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Abstract 

The nonlinear interaction of ultra-short pulse high brightness lasers with a 
uniform plasma is studied numerically in 1-D. Apart from the usual non­
linear steepening and periodic lengthening of the plasma wave modification 
of the laser pulse also occurs if the pulse has a relatively long trailing edge 
compared to the leading edge. This induced modulation results in the for­
mation of spikes on the laser pulse which are coincident with the Langmuir 
wave density maximum. 

Introduction 

Recently attention has focused on charged particle acceleration in a plasma by a 
fast, large amplitude, longitudinal electron plasma wave. The plasma beat wave and 
plasma wakefield accelerators are two efficient ways of producing ultra-high accelerating 
gradients. Starting with the plasma beat wave accelerator (PBWA) and laser wakefield 
accelerator (LWFA) schemes proposed by Tajima and Dawson[1J in 1979 and the plasma 
wakefield accelerator (PWFA) also proposed by Dawson[2J and co-workers in 1985, steady 
progress has been made in theory, simulations and experiments. 

In the beat wave accelerator, two laser beams of nearly equal frequencies resonantly 
beat in a plasma in such a way that their frequency and wavenumber differences corre­
spond to the plasma wave frequency and wavenumber. For co-propagating laser beams 
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the plasma wave phase velocity Vph = (w1 -w2)/(k1 - k2) ~ wpe/kp is equal to the group 
velocity of the laser beams which is slightly less than c, the velocity of light, if the laser 
frequencies are much greater than the plasma frequency. A very similar mechanism is 
involved in the stimulated Raman scattering process. The group velocity of the plasma 
wave is essentially zero for a cold plasma, so that the excited plasma wave is left behind 
as the laser pulse propagates through the plasma. The laser pulse therefore always 
propagates into regions of undisturbed plasma leaving a large amplitude plasma wave 
behind which will eventually evolve into plasma turbulence. 

Electrons which are injected with velocities close to the phase velocity of the plasma 
wave can be trapped and accelerated to higher energies. A significant experiment on 
the plasma beat wave accelerator was carried out by Joshi's group at UCLAl3l where an 
accelerating field of 1 GeV /m was demonstrated, similar fields have since been reported 
by the Imperial College and RAL group14l, using a neodimium glass laser and similar 
plasma density's to that used by the UCLA group. 

In the LWFA, a short pulse of laser light, whose frequency is much greater than 
the plasma frequency, excites a wake of plasma oscillations due to the ponderomotive 
force. Since the plasma wave is not resonantly driven as in the beat wave accelerator the 
plasma density does not have to be of a high uniformity to achieve large amplitude waves. 
With the rapid development of high brightness lasers such as the lOJ, lps (Tabletop 
Ten Terawatt) system developed by the LLNL groupl5l, which could eventually be the 
front end of lkJ, lps (Petawatt) system, the LWFA is a promising source of energetic 
particles of the order of 10-lOOGeV in distances of the order of a meter. The focal 
intensities of such lasers will be~ 1019W/cm2 with Voae/c ~ 1, where Voae is the electron 
quiver velocity in the laser field, which is the strong nonlinear relativistic regime of the 
LWFA, any analysis must therefore be in the strong relativistic regime. 

The PWFA on the other hand does not require the use of lasers only a high current 
but low energy relativistic electron beam, which is injected into a cold plasma. As 
in the two-stream instability, the streaming electrons lose energy to the background 
plasma by exciting a plasma wave. The phase velocity of the plasma wave is tied to 
the velocity of the injected electrons, which is close to c. The concept of the PVVFA 
has been known since the late 50's when theory and experiments were carried out by 
the Sovietsl6 ,71. Because of the need for ultra-relativistic beams no detailed studies, 
however, were carried out until recently by Dawson121 and his group at UCLA, with 
experiments being carried out at Argonne National Laboratory (s,9]. The results of 
these experiments have directly verified the existence of electron acceleration in plasma 
wakefields by the injection of a test bunch of electrons into a beam-driven plasma wave. 
The experiments validated relevant predictions of linear wavefield theory such as the 



3 

excitation and structure in both the longitudinal and transverse directions of the excited 
plasma wave. A number of drawbacks associated with the plasma heatwave scheme have 
to be overcome ( a) the necessity for very uniform plasma (b) plasma wave saturation due 
to relativistic frequency detuning (c) the resonance condition requires fine laser tuning. 
Plasma waves excited by either short pulse lasers (PLWA) or by charged particle beams 
(PWFA) appear to be easier a.nd more efficient than the beat wave excitation. In the 
wakefield scheme since the excitation is due to a single pump all the problems raised by 
the resonance condition are absent and the plasma. wave can grow to larger amplitudes. 

