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Abstract

An analytical solution is derived for predicting low Reynolds number rarefied gas
flow past an unconfined sphere.  In Stokes’ original analysis of creeping flow past a
sphere, a continuum flow hypothesis was implemented and no-slip boundary
conditions were utilised on the surface.  However, when the size of the sphere
approaches the mean free path of the gas molecules, Stokes’ continuum hypothesis
breaks down and it is then important to account for rarefaction effects.  In the present
work, Stokes’ solution has been extended for use in the slip-flow regime which is
valid for Knudsen numbers, 0.1Kn ≤ .  The total drag on the sphere is shown to be
equivalent to Stokes’ solution for continuum flows multiplied by a rarefaction
coefficient which is dependent upon the Knudsen number.

Applying the slip-flow technique to the estimation of the terminal velocity of a
microsphere shows that rarefaction effects increase the predicted settling speed.  This
result is confirmed by comparing the analytical solution with the experimental
terminal velocities obtained in Millikan’s landmark oil drop experiment.  An
additional validation study has also been conducted which compares the analytical
drag formulae against numerical predictions from a finite-volume Navier-Stokes
solver.



1 Introduction

The rapid progress in fabricating and utilising Micro Electro Mechanical Systems
(MEMS) during the last decade has led to considerable research in the unconventional
physics involved in the manufacture and operation of miniaturised devices [1,2,3].
Such devices have been widely used in instrumentation, micro-reactors, actuators and
“lab-on-a-chip” bio-chemical sensors.  Although successful fluid manipulation is
often crucial to the overall operation of a MEMS device, microfluidic systems
frequently rely on trial-and-error design techniques.

One of the main difficulties in trying to predict fluid transport in micron-sized
devices lies in the fact that the continuum flow assumption implemented in
conventional fluid dynamics breaks down because of the very small length scales
involved.  For example, the mean free path of air molecules at standard temperature
and pressure is approximately 70 nm (see Appendix).  Consequently, the ratio of the
mean free path of the molecules to the characteristic dimensions of a MEMS device
can be appreciable.  This ratio is referred to as the Knudsen number and as it
increases, the momentum transfer starts to be affected by the discrete molecular
composition of the fluid; in other words the gas begins to exhibit non-continuum flow
effects.  Until recently, non-continuum flows were only encountered in low-density
(rarefied gas) applications such as vacuum or space-vehicle technology.  One of the
main distinctions between conventional rarefied gas dynamics and microfluidic
processes lies in the fact that rarefaction effects in MEMS take place at normal
operating pressures.  The small lengths and fluid velocities employed in MEMS also
lead to extremely low Reynolds numbers.  Consequently, the analysis of gaseous
transport in microfluidic devices often involves the intriguing combination of rarefied
gas dynamics and ultra low Reynolds number (creeping) flows.

Increasing research emphasis has been directed towards the extension of
existing Navier-Stokes codes to include rarefaction effects [4,5,6].  Additionally,
analytical solutions have been developed for a number of simple device geometries
including long straight microchannels [7-13].  The present study describes an
extension of Stokes’ analytical solution [14] for creeping flow past a sphere which
takes into account rarefaction (non-continuum) effects.  The analysis follows the slip-
flow methodology originally proposed by Basset [15].  Specifically the present
analysis has been directed towards the estimation of the individual drag force
components experienced by a microsphere subjected to unconfined low Reynolds
number gas flow.  The analytical method may have important implications in
estimating the terminal velocity and sedimentation of micron-sized particulates, as
well as providing an analytical solution to validate micro-scale hydrodynamic codes.

