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Abstract. This paper presents a semantic framework for a large part of
UML, and gives a set of transformations on UML models based on this
semantics. These transformations can be used to enhance, rationalise,
refine or abstract UML models.

1 Introduction

A semantically-based transformation calculus for UML [19] and related OO no-
tations is useful in a number of ways:

1. it provides a set of correct transformations which are equivalences or en-
hancements of models, and can be used to support forward or reverse engi-
neering [12];

2. the transformations clarify the meaning of the modelling notations, without
the developer needing to manipulate the mathematical formalisms under-
pinning the transformations.

A more rigorous development approach is essential for applications in crit-
ical areas, such as medical database and robotic systems [16], defence [17] and
chemical process control [13].

Although our semantic model is not a complete semantics for UML, it pro-
vides a sufficient basis to justify transformations which are expected to be model
enhancements or refinements. It is a step towards a full semantics.

The transformational approach is consistent with the presentation of UML
in [19] (which includes, for example, equivalences on notations for composition
aggregation), and lends itself to CASE tool support. The transformations could
themselves be expressed in UML as refinements (typically with subdependencies)
in which the new model is the client and the old model the supplier.

In this paper we present extracts from the proposed semantic framework and
show how it can be used to justify some example transformations on the main
modelling notations of UML.

2 Basic Semantic Elements

A mathematical semantic representation of UML models can be given in terms
of theories in a suitable logic, as in the semantics presented for Syntropy in [3]



and VDM*™ in [15]. In order to reason about real-time specifications we will
use the more general version of this formal framework, termed Real-time Action
Logic (RAL), presented in [15].

A RAL theory has the form:

theory Name

types local type symbols

attributes time-varying data, representing instance or class variables

actions actions which may affect the data, such as operations, statechart tran-
sttions and methods

axioms logical properties and constrainis between the theory elements.

The logical notation which can be used in theories is first order predicate logic
using 7 notations such as IF(T'), the set of finite subsets of T', together with
temporal operators (O (next), O (henceforth), ¢ (eventually). There are also
terms —(a, 1), —(a,4), (e, %) and [(a, i) denoting the request send, request
arrival, initiation and termination times respectively of an action invocation
(o, i) for action « and ¢ : Nj.

Theories can be used to represent classes, instances, associations and general
submodels of a UML model.

2.1 Example Semantic Representation

An example UML class diagram is shown in Figure 1. The corresponding theory
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b e ] {Person.employer =
Per son.boss.employer }

Fig. 1. UML Class Diagram

1s:

theory FEmployment
types Person, Company
attributes

Person : F Person
Company : F Company
employee_employer . Person «— Company




employee : Company — F(Person)
employer : Person — F(Company)
worker_boss : Person «— Person
worker : Person — F(Person)
boss : Person — F(Person)

Person represents the finite set of existing objects of class Person — the extension
ext(Person) of Person in the terms of [18]. Instance variables of class C' are
modelled as attributes of a function type C' — 7. Associations between classes
are modelled as relations between their types.

actions Standard predefined actions to modify classes and associations:

createperson(p @ Person) {Person}
killperson(p : Person) {Person}
createcompany (¢ : Company) {Company}
killcompany(c : Company) {Company}
add_linkempioyee_employer (p : Person, ¢ : Company)

{employee_employer, employer, employee }
delete_linkempioyee_empioger (p : Person, ¢ : Company)

{employee_employer, employer, employee }
add_linkyorker_voss(p : Person,q : Person) {worker_boss, worker, boss }
delete_linkyorker_boss(p : Person, q : Person) {worker_boss, worker, boss}

We present the write frame of each action as a set after the action declaration.
This is the set of attributes which it may change. Query operations in the sense
of UML are therefore represented by actions with an empty write frame.

axioms
The assoctation links only existing persons and companies:

employee_employer € Person «— Company

The two directions of the association are derived from the set of pairs in its relation:

Vp: Person; c¢: Company -
¢ € employer(p) = (p,c) € employee_employer A
p € employee(c) = (p,c) € employee_employer

Cardinality constraints:

Vp : Person - card(employer(p)) < 1
Vp: Person - card(boss(p)) < 1

There are similar axioms for worker_boss. The constraint of the model is expressed
by the formula:

Vp: Person - employer(p) = employer( boss(p) |)

f( X ) denotes the set of values f(z) for z € X. OCL notation could be used
for the axioms, but would be more prolix in general.

Theories can be linked by theory morphisms [9,7], which enable the theory
of a complete model to be assembled from theories of submodels and eventually
from the theories of specific elements, classes, states, associations, etc.