Numerical solution of model equations describing laser wakefleld excitation. 

Using a model based on the one fluid, cold relativistic hydrodynamics and Maxwell 
equations together with a "quasi-static" approximation a set of two coupled nonlinear 
equations describing the self-consistent evolution in 1-D of the laser pulse vector po­
tential envelope and the scalar potential of the excited wake-field are derived. Starting 
from the equation for electron momentum 

8p 8p ( 1 ) - + Vz- = - eE + -v X B 
8t 8z c 

(1) 

where 

( 2; 2 2)1/2 
p = mo"}'V, "}' = 1 + p m 0c , 

m0 and v being the electron rest mass and velocity. 

In eq. (1) we have assumed that all quantities only depend on z and t, z being the 
direction of propagation of the (external) pump and 

18A1. A8</> 
E = ---- - z- ; B = v' x A1.; A1. = xAz + yAy, 

c 8z 8z 
(2) 

Where A.1 is the vector potential of the electromagnetic pulse and</> the ambipolar 
potential due to charge separation in the plasma. 

Using eqs. (1) and (2) the perpendicular component of the electron momentum is 
found to be 

P1. e 
- = --A1. = a(z, t) 
moc m 0c2 

(3) 

and we can write 
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[ 
2 2] 1/2 

'Y = 1 + (!~c) + (;:c) = 'Ya'YII (4) 

where 

( )
1/2 ( )-1/2 

'Ya = 1 + a 2 ; 'YII = 1 - {32 (5) 

and {3 = Vz/c 

The equations derived from this model are now the longitudinal component of eq. 
(1), the equation of continuity, Poisson's equation and the wave equation for a(z, t), 
which are given by 

1 a ( V 2 ) a ( ) _ 8</J. _ e</J 
~ &t 'Ya'Y11 - 1 + 8z 'Ya'YII - 8z' cp = moc2 

(6) 

(7) 

{8) 

82a 82a n a 
c2---=w2 ---. 

8z2 {Jt2 pO no 'Ya'YII 
(9) 

Assuming a driving pulse of the form 

1 ' (J a(z, t) = 2ao(e, T )e-• + C.c., (10) 

where()= w0 t - k0 z,w0 and k0 being the central frequency and wave-number, e = 
z - v9t and v9 = 8w0 / 8k0 is the group velocity and T is a slow time-scale such that 

accounting for changes in the pump due to the plasma reaction, the wave equation 
becomes 
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[ 
8 (· 8a0 ) 2 ( 2 / 2) 8

2
ao . (c

2
ko ) 8aol -iB 2 lJT IWoao + Vg lJ{ + C 1 - Vg C ae2 + 2iWo Wo - Vg ae e + C.C. 

= c2ki-wi + -~ aoe-•0 + c.c. [ 
n w

2 l . 
no "Ya"YII 

(11) 

where wp0 is the plasma frequency of the unperturbed plasma. Equations (6), (7), 
(8) a.nd (11) form the basic set for this problem in the "envelope approximation". 

A simplified set of equations for the weak pump, weakly-relativistic regime ie. laol 2 < 
1, {32 < 1 was derived a.nd solved by Gorbunov et all101 and Sprangle et aU11J The 
solution has the structure of a wake-field growing inside the e.m. pulse and oscillating 
behind the pulse with the maximum amplitude being reached inside the pulse. Using 
the quasi-static approximation the time derivative can be neglected in the electron fluid 
equations (6) and (7) yielding the following constants 

(12) 

( 13) 

where {30 = v9 / c. The constants of integration have been chosen in such a way that 

n = no,"Yu = 1,<p = 0 

for 
"Ya = 1 (laol2 = 0) (14) 

Using equation (12) and (13) general system (6)-(9) can be written as two coupled 
equations describing the evolution of the laser pulse envelope 8o and the scalar potential 
<p 

lJ2<p wl,a 
8(2 = c2 G (15) 

(16) 
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where 

,/y2 - 1 (3 
G- 11 H - 1 - 0 

- ,8o'Y11 - ,/r1l - l ' - 'Ya (,Bo'YII - J'Yff - 1) 

The present set of nonlinear equations {15) and {16) are obtained using a quasi­
static approximation, which yields two integrals of the motion given by equations (12) 
and {13). The model is valid for electromagnetic pulses of arbitrary polarization and 
intensities laol 2 2:: 1. 

