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Abstract� This paper presents a semantic framework for a large part of
UML� and gives a set of transformations on UML models based on this
semantics� These transformations can be used to enhance� rationalise�
re	ne or abstract UML models�

� Introduction

A semantically�based transformation calculus for UML ���� and related OO no�
tations is useful in a number of ways�

�� it provides a set of correct transformations which are equivalences or en�
hancements of models	 and can be used to support forward or reverse engi�
neering ��
��


� the transformations clarify the meaning of the modelling notations	 without
the developer needing to manipulate the mathematical formalisms under�
pinning the transformations�

A more rigorous development approach is essential for applications in crit�
ical areas	 such as medical database and robotic systems ����	 defence ��
� and
chemical process control �����

Although our semantic model is not a complete semantics for UML	 it pro�
vides a su�cient basis to justify transformations which are expected to be model
enhancements or re�nements� It is a step towards a full semantics�

The transformational approach is consistent with the presentation of UML
in ���� �which includes	 for example	 equivalences on notations for composition
aggregation�	 and lends itself to CASE tool support� The transformations could
themselves be expressed in UML as re�nements �typically with subdependencies�
in which the new model is the client and the old model the supplier�

In this paper we present extracts from the proposed semantic framework and
show how it can be used to justify some example transformations on the main
modelling notations of UML�

� Basic Semantic Elements

A mathematical semantic representation of UML models can be given in terms
of theories in a suitable logic	 as in the semantics presented for Syntropy in ���



and VDM�� in ����� In order to reason about real�time speci�cations we will
use the more general version of this formal framework	 termed Real�time Action
Logic �RAL�	 presented in �����

A RAL theory has the form�

theory Name

types local type symbols

attributes time�varying data� representing instance or class variables

actions actions which may a�ect the data� such as operations� statechart tran�

sitions and methods

axioms logical properties and constraints between the theory elements�

The logical notation which can be used in theories is �rst order predicate logic
using Z notations such as F�T �	 the set of �nite subsets of T 	 together with
temporal operators � �next�	 � �henceforth�	 � �eventually�� There are also
terms ���� i�	 ���� i�	 ���� i� and ���� i� denoting the request send	 request
arrival	 initiation and termination times respectively of an action invocation
��� i� for action � and i � N��

Theories can be used to represent classes	 instances	 associations and general
submodels of a UML model�

��� Example Semantic Representation

An example UML class diagram is shown in Figure �� The corresponding theory

Person Companyemployee employer
* 0..1

worker

boss

*

0..1

{Person.employer = 
   Person.boss.employer }

Fig� �� UML Class Diagram

is�

theory Employment

types Person� Company
attributes

Person 
 FPerson
Company 
 FCompany
employee employer 
 Person � Company



employee 
 Company � F�Person�
employer 
 Person � F�Company�
worker boss 
 Person � Person

worker 
 Person � F�Person�
boss 
 Person � F�Person�

Person represents the �nite set of existing objects of class Person � the extension
ext�Person� of Person in the terms of ����� Instance variables of class C are
modelled as attributes of a function type C � T � Associations between classes
are modelled as relations between their types�

actions Standard prede�ned actions to modify classes and associations�

createPerson�p 
 Person� fPersong
killPerson�p 
 Person� fPersong
createCompany�c 
 Company� fCompanyg
killCompany�c 
 Company� fCompanyg
add linkemployee employer�p 
 Person�c 
 Company�

femployee employer� employer �employeeg
delete linkemployee employer �p 
 Person�c 
 Company�

femployee employer� employer �employeeg
add linkworker boss�p 
 Person�q 
 Person� fworker boss�worker �bossg
delete linkworker boss�p 
 Person�q 
 Person� fworker boss�worker � bossg

We present the write frame of each action as a set after the action declaration�
This is the set of attributes which it may change� Query operations in the sense
of UML are therefore represented by actions with an empty write frame�

axioms

The association links only existing persons and companies�

employee employer � Person � Company

The two directions of the association are derived from the set of pairs in its relation�

�p 
 Person
 c 
 Company �

c � employer�p� � �p� c� � employee employer �

p � employee�c� � �p� c� � employee employer

Cardinality constraints�

�p 
 Person � card�employer�p�� � �

�p 
 Person � card�boss�p�� � �

There are similar axioms for worker boss� The constraint of the model is expressed
by the formula


�p 
 Person � employer�p� � employer�j boss�p� j�

f �j X j� denotes the set of values f �x � for x � X � OCL notation could be used
for the axioms	 but would be more prolix in general�

Theories can be linked by theory morphisms ��	
�	 which enable the theory
of a complete model to be assembled from theories of submodels and eventually
from the theories of speci�c elements	 classes	 states	 associations	 etc�



Generalisation of class C by class D in UML is directly represented by the
theory T �D� of D being the source of a signature morphism into T �C � which
is the identity �each symbol of T �D� is interpreted by itself in T �C ��� Dashed
generalisation of C by D is directly represented by an interface morphism �a
signature morphism which only maps action symbols of the �rst theory to action
symbols of the second theory� from T �D� to T �C � which is the identity on the
action symbols of D and their signature types�

A theory morphism is a signature morphism s fromT� to T
 which preserves
all the axioms of the source theory� That is	 T
 proves s�P� for each axiom P of
T�� The simplest form of theory morphism is the inclusion of one theory �all its
symbols and axioms� in another� This is denoted by writing includes T� after
the header of theory T
�

Using this we can re�express theory Employment above as�

theory Employment

includes WorkerBoss� EmployeeEmployer
axioms �p 
 Person � employer�p� � employer�j boss�p� j�

where WorkerBoss	 etc are theories of the associations which themselves include
the theories of Person and Company �Figure ���

� Static Structure Diagrams

A UML class C is semantically represented by a theory T �C � of the form�

theory T �C �
types C

attributes

C 
 F�C �
self 
 C � C

att� 
 C � T�
� � �

actions

createC�c 
 C � fC g
killC �c 
 C � fC g
op��c 
 C � x 
 X�� 
 Y�
� � �

axioms

� c 
 C �

self �c� � c � �createC�c���c � C � � �killC�c���c 	� C �

The notation �action�P denotes that every execution of action terminates with
the predicate P being true� Thus createC �c� always adds c to the set of existing
C objects	 and killC �c� removes it�

Each instance attribute atti � Ti of C gains an additional parameter of type
C in the class theory T �C � and similarly for operations� The class theory can
be generated from a theory of a typical C instance by means of an A�morphism



���� Class attributes and actions do not gain the additional C parameter as they
are independent of any particular instance� We denote att�a� for attribute att

of instance a by the standard OO notation a�att 	 and similarly denote actions
act�a� x � by a�act�x ��

We will refer to the conjunction of all the properties of the attributes of C as
the invariant InvC of the class� We include the axiom � a � C 	a�InvC in T �C � to
express this	 where a�P is P with a added as the �rst parameter of all instance
attributes and actions of C in P �

Similarly each association lr can be interpreted by a theory which contains
an attribute lr representing the current extent of the association �the set of pairs
in it� and actions add link and delete link to add and remove pairs �links� from
this� Axioms de�ne the cardinality of the association ends and other properties
of the association�

If D inherits from C then T �D� is constructed by includeing T �C �	 adding
symbols and axioms for the new features of D 	 and adjoining the axioms D 

C � D 
 C which ensure that attributes and operations of C can be applied to
instances of D �

If class C has subclasses S�	 � � �	 Sn 	 we can assert that objects cannot migrate
from one subclass to another by axioms�

� x � Si 	 x �� Sj 
 ��x �� Sj �

for j �� i � However	 if Si and Sj arise as states in a statechart	 then such subtype
migration is permitted�

That two subclasses S� and S� are disjoint is expressed by axioms S��S� � �

in a theory which contains both class theories� If a class C is abstract with a
complete set of subclasses S�	 � � �	 Sn then we can assert that C � S�� � � ��Sn
in a theory containing all of these class theories� A complete set of subclasses
for C prevents the application of any transformation to introduce new direct
subclasses of C �

Likewise	 if a class is asserted to be a leaf 	 then no transformation can intro�
duce subclasses of this class	 and no superclasses can be introduced for a root

class�

��� Rationalising Inheritance Hierarchies

If two classes A and B are both subclasses of another class D 	 then it is valid to
introduce a subclass C of D which acts as an abstract superclass of both A and
B �Figure 
�� This transformation is valid because A 
 D � B 
 D imply
that C � A � B is a subset of D �

��� Rationalising Disjoint Associations

The following transformation �Figure �� can be applied to object models to
eliminate some cases of optional association ends� This transformation is logically
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Fig� �� Minimal Superclass Transformation
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Fig� �� Rationalising Disjoint Associations



valid as r� and r� are disjoint and function�like by de�nition of the �or� constraint
�����

� a � A 	 �� b � B 	 �a� b� � r�� � �� c � C 	 �a� c� � r�� �

� a � A 	 � ��� b � B 	 �a� b� � r�� � �� c � C 	 �a� c� � r���

and B and C are disjoint�
Thus the abstract generalisation class BorC which has BorC � B � C can

be constructed	 and r � r�� r� has the speci�ed cardinality at the BorC end� A
similar transformation works for any cardinality combination at the A end� the
resulting association has cardinality the generalisation of the separate r� and r�
cardinalities at this end�

��� Re�ning Class Invariants

Logically strengthening a class invariant is a re�nement transformation� If class
C has invariant InvC 	 then adding extra constraints or restating InvC in a
logically stronger manner to produce a predicate Inv �C yields a re�ned class�
The theory interpretation is the identity�

��� Transitivity of Composition Aggregation

One proposed meaning ��� of composition aggregation of B instances into A via
an association ab is that the B instances are frozen in their relationship with a

particular A instance� the inverse image ab
��
�j fbg j� is constant for each b � B

for the duration of its membership in ab�
If ab is a one�many association this means that b cannot move from one

container to another ����

� a � A� b � B 	 �a� b� � ab � ���a�� b� � ab� 
 a � a�

�P denotes that P holds at the current or some future time�
The relational composition of two one�many composition aggregations is then

itself a composition aggregation because�

�a� c� � ab� bc 


� b � B 	 �a� b� � ab � �b� c� � bc

����
 �
�� and

���a�� c� � ab� bc� 


��� b� � B 	 �a�� b�� � ab � �b�� c� � bc�

���� 
 ����� But then ��� � ��� implies �
� � ���	 so by ��� applied to b	 c we
have b� � b� Therefore	 applying ��� to a	 b we have a� � a as required�



��� Deduction Transformations

If we know that a diagramM� ensures that the properties of an enhanced diagram
M� also hold	 then we say that M� can be deduced from M�� M� � M�� This is
just the same as asserting that there is a re�nement transformation fromM� to
M��

A particular example is that the composition of �selector� associations remains
a selector of the composed association� In other words	 if we know that r� 
 R�	
r
 
 R
	 then also the composition r�� r
 is a subset of R�� R
�

� Sequence and Collaboration Diagrams

A sequence diagram de�nes constraints on the timing of method requests	 acti�
vations and terminations� For example	 a timing mark a at the source point of a
message m sent from object s to object t represents the time a � ��t �m� i�
of some request send of m� If this arrow is horizontal this is also the time
a � ���t �m� i� of arrival of this request at t �

A timingmark at the destination of a signal arrow represents a request arrival
time ��t �m� i�	 or the termination time ��t �m� i� of an invocation in the case
that the arrow represents the return of a procedural call t �m �ie	 the arrow is
dashed with source t��

For example	 Figure � translates to the following assertions	 where each mes�
sage execution lifeline is interpreted by a particular message instance�

� i � N� 	 � j � k � l � l
� � N� 	

��Op� i� � ��createC��ob��� l�
��createC��ob��� l� � ��ob��bar�x �� j � � ��ob��bar�x �� j �

� ��ob��do�w�� k� � ��ob��do�w�� k�
��ob��do�w�� k� � ��ob��bar�x �� j �

� ��killC��ob��� l
�� � ��Op� i�

These assertions can then be checked for consistency against detailed implemen�
tation level statecharts�

Replacing such constraints by logically stronger formulae �eg	 reducing the
range of possible time delays between a request arrival and a result signal� is
therefore a re�ning transformation� It is also valid to introduce new objects and
calls on these provided that the existing model elements are preserved�

The structural elements of a collaboration diagram simply represent partic�
ular instances of classes and their links	 and so may be expressed in suitable
extensions of class or submodel theories�

The interaction aspects can be modelled using composite actions ���� such as
� �sequential composition�	 �� �assignment�� jj �concurrent composition�� for all
�iteration over a set�� if �conditional execution�� u �binary choice of actions�	
create and kill 	 etc�



Op()
ob1:C1

ob3:C3 ob4:C4

do(w)

bar(x)

(Op,i)

(ob3!bar(x),j)

(ob4!do(w),k)

(ob4!do(w),k)

(ob3!bar(x),j)

(Op,i)

(create(ob1),l)

Fig� �� Example Sequence Diagram with Annotations

� Statecharts

A statechart speci�cation of the behaviour of instances of a class C can be
formalised as an extension of the class theory T �C � of C 	 as follows� We use the
relationship � � � �� calls �� for action symbols � and � to denote that every
occurrence of � coincides with an occurrence of ��

� � � �
� i � N� 	 � j � N�	

���� i� � ���� j � � ���� i� � ���� j �

Then the extended theory of C has the additional axioms�

�� Each state S is represented in the same manner as a subclass of C 	 and in
general	 nesting of state S� in state S� is expressed by axioms S� 
 S� and
S� 
 S� as for class generalisation�


� Each transition in the statechart and each event for which the statechart
de�nes a response yields a distinct action symbol� The occurrence of an
event e is equivalent to the occurrence of one of its transitions ti �it is the
abstract generalisation of the transition actions��

t� � e � � � � � tn � e

�� The axiom for the e�ect of a transition t from state S� to state S� with
label e�x ��G ��Post a Act where Post is some postcondition constraint on
the resulting state	 is