2  Governing hydrodynamic equations of creeping flow

The Navier-Stokes equations governing the flow of an incompressible, Newtonian
fluid of constant viscosity can be written as

0∇ ⋅ =r

u (1)
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where u
r

 is the velocity vector, D/Dt is the total derivative, p is the pressure, ρ  is the
fluid density and µ  is the coefficient of dynamic viscosity.  Consider a flow having a
characteristic length Lc and characteristic velocity Uc.  The Navier-Stokes equations
can be non-dimensionalised with respect to the following dimensionless variables:
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Substitution into the continuity equation (1) yields
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whilst substitution into (2) gives
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which can be rewritten as
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where /c cRe U L= ρ µ .  Thus for small Reynolds numbers, typically Re < 1, the inertia
terms on the left-hand side of the momentum equation (6) can be neglected, giving
Stokes’ equation:

2p u∇ = µ∇ r

(7)

represented here in terms of the original variables.  By taking the curl and then the
gradient of eqn. (7), it can be shown that both the vorticity, ωr  and pressure satisfy
Laplace’s equation:

2 0∇ ω =r

(8)
and

2 0p∇ = (9)

In planar two-dimensional flows the vorticity vector ωr  has a single scalar component
which can be found by introducing the streamfunction, ψ .  Specifically, the vorticity
is related to the streamfunction by:



2ω = −∇ ψr

(10)

and hence eqn. (8) can be rewritten as a biharmonic equation:

4 0∇ ψ = (11)

3  Slip flow around a solid microsphere

Consider a stationary solid microsphere of radius, a in an unbounded incompressible
Newtonian fluid of density, ρ  and viscosity, µ  as shown in Figure 1.  The flow
infinitely far from the sphere is of uniform speed U∞ .  It is convenient to use spherical
polar co-ordinates ( , , )r θ α  to analyse the problem, with the origin at the centre of the
sphere and 0θ =  aligned in the direction of U∞ .  Since the flow field is axisymmetric,
u
r

 and p are independent of α.  In addition, as the approach flow is free from swirl,
the entire flow domain will be free from swirl and consequently u

r

 has no component
in the α-direction.  It is therefore possible to analyse the problem as a planar two-
dimensional flow and work in terms of Stokes’ streamfunction, ψ :
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The streamfunction for creeping flow in a spherical polar co-ordinate reference
frame satisfies the following equation:
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as detailed by Lamb [16], Richardson [17] or Ockendon et al. [18].  Note that in the
case of spherical co-ordinates, 2E  does not equal 2∇ .

Equation 13 is a fourth-order partial differential operator on ψ and therefore
requires four boundary conditions for its solution.  The boundary conditions are
determined by considering the constraints on the velocity field:

Zero normal flow on the surface of the sphere:

0 at , 0ru r a= = ≤ θ ≤ π (14)

Slip flow around the surface of the sphere:

To account for non-continuum flow effects around the microsphere, the Navier-
Stokes equations are solved in conjunction with the slip-velocity boundary condition
proposed by Basset [15]:

t tuτ = β (15)



where ut is the tangential slip velocity at the wall, tτ  is the tangential shear stress on
the wall and β  is the slip coefficient.  Schaaf & Chambre [19] show that the slip
coefficient can be related to the mean free path of the molecules as follows:

2
µβ =

− σ  λ σ 

(16)

where N is the viscosity of the gas, σ is the tangential momentum accommodation
coefficient (TMAC) and λ is the mean free path.  For an idealised wall (perfectly
smooth at the molecular level), the angles of incidence and reflection of molecules
colliding with the wall are identical and therefore the molecules conserve their
tangential momentum.  This is referred to as specular reflection and results in perfect
slip at the boundary.  Conversely, in the case of an extremely rough wall, the
molecules are reflected at a totally random angle and lose their tangential momentum
entirely; referred to as diffusive reflection.  For real walls, some of the molecules will
reflect diffusively and some will reflect specularly, and so the tangential momentum
accommodation coefficient, σ , is introduced to account for the momentum retained
by the reflected molecules. Theoretically, the coefficient lies between 0 and 1 and is
defined as the fraction of molecules reflected diffusively. The value of σ depends
upon the particular solid and gas involved and also on the surface finish of the wall.
TMAC values lying in the range 0.2-1.0 have been determined experimentally by
Thomas & Lord [20] and Arkilic et al. [21].