A simplified version of equation (15) for (30 = 1 and a0 = constant has been solved by 
Tsintsadze[12J while the coupled system for (30 = 1 has been solved by Bulanov et al[13l, 
Sprangle et al[14J considered the solution of equation (15) together with an equation 
describing the full wave equation for a without the envelope approximation but still for 
the limiting case of (30 = 1. A review of the different approaches and limitations can be 
found in de Angelis[lS) as well as a full derivation of the present model. 

The set of coupled nonlinear equations (15) and (16) are solved numerically in the 
stationary frame of the pulse. Eq. (15), Poisson's equation for the wakefield, is solved 
with the initial conditions cp = O, i- = 0 by a simple predictor-corrector method. The 
envelope equation (16) describing the evolution of the laser pulse is written as two 
coupled equations for the real and imaginary parts of a0 and solved implicitly. 

The present model based on a quasi-static approximation yields two integrals of 
motion equs. (12) and (13). The quasi-static approximation used states that[14) if the 
laser pulse is sufficiently short, the fields a0 and cp are expected to evolve slowly during a 
transit time of the plasma throught the laser pulse. In this approximation the quantity 

l 

'Ye = 'Ya ( 'Yil - 1) 2 is a constant. The quantity 'Ye is checked continuously during the 
numerical calculation and it is found to change slowly with time, the greater a 0 the 
sooner 'Ye changes. Table 1 shows for different input parameters, the number of plasma 
periods after which 'Ye changes by 25%. Clearly the quasi-static approximation is more 
valid for lower values of a0 and wpo/w0 , this quantity is checked frequently during the 
calculation and is found to eventually change after a number of plasma periods, the 
greater a0 the sooner 'Ye changes. Numerical solutions of equations 15 and 16 showing 
the evolution of the excited plasma wake-field potential cp and electric field Ew as well 
as the envelope of the laser pulse is shown in Figs 1 and 2. In all the figures we 
have plotted the fields as normalized quantities cp = e</>/m0c2 

, Ew = elEl/m0cwp0 and 
laol = ,:~~2 , defined previously. The horizontal scale in all cases is the position~= z-v9 t 
normalized by the plasma wavelength >.p, with the pulse propagating from left to right, 
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time is in terms of the plasma period, Tp = 21r/wp0, la~"I signifies the peak amplitude of 
the normalized initial vector potential of the lase pulse and finally qr and q J represent 
the Gaussian pulse rise an fall coefficients respectively (for a symmetric pulse qr= (11), 
The present study considers different pulse shapes. Figure 1 shows the evolution of 
laol, '{) and the electric field Ew at time t = 2Tp for similar parameters considered by 
Tsintsadzel121. It is obvious that the most efficient pulse shape for wavefield generation is 
the one with a steep leading edge and a long trailing edge. Figure 2 shows the evolution 
of lao I,'{) and Ew at two different times, at late times there is significant distortion of 
the trailing edge of the laser pulse resulting in photon spikes. Figures 3 and 4 show 
the time development of the laser pulse vector potential la0 I, both real and imaginary 
parts, the potential <.p and the normalized density perturbation 6n/n0 for a pulse with 
a sharp rise and a long trailing edge. The position of the amplitude spikes occurring 
on the laser pulse coincides with the maximum in 6n/no. This distortion occurs where 
the wake potential has a minimum and the density has a maximum. The spike arises 
as a result of the photons interacting with the plasma density inhomogeneity with 
some photons being accelerated (decelerated) as they propagate down (up) the density 
gradient this effect was predicted by Dawson is called the photon accelerator1161. The 
distortion of the trailing edge increases with increasing wp0/w0 • For a square wave 
pulse, pulse distortion is found to occur at the leading edge, as shown by Bulanov et 
all13J and also by our present simulations figure 5. Finally we find that from figure 2 
the longitudional potential ~t2 > 1 or m:~, c > 1, is significantly greater than fields 
abtained in the PBWA, which are limited by relativistic de-tuning, no such saturation 
exists in the LWFA, and the pulse distortion observed is equivalent to pulse compression 
in real space and therefore leads to frequency broadening. 