Generalisation of class C' by class D in UML is directly represented by the
theory T(D) of D being the source of a signature morphism into 7'(C') which
is the identity (each symbol of T(D) is interpreted by itself in T'(C)). Dashed
generalisation of C' by D is directly represented by an interface morphism (a
signature morphism which only maps action symbols of the first theory to action
symbols of the second theory) from T(D) to T(C) which is the identity on the
action symbols of D and their signature types.

A theory morphism is a signature morphism s from 7'1 to 72 which preserves
all the axioms of the source theory. That is, T2 proves s(P) for each axiom P of
T'1. The simplest form of theory morphism is the inclusion of one theory (all its
symbols and axioms) in another. This is denoted by writing includes T'1 after
the header of theory T2.

Using this we can re-express theory EFmployment above as:

theory FEmployment
includes WorkerBoss, Employee Employer
axioms Vp : Person - employer(p) = employer( boss(p) |)

where WorkerBoss, etc are theories of the associations which themselves include
the theories of Person and Company (Figure 1).

3 Static Structure Diagrams

A UML class C' is semantically represented by a theory T'(C) of the form:

theory T(C)
types C
attributes

T :F(C)

self : C — C

Cltt1 : O — T1

actions
createc(c: C)  {C}
killo(c: C)  {C}
opi(c: Oz :X1): 11

axioms

Ye: O -
self(c)=c A [ereatec(c)](c € T) A [killo(c)](c € C)

The notation [action] P denotes that every execution of action terminates with
the predicate P being true. Thus createc(c) always adds ¢ to the set of existing
C objects, and killc(¢) removes it.

Each instance attribute ati; : T; of (' gains an additional parameter of type
C in the class theory T'(C') and similarly for operations. The class theory can
be generated from a theory of a typical C instance by means of an A-morphism



[3]. Class attributes and actions do not gain the additional C' parameter as they
are independent of any particular instance. We denote att(a) for attribute att
of instance a by the standard OO notation a.att, and similarly denote actions
act(a,z) by alact(z).

We will refer to the conjunction of all the properties of the attributes of C' as
the invariant Inve of the class. We include the axiom V a : C-a.lnve in T(C) to
express this, where a.P is P with a added as the first parameter of all instance
attributes and actions of C' in P.

Similarly each association {r can be interpreted by a theory which contains
an attribute Ir representing the current extent of the association (the set of pairs
in it) and actions add_link and delete_link to add and remove pairs (links) from
this. Axioms define the cardinality of the association ends and other properties
of the association.

If D inherits from C then T'(D) is constructed by includeing T'(C), adding
symbols and axioms for the new features of D, and adjoining the axioms D C
C A D C C which ensure that attributes and operations of C' can be applied to
instances of D.

If class C has subclasses 51, ..., S, , we can assert that objects cannot migrate
from one subclass to another by axioms:

Vr:S1¢ S = 0 ¢F)

for j # ¢. However, if S; and 5; arise as states in a statechart, then such subtype
migration is permitted.

That two subclasses 51 and S5 are digjoint 1s expressed by axioms 51NS; = &
in a theory which contains both class theories. If a class C' is abstract with a
complete set of subclasses 5, ..., S5, then we can assert that C = S,U...US,
in a theory containing all of these class theories. A complete set of subclasses
for C' prevents the application of any transformation to introduce new direct
subclasses of C.

Likewise, if a class is asserted to be a leaf, then no transformation can intro-
duce subclasses of this class, and no superclasses can be introduced for a root
class.

3.1 Rationalising Inheritance Hierarchies

If two classes A and B are both subclasses of another class D, then it is valid to
introduce a subclass C' of D which acts as an abstract superclass of both A and
B (Figure 2). This transformation is valid because A C D AB C Dimply
that ¢ = AU B is a subset of D.

3.2 Rationalising Disjoint Associations

The following transformation (Figure 3) can be applied to object models to
eliminate some cases of optional association ends. This transformation is logically
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Fig. 3. Rationalising Disjoint Associations



valid as 7 and rs are disjoint and function-like by definition of the “or” constraint

[19]:

VaeA - (3beB - (a,b)em) V 3eceC - (a,c) €T) A
VaeA - =((3beB - (a,b)em) A (3ceC - (a,c) €ET))

and B and C are disjoint.