Equations (15) and (16) can be combined and rearranged to give

2
t tu

− σ λ= τ
σ µ

(17)

which can be recast in terms of the Knudsen number, Kn as follows:

2
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u
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where Kn is defined as the ratio of the mean free path of the molecules (λ) to the
radius of the sphere:

Kn
a

λ= (19)

In the present analysis, the tangential shear stress on the surface of the sphere is
denoted as rθτ  and the tangential velocity is simply uθ .  Consequently, the slip flow
boundary condition (18) can be rewritten as

2
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Kn a
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− σ= τ = ≤ θ ≤ π
σ µ

(20)



Flow conditions at infinity:

As r → ∞ , the flow becomes a uniform stream of velocity U∞  in the 0θ = direction
which implies that

cosru U∞= θ (21)
and

sinu Uθ ∞= − θ (22)

Equation (22) can therefore be integrated to evaluate the streamfunction distribution
as r → ∞ :

2sinU r dr∞ψ = θ⌠

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(23)

giving
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Hence, 2( ) sinψ θ ∝ θ , but ( )rψ  is not as straight forward as 2( )r rψ ∝ due to the
velocity constraints on the surface of the sphere.  The boundary conditions are
prescribed at particular values of r (with θ  being arbitrary), and therefore separating
the variables leads to a solution of eqn. (13) in the form:
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Substituting eqn. (25) into (13) gives
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Equation (27) is a linear, fourth-order ordinary differential equation.  We assume a
solution exists in the form:

n
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where Cn is a constant.  Repeated differentiation of eqn. (28) yields
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and substituting the derivatives shown in (29) into equation (27) gives
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which can be simplified to
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Consequently the only possible solutions for n are

1,1 , 2 or 4n = − (32)

Thus the general solution of eqn. (27) takes the form
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where A, B, C and D are constants.  The streamfunction for creeping flow past a
sphere therefore takes the form
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Comparing eqn. (34) with the boundary condition shown in (24) reveals that D
must be zero. If 0D ≠ , then in the limit as r → ∞ , the streamfunction would vary
according to 4r and would contravene the 2r  variation implied in eqn. (24).  Thus it
follows that
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Substituting eqn. (34) into (12) yields
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Inserting the values evaluated in (35) into the above expressions therefore leads to
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Prescribing the zero normal flow condition detailed in eqn. (14) results in
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For no-slip flows, as in the case of Stokes’ original solution, the coefficients A and B
are readily determined from (39) with 0 atu r a� = = .  However, in the present
analysis, a second expression relating A and B is found using the slip-flow constraint
of eqn. (20).  In spherical co-ordinates, the shear stress acting on the " constant"r =
plane in the θ-direction can be found from
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But on the surface of the sphere
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Substituting eqns. (41) and (42) into the slip-flow boundary condition (20) gives
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It is convenient at this stage to define
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to simplify the resulting equations. Thus, eqn. (43) becomes
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which can be rearranged to give
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Differentiating eqn. (39) with respect to r yields
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and substituting the result into eqn. (46) gives
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Additionally, the tangential velocity on the surface of the sphere can be determined
from eqn. (39):
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Equating (48) and (49) gives
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Solving for A and B from (40) and (50) finally yields
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As an aside, allowing 0Kn′ →  (continuum flow) results in the familiar values
obtained in Stokes’ solution:
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4  Determination of the drag on the microsphere

The drag on the microsphere is composed of three separate components, namely skin-
friction drag, normal stress drag and pressure (or form) drag.

