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ABSTRACT

The local convergence properties of a class of primal-dual interior point methods are ana-

lyzed. These methods are designed to minimize a nonlinear, nonconvex, objective function

subject to linear equality constraints and general inequalities. They involve an inner it-

eration in which the log-barrier merit function is approximately minimized subject to

satisfying the linear equality constraints, and an outer iteration that speci�es both the

decrease in the barrier parameter and the level of accuracy for the inner minimization.

It is shown that, asymptotically, for each value of the barrier parameter, solving a single

primal-dual linear system is enough to produce an iterate that already matches the barrier

subproblem accuracy requirements. The asymptotic rate of convergence of the resulting

algorithm is Q-superlinear and may be chosen arbitrarily close to quadratic. Further-

more, this rate applies componentwise. These results hold in particular for the method

described by Conn, Gould, Orban and Toint [2], and indicate that the details of its inner

minimization are irrelevant in the asymptotics, except for its accuracy requirements.
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1 Introduction

In this paper, we aim to provide insight on the local behavior of a class of primal-dual interior

point algorithms. The class of algorithms is intended to solve nonconvex nonlinear programs that

involve linear equality and nonlinear inequality constraints using a barrier-type method. More

speci�cally, we consider the following problem:

NLP �
8><
>:

min f(x)

s.t. Ax = b

c(x) � 0;

(1.1)

where f : IRn ! IR and c : IRn ! IRp are assumed to be twice continuously di�erentiable, the

matrix A 2 IRm�n (m � n) has full rank and b 2 IRm. The method starts with a strictly feasible

initial point, and, rather than solving NLP directly, instead approximately solves a sequence of

barrier subproblems of the form

BS(�) �
(

min �(x; �)

s.t. Ax = b;
(1.2)

for a decreasing sequence f�kg of positive barrier parameters. Here the barrier function is

�(x; �)
def
= f(x)� �

pX
i=1

log ci(x); (1.3)

where the functions ci(�) are the components of the vector function c(�). Once an (approximate)

solution xk+1 of BS(�k) is found, the parameter �k is updated and attention turns to the next

barrier subproblem (see for instance [6, 16, 18] for a general survey and [19] for the linear case).

Under reasonable conditions [2, 6, 16], it can be shown that the sequence fxkg converges to a

stationary point x� of NLP. A typical stopping criterion for the solution of BS(�) is

kPN (A)(rx�(x; �))k � #(�); (1.4)

where PN (A) is the orthogonal projection onto the nullspace of A, k � k is some norm de�ned on

IRn and the continuous function # : IR+ ! IR+ is a forcing function, that is #(�) = 0 if and only

if � = 0.

The most intensive part of the solution procedure is in the approximate solution of successive

barrier subproblems BS(�) (the inner minimizations), whose diÆculty depends on the chosen

starting point. An obvious idea is to start the solution of BS(�k+1) from xk+1. However, in the

primal case, for both linear and nonlinear programming, it has been shown that the unit Newton

step for a barrier subproblem is likely not to be accepted as a �rst step if the minimization process

is started from xk+1, even if xk+1 is close to a solution of NLP [17]. The determination of better

initial points in interior methods has recently been examined by several authors, both for primal

[3, 12] and primal-dual barrier methods [1, 22, 23], as well as for exterior penalty methods (see

[10], whose results were the inspiration for [5]). In particular, Dussault [5] expands the primal

central path about the current iterate. In this paper, we apply a similar analysis in the more

general primal-dual framework. This framework o�ers the advantage of keeping the radius of the

\sphere of convergence" of Newton's method away from zero (under nondegeneracy assumptions),
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whereas this radius is proportional to the barrier parameter in a purely primal scheme, as is shown

in [14] for the case of linear programming and in [15] for nonlinear programming.

In this paper, we intend to determine conditions under which, asymptotically, a single Newton

step is strictly feasible (in contrast with the purely primal case), and results in a point that satis�es

suitable barrier subproblem termination rules, after every reduction of the barrier parameter (see

for instance [1, 3, 4] for previous work on the subject). This is shown to imply a componentwise

Q-superlinear rate of convergence, a stronger result than simply Q-superlinear convergence of

the vector of variables and Lagrange multipliers. Furthermore, this rate of convergence may be

made arbitrarily close to quadratic. The results we present hold independently of the particular

algorithm used for the inner minimization. They may thus be interpreted as giving conditions

on the inner minimization stopping criterion to ensure fast convergence, in a manner similar to

that studied by [13] for linear complementarity problems.

