Composition of Reactive System Components

K. Lano, J. Bicarregui, T. Maibaum
Dept. of Computing, Imperial College, 180 Queens Gate, London SW7 2BZ
kcl@doc.ic.ac.uk

J. Fiadeiro
Dept. of Informatics, University of Lisbon, Campo Grande, 1700 Lisbon

Abstract

This paper will present the case for using a formal component-based specification
technique for reactive systems, such as the Object Calculus of Fiadeiro and Maibaum.
The Object Calculus provides a modular, highly declarative and abstract specification
language, suitable for refinement using model-based design notations such as B or VDM.

In the Object Calculus, pre/post style specifications of the effect of actions can be
given, together with temporal logic specifications of expected histories of behaviour of
the system.

Keywords: Temporal logic, Reactive systems, Program specification, Object Calculus,
Specification languages.

Workshop Goals: Investigate application of formal specification in component-based
systems, particularly reactive systems.

1 Background

Temporal logic is an established technique for the specification of reactive systems: it has
the advantage of being declarative and supporting reasoning, and it is sufficiently expressive
for many practical cases. The Object Calculus adds a strong concept of encapsulation and
theory composition to a basic temporal logic formalism [8], which allows reactive system
components to be separately specified, instantiated and combined using category-theoretic
operations, in particular, the co-limit construction:

“given a category of widgets, the operation of putting a system of widgets together
to form some super-widget corresponds to taking the co-limit of the diagram of
widgets that shows how to interconnect them” [10]

Using this integration of category-theoretic structuring and temporal or modal logics, the
development of the Object Calculus has been carried out by research groups at Imperial
College and the University of Lisbon over the last 10 years. It has been taken up by other
research groups and applied to systems of significant complexity, such as the steam boiler
system described here.

In this paper we will use examples from a case study of an established benchmark for formal
methods, the steam boiler system, to illustrate the techniques of abstract and compositional
specification using the Object Calculus.

168

A description of the steam boiler system can be found in [2], together with different ap-
proaches to formal specification of it.

The purpose of the system is to produce a flow of steam from the boiler water tank, without
letting the tank boil dry or overflow. Failures in the measuring devices involved (flow
monitors on the water feed lines, steam level sensor and water level sensor) and the water
pumps must be handled by an appropriate change of mode of the controller — in emergency
situations this may involve a shutdown of the control system. Figure 1 shows the main
components of the system.

Steam Measure

| =

— 2
— N2
Water
Measure
— N1
Pump (*4)
o~ — M1

Pump Controller (*4)

>< Valve

Figure 1: Steam Boiler Components

A specification in the object calculus [8] is constructed as a set of linked theories in a tempo-
ral logic. Formally, it is a diagram of objects in a category of theories and theorem-preserving
morphisms. A theory consists of collections of type and constant symbols, attribute symbols
(denoting time-varying data), action symbols (denoting atomic operations) and a set of ax-
ioms describing the types of the attributes and the effects, permission constraints and other
dynamic properties of the actions. The axioms are specified using linear temporal logic
operators: () (in the next state), ¢ (weak until), O (always in the future) and ¢ (sometime
in the future). There is assumed to be a first moment. The predicate BEG is true exactly
at this time point.

(O is also an expression constructor. If e is an expression, ()e denotes the value of e at
the beginning of the next time interval. e itself denotes its value at the beginning of the
current interval. Several actions may execute in a given interval: the formula o where « is
an action, denotes that « occurs in the current interval. We express the effects of actions
via axioms of the form:

Pre AN« = Post

where Pre is a precondition, a predicate over the current state, and Post describes the
properties of the state that results from execution of « in a state satisfying Pre. It may use
both Oatt and att for attributes att of the theory.

A wide variety of properties can be expressed using such a logic. In particular it seems
appropriate for the specification of the steam boiler problem as the requirements of this
system are expressed in terms of reaction cycles (intervals) where a collection of events

169

(actions) occur, including inputs to the system, its internal reactions, and outputs from the
system to the physical devices. Constraints between the events in a given cycle include that
multiple level messages in a given interval should give rise to a transmission error:

- 3Jy lev : Z - level(lev) = transmission_failure
3, z is the “exists a unique z” quantifier.

Constraints between events in successive cycles include that three successive stop messages
give rise to a termination (in the same cycle as the third stop):

stop A Ostop A O O stop = O Oterminate

and the protocol for failure detection and acknowledgement:

water_measure_failed =
(level_failure_detection U level_failure_acknowledgement)

“If the water measure fails in the current cycle, the message level_failure_detection is re-
peated until a level_failure_acknowledgement message is received.” The use of weak until
means that there is no obligation for an acknowledgement message to ever be received!.