4.1  Drag due to skin-friction

In spherical co-ordinates, the shear stress acting on the " constant"r =  plane in the θ-
direction can be found from
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But on the surface of the sphere

0ru∂ =
∂θ

(54)

Substituting eqns. (47), (49) and (54) into (53) and taking r a= gives the shear stress
distribution on the surface:



4
6 sinr r a

A

aθ =
τ = − µ θ (55)

The drag experienced by the sphere can then be found by resolving the shear stress in
the direction of the incident free stream velocity and integrating the stress distribution
around the entire surface, S.  Specifically,
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Consider a surface element composed of constantθ =  and constantα =  lines
subtending angles of dθ and dα.  The surface area of the element, dS , is given by
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Therefore the drag can be rewritten as
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Inserting the shear stress from eqn. (55) leads to
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and substituting for A from eqn. (51) yields
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4.2  Drag due to normal stress

The shear stress acting on the " constant"r =  plane in the r-direction is given by
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rr

u

r

∂τ = µ
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In the case of continuum flows ( 0Kn → ), it can be shown that the normal stress
component is zero on the surface of the sphere and consequently the drag must also be
zero.  However, in the present analysis, the slip velocity boundary condition generates
an additional drag component.

Differentiating eqn. (38) with respect to r and letting r a= gives
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and therefore the normal stress on the sphere is found to be
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Again the drag is obtained by integrating the stress distribution around the surface of
the sphere, giving
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Substituting the normal stress from eqn. (63) into (64) yields
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and inserting the values of A and B from eqn. (51) then gives the drag due to the
normal stress as follows:
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It should be noted that substitution of the continuum flow solution ( 0Kn′ = ) into the
above equation results in zero drag, as expected.

4.3  Drag due to pressure distribution

The pressure distribution on the sphere is found by integrating Stokes’ equation (7)
using the velocity components defined in eqns. (38) and (39).  Integration from a
point at infinity where the pressure is p∞ to a point at radius, r leads to
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Substituting for B from eqn. (51) then yields
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Integrating the pressure distribution around the surface of the sphere and noting that



the force on an elemental section of the surface due to the pressure is directed inwards
towards the centre of the sphere gives
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Substituting eqn. (68) into (69) and cancelling the term involving p∞  which is
constant and does not contribute to the drag leads to
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Hence the drag due to the pressure distribution (the so-called “form-drag”) is given by
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4.4  Summary of drag formulae

The previous sections have detailed the individual drag components acting on the
microsphere.  The total drag experienced by the sphere is then found by summing
these separate components.  First, we recall the three drag components:

1
Skin-friction drag 4
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Summing the components gives

1
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which can be rewritten as
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It can be seen that the total drag on the sphere is composed of Stokes’ drag law
( 6 U a∞πµ ) for continuum flows multiplied by a rarefaction coefficient dependent
upon the Knudsen number:
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Writing the above rarefaction coefficient in terms of the true Knudsen number then
gives the total drag expression as

2
1 2

Total drag 6
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5 Application of slip flow past a sphere - correction for the terminal
      velocity of a free-falling microsphere

One of the most practical applications of slip flow past a sphere is the determination
of the terminal velocities of minute particles settling in a gas.  When the diameter of
the particles approaches the mean free path of the gas molecules, it is important to
account for non-continuum flow effects.  The analysis is best exemplified by
Millikan’s oil drop experiment for the measurement of the charge of an electron
[22,23].  Millikan employed oil drops having a radius of the order of 10-6 m and
measured the mass of the drops by observing their terminal velocities.  He was aware
of the limitation of Stokes’ Law as the size of the oil drops diminished, and proposed
an empirical first-order correction technique to allow for rarefaction effects.  The
present analytical solution allows us to revisit Millikan’s approach and demonstrate
the applicability of the slip-flow analysis.

