) are given. 
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A plasma is relativistic either in the presence of a wave of amplitude so large that 

the electron quiver velocity is close to the velocity of light c or when its temperature 

is large (T>mc2 ). The latter case has been reviewed by :.'1ikhailovskiiPl. The case 

of a large amplitude wave has been soh·ed by Tsytovich[2l, see also A.khiezer et 

aIPl, for the cold plasma case and l\fori and Katsoulcas[·I] have trie<l to incorporate 

thermal effects using a water-bag model. This is not fully consistent: the problem 

i.s that in the presence of a large amplitude wave the plasma cannot be assumed to 

be close to thermal equilibrium and a plasma temperature for such a. case cannot 

be defined. In the present work we propose a kinetic approach, based on the Vlasov 

equation, to investigate the effects of a "small" spread of electron momenta around 

an average momentum (cold plasma case). The assumed model is the same as for 

the cold plasma case: a collisionless, unmagnetized plasma with immobile ions; 

the wave field is BL = BL(O, EL = EL(O where ~ = x' - Vt' in the laboratory 

frame with x' the direction of wave propagation; the electron distribution function 

is JL = JL((,'f!.), where I! is the electron momentum, and is assumed to satisfy the 

Vlasov relativistic equation. The wave is sub-luminous (V < c) or super-luminous 

(V > c): the case V = c is not considered here. The Vlasov-Maxwell system of 

equations is most easily so!Yed in a reference frame (xy::t) moving along the x = x' 

axis with velocity Va relative to the lab frame, where: 

1 V for V < c 
Vo= 

v- 1 for V > C { 

-1 
_ X"fo • _ 2 -1/2 _ 

~- . ,'Yo-(1-(Jo} ,fio-Vo/c(l) 
-et(,; - 1 )-1/2 

In the two cases the Vlasov Maxwell system becomes, in the new frame: 



Super-luminous 

P+ 1oPo = 0 

! E(t) = -4,r(i - /3oioCPoV.z) 

8f~, t) _ eE(t). 8f~~p) = 0 

Sub-luminous 

dB { ) 4,r. 
-l II X = -Ju 
<Z C 

d
d B:(x) = - 4,r i:1: 
x c 
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(2) 

(3) 

(4} 

(5) 

(6) 

( 7) 

(8) 

(9) 

(10) 

Vz 
8/(x,p) - e (Ez + Vy Bz - Vz By) 8 /(x,e) + e Vz (Bz 81 - By 81 ) = 0 (11) 

8x c c 8pz c 8py 8p= 

where the four-current is: 

(cp,i) = -e J dlp(c,y_(e))f<e.> (lZ) 

and p0 is the immobile ion background (in the lab frame). 

Introducing_ the potentials: 

A(t) = -e ft E(t'}dt';<t,(x) = -1z Ez(x')dx' 
Jt 0 Zo 

(13) 

the solution to the Vlasov equations can be found, via Fourier transform, in general 

(Transverse or Longitudinal wave) for the super-luminous case and for the case of 

a Longituq.inal wave for the sub-luminous case. It is: 

J(t,e) = J~ (e- ~A(t)) (super - luminous) (14) 
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(1[ 2 )1/2 ) f(x,p)=f0 ~ (c-e</>(x)) -p~c2 -m2c4 ,py,Pz (sub-luminous) (15) 

where 

(16) 

Here / 0 is the distribution function at an arbitrary time t 0 (A.(t 0 ) = 0) in the first 

case and at an arbitrary point x0 (q,(x 0 ) = 0) in the second case. vVe stress again 

that f 0 is not the "equilibrium" distribution function as no thermal equilibrium 

situation exists in the presence of the wave. To find the four-current it is now 

· convenient to introduce the new ,,ariables: 

q = p - :..-!(super - luminous) 
- - · c 

(1 i) 

1( 2 )1/2 
qx = ~ (c(f) - e</>) - l c2 

- m 2c'1 signpx(sub - luminous) (18) 

and from equation (12) we have: 