The motivation for the results presented in this paper is that they cover the general algorithm

of [2], as will be discussed below. This algorithm has been implemented as HSL VE12 in the Harwell

Subroutine Library for the special case of quadratic programming problems. We refer the reader

to [2] for further motivation and details, along with the results of tests performed on a number

of large convex and nonconvex quadratic examples.

The paper is organized as follows. Section 2 describes the notation and assumptions used

throughout the paper and x3 provides useful preliminary results. In x4, we state the class of

algorithms that will be analyzed; in x5 we describe an extrapolation of the central path that

provides a point which turns out to be a very good estimate of the solution of the next subprob-

lem. We subsequently present the local convergence properties of the algorithm when using the

aforementioned extrapolation in x6. In x7, we review the link between our class of algorithms

and the method of [2]; we also brie
y discuss the connections with other proposals. We conclude

and give some comments in x8.

2 Notation and assumptions

In this section, we present our notation and outline the required assumptions for the algorithm

to converge superlinearly.

2.1 Notation

The following notation will be used throughout the paper. For related positive quantities � and

�, we write � = O(�) if there is a constant � > 0 such that � � �� for all � suÆciently small. We

write � = o(�) if �=� ! 0 as � ! 0. We also write � = 
(�) if � = O(�), and write � = �(�)

if � = O(�) and � = O(�).
If x is any vector in IRn, the corresponding capital letter X will denote the diagonal matrix

diag(x). The components of x will be denoted by [x]1; : : : ; [x]n. We shall sometimes de�ne a

vector w 2 IRn+m+p from x 2 IRn, y 2 IRm and z 2 IRp by w = (x; y; z). For such a vector, we

shall use the notation [w]x, [w]y and [w]z to refer respectively to its x, y and z components.

In the remainder of the paper, the statement \� small enough" is to be understood as \� is

positive and close enough to zero", and the notation a & b as \a decreases monotonically and

converges to b". By \global convergence" we shall mean \convergence to a local solution, whatever



Superlinear Convergence of Primal-Dual Interior Point Algorithms for NLP 3

the point from which the process was started". By \local convergence" we mean \convergence to

a local solution when the process is started in the vicinity of that solution".

2.1.1 Optimality conditions

The Lagrangian function for NLP is

L(w) = L(x; y; z) = f(x) + (Ax� b)T y � cT (x)z (2.5)

where the Lagrange multipliers y 2 IRm correspond to the equality constraints and z 2 IRp
+

to inequalities. We shall conveniently express the optimality conditions and the local analysis

developments of x5 and x6 in terms of the following family of functions, parameterized by a scalar
� � 0:

	(w;�)
def
=

2
64

rxL(w)
Ax� b

C(x)z � �e

3
75 : (2.6)

Here rxL(w) = rxf(x) + AT y � JT (x)z, the matrix J(x) denotes the Jacobian matrix of c at

x, that is the p by n matrix whose i-th row is (rxci(x))
T , and e is the vector of all ones. If

w�
def
= (x�; y�; z�) is a �rst-order critical point for NLP, it must satisfy the �rst-order Karush-

Kuhn-Tucker (KKT) conditions, which are that

	(w�; 0) =

2
64
0

0

0

3
75 (2.7)

and

(c(x�); z�) � 0: (2.8)

When solving problem BS(�), we seek x(�) and y(�) such that

rxf(x(�)) +AT y(�)� �JT (x(�))C�1(x(�))e = 0; (2.9)

Ax(�) = b; (2.10)

c(x(�)) > 0: (2.11)

Solving this system corresponds to using a primal approach. Let x(�) and y(�) be solutions of

(2.9){(2.11). In this case, the set

fx(�) j � > 0g (2.12)

is said to de�ne a (local) primal central path. Under second-order suÆciency assumptions, a

linear independence constraint quali�cation and a strict complementary slackness condition, the

primal central path leads to a solution x� of NLP and y(�) converges to a corresponding vector

of Lagrange multipliers y� (see [6]) as � decreases to zero. Crucially, (2.9){(2.11) is equivalent to

the system

	(w(�);�) =

2
64
0

0

0

3
75 ; (c(x(�)); z(�)) > 0; (2.13)

in the sense that if (x(�); y(�)) solves (2.9){(2.11), the vector (x(�); y(�); z(�)) with z(�) =

�C�1(x(�))e solves (2.13), while if (x(�); y(�); z(�)) solves (2.13), (x(�); y(�)) solves (2.9){(2.11)
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and we have z(�) = �C�1(x(�))e. Treating z(�) as an independent variable when iteratively

solving (2.13) is a primal-dual approach, and is the one we adopt in this paper. As � & 0,

the solution w(�) of (2.13) then converges to a solution w� of (2.7) under the aforementioned

conditions.