Consider a spherical oil drop of radius, a and density, Soil settling at a terminal
velocity, U in air of density, Sair.  Equating the downwards gravitational force on the
drop to the upwards buoyancy and drag forces, and utilising the analytical slip-flow
correction given in eqn. (76) yields

3 34 1 2 4
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3 1 3 3oil air
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or
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Rearranging for the terminal velocity then gives

22 1 3
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and therefore the correction factor to be applied to the terminal velocity due to the
Knudsen number can be expressed as
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(82)

Without recourse to an analytical solution, Millikan realised that the increase in
terminal velocity above the value predicted by Stokes’ Law should be some function
of  l / a : (the term Knudsen number was not used at the time).  Millikan argued that
the terminal velocity of the oil droplets should have the general form

22
( ) 1

9 oil air
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U f

a

 λ  = ρ − ρ +   µ   
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In the absence of further information, Millikan expressed the function, f as a power
series:

2 3

...f A B C
a a a

λ λ λ     = + + +          
(84)

where A, B, C etc. are constants.  By assuming that the departure from Stokes’ Law
was small, Millikan neglected the second-order terms in eqn. (84) and therefore
expressed the terminal velocity as
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 λ  = ρ − ρ +   µ   
(85)

where A was a dimensionless constant which was found experimentally to be 0.874.
Ignoring the motion of the oil inside the drop and assuming a tangential

momentum accommodation coefficient of unity allows a direct comparison of
Millikan’s results with the analytical correction factor given in eqn. (82).  Figure 2
compares the velocity correction factors and shows that the present analytical method
and Millikan’s experimentally determined correction are in good agreement over the
lower range of Knudsen numbers ( 0.1Kn ≤ ).  For higher Knudsen numbers, the slip-
flow extension of the Navier-Stokes equations is no longer justifiable since the
Navier-Stokes equations are only first-order accurate in Knudsen number [6].
However, Millikan’s linearised correction technique cannot be justified for large Kn



either.  The agreement between the experimental and theoretical predictions at lower
Knudsen numbers therefore confirms the applicability of the slip-flow analysis.

6  Numerical validation

The proposed analytical solution is ideal for validating numerical models operating in
the slip-flow regime ( 0.1)Kn ≤ .  In the present study, the analytical drag formulae
have been used to validate a slip-flow extension of the boundary-fitted Navier-Stokes
solver developed by the Computational Engineering Group at CLRC Daresbury
Laboratory [24].  Instead of considering an unconfined flow geometry, the numerical
simulations employed a sphere inside a circular pipe as illustrated schematically in
Figure 3.  This geometry is commonly utilised in macro-scale spinning rotor gauge
devices for the determination of pressure, viscosity or molecular weights in low
pressure gases [25,26].  The problem has also been studied numerically over a wide
range of Knudsen numbers by Liu et al. [27].  Simulating different blockage ratios
( /H D ) allows an assessment to be made of the asymptotic approach to the
unconfined flow situation.  In the present study, blockage ratios between 2:1 and 40:1
were considered.  The problem was simplified by assuming that the flow was
axisymmetric and incompressible (low Mach number).  Numerical tests accounting
for compressibility showed very little difference in the flow solution and therefore
justified the low Mach number simplification.

A parabolic slip-flow profile was prescribed at the inflow of the computational
domain and the upstream and downstream boundaries were located sufficiently far
away from the sphere so as to not to affect the flow solution.  The drag components
on the sphere were computed using numerical integration of the stress distributions.
Rarefaction effects were included in the Navier-Stokes solver using the slip-flow
boundary condition presented earlier:

2
t t

Kn a
u

− σ= τ
σ µ

(86)

The model was run at various Reynolds numbers less than 1.0 and all simulations
showed remarkably similar normalised drag components.  The results presented here
utilise a Reynolds number, Re, of 0.125 where