Thus the abstract generalisation class BorC which has BorC' = BU C can
be constructed, and 7 = 71 UT3 has the specified cardinality at the Bor(C end. A
similar transformation works for any cardinality combination at the A end: the
resulting association has cardinality the generalisation of the separate r; and o
cardinalities at this end.

3.3 Refining Class Invariants

Logically strengthening a class invariant is a refinement transformation. If class
C' has invariant Invc, then adding extra constraints or restating Inve in a
logically stronger manner to produce a predicate Invl, yields a refined class.
The theory interpretation is the identity.

3.4 Transitivity of Composition Aggregation

One proposed meaning [5] of composition aggregation of B instances into 4 via
an association ab is that the B instances are frozen in their relationship with a

particular A instance: the inverse image H_lﬂ {b} |) is constant for each b : B
for the duration of 1ts membership in ab.

If ab is a one-many association this means that & cannot move from one
container to another (#):

Ya:A; b:B- (a,b)€abAo((a,b)€ab) = a=d

oP denotes that P holds at the current or some future time.
The relational composition of two one-many composition aggregations is then
itself a composition aggregation because:

(a,c) € ab; be =
3b:B-(a,b)€abA (b c)Ebe

((1) = (2)) and

o((d', ¢) € ab; be) =
o(3b B -(a',b) € ab A (b, ¢) € be)

((3) = (4)). But then (1) A (3) implies (2) A (4), so by (%) applied to b, ¢ we
have b = b. Therefore, applying (%) to a, b we have ¢’ = a as required.



3.5 Deduction Transformations

If we know that a diagram M; ensures that the properties of an enhanced diagram
M also hold, then we say that M5 can be deduced from M;: My F M,. This is
just the same as asserting that there is a refinement transformation from M, to
M.

A particular example is that the composition of ‘selector’ associations remains
a selector of the composed association. In other words, if we know that r1 C R1,
72 C R2, then also the composition r1; r2 is a subset of R1; R2.

4 Sequence and Collaboration Diagrams

A sequence diagram defines constraints on the timing of method requests; acti-
vations and terminations. For example, a timing mark a at the source point of a
message m sent from object s to object ¢ represents the time a = —(¢!m, 1)
of some request send of m. If this arrow is horizontal this is also the time
a’ = —(t!m, i) of arrival of this request at ¢.

A timing mark at the destination of a signal arrow represents a request arrival
time —(¢!m, 1), or the termination time [(¢!m, ) of an invocation in the case
that the arrow represents the return of a procedural call t!m (ie, the arrow is
dashed with source ).

For example, Figure 4 translates to the following assertions, where each mes-
sage execution lifeline is interpreted by a particular message instance:

Vi ZN1~E|j,k,l,l/ Nl .
—(O0p,1) = T(ereatecy(obl),!)
L(createci(0bl), 1) < —(ob3lbar(z),5) = —(0b3lbar(z),j)
< —(obdldo(w), k) = —(obdldo(w), k)
L(ebdldo(w), k) < |(0b3lbar(z),j)
< (killea(ob1), 1) = |(Op, i)
These assertions can then be checked for consistency against detailed implemen-
tation level statecharts.

Replacing such constraints by logically stronger formulae (eg, reducing the
range of possible time delays between a request arrival and a result signal) is
therefore a refining transformation. It is also valid to introduce new objects and
calls on these provided that the existing model elements are preserved.

The structural elements of a collaboration diagram simply represent partic-
ular instances of classes and their links, and so may be expressed in suitable
extensions of class or submodel theories.

The interaction aspects can be modelled using composite actions [15] such as
; (sequential composition), := (assignment); || (concurrent composition); for all
(iteration over a set); if (conditional execution); M (binary choice of actions),
create and kil etc.
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Fig.4. Example Sequence Diagram with Annotations

5 Statecharts

A statechart specification of the behaviour of instances of a class C' can be
formalised as an extension of the class theory T'(C) of C, as follows. We use the
relationship a D “« calls 57 for action symbols & and 3 to denote that every
occurrence of & coincides with an occurrence of 3:

adf =
VleEI]Nl
e, ) =1(8,7) A e, 1) = 1(8,9)

Then the extended theory of C' has the additional axioms:

. Each state S is represented in the same manner as a subclass of ', and in
general, nesting of state 57 in state S5 is expressed by axioms 57 C S5 and
51 C Sy as for class generalisation.