(cp,j_) = -e j d3qf0 (q) '(c, [ ('l + ~A) c ']"') (super - luminous) (19) 

m2c2 + (q + ~A) 

(cp,jx) = -e f d3q(c, vx(q)) Vr((q)) f 0 (q)(sub - luminous) (20) 
}D(<J,) Vr q 

where D( </>) is the domain of definition of the new variables: 

(21) 

and Vx(q)/vr(q) is the Jacobian of the transformation (18) with: 

(22) 

The "solution" (19) or (20) for the four-current must then be used with equations 

(3,4) in the super-luminous case and (7,8) in the sub-luminous case. 
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For the cold-plasma case f 0 (p) = n 0 6(p - p ) the well known solutions, given 
- - =--0 

eg. by Akhiezer et ail31, are recovered. 

"We look for corrections to the cold plasma results assuming that the electron 

momenta have a "small" spread around an average momentum p , defined at t = t0 
=--0 

(or x = x 0 ) as: 

(23) 

,ve assume that the distribution function at time t = t 0 ( or x = x 0 ) is peaked 

around p , so that: 
=--0 

f d3pfo(p_)(Pi - Poi)(pj - J)oj) = [mc2 f d3pfo(p_)] Cij, lciil ~ 1 

J d3pfo(p)(Pi1 - J>oii) · • • (J>in - J>oiu) = 0 for T/ > 2 (24) 

The second moments Cij represent (small) "thermal" corrections to the cold plasma 

case, taking into account a momentum spread around the average. "'e can now 

expand the integrands around P-o in equations (19) and (20), integrate term by 

term using equations (23,24) and then use equations (3,4) or (7,8) to find: 

(a) super-luminous wave: 

d
2
u { 1 a2 } __ er = -w2-v u (1 + u2)-1/2 + -c·. [u (1 + u2)-1/2] a= y ,. 

dt 2 o 10 er - ? IJ Q •Q . 0 - ' -
- U 1 u3 

where 

y_= ~ (p + :._,i) 
me =--0 c 

(b) Sub-luminous wave: 

E() 
_ mcdy_ 

t ---­
~ e dt 

. (25) 

(26) 

(27) 

d?u { · . [ 1 ( 
11 111/1 c

2
- = -w~,o 1- /30 u(u2 -1)-112 + /30 k2(u2 

- lt312(- - u) - k1u(u 2 
- lt5

/ 2 1 - -:-
dx2 u uz 

O O 

(28) 

where 

u = (p~c2 + m2c4)1/2 + e<j, ; E = - mc2 du 
mc2 e dx 

(29) 



6 

and 

(30) 

\ I / • \ ". t •, 1 ,· · · . · . 1 .. . . 

The constant u
0 

can be determined from equation (7) and the expansion for 

u 0 = ( 1 - V;(p0 )/ c2
)-

112 
; ix = -eno ( 1 - ~i) Vx(po) = f3oroPoC (31) 

For the super-luminous wave consider now the two cases of transverse or longitu-

dinal wave: 

1) Super-luminous, transverse wave: Ex = 0, llx = constant = 17,1!:.
2 = r,2 + ui 

Then equation ( 25) becomes: 

(1 + !~_2)5/2 ,8
0 
+ 17(1 + !!:_)2 - ~Cx.r1J( 1 + 1L i)- Cryuy{l + tL i - 2,,2) - Cx:1L:(l + Ui - 217

2)+ 

+ 3cy:1JUy1L: - ~c 1111 17(l + 172 + u; - 2u!) - ~C::11(1 + 17
2 + u! - 2u;) = 0 (32) 

As for the cold plasma case, linearly polarized waves arc not allowed: if for instance 

E
11 

= 0 (ie. u
11 

= constant) then from (32) it follows tt: = constant ie. E: = 0. 