In accordance with the primal-dual theory for linear and convex programming, we use here the

following terminology. The term primal variables refers to the x variables, Lagrange multipliers

to y and dual variables to z, although the variables z are Lagrange multipliers too. When solving

a primal-dual system, the set

C def
= fw(�) = (x(�); y(�); z(�)) j � > 0g (2.14)

is said to de�ne a (local) primal-dual central path.

Note that for any � � 0, 	(w;�) and 	(w; 0) satisfy the fundamental relationship

	(w;�) = 	(w; 0) �
2
64

0

0

�e

3
75 :

This implies that the Jacobian matrices rw	(w;�) and rw	(w; 0) are equal for every w in the

domain of interest, and satisfy

rw	(w;�) = rw	(w; 0) =

2
64
rxxL(w) AT �JT (x)

A 0 0

ZJ(x) 0 C(x)

3
75 : (2.15)

Moreover, r�	(w;�) = [0 0 � eT ]T .

2.1.2 Norms

We use the symbol k � k to represent the Euclidean `2-norm, unless otherwise speci�ed. We thus

have

kXk = kxk1 � kxk (2.16)

for any vector x. If S is a symmetric positive de�nite matrix, the S-norm of x, kxkS , is de�ned
as usual by kxk2S def

= xTSx.

We let the columns of the n by n�m matrix N be an orthonormal basis for the nullspace of

A. We denote the smallest and largest eigenvalues of any n�n symmetric matrix M by �min[M ]

and �max[M ]. Such a matrix is said to be second-order suÆcient (with respect to A) if and only

if the reduced matrix

R[M ] = NTMN

is positive de�nite (see, for instance, [9]).

In the context of our algorithm, we shall choose to measure gradients and related quantities

in a seminorm induced by a second-order suÆcient iteration-dependent preconditionerMk, where

k is the index of the current iteration1. We de�ne the k-seminorm of a vector g, kgk[k], by

kgk2[k] def= qT g; (2.17)

1Strictly, this seminorm also depends on A, but we hide this dependence since A is �xed throughout this paper.
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where q solves the system  
Mk AT

A 0

! 
q

r

!
=

 
g

0

!
:

This is actually a norm if g lies in the nullspace of A. In particular,

kgk[k] = 0 if and only if kNT gk = 0:

A simple calculation (see, for example, [8], Section 5.4.1) reveals that (2.17) may be expressed as

kgk2[k] = gTNR�1[Mk]N
T g = kNT gk2R�1 [Mk]

= kR� 1
2 [Mk]N

T gk2: (2.18)

The simplest choice Mk = I, for which R[I] = I, simply measures the size of the projection of

g into the nullspace of A. Note that the k-seminorm is invariant for displacements in the range

space of AT , i.e.:

kg +AT gk[k] = kgk[k] (2.19)

for any g 2 IRn and any g 2 IRm.

In addition, because gradients can be interpreted as linear forms on the space of the problem

variables, it is natural to measure quantities directly involving these variables, such as the distance

between iterates, in a seminorm corresponding to the dual of k � k[k]. It is easy to verify that such
a seminorm is given by

kskk def
= kNT skR[Mk]; (2.20)

and is, in fact, a norm in the nullspace of A. As a consequence, for all v; s 2 IRn such that

As = 0, i.e. such that s = NNT s, we have that

jvT sj = jvTN(NTMkN)�
1
2 (NTMkN)

1
2NT sj � kvk[k]kskk; (2.21)

because of the Cauchy-Schwarz inequality. We stress that there is no need for Mk itself to be

positive de�nite, merely that NTMkN has to be.

If U is any symmetric matrix, we also de�ne the reduced matrix

R[U;Mk]
def
= (NTMkN)�

1
2NTUN(NTMkN)�

1
2 ; (2.22)

we denote its smallest and largest eigenvalues by �minMk
[U ] = �min [R[U;Mk]] and �maxMk

[U ] =

�max [R[U;Mk]]. We also note that the inertia of R[U;Mk] and R[U; I] � NTUN are the same.

In particular, we have that

�minMk
[U ] � 0 is equivalent to �minI [U ] � 0: (2.23)

We write kvk� def
= kNT vk = kNNT vk, the Euclidean norm of the projection of v onto the

nullspace of A, and observe that k�k� is a self-dual norm in this nullspace, and that the k-seminorm

and k � k� are equivalent if Mk = I. Moreover, we have

kg +AT gk� = kgk� (2.24)

for any g 2 IRn and any g 2 IRm, which parallels (2.19).