� a � C 	 a�G � a � S� 
 �a�t�x ���a�Post � a � S��



�� The transition only occurs if the trigger event occurs whilst the object is in
the correct state�

� a � C 	 a � S� � a�G 
 �a�e�x � � a�t�x ��

�� The generated actions must occur at some future time �after t has occurred��

a�t�x � 
 �� a�Act

Transitions g with labels of the form after�t� from source state S have an alter�
native axiom � de�ning their triggering which asserts that they are triggered t

time units after the most recent entry time to state S �����
Axiom � adopts the semantics given in Syntropy ��� for generated actions�

the new state must be established before generated actions can be executed�
In contrast to the statemate semantics of statecharts ����	 these actions can be
executed in steps other than the immediately following step� This appears to
be the correct interpretation of asynchronously generated signals in UML �����
Synchronously invoked actions have the alternative axiom

a�t�x � � a�Act

If state S is a concurrent composition of substates	 we require that each
occurrence of an event � results in an occurrence of one transition ti for � in
each distinct concurrent sub�region of S which has a transition for this event�
For example	 if there are transitions t� and t� for � in region �	 and transition
t� in region 
 of a state S 	 then we have the axioms�

a � S 
 �a�t� � a�t� u a�t��
a � S 
 �a�t� � a�t��
a � S 
 �a�t� � a�t��

Thus changing the isConcurrent attribute of a composite state from false to
true represents a theory extension and therefore a re�nement�

Some typical transformations on statecharts are then as follows�

��� Source and Target Splitting

These transformations ��� can be shown to be valid for UML given the above
semantics� Similarly	 adding a nested state machine to a simple state S is gen�
erally a re�nement provided that existing transitions from S are not overridden
by transitions from substates of S which go to new destination states partly or
fully disjoint from the original destinations�

��� Abstracting Events

In UML signal events can be arranged in a generalisation hierarchy� For example	
an event g�x � can be represented as a generalisation of events h�x � y� and f �x � z �



on a class diagram �x 	 z are the attributes of event f 	 etc�� The semantic meaning
is that every occurrence of a specialised event is also an occurrence of every event
it generalises ����

h�x � y� � g�x � f �x � z � � g�x �

This means that transitions for h and f can be replaced by transitions for g 	 if
g is an abstract generalisation of these two actions	 since each axiom a � S �
a�G 
 �a�g�x � � a�t�x �� for a transition t of g yields the corresponding axiom
for h or f �

This transformation is useful to reduce the number of events which a control
system must respond to	 eg	 to replace separate events �switch on� and �switch
o�� by �toggle� �
��

��� Strengthening Transition Guards

The guard G of a transition from state S to state T may be strengthened by the
invariant of S 	 since this invariant inevitably holds in the source state at points
where the system is waiting for input events�

��� Eliminating Transitions

A transition t with a logically false guard can be eliminated	 since it can never
be taken� Its e�ect axiom has the form

a � S � a�G 
 �t �Post

but this is trivially always true if a�G � false�
Such transitions may arise as the result of source and target splitting	 for

example	 in Figure �	 we target split the Finished state and transition �nish	
and then source split the Filling state and the two transitions for �nish	 yielding
� separate transitions for �nish� However	 all but two of the resulting transitions
are now impossible	 so can be eliminated� the �rst transition for �nish	 with
guard level � min � level � norm cannot occur from either the F� or F�
states	 and the second transition cannot occur from either the F� or F
 states�

A similar step is carried out in the �rst re�nement of Abrial�s development
of a distributed protocol ����

Conclusions

This paper has illustrated the use of transformations on UML models as a means
of rigorous development and re�engineering� based on a detailed semantics of
these models� Real�time extensions of these models and corresponding transfor�
mations are currently under development� An international collaborative project
on the UML semantics is underway to combine other related approaches	 such
as ��	 �� into a common framework� Tool support for transformations as part of a
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Finishedfinish[level >= min]
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Finished
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Finished
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Fig� �� Successive Splitting and Elimination Transformations

general CASE tool for UML will also be developed� A library of proved transfor�
mations will be provided	 eliminating the need for developers to reason directly
in RAL when applying transformations as development steps�

Suggestions for improvement of UML which have come from this work are�

�� Consider statechart states as classi�ers	 whose instances are those objects
currently in the state� This uni�es similar concepts in the same metamodel
entity�


� Attach constraints to packages or subsystems which enclose the submodel
on which the constraint applies	 in preference to attaching the constraint to
a possibly large number of elements in this submodel�
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