Consider circularly polarized waves. Assume a solution: 

(33) 

corresponding in the moving frame to: 

Ey = -If: cos wt, uy = a sin wt, u3_ = a2 

{34) 

E .= +&s1'nwt, u acoswt a=~=~ 
• "fo % = l nlCW"fo mCWL 

Then from (32) it is: 

Cxy = Cxz = Cyz = 0 j Cyy = Czz = C_i j Cxx = CII 
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which is an equation for 1J = 71(c.L,cll,/30 ,a2) and a dispersion relation follows from 

(26) for the assumed solution: 

w2 = W~'Yo { (1 + 712 + a2t1/2 + ~(1 + 712 + a2ts/2 [c11(2172 - 1 - a2) - c.L(4 + 4712 + a2)] } · 

(36) 

Eliminating 1J between (35) and (36) we find. to lowest order in the thermal coef­

ficients c11, c.L, for the dispersion relation in the Lab system: 

w2 = w2 (l+a2)-1/2 __ w2(l+a2)-3/2 c + .L --_.,•2(l+a2)-s/2c (37) ,32 1 [ c l 2 
L O 132 - 1 2 0 II 132 - 1 3 0 .L 

showing that the frequency is lower than in the cold plasma case ( c11 = c.L = 0 ). 

2) Super-luminous, longitudinal wave: Ey = E: = 0, lly, u= constants 

The system can now be reduced to tty = tt: = 0 and 

d;;:r = -::: j lF(ur) = W~'Yo [/3ollr + (1 + u;) 1l 2 + cu(l + u;)-3
/

2 + c.L(l + u;r 112]+tro 

(38) 

where 

As for the cold plasma case ( ell = c .L = 0) the solution can be found in terms of 

elliptic integrals. 

To conclude the super-luminous case it should be mentioned that the "ther_mal:' 

coefficients c.Lcll, which represent the corrections to the cold plasma results, can 

be expressed in terms of more "physical" quantities, namely the parallel and per­

pendicular (with respect to wave propagation) average kinetic energies (or "tem­

peratures"). Defining: 

TL = ( < (qr - Pr)2 >) /2m = ( < q; > - < Pr >2 )/2m• 
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where l!.. =< '1 > and < qr' >= J d3q qf f / J d3qf and calculating the averages 

using the assumption (24) one finds: 

T1. = mc2c1. T1. = mc2c1. 
(T - 'Wave) (L - ,vave) (39) 

T _ I 2 ( + a
2 132 2) T _ I 2 / 2 L - 2mc "Yo ell CJ.1+a2 o lo L - 2777,C ell lo 

The "thermal" state of the plasma, far from equilibrium in the presence of a large 

amplitude wave, is given through the T1. and TL coefficients, with TL,l. ~ mc2 for 

the validity of the expansions in the present model. 

Finally let us consider the case of the sub-luminous wave. For the cold plasma 

case 1.:1 = k2 • 0 equation (28) can be written as: 

d
2
u 8U(u) [ 1 ] 

dr2 = - ou 'U(u) = ..v~,o 1l - /3o(u2 - 1)1 2 'T = x/c 

which is formally equivalent to the 1 - D motion of a particle ( "coordinate" u) in 

a potential U( u ), interpreting T as ••time". 

It is well known that extending this analogy to "conservation of mechanical 

energi', that is: 

1 (d )2 

2 d; + U(u) = U(u 0 ) 

it is possible to find the maximum "velociti' of .P~rticle "motion\ · corr.esponding 

to a wave-breaking field 

For the present case equation (28) can again be written in the form ( 40) introducing 

a generalized potential U( u, ki, k2 ) but the same analysis is no longer possible 

because as the field increases the domain D( </>) changes ( see equations 20,21) with 

the result that part of the region where / 0 "/=- 0 could be left out of the integration 

for some value of</> and the result of the integral (20) would no longer be valid. 

The conclusion is that a discussion of wave-breaking for a "warm" plasma ~, 

requires a detailed knowledge of the distribution function and is i:iot possible in 

any "fluid" approximation. 
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As for the wave-forms it can be shown that equation (28). in analogy with the 

cold plasma case of Tsytovichf2l, can be solved with elliptic integrals. 
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