In order to support reasoning about the attributes which may change over a given interval,
we associate to each action the set of attributes which it may change: its write frame. For
each attribute att we then have a locality axiom of the form

att = Quatt V a1 V ... V ay

where the «; are all those actions with att in their write frame.

Theories are connected by means of theory morphisms o which map each attribute symbol
att of the source theory S to an attribute symbol o(att) of the target theory T, each action
a of S to an action o(«) of T, and so forth. Each theorem of S must become a theorem of
T under this translation:

F¢ ¢ implies Fq,o(e)

Preservation of the locality axioms means that no new actions (not in the image of o) can
be introduced in T which directly write attributes att of S. Any action with o(att) in its
write frame must be (or must always co-execute with) the interpretation of some action «
of S where att is in the write frame of o in S.

This form of encapsulation is close to that of B [1]: only operations declared in a given B
module (machine) may directly write to variables declared in that module.

2 Position

The central problem with the specification of reactive systems is obtaining a sufficiently
abstract description to avoid the high numbers of states which make verification difficult.
In particular, we need to be able to describe the allowed sequencing of phases and operations
without coding up details of component implementations.

We believe that the Object Calculus formalism provides a suitable framework for the de-
scription of reactive system components. Such components are often of a generic nature,

!Technically, this means that this property is a safety rather than a liveness property.

170

consisting of variations or enhancements of fundamental physical devices such as valves,
tanks, pumps, etc. Particular systems are built from a combination of these components.
Thus the Object Calculus seems an appropriate formalism for their specification since it
allows convenient extension, adaption and composition of component specifications. More-
over, the key properties of such components concern their dynamic and reactive behaviour,
for which temporal logic is ideally suited.

In the following sections we illustrate the use of the object calculus in specifying the steam
boiler control system.

2.1 Abstract Specification

At the most abstract level, all actions of a system can be assumed to occur in intervals
without overlap. An interval at this level of abstraction represents a cycle of the concrete
system.

A theory SData gives definitions of the types and constants used in the system, and will be
included in each of the other theories:

Types
PState = {running, off }
PCState = {flow, noflow}
Condition = {failed, operating}
@Pump = {pl, p2, p3, p4}

Constants
M1:N /* Minimum water level */
M2:N /* Mazimum water level */
N1:N /* Minimum normal water level */
N2:N /* Mazimum normal water level */
W:Ny /* Mazimum steam production */
C:Ny /* Capacity of boiler */
P:N, /* Capacity of pump */
Ul:N /¥ Maz rate of steam increase */
U2:N /* Min rate of steam increase */
T:Ny /* Sampling interval */

Axioms M1 < N1 AN N1<N2 A N2< M2

Each physical component has an associated monitor which provides an interface between
it and the controller. This monitor is responsible for managing the protocol of communi-
cations between the controller and the components, and for detecting errors in data and
communications.

The axioms of the monitor theory for the water measure formalise the requirements given
in [2, pages 500-509].

Attributes
water_measure_condition : Condition
water_quantity : Z

Actions (With write frames presented as sets of attributes:)
level(lev : Z) {water_quantity}
water_measure_failed {water_measure_condition}
transmission_failure &
level_failure_detection &

171

level_failure_acknowledgement &
level_repaired {water_measure_condition }
level_repaired_acknowledgement &

Axioms Initially the water quantity is 0 and the measure is operating:

BEG = water_quantity =0 A
water_measure_condition = operating

A water measure failure event occurs if we receive a level(lev) message with lev < 0
or lev > C:

dlev : Z - level(lev) A (lev <0V lev > C) =
water_measure_failed

A transmission failure occurs if we do not receive a unique level message in the current
cycle:

- 3y lev : Z - level(lev) = transmission_failure

Notice that this includes the case where no level message is received.

If a level measure failure occurs, the system must react by recording the failure:
water_measure_failed = (O water_measure_condition = failed

The signal level_failure_detection must then be repeated until
level_failure_acknowledgement is received:

water_measure_failed =
(level_failure_detection U level_failure_acknowledgement)

A level_repaired signal resets the water_measure_condition attribute:

= water_measure_failed N level_repaired =
Ouwater_measure_condition = operating

and leads to the generation of a level_repaired_acknowledgement:

level_repaired = level_repaired_acknowledgement

A valid water level event sets the value of water_quantity:

- water_measure_failed A - transmission_failure =
(level(lev) = O water_quantity = lev)

The theory of the steam measure monitor is identical in structure to the water measure
monitor. Formally it is an isomorphic image under the morphism which maps C to W,
water_measure_condition to steam_measure_condition, etc.

A similar structure can be given for the theory of the pump, pump monitor and the pump
controller and its monitor. Indeed we can recognise a number of commonalities between
the monitor theories (only the criteria for detecting sensor failures, and for recording the
current state, are different). There are common subtheories FauilureManager of the form

Attributes
condition : Condition

172

Actions
component_failed {condition}
component_repaired {condition}
failure_detection @
failure_acknowledgement @&
repaired_acknowledgement &

Axioms

BEG = condition = operating
component_failed = () condition = failed

component_failed =
(failure_detection U failure_acknowledgement)

= component_failed N component_repaired = () condition = operating

component_repaired = repaired_acknowledgement

These in their turn could be subdivided into parts dealing with the communication protocol
(axioms 3 and 5) and parts dealing with the recording of failure status (axioms 1, 2 and 4).

A theory Transmission has the form

Actions
component_state(val : Z) &
transmission_failure &

Axioms

- 3, lev : Z - component_state(lev) = transmission_failure

where we regard the PState and PCState types as isomorphic to {0,1} as in [2].

Therefore the Water_Measure_Monitor theory can be re-expressed in terms of Transmission,
via the morphism m7 of Figure 2:

component_state(s) — level(s)
transmission_failure — transmission_failure

and FailureManager, via the morphism m1

condition +— water_measure_condition

component_failed — water_measure_failed
component_repaired +— level_repaired

failure_detection +— level_failure_detection
failure_acknowledgement — level_failure_acknowledgement
repaired_acknowledgement +— level_repaired_acknowledgement

The attribute water_quantity and axioms to initialise and set this quantity are defined
locally in Water_Measure_Monitor, and the axiom

lev : Z - level(lev) A (lev < 0V lev > C) =
water_measure_failed

173

determining when a component failure occurs is also defined in this theory.

Similar constructions work for the pump and pump controller (flow monitor) components.
Figure 2 shows the structure of this part of the system. Separate copies of the FailureManager
and Transmission theories are included in each of the component theories, but we identify
all the different transmission_failure actions so that a transmission failure in any compo-
nent generates the same system error event. SData is also included into each of the theories

Failure Failure Failure Failure
Manager Manager Manager Manager
ml m2 m3 m4
l l l mS-I:’ m6 l
Water Steam Pump Pump
Measure Measure Monitor Control
Monitor Monitor Monitor
Pump/
ms8 m Control
m7 M onitor
m

Transmission

Figure 2: Construction of Component Theories

shown in this diagram.

The theory of the controller then extends the co-limit of the monitor theories with the
following attributes and actions:

Types
CState = {initialisation, normal, degraded, rescue, emergency_stop}

Constants
hazard_level(Z) : bool
min_level_estimate(Z,7) : 7
maz_level_estimate(Z,Z) : Z
Attributes
cstate : CState

Actions
react {cstate}
terminate {cstate}
stop <&
steam_boiler_waiting &
physical_units_ready {cstate}
program_ready &

Axioms Some example axioms of the controller are that a terminate event occurs if there have
been three successive stop events, or if there has been a transmission error:

stop A Ostop A O O stop = O Oterminate

transmission_failure = terminate

174

Given the new mode and water level, take appropriate action:

Ocstate = normal vV () cstate = degraded V
Ocstate = nitialisation =
(Quater_quantity < N1 = increase_flow) A
(Quater_quantity > N2 = decrease_flow)

Ocstate = rescue =

(min_level_estimate(water_quantity, steam_quantity) < N1 =
increase_flow) A

(maz_level_estimate(water_quantity, steam_quantity) > N2 =
decrease_flow)

The specification can be validated via animation [11]. The actions increase_flow and
decrease_flow are general operations which will be interpreted as opening and closing certain
pumps in the actual physical system: we have defined a layered architecture in which the
implementation details of such abstract actions are hidden from the high-level controller.

2.2 Design and Implementation

B [1] specifications of steam boiler components were defined from the above theories. Stan-
dard techniques were used to code up temporal logic constraints. For example the temporal
constraint

a = (yUp)

can be formalised by a boolean flag gamma_until_beta, initialised to FALSE, and precon-
ditions gamma_until_beta = FALSE on every controller action except v and 3 and method
definitions:

a = PRE gamma_until_beta = FALSE A
THEN
gamma_until_beta := TRUE ||
END ;
B o= ..
gamma_until_beta := FALSE

A C executable of 3098 lines of code was produced from the B implementations. A number
of test scenarios were input to this executable, following the format defined in [2].

3 Comparison

We have shown that the Object Calculus can be used to provide a highly abstract and
declarative specification of the behaviour of the steam boiler. We have formalised most
aspects of the system. An executable controller has been produced and tested against the
FZI simulator. Approximately 1 person week was used in writing the abstract specification,
and 2 person weeks in developing the B design and implementation, including verification
activities. B has been shown to be effective for industrial specification and to be comprehen-
sible by ‘average programmers’. We believe that the Object Calculus is also quite easy to

175

relate to reactive system concepts and to notations such as statecharts, which it generalises.
The papers [4, 5] describe how statecharts can be mapped to the Object Calculus.

Some specifications of [2] address issues which we do not consider, such as the calculation
of optimal control points or the probabilistic behaviour of device failures. Our abstract
specification adopts the approach of [7] in working at the macro step level in order to
simplify the description. The B design is at the micro step level. The Object Calculus
description is also related to the rule-based approaches used in [3] and [9], and suffers a
similar problem of consistency obligations between rules. Our controller design model, like
that of [6], adopts a purely reactive system approach, whereby events are assumed to happen
one at a time and are reacted to in the order of their arrival.

An alternative structuring approach would be to use a time-based partitioning of modules,
whereby the actions relevant to the initialisation phase of the steam boiler operation are
placed in a theory separate from the actions and attributes of the running phase.

The mapping from Object Calculus to B is systematic (theories correspond to machines)
but is not entirely automatic, since a design process is involved. Future work will classify
different design choices for this translation, and relate B structuring formally to the Object
Calculus. The Object Calculus has also been related to the UNITY approach for reactive
system specification [12].

Other research directions include real-time extensions and durative actions, and deontic
logic in order to handle failure states more naturally.

References

[1] JR Abrial, The B Book: Assigning Programs to Meanings, Cambridge University Press, 1996.

[2] J R Abrial, E Borger, H Langmaack (Eds.), Formal Methods for Industrial Applications: Spec-
ifying and Programming the Steam Boiler Control, LNCS 1165, Springer-Verlag, 1997.

[3] C Beierle et al, Refining Abstract Machine Specifications of the Steam Boiler Control to Well
Documented Ezecutable Code. Pages 52-78 of [2].

[4] J.C. Bicarregui, K.C. Lano, T.S.E. Maibaum, Objects, Associations and Subsystems:
a hierarchical approach to encapsulation, ECOOP 97, LNCS, 1997.

[5] Towards a Compositional Interpretation of Object Diagrams. J.C. Bicarregui, K.C. Lano and
T.S.E. Maibaum. To appear: Proc. of IFIP TC2 Working Conference on Algorithmic Languages
and Calculi, Strasbourg, February, 1997.

[6] R Biissow, M Weber, A Steam-Boiler Control Specification with Statecharts and Z. Pages 109—
128 of [2].

[7] J Cuellar, I Wildgruber, The Steam-Boiler Problem — A TLT Solution. Pages 164-183 of [2].

[8] J. Fiadeiro and T. Maibaum Describing, Structuring and Implementing Objects, in de Bakker
et al., Foundations of Object Oriented languages, LNCS 489, Springer-Verlag, 1991.

[9] M-C Gaudel et al, A Formal Specification of the Steam-Boiler Control Problem by Algebraic
Specifications with Implicit State. Pages 233-264 of [2].

[10] J Goguen and S Ginali, A Categorical Approach to General Systems Theory, in G. Klir (Ed.),
Applied General Systems Research, Plenum 1978, pp 257-270.

[11] K Lano, Specification of Steam Boiler Controller in RAL/VDM** and B, ROOS Project Doc-
ument GR/K68783-15, 1997.

[12] K Lano, J Bicarregui, J Fiadeiro, A Lopes, Specification of Required Non-determinism, FME
97, to appear in LNCS, 1997.

176

4 Biography

Juan Bicarregui has worked on tool support for formal methods, in particular the Mural proof
assistant, and on their theoretical foundations.

Jose Luiz Fiadeiro works in the area of formalisation of specification and program design paradigms
using modal logics (temporal and dynamic) and of their underlying modularisation principles using
category theory.

Kevin Lano is a Research Fellow at the Department of Computing at Imperial College. He has
previously worked in industry in the areas of formal methods and software assessment. His current
research is focussed on the use of formal techniques to provide semantics for object-oriented and
reactive systems.

Tom Maibaum is Professor of Foundations of Software Engineering at the Department of Com-
puting at Imperial College. He has worked on the development of compositional techniques for
specification and design of software systems since 1974 and has published papers and books in the
area.

177