We also notice the following equivalence

PN (A)(rx�(x; �)) = 0() NTrx�(x; �) = 0; (2.25)
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which in turn is equivalent to

krx�(x; �)k� = 0 and to krx�(x; �)k[k] = 0; (2.26)

for any second-order suÆcient matrix Mk. For future reference, we state the expressions of the

�rst and second derivatives of the barrier function �(x; �) with respect to x:

rx�(x; �) = rxf(x)�
pX

i=1

�

ci(x)
rxci(x); (2.27)

rxx�(x; �) = rxxf(x) +
pX
i=1

�

c2i (x)
rxci(x)(rxci(x))

T �
pX
i=1

�

ci(x)
rxxci(x): (2.28)

2.2 Assumptions

Let I = fx j c(x) � 0g be the set of points satisfying the inequalities, E = fx j Ax = bg be the
set of points satisfying the equality constraints, and the intersection F def

= I \ E be the set of

feasible points for NLP. We assume that

AS1 there exists x0 such that Ax0 = b and c(x0) > 0,

AS2 the functions f(�) and ci(�) are twice continuously di�erentiable over an open set containing
F .

Furthermore, if w� is a solution of (2.7){(2.8), if we let A def
= fi j ci(x�) = 0g be the set of active

inequality constraints at x� and if a(j) denotes the j-th column of AT , we assume that

AS3 the vectors frxci(x
�)gi2A and fa(j)gmj=1 form a linearly independent set in IRn,

AS4 the strong second-order suÆciency condition is satis�ed at w�: vTrxxL(w�)v > 0 for any

vector v 6= 0; v 2 N (A) such that rxci(x
�)T v = 0 for every i 2 A,

AS5 strict complementary slackness holds, that is [z�]i + ci(x
�) > 0 for all i = 1; : : : ; p.

Note that AS3 implies that the Lagrange multipliers y� and the dual variables z� are unique,

and that the matrix A has full rank, which is not restrictive since it can always be satis�ed by

preprocessing the linear system Ax = b. Under AS3, AS4 and AS5, x� is an isolated (and

thus strict) local solution of NLP. Throughout the paper, the dependence of A on x� will remain

hidden as only one local solution of NLP is considered.

3 Preliminary results

In this section, we state some results about central paths which will be useful later on.

It is shown in [6, 16] that under AS3, AS4 and AS5, rw	(w
�; 0) is nonsingular, and a

continuity argument yields that it remains nonsingular in a small neighborhood of w�. In the

following technical lemma, which is a simple extension of that proved in [20] to the case of linear

equality constraints, we now verify that the central path is well-de�ned in the intersection of this

neighborhood and E , and show that it has useful continuity properties.
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Lemma 3.1 Under AS2{AS5, let the vector

w(l; r; �) = (x(l; r; �); y(l; r; �); z(l; r; �))

be de�ned implicitly as the solution of the following nonlinear system

	(w; 0) =

2
64
NNT l

r

�

3
75 ; (3.29)

for given l 2 IRn; r 2 IRm and � 2 IRp, and with 	 de�ned as in (2.6). Then there exist

constants " > 0 and � > 0 for which the following statements hold.

(i) w(l; r; �) is a continuously di�erentiable function of (l; r; �) in the neighborhood

N (")
def
= f(l; r; �) j klk� + krk+ k�k � "g:

(ii) For � > 0 and (l; r; �) 2 N ("), we have [z(l; r; �)]i > 0 and ci(x(l; r; �)) > 0 for all

i = 1; : : : ; p.

(iii) Let (l1; r1; �1); (l2; r2; �2) 2 N (") and w1 and w2 be the corresponding solutions of

(3.29). We then have

w2 � w1 = (rw	(w1; 0))
�1

2
64
NNT (l1 � l2)

r1 � r2
�1 � �2

3
75+ � (3.30)

where � 2 IRn+m+p and k�k � � (kl1 � l2k� + kr1 � r2k+ k�1 � �2k)2, i.e. � = O("2).

Proof. To prove (i), we note that since rw	(w
�; 0) is nonsingular, 	(w�; 0) = 0 and 	(�; 0)

is continuously di�erentiable in a neighborhood of w�, the implicit function theorem implies

that there exists " > 0 such that the implicitly-de�ned function w(l; r; �) is continuously

di�erentiable in (l; r; �) over the neighborhood N (").