U a
Re

ρ=
µ

(87)

and U is the mean velocity inside the pipe.
Figure 4 presents the variations in the computed drag components on the sphere

as a function of Knudsen number for the widest blockage ratio considered (40:1).  The
drag components have been normalised with respect to Stokes’ Law ( 6 U a∞πµ ) so as
to allow a direct comparison against the continuum flow solution.  It should be noted
that the analytical drag results presented in Figure 4 have been computed by
multiplying the unconfined flow equations by a factor of two to account for the fact



that the velocity at the centre of the pipe is twice the mean value.  Figure 4 shows
very good agreement between the numerical and analytical solutions over the range of
Knudsen numbers considered.  Small discrepancies can be seen in the numerical
predictions of the drag due to the normal stress, but these are thought to be caused by
inadequacies in the mesh close to the sphere.  This can be confirmed by noting that
the numerical model fails to predict a normal stress drag component of zero in the
continuum flow regime ( 0Kn → ).  The numerical model predicts slightly larger drag
forces than the analytical solution but this is to be expected since the sphere is still
experiencing a slight blockage effect within the pipe.  Nevertheless, the general
agreement between the predictions appears to confirm the validity of the numerical
solution.

7  Conclusions

An extension of Stokes’ analytical solution for creeping flow past a sphere has been
derived which accounts for rarefaction (non-continuum) effects in gases. The analysis
has shown that the total drag experienced by the sphere is equivalent to Stokes’
solution for continuum flows multiplied by a rarefaction coefficient dependent upon
the Knudsen number. The analysis is applicable to the slip-flow regime and is valid
for Knudsen numbers less than 0.1.

The analytical drag formulae have been validated against experimental results
from Millikan’s oil drop experiment.  When the size of an oil drop approaches the
mean free path of the gas molecules, rarefaction effects increase the terminal velocity
above that predicted by Stokes’ continuum solution.  The present slip-flow analysis
yields very good agreement with the empirical drag correction technique proposed by
Millikan.

The analytical solution for the total drag contains three contributing
components: pressure drag, skin-friction drag and normal stress drag.  These
components can be used to validate CFD codes that have been extended to model
gaseous transport in micro-scale geometries.  For the flows under consideration, a
finite-volume Navier-Stokes solver has been modified to account for the slip-
boundary conditions found at solid walls.  Close agreement between the analytical
and numerical results has been demonstrated and confirms both the validity of the
numerical code and the benefit of the analytical slip-flow solution.
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Appendix

For an ideal gas modelled as rigid spheres of diameter, σ , the mean distance travelled
by a molecule between successive collisions or mean free path, λ, is given by [28]:

22

k T

p
λ =

π σ
(1)

where,
23

2

Boltzmann’s constant 1.380662 10 J / K,

temperature (K),

pressure (N/m ) and

collision diameter of the molecules (m).

k

T

p

−= = ×
=
=

σ =

At standard ambient conditions ( 5 210 N/m  and  T 298.15 Kp = = ), the expression
becomes:
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2

9.265 10−×λ =
σ

(2)

For air, the average collision diameter of the molecules is 103.66 10−× m giving a mean
free path of 86.92 10−× m (or 69.2 nm).

The table below details the collision diameters of other common gases.

Gas σ (m)

Air 3.66q10-10

Ar 3.58q10-10

CO2 4.53q10-10

H2 2.71q10-10

He 2.15q10-10

Kr 4.08q10-10

N2 3.70q10-10

NH3 4.32q10-10

Ne 2.54q10-10

O2 3.55q10-10

Xe 4.78q10-10

Table A1:  Collision diameters of common gases [28]



ur
u �

(r,R,B)

U �

Uniform flow stream
(Re << 1.0)

p � x

y

Sphere

R

a

trrtr
�

Figure 1:  Problem formulation



Figure 2:  Variation of terminal velocity of oil drops as a function of
Knudsen number (Kn)
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(b) Axisymmetric flow domain for H / D 4=

Figure 3:  Confined flow past a sphere in a circular pipe

(a) Flow geometry



Figure 4:  Variation of drag components as a function of Knudsen number (Kn) for a
blockage ratio of H / D 40=
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