Conclusions 

An envelope equation describing in 1-D the evolution of an electromagnetic pulse 
together with the equation describing the wakefield potential solved in the stationary 
frame of the pulse without the restriction of /30 = 1. The solutions show a strong 
distortion effect on the E.M. pulse, namely the generation of a short intensity spike 
which coincides with the maximum of the plasma density perturbation. This intensity 
spike will have the effect of broadening the frequency spectrum of the pulse. Various 
pulse shapes are solved for, with the most effective shape for wavefield generation being 
a sharp rise with a slowly falling tail. 
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Table 1 

la~"I Wpo/W0 Time t in terms of plasma 

period Tp = 21r / Wpo 

1 0.05 40 

ur = 0.25Ap 0.01 250 

u1 = 0.25Ap 2 0.05 30 

0.10 15 

3 0.05 25 

1 0.05 30 

ur = 0.25Ap 0.01 200 

u1 = 1.50Ap 2 0.05 25 

0.10 10 

3 0.05 20 

1 0.05 50 

ur = 1.50Ap 0.01 250 

u1 = 0.25Ap 2 0.05 50 

0.10 20 

3 0.05 50 

Square 0.01 250 

pulse width 2 0.05 40 

lp = 1.0Ap 0.10 6 
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Figure Captions 

1. The values of the magnitude of the normalised vector potnetial laol (solid curves) 
and scalar potential cp and/or wake-electric field Ew (dashed curves) with position 
{ = z - Vgt, la~"' = ,J8,wp0/wo = 0.01, t = 2Tp. (a) and (b) Gaussian rise and 
fall Ur= Uf = 5c/wp0 = 0.795>.p; (c) and (d) Gaussian rise Ur = c/wp0 = 0.159>.p, 
Gaussian fall UJ = 9c/wp0 = 1.433>.p; (e) and (f) Gaussian rise Ur = 9c/wpo = 
1.433>.p, Gaussian fall UJ = 9c/wp0 = 0.159..\p. Tp = 21r/wpo, is the plasma period 
and >.P = 21rc/wpo, is the plasma wavelength. 

2. The values of the magnitude of the normalised vector potential laol (solid curves) 
and scalar potnetial ~ and/or wake-electric field Ew ( dashed curves) with position 
( = z - Vgt, lab"I = 2,wp0/wo = 0.1. Gaussian rise Ur = 0.25>.p, Gaussian fall 
UJ = 1.5>.p, Curves (a) and (b) are at time t = 0.2Tp; (c) and (d) are at t = lOTp. 

3. The values of the magnitude of the normalized vector potentiasl la0 I (solid curve) 
(the real and imaginary parts) and the scalar potential cp with position~= z-v9 t. 
For a Gaussian rise Ur= 0.25>.p, Gaussian fall <TJ = 1.5..\p, wpo/w0 = 0.05ja~nl = 2. 
Curves (a) and (b) are fort= 0.4Tp, (c) and (d) are fort= 20Tp, (e) and (f) are 
fort= 40Tp. 

4. Evolution of the narmalized density perturbation for the same conditions used in 
figure 3. Curves (a), (b) and ( c) are for the same times also ie t = 0.4Tp, 20Tp and 
40Tp respectively. 

5. The values of la0 12 /2 ( curve 1) and the potential cp ( curve 2) for square pulse-width 
lp = 1.0>.P and la~" I = 2. (a) and (b) are for wpo/ w0 = 0.01, ( c) and ( d) are for 
wpo/w0 = 0.05, (e) and (f) are for wpo/w0 = 0.1. Curve (a) is at time t = 2Tp, (b) 
is at t = lOOT,,, (c) is at t = 0.4T,,, (d) is at t = 20T,,, (e) is at t = 0.2Tp and (f) is 
at t = lOTP. 
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