. Each transition in the statechart and each event for which the statechart
defines a response yields a distinct action symbol. The occurrence of an
event e is equivalent to the occurrence of one of its transitions ¢; (it is the
abstract generalisation of the transition actions):

{1 De A ... Ny De

. The axiom for the effect of a transition ¢ from state S; to state S, with
label e(2)[G]/Post ™ Act where Post is some postcondition constraint on
the resulting state, is

Va:C-a.GNa€S = [at(z)](a.PostAacS)



4. The transition only occurs if the trigger event occurs whilst the object is in
the correct state:

Ya:C-a€S Na.G = (ale(z) D alt(z))
5. The generated actions must occur at some future time (after ¢ has occurred):
alt(z) = Qoa.Act

Transitions g with labels of the form after(¢) from source state S have an alter-
native axiom 4 defining their triggering which asserts that they are triggered ¢
time units after the most recent entry time to state S [14].

Axiom 5 adopts the semantics given in Syntropy [5] for generated actions:
the new state must be established before generated actions can be executed.
In contrast to the statemate semantics of statecharts [10], these actions can be
executed in steps other than the immediately following step. This appears to
be the correct interpretation of asynchronously generated signals in UML [19].
Synchronously invoked actions have the alternative axiom

alt(z) D a.Act

If state S 1s a concurrent composition of substates, we require that each
occurrence of an event « results in an occurrence of one transition t; for o 1n
each distinct concurrent sub-region of S which has a transition for this event.
For example, if there are transitions #; and 3 for « in region 1, and transition
1 in region 2 of a state 5, then we have the axioms:

a €S = (alty D altaMalts)
a EE = (alt2 D alty)
a €S = (alt3 D alty)

Thus changing the isConcurrent attribute of a composite state from false to
true represents a theory extension and therefore a refinement.
Some typical transformations on statecharts are then as follows:

5.1 Source and Target Splitting

These transformations [5] can be shown to be valid for UML given the above
semantics. Similarly, adding a nested state machine to a simple state S 1s gen-
erally a refinement provided that existing transitions from S are not overridden
by transitions from substates of S which go to new destination states partly or
fully disjoint from the original destinations.

5.2 Abstracting Events

In UML signal events can be arranged in a generalisation hierarchy. For example,
an event g(z) can be represented as a generalisation of events h(z,y) and f(z, z)



on a class diagram (z, z are the atiributes of event f, etc). The semantic meaning
is that every occurrence of a specialised event is also an occurrence of every event
it generalises (1):

h(z,y) D g(z) f(z,2) O ¢(z)

This means that transitions for A and f can be replaced by transitions for g, if
g is an abstract generalisation of these two actions, since each axiom a € S A
a.G = (alg(z) D alt(z)) for a transition ¢ of ¢ yields the corresponding axiom
for b or f.

This transformation is useful to reduce the number of events which a control
system must respond to, eg, to replace separate events “switch on” and “switch

off” by “toggle” [2].

5.3 Strengthening Transition Guards

The guard G of a transition from state S to state 7' may be strengthened by the
invariant of S, since this invariant inevitably holds in the source state at points
where the system is waiting for input events.

5.4 Eliminating Transitions

A transition ¢t with a logically false guard can be eliminated, since it can never
be taken. Its effect axiom has the form

a€SANaG = [t]Post

but this is trivially always true if a.G = false.

Such transitions may arise as the result of source and target splitting, for
example, in Figure 5, we target split the Finished state and transition finish,
and then source split the Filling state and the two transitions for finish, yielding
6 separate transitions for finish. However, all but two of the resulting transitions
are now impossible, so can be eliminated: the first transition for finish, with
guard level > min A level < norm cannot occur from either the F'1 or F3
states, and the second transition cannot occur from either the F'1 or F'2 states.

A similar step is carried out in the first refinement of Abrial’s development
of a distributed protocol [1].

Conclusions

This paper has illustrated the use of transformations on UML models as a means
of rigorous development and re-engineering; based on a detailed semantics of
these models. Real-time extensions of these models and corresponding transfor-
mations are currently under development. An international collaborative project
on the UML semantics is underway to combine other related approaches, such
as [6,4] into a common framework. Tool support for transformations as part of a
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Fig. 5. Successive Splitting and Elimination Transformations

general CASE tool for UML will also be developed. A library of proved transfor-
mations will be provided, eliminating the need for developers to reason directly
in RAL when applying transformations as development steps.

Suggestions for improvement of UML which have come from this work are:

. Consider statechart states as classifiers, whose instances are those objects

currently in the state. This unifies similar concepts in the same metamodel
entity.

. Attach constraints to packages or subsystems which enclose the submodel

on which the constraint applies, in preference to attaching the constraint to
a possibly large number of elements in this submodel.
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