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ABSTRACT
The spectral transformation Lanczos method is very popular for solving large scale Her�
mitian generalized eigenvalue problems� The method uses a special inner product so that
the symmetric Lanczos method can be used� Sometimes� a semi�inner product must be
used� This may lead to instabilities and break�down� In this paper� we suggest a cure for
breakdown by use of an implicit restart in the Lanczos method�
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� Introduction

In structural analysis �Grimes� Lewis and Simon ��
�� Grimes� Lewis and Simon ���	�
and the determination of the stability of the Stokes problem �Malkus ��
��� we want to
compute a number of selected eigenvalues � and corresponding eigenvectors x of

Ax � �Bx ���

with A and B Hermitian and B positive semi�de�nite or ill�conditioned� Very often� B
has an explicit zero block

B �

�
M �
� �

�
� ���

with M Hermitian positive�de�nite� A popular method for solving this problem is the
spectral transformation Lanczos method �Ericsson and Ruhe ��
�� Ericsson ��
�� Nour�
Omid� Parlett� Ericsson and Jensen ��

�� This is the Lanczos method �Lanczos �����
applied to the spectral transformation �A � �B���B� Since this transformation is self�
adjoint with respect to the B inner�product� the Lanczos method for Hermitian matrices
can be used when the B inner product is used�

The B inner�product is a semi inner�product but it is mathematically correct to use
it within the Lanczos method �Nour�Omid et al� ��

�� The major problem is that this
inner�product does not see components in the nullspace of B� These components may
grow in an uncontrolled way� When B has an explicit zero block� these components do
not disturb the Lanczos method� However� when B does not have an explicit zero block�
large components in the nullspace of B may dominate the Lanczos vectors� which may
have few signi�cant digits� It is even possible that inner products that should be positive
become negative� which leads to breakdown� This paper deals with curing breakdown�
The idea is to use an implicit restart �Sorensen ����� to limit the growth of components
in the nullspace of B� It was �rst proposed in �Meerbergen and Spence ���
� for the
determination of the stability of steady�states of the �Navier� Stokes equations� and used
in �Lehoucq and Scott ���
� for the solution of the Navier�Stokes problem where B has
an explicit zero block� and later studied for the rational Krylov method �De Samblanx�
Meerbergen and Bultheel ���
� Meerbergen and Scott ������ In structural applications�
B may not have an explicit zero block� but a large number of very small eigenvalues� This
paper analyses the application of an implicit restart when B does not have an explicit
zero block�

The paper is organized as follows� In x�� we introduce the eigenvalue problem we
want to solve and give the properties that are of most importance to this paper� In x��
we explain the Lanczos method and give an example that leads to breakdown� We also
introduce implicit restarting and suggest a cure for breakdown� In x	� we analyse the
Lanczos method� the growth of the two�norm of the Lanczos vectors� and the reliability of
an implicit restart in this context� Section � presents a practical algorithm and illustrates
it using a small example� Final conclusions are given in x�� Throughout the paper� we
use R�A� and N �A� to denote the range and nullspace of A respectively� By u� we denote
the precision for �nite precision arithmetic�

�



� Analysis of the eigenvalue problem

The Lanczos method is not able to solve ��� directly� but instead solves the problem
Sx � �x with

S � �A� �B���B � ���

We assume that A��B is invertible� In order to understand the behaviour of the Lanczos
method� we must understand the spectral transformation� The matrix S has the same
eigenvectors as ��� and the eigenvalues are given by � � �� � ���� which explains the
term spectral transformation�

WhenB is singular� ��� has an in�nite eigenvalue with the nullspace ofB as eigenspace�
The associated eigenvalues of S are zero� When the zero eigenvalues of S are non�
defective� the total space Cn is the direct sum of N �S� and R�S�� The range is an
invariant subspace of S and SCn � R�S�� The Lanczos method� described in the fol�
lowing section� is designed for computing the nonzero eigenvalues and the corresponding
eigenvectors of S� i�e� eigenvectors in R�S�� The method is not able to compute the
eigenvectors in the nullspace of S� As is shown in Ericsson ���
�� and Malkus ���
���
the zero eigenvalue may be defective� i�e� may have geometric multiplicity p and algebraic
multiplicity �p where p is the nullity of B� We give a small example as illustration�

Example ��� Let

A �

�
�� � � �
� � � � �
� � �

�
�� and B �

�
�� � � �
� � �
� � �

�
�� �

then the spectral transformation

S � A��B �

�
�� ��� ���� �

���� ��� �
�� � ���� ��� �

�
��

has eigenvalues �� � ���� and an eigenvalue � with algebraic multiplicity two and ge�
ometric multiplicity one� The eigenvalues of ��� are ��� and � and the corresponding
eigenvectors are

x� �

�
B	 �

��
�� ����



CA � x� �

�
B	 �

�
�



CA �

The vector x� �

�
B	 �

�
�



CA is a generalized eigenvector or principal vector� since S�x� � ��

but Sx� �� �� We now decompose Cn into N �S�� and R�S��� In this example�

S� �

�
��

���� ����� �
����� ���� �

��� � ���� ���� � ���� �

�
��

�



which has nullspace N �S�� � span�x�� x�� and range R�S�� � span�x��� Note that
R�S�� �� N �B�� so vectors in R�S�� may still have components in N �B�� For x� in this
example� this component is �� ���� and is large when �� is small�

The nullspace of B is span�x�� and is contained by N �S��� In general� we use the
spaces N �S�� and R�S�� where � is the index of the zero eigenvalue of S� Note that in
all situations N �B� � N �S���

� The spectral transformation Lanczos method

The spectral transformation Lanczos method is the Lanczos method applied to the spec�
tral transformation S � �A��B���B where � is called the pole� We denote by x�By the
B inner�product of x and y and by kxkB the B norm of x� de�ned by

p
x�Bx� The method

can also be used when B is singular �Ericsson and Ruhe ��
�� Ericsson ��
�� Nour�Omid
et al� ��

��

Algorithm ��� �Lanczos method�
�� Given an initial vector v� with kv�kB � ��

Let �� � � and v� � ��
�� For j � � to k do

���� Form wj � Svj�
���� Form w�

j � wj � vj���j���
���� Form �j � v�jw

�
j�

���� Form w��
j � w�

j � vj�j�
���� Let �j � kw��

j kB and normalize vj�� � w��
j ��j�

The Lanczos method builds a B orthogonal basis fv�� � � � � vk��g of the Krylov space
spanned by v�� Sv�� S

�v�� � � � � S
kv�� A practical implementation requires reorthogonaliza�

tion in order to keep the Lanczos vectors B orthogonal �Grimes et al� ���	�� Eliminating
of wj � w

�
j and w��

j from Steps �������� we obtain the relationship

Svj � vj���j�� � vj�j � vj���j �

Collecting the equations for j � �� � � � � k leads to

SVk � Vk��T k

with T k the k � �� k matrix

T k �

�
�����������

�� ��
�� �� ��

� � � � � � � � �
� � � �k�� �k��

�k�� �k
�k

�
�����������
�

and V �
k��BVk�� � I� The matrix T k is called the tridiagonal Lanczos matrix and the

columns of Vk�� are the Lanczos vectors�
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Figure �� Growth of the two�norm of the Lanczos vectors�

The B orthogonal projection of the eigenvalue problem Sx � �x on the range of Vk
gives the solution ��� x� with x � Vkz and Tkz � �z� where Tk is the k�k upper submatrix
of T k� The residual is

r � Sx� �x

� SVkz � �Vkz

� Vk��T kz � VkTkz

� vk���ke
�
kz

and krkB � �kje�kzj is cheaply computed�
Consider the following example�

Example ��� Let A and B be generated by the following Matlab code �

rand��seed����

A � diag����	
�����

B � diag��ones��
�����zeros�
�������

Z � orth�randn�
�����

A � Z��A�Z�

B � Z��B�Z�

For this example� R�S� � N �S�� Also� kxk� � kxkB � � implies that x � R�S� and
kxk� �� �� but kxkB � � implies x � N �B�� We ran �� iterations of the Lanczos method
with the initial vector v� � ��� � � � � ���� where � is so that kv�kB � � and pole � � ��
We used reorthogonalization on each iteration to ensure B orthogonality �Daniel� Gragg�
Kaufman and Stewart ��
��� Figure � shows kvjk� as a function of the iteration number
j� At iteration j � ��� the inner product kwjk�B � w�

jBwj becomes negative� so �j is
imaginary� At this point� we must stop the calculations� since an imaginary B norm
does not make any sense� The Lanczos vectors have large components in N �S�� so the
B inner�product may be small but should be positive in theory� Vectors in N �S� are B
orthogonal to themselves� so cannot serve in a B orthogonal basis� The two�norms of vj
grow but the B norms remain equal to one� so vj has fewer signi�cant digits in R�S��

In order to get rid of large components in the nullspace of B� we suggest regularly per�
forming an implicit restart �Sorensen ����� Meerbergen and Spence ���
�� The following
theorem de�nes the implicit restart and shows important properties�
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Figure �� Growth of the two�norm of the Lanczos vectors The dashed line shows the
two�norm after implicit restart�

Theorem ��� Let Vk�� and T k be computed by the Lanczos method� Consider the QR

factorization T k � Q
k
Rk with Q

k
� Ck���k unitary and Rk � Ck�k upper triangular�

Let Q
k��

be the k � k � � upper left part of Q
k
and de�ne

V �
k � Vk��Qk

and T�
k�� � RkQk��

�

Then V �
k and T�

k�� have the following properties �

�� V �
k
�
BV �

k � I

�� If �k �� �� R�V �
k � � R�SVk�

�� T�
k�� is Hermitian tridiagonal and for V �

k � �V �
k�� v

�
k ��

SV �
k�� � V �

k T�
k��

with v�� � Sv��kSv�kB�
The proof is a compilation of results from �Sorensen ����� and is given in �Meerbergen
and Spence ���
�� A similar proof is given in �Lehoucq ������ The implicit restart is
de�ned as the transition of the pair Vk��� T k to the pair V

�
k � T�

k��� The theorem tells us
that an implicit restart applies S implicitly on the Krylov subspace� This operation also
reduces the dimension of the subspace by one�

We performed an implicit restart in the example when kvjk� � ���� i�e� after iteration
��� The Lanczos vectors V �

�� have two�norms equal to one� see Figure �� The new Lanczos
vectors added to the subspace retain small two�norm� until the norm starts growing again
from the 	�th iteration�

� Analysis

Roughly speaking� the reason why the implicit restart �lters away N �B� is that the
nullspace of S is �ltered away� The components of vj in N �B� are responsible for large
kvjk� and potential breakdown� so their removal reduces kvjk� and makes the method
more reliable with respect to breakdown�

�



��� A bound for the two�norm of the Lanczos vectors

First we prove that limiting vj to the R�B� limits the two�norm of vj �

Lemma ��� When kvjkB � � then

��max�B��
���� � kvjk�

When in addition vj � R�B�� then
��max�B��

���� � kvjk� � ��min������B��
���� �

Proof Decompose B � L�L� Since kvjkB � �� we have that kLvjk� � �� The
�rst statement and the �rst inequality of the second statement follow from kLvjk� �
kLk�kvjk�� If� in addition� B is nonsingular� kvjk� � kL��Lvjk� � kL��k�kLvjk� �
kL��k� which proves kvjk� � ��min�B��

����� When vj � R�B�� then kvjkB � kvjkBjR�B�
�

where BjR�B	 is the restriction of B onto R�B�� This proves the lemma� �

The idea is to reduce the two�norm of the Lanczos vectors by the application of
implicit restarts� i�e� by removing the nullspace of S� from the basis vectors� The
following theorem shows an upper bound to kvk� when x is an eigenvector of S lying in
R�S��� In general� vectors in R�S�� still have components in the nullspace of B so the
above bound is not valid�

Theorem ��� Let Sx � �x� � �� � and kxkB � �� then

kxk� � j���jkSk���min������B��
���� �

Proof Decompose x � x� � x� with x� � R�B� and x� � R�B�� Then we have
kxkB � kx�kB � � and kx�k� � ��min�� ����B��

����� Since Sx� � �� we have x � ���Sx �
���Sx�� so kxk� � j���jkSx�k�� which proves the theorem� �

An illustration was given in Example ���� When � increases� �� becomes smaller and the
component of x� in the nullspace of B becomes larger� This theorem shows that if the
Krylov subspace has good approximations to eigenvectors corresponding to eigenvalues
of S with small absolute value� reducing kvjk� by removing the nullspace of S may be
insu�cient to reduce components in the nullspace of B� We could remove all small
eigenvalues of S from the Krylov subspace� This can be achieved by applying S� to the
Lanczos basis with � large enough� This �ltering can be done by an implicit restart and
was illustrated successfully in Example ����

In some practical situations� B does not have an explicit zero block� but has a number
of eigenvalues with very small absolute values� In this situation� we should again try to
remove the components corresponding to the eigenvalues of S with small modulus�

When B is positive semi�de�nite and the initial vector v� lies in R� all Lanczos vectors
lie in R� since R is an invariant subspace of S� Breakdown cannot occur� In �nite
precision arithmetic� components from N �S� may be introduced in the Lanczos vectors
so that kvjk� may become large and breakdown is possible� It is good practice to start
the Lanczos method with v� � S� 	 v with v randomly chosen so that v� � R�S��� This
reduces the chance that vj is quickly corrupted by components in N �S�� When B has
eigenvalues with very small absolute values� the conclusions are similar� In this case
N �S� is the invariant subspace corresponding to these eigenvalues�

�



��� Analysis of the Lanczos recurrence relation

The Lanczos method orthogonalizes Svj against v�� � � � � vj � It subtracts a linear combi�
nation of v�� � � � � vj from Svj� In �nite precision arithmetic� the error on the recurrence
relation is thus

Svj � Vj��tj � fj

with
kfjk� 
 kjVj��j 	 jtj jk� � kjVj��jk�ktjk� �

On the global level� we can conclude that

SVk � Vk��T k � Fk

and
kFkk� 
 kjVk��j 	 jT kjk� � kjVk��jk�kT kk� �

In practice we want that for a Ritz pair ��� x� with x � Vkz� the residual

r � SVkz � �Vkz � vk���ke
T
k z � Fkz � vk���ke

T
k z �

Often� we want krkB �
p
ukT kk�� so we also want the term kFkzkB much smaller than

kT kk�� This is satis�ed if kjVk��jk� � ��
q
kBk�� When kjVk��jk� is large� the major

problem is that the product Vk��T k has modest norm� but the terms in the summation
may have large modulus� This is a typical situation where rounding errors may be large
due to cancellation� In Example ���� we have that kF�k� � � ����
 and kF��k� � 	 �����
This matches the observations that kT ��k� � � and kv�k� � ���� and kv��k� � ��� ��
�
In the last Lanczos iteration� we lose 
 digits through cancellation�

��� Analysis for the implicit restart

The idea is to apply S� to the Lanczos vectors so that they are free of components in
N �B�� The expensive way is to explicitly multiply Vk�� � times by S� A cheaper but
equivalent way is an implicit restart�

Assume that

SVk � Vk��T k � Fk �	a�

V �
k��BVk�� � I � �k�� �	b�

where the terms Fk and �k�� are the errors from computations in �nite precision� We
assume that kFkk� 
 kjVk��jk�kT kk� and k�k��k� 
 ��

An implicit restart produces Q
k
and Rk so that T k � Q

k
Rk�� with k�k� 
 kT kk��

From �	a�� we then derive that

SVk � Vk��Qk
Rk � Vk��� � Fk

and
Vk��Qk

� �SVk�R
��
k � �Vk���� Fk�R

��
k �






The left�hand side forms the new basis vectors after the implicit restart� They clearly
span the columns of SVk� when the second term in the right�hand side is small� This is
the case when kR��

k k� is not very large� In �Meerbergen and Spence ���
�� we �nd that

kR��
k k� �

�
min�j�j� � 	�����

���

where � is a Ritz value and 	 � �kjeTk zj the corresponding residual norm� So� when Tk
has a small eigenvalue with a small corresponding residual norm the implicit �ltering
may lose accuracy� Since� usually� k�k� is of the order of kT kk�u and kFkk� of the order
of kjVk��jk�kT kk�u� we may conclude that� roughly speaking�

kVk��Qk
� SVkR

��
k k� � ukjVk��jk�
��T k�

where 
� denotes the two�norm condition number� For Example ���� 
��T k� � �	
� which
is small� So� the �ltering is almost perfect�

Since Tk � V �
k BSVk� V

�
k��BVk�� � I and B �lters away the zero eigenvalues of S it is

very unlikely that Tk has an eigenvalue very close to zero� There may be a problem when
� is a defective eigenvalue of S� In this case� Tk may have a zero eigenvalue �Ericsson
��
�� Meerbergen and Spence ���
�� One way to prevent this is regularly performing
implicit restarts�

� Numerical example

Algorithm A practical algorithm using the ideas discussed in this paper is the follow�
ing�

Algorithm ���
�� Choose �� an initial vector v and the power ��
�� Pre�lter v� � S� 	 v and normalize v� 
 v��kv�kB�
�� Perform k steps of the Lanczos method� If kvjk� � u����kv�k�� go to Step �� If

v�jBvj 
 �� let j � j � �� go to Step ��

�� Perform � implicit restarts�

�� Compute Ritz values and Ritz vectors�

	� Check convergence�


� Continue the Lanczos method from iteration j � ��

Since v�jBvj 
 � leads to breakdown� we hope that it is curable by applying an implicit
restart on the �rst j � � Lanczos iterations� When kvjk� becomes too large� we also
perform � implicit restarts in order to reduce this norm� Since an implicit restart for
j 
 � does not make any sense� a breakdown for j � � is incurable� This algorithm is
implemented in the code EA�� �Meerbergen and Scott ����� HSL ������

An example Consider the ���� ��� matrices A � LTDAL and B � LTDBL where

DA �

�
diag��� � � � � ���� I������

I������ ���

�
and DB �

�
I��� �
� M��

�
�






M�� a diagonal matrix with uniformly distributed elements between ������ and ����� and
L a lower triangular matrix with ones on the main diagonal and with the o��diagonal
elements uniformly distributed between ���� and ���� The condition number of B is of
the order of ��� ����� If M�� was the zero matrix� the index of the zero eigenvalue of S
would be � � �� We used EA�� to compute the leftmost eigenvalue using shift�invert
mode �MODE���� blocksize BLK��� pole SIGMA��� and using NV��� Lanczos vectors� The
experiments were performed on a SUN SPARC Ultra � with the EPC Fortran �� compiler�
The code automatically performs an implicit restart when the inner product becomes
negative or the ratio of kv�k��kvjk� is smaller than pu as suggested in Algorithm ����

The following table shows at which iteration breakdown �v�jBvj 
 �� occurs for dif�
ferent values of ��

� � � � � 	 � �
j �� �
 �� �
 �
 �� 	�

The iteration number j at which breakdown occurs increases as � increases� since the
initial vector has smaller components in the eigenvectors corresponding to the small
eigenvalues of S�

When we use Algorithm ���� an implicit restart is performed when the inner�product
is negative or kvjk� is too large� which improves the reliability of EA��� For all values
of � � � listed in the table above� the code completes the computations and returns the
wanted eigenvalues with the desired accuracy� For � � �� the algorithm breaks down�

We have computed the eigenvalues nearest zero using the code ARPACK �Lehoucq�
Sorensen and Yang ���
� in shift�invert mode with pole � � �� The eigenvalues returned
are ������� ���	� and ��	
�� which are completely wrong� ARPACK is using a pre��ltered
initial vector v� � Sv but not an implicit restart �as in the spirit of this paper�� However�
when M�� has positive diagonal elements� ARPACK returns the right answers ��� �� and
���

An more di
cult example We now solve the same problem with the same parameters
for EA�� but with

DA �

�
��� diag��� � � � � ���� I������

I������ ���

�

which only di�ers in the factor ���� The ��s are large� so the ��s are small� Following
Theorem 	��� this may lead to larger components in N �B�� For this example the Lanczos
method breaks down after the �rst or second iteration for � � �� � � � � ��� We did not try
higher values of of ��

� Conclusions

In this paper� we suggested the use of implicit restarts to avoid breakdown of the Lanczos
method with semi inner�product� We conclude that this method works when the eigen�
vectors of S corresponding to the nonzero eigenvalues of S have small components in the
nullspace of B�

The numerical results are promising� but the solution of eigenvalue problems with ill�
conditioned mass matrix remains a di�cult problem� Usually problems of this form arise

�



from DAE�s �di�erential algebraic equations� which may be transformed into eigenvalue
problems that have more favourable structure for the Lanczos method� e�g� with a well
conditioned positive de�nite mass matrix�
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