For (ii), let (l; r; �) 2 N (") with � > 0. Taking a smaller " if necessary, note that ci(x(l; r; �)) >

0 for all i 62 A and that AS5 yields [z(l; r; �)]i > 0 for all i 2 A. On the other hand, since

[z(l; r; �)]ici(x(l; r; �)) = �i for all i = 1; : : : ; p, we also obtain [z(l; r; �)]i > 0 for all i 62 A and

ci(x(l; r; �)) > 0 for all i 2 A.
Finally, (iii) is shown noting that, by the implicit function theorem, the Jacobian of the

function found in (i) is �(rw	(w; 0))
�1, from which the result follows, using a �rst-order

Taylor expansion. 2

We may now apply Lemma 3.1 to obtain a fundamental result relating the optimal w� to w(�).

We �rst observe that, because of Lemma 3.1 (i), when � is suÆciently small, w(0; 0; �e) is unique

and is therefore equal to w(�), since w(�) solves this system by de�nition. Moreover, because

of AS2, rw	(�; 0) is uniformly nonsingular in a neighborhood of w�, and the left-hand side of
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(3.30) is dominated by the �rst term in its right-hand side for small enough ". Consequently,

kw1 � w2k = �(kl1 � l2k� + kr1 � r2k+ k�1 � �2k) : (3.31)

Substituting (l1; r1; �1) = (0; 0; �e) and (l2; r2; �2) = (0; 0; 0) in (3.31) and using the equivalence

of w(0; 0; �e) and w(�), we obtain the important result

kw(�)� w�k = �(�); (3.32)

for all suÆciently small �.

We now show a property of the behavior of the path x(�) when it approaches its limit x�.

We know from (2.6) and (2.13) that

	(w(�);�) =

2
64

rxL(w(�))
Ax(�)� b

C(x(�))z(�) � �e

3
75 =

2
64
0

0

0

3
75 : (3.33)

Di�erentiating system (3.33) with respect to � and rearranging gives

rw	(w(�);�)

2
64

_x(�)

_y(�)

_z(�)

3
75 =

2
64
0

0

e

3
75 (3.34)

for any nonnegative �. At � = 0, taking only active constraints into account, the third equation

of (3.34) together with (2.15) shows that _x(0) 6= 0 and

(rxci(x
�))T _x(0) =

1

[z�]i
8i 2 A: (3.35)

Equation (3.35) means that the trajectory x(�) does not skirt the active constraints to reach x�,

that is, its approach is nontangential. Note that this is a consequence of the strict complemen-

tarity assumption AS5 (see [21] for details).

Remark 3.1. Similarly to (3.35), if we write out the third equation of (3.34) for inactive con-

straints, we obtain

[ _z(0)]i =
1

ci(x�)
8i 62 A; (3.36)

and this shows that the dual trajectory z(�) does not approach its bounds tangentially. Identities

(3.35) and (3.36) share a dual-like relationship which is, once again, due to strict complementarity.

4 The algorithm

We now state our class of algorithms. Let us �rst de�ne, for every strictly feasible (x; z),

B(x; z)
def
= JT (x)C�1(x)ZJ(x); (4.37)

the Lagrangian

L(x; z)
def
= f(x)� cT (x)z; (4.38)
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and �nally

V (x; z)
def
= rxxL(x; z) +B(x; z): (4.39)

Note that for any strictly feasible (x; z) and for any y 2 IRm,

rxxL(x; z) = rxxL(w) = rxxf(x)�
pX
i=1

[z]irxxci(x): (4.40)

Note also that V (x; z) is the same as the Hessian of the barrier function (2.28) in the special case

where the dual variables z = �C�1(x)e.

To distinguish the overall algorithm from the inner minimization, that is the approximate

solution of the barrier subproblem, we call the former the \outer minimization". Our outer

minimization may be formally stated as Algorithm 4.1.

Algorithm 4.1: Outer Minimization

Initialization. An initial barrier parameter �0 > 0 and the forcing functions �C(�) and

�D(�) are given. Set k = 0.

Inner Minimization. Approximately minimize the log-barrier function �(x; �k). Stop this

inner algorithm as soon as an inner iterate (xk+1; zk+1) is found such that

Axk+1 = b (4.41)

(c(xk+1); zk+1) > 0 (4.42)

kC(xk+1)zk+1 � �kek � �C(�k) and (4.43)

krxf(xk+1)� JT (xk+1)zk+1k[k+1] � �D(�k); (4.44)

where the norm k � k[k+1] is de�ned with respect to some second-order suÆcient pre-

conditioning matrix Mk+1. Choose �k+1 < �k, increment k by one, and perform next

inner minimization.

A crucial feature of Algorithm 4.1 is that at every stage, it generates iterates lying in the

constraint manifold Ax = b. This allows us to concentrate on the natural curvature of the

problem. It also has the important consequence that the Lagrange multipliers y neither appear

nor are used anywhere in the algorithm. However, for the needs of the local analysis of x6, let us
de�ne the Lagrange multipliers yk+1 by

AT yk+1 = NNT
h
rxf(xk+1)� JT (xk+1)zk+1

i
�
�
rxf(xk+1)� JT (xk+1)zk+1

�
; (4.45)

with xk+1 and zk+1 as given by Algorithm 4.1. Note that the system (4.45) uniquely determines

yk+1 because the matrix A has full rank. It is easy to check that under our assumptions, as

xk+1 ! x� and zk+1 ! z�, we have yk+1 ! y�. Moreover, the de�nition (4.45) implies

rxf(xk+1) +AT yk+1 � JT (xk+1)zk+1

= NNT
h
rxf(xk+1)� JT (xk+1)zk+1

i
= NNT

h
rxf(xk+1) +AT yk+1 � JT (xk+1)zk+1

i
; (4.46)
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or in other words, if we let wk+1 = (xk+1; yk+1; zk+1), we have

rxL(wk+1) = NNTrxL(wk+1): (4.47)

Note that conditions (4.43){(4.44) are relaxations of a part of the optimality system (2.13),

and that the stopping condition (4.44) is equivalent to

krxL(wk+1)k[k+1] � �D(�k);

using the identity (2.19).

We do not describe an inner minimization algorithm here (we will return to this question in

x7), but focus on the choice of the preconditioning matrices Mk. Since this preconditioning aims

to locally represent the geometry of the log-barrier function, it is natural to assume that Mk is

chosen as

Mk =Wk +B(xk; zk); (4.48)

where the matrix Wk is chosen so that Mk is second-order suÆcient, and might, for example,

be a suitable approximation of the natural choice rxxL(xk; zk). A discussion of the possible

practical choices for Wk is out of the scope of this work and we refer the interested reader to [2]

for theoretical arguments and results of a practical implementation. Our assumption on Mk is

the following.

AS6 There exist �M 2 (0; 1) and �W > 0 such that, for all k, the preconditioner Mk = Wk +

B(xk; zk) and its component Wk satisfy

�min[NTMkN ] � �M (4.49)

and

kNTWkNk � �W: (4.50)

AS6 allows us to analyze the interrelationship of the preconditioners, in that we can deduce

an important relation between the norm k � k� and the seminorms (2.17){(2.18). It is worth

emphasising that this relation does not enforce uniform equivalence between those norms, as it

only gives one of the two inequalities required for such an equivalence.

Lemma 4.1 Suppose AS6 is satis�ed and that there exists a constant �J > 0 such that,

for all k,

kJ(xk)k � �J : (4.51)

Then, for any vector v 2 IRn and for all k,

kvkk � �
1=2
M kvk�; (4.52)

and

kvk[k] � �
�1=2
M kvk�: (4.53)
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Moreover if there exists �(c) > 0 such that

lim
�!0

�C(�)

�
� �(c); (4.54)

then there exists �� > 0 such that for all k,

kvk[k] � ��min

"
mini ci(xk)p

�k�1
; 1

#
kvk�: (4.55)

Proof. The following proof is inspired by [2, Lemma 4.2 and Theorem 4.12].

Inequalities (4.52) and (4.53) clearly hold for any v orthogonal to N (A). Using the identity

(2.20), the positive de�niteness of NTMkN and AS6, we have for all v such that NT v 6= 0,

kvk2�
kvk2k

=
kNT vk2
kNT vk2R[Mk]

=
k(NTMkN)�

1
2 (NTMkN)

1
2NT vk2

k(NTMkN)
1
2NT vk2

� k(NTMkN)�1k

� ��1M ;

which proves (4.52). The proof of (4.53) is similar.

To prove (4.55), �rst observe that AS6, (2.16) and (4.51) imply that for all k,

kNTMkNk � kNTWkNk+ kNTB(xk; zk)Nk � �W + �2J max
i

[zk]i
ci(xk)

: (4.56)

If r denotes the vector NT v, we have krk = kvk�. Consider �rst the case where there exists
�1 > 0 such that for all i = 1; : : : ; p,

lim sup
k!1

[zk]i
ci(xk)

� �1 < +1:

Inequality (4.56) then becomes

kNTMkNk � �W + �2J�1;

and we have from the positive de�niteness of NTMkN :

kvk[k] = k(NTMkN)�
1
2 rk � (�W + �2J�1)

�1=2krk: (4.57)

Now consider the other possibility, namely that

lim sup
k!1

[zk]i0
ci0(xk)

= +1;

for some index i0. Then, using (4.43) and (4.54), we have for all i and for suÆciently large k,

[zk]i
ci(xk)

� �k�1
ci(xk)2

+
jci(xk)[zk]i � �k�1j

ci(xk)2
� �k�1

ci(xk)2
+
�C(�k�1)

ci(xk)2
� (1 + 2�(c))

�k�1
ci(xk)2

:
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We thus obtain from (4.56) that for large enough k,

kNTMkNk � �W + �2J max
i

[zk]i
ci(xk)

� 2�2J (1 + 2�(c))
�k�1

mini ci(xk)2
;

so that

kvk[k] = k(NTMkN)�
1
2 rk � (2�2J (1 + 2�(c)))�

1
2
mini ci(xk)p

�k�1
krk: (4.58)

Putting (4.57) and (4.58) together yields (4.55) with

��
def
= min

h
(2�2J (1 + 2�(c)))�

1
2 ; (�W + �2J�1)

�1=2
i
:

2

5 Choosing the starting point for the inner minimization

As stated in the introduction, a computationally critical part of the algorithm is the choice of the

starting point for the inner minimization and we already indicated that choosing xk+1 to start

the solution of BS(�k+1) is likely to be ineÆcient. The purpose of this section is to examine

alternative choices, from the point of view of improving the local convergence rate. Of course,

this rate of convergence depends on the particular choice of the functions �C(�) and �D(�). We

therefore start by considering appropriate choices for these functions.

5.1 Stopping tolerances

Formally, we shall suppose that the inner iteration, that is the approximate minimization of

BS(�k), starts from the (as yet, unde�ned) primal-dual point (xk;0; zk;0), generates a sequence of

iterates f(xk;j ; zk;j)gj�0, and terminates at the point (xk;jk ; zk;jk) � (xk+1; zk+1) at which (4.41){

(4.44) are satis�ed for some appropriate second-order suÆcient matrix Mk+1. Let us de�ne the

Lagrange multipliers yk+1 according to (4.45) and let wk+1 = (xk+1; yk+1; zk+1). We assume from

now on that the tolerances �C(�k) and �D(�k) asymptotically have the following particular form:

Stopping Tolerances:

We assume that there exist constants 0 < �C� � �C� < 1 and 0 < �D� � �D� such that, for

suÆciently large values of k,

�C��k � �C(�k) � �C��k (5.59)

and

�D��

k+1
k � �D(�k) � �D��


k+1
k ; (5.60)

where

0 < 
k < 1: (5.61)
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Observe that (4.43) and (5.59) imply that ci(xk+1)[zk+1]i � �k = O(�k) for all i = 1; : : : ; p.

In the context of our local analysis, we now assume that the vector w�, a solution of (2.7){

(2.8), is a limit point of the sequence fwk+1g, satisfying (4.41){(4.44), with yk+1 de�ned by

(4.45), as �k & 0. More speci�cally, we assume that there exists an in�nite index set K such that

wk+1 ! w� as k !1, k 2 K. The subsequence of fwk+1g indexed by K is denoted by fwk+1gK
and we write fwk+1gK ! w�. In what follows, we consider only k 2 K. In addition, AS2 implies

that, for all i = 1; : : : ; p and all x suÆciently close to x�,

krxf(x)k � �g; krxxf(x)k � �H; krxci(x)k � �
 and krxxci(x)k � ��: (5.62)

for some �g; �H; �
 ; �� > 0. The third of these bounds and the fact that we restrict our atten-

tion to K imply that (4.51) holds for k suÆciently large, and Lemma 4.1 can thus be applied

asymptotically within K.
The next theorem provides bounds on the active and inactive quantities involved in Algo-

rithm 4.1 that result from our choice of stopping tolerances.

Theorem 5.1 Assume w� is a solution of NLP and fwk+1gK ! w�, where fwk+1g is a

sequence of iterates generated by Algorithm 4.1 with yk+1 de�ned by (4.45). Under AS1{

AS6 and (5.59), we have that for suÆciently large k 2 K,

(i) for all i 2 A, there exist �z � �z > 0 such that

1

�z
(1� �C�)�k � ci(xk+1) � 1

�z
(1 + �C�)�k; (5.63)

�z � [zk+1]i � �z; (5.64)

(ii) for all i 62 A, there exist �c � �c > 0 such that

1

�c
(1� �C�)�k � [zk+1]i � 1

�c
(1 + �C�)�k; (5.65)

�c � ci(xk+1) � �c; (5.66)

where �C� is de�ned in (5.59).

Proof. The strict complementarity assumption AS5 implies that for i 2 A, we have for
suÆciently large k 2 K

0 < 1
2
[z�]i � [zk+1]i � 2[z�]i: (5.67)

Relation (5.64) then follows with �z = 1
2
mini2A[z

�]i and �z = 2maxi2A[z
�]i.

On the other hand, stopping condition (4.43) yields that for all i = 1; : : : ; p,

��C(�k) � ci(xk+1)[zk+1]i � �k � �C(�k): (5.68)

Using the rightmost inequality in (5.59), (5.64) and (5.68) yields (5.63).
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Observe that if i 62 A, then for suÆciently large k 2 K,

0 < 1
2
ci(x

�) � ci(xk+1) � 2ci(x
�): (5.69)

Relation (5.66) then follows with �c = 1
2
mini62A ci(x

�) and �z = 2maxi62A ci(x
�). The proof

of (5.65) is similar to that of (5.63) using (5.66) and (5.68). 2

We now show that a termination criterion such as (4.43){(4.44) coupled with (5.59) and (5.60)

guarantees that wk+1 lies within a constant factor of (�

k+

1
2

k + �k) from an exact solution w(�k)

of BS(�k) and from w� in the usual, Euclidean norm.

Theorem 5.2 Suppose thatAS1{AS6, (5.59) and (5.60) are satis�ed. Assume furthermore

that w� is a solution of NLP and that fwk+1gK ! w�, where fwk+1g is a sequence of iterates
generated by Algorithm 4.1 with yk+1 de�ned by (4.45). Then, we have that, for suÆciently

large k 2 K, there exist constants �dst; ��dst > 0 such that

kwk+1 � w(�k)k � �dst (�

k+

1
2

k + �k); (5.70)

and

kwk+1 � w�k � ��dst (�

k+

1
2

k + �k): (5.71)

Proof. Observe that, under the stated assumptions, we may apply (4.55) which, together

with the relations (2.24), (4.44) and (5.60), yields

krxL(wk+1)k� � ��1� max

"
�D(�k)

p
�k

mini ci(xk+1)
; �D(�k)

#
(5.72)

� ��1� �D� max

"
�

k+3=2
k

mini ci(xk+1)
; �
k+1

k

#
: (5.73)

First consider the case where the active set A is nonempty. In view of (5.63) and (5.66), the

index i that realizes the minimum in (5.73) certainly asymptotically satis�es (5.63), which

implies

min
i
ci(xk+1) = min

i2A
ci(xk+1) � 1

�z
(1� �C�)�k: (5.74)

Combining (5.73) and (5.74), we obtain

krxL(wk+1)k� � �Lmax

"
�z

1� �C�
�

k+

1
2

k ; �
k+1
k

#
= �L

�z

1� �C�
�

k+

1
2

k ; (5.75)

for suÆciently large k 2 K, where we have set �L = ��1� �D� .

Consider now the case where there are no active constraints. This time, the index i that

realizes the minimum in (5.73) satis�es (5.66) and we have mini ci(xk+1) � �c. Thus, (5.73)

gives that for suÆciently large k 2 K,

krxL(wk+1)k� � ��1� �D� max
h
��1c �


k+3=2
k ; �
k+1

k

i
= �L�


k+1
k : (5.76)
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From the de�nition (4.45) of yk+1, (4.47) together with (4.41) guarantees that we have

wk+1 = w(rxL(wk+1); 0; C(xk+1)zk+1) in Lemma 3.1. Moreover, (4.43), (5.59), (5.75) and

(5.76) guarantee that krxL(wk+1)k� + kC(xk+1)zk+1k is smaller than the threshold " de-

�ned in Lemma 3.1 for suÆciently large k 2 K. Invoking (3.31) with the parameters

(rxL(wk+1); 0; C(xk+1)zk+1) and (0; 0; �ke) thus gives

kwk+1 �w(�k)k = �(krxL(wk+1)k� + kC(xk+1)zk+1 � �kek) (5.77)

= O(krxL(wk+1)k� + �C(�k)); (5.78)

= O(krxL(wk+1)k� + �k); (5.79)

where we have used (4.43) and (5.59).

When A is nonempty, we obtain from (5.75) and (5.79) that, for suÆciently large k 2 K,

kwk+1 � w(�k)k = O(�
k+
1
2

k + �k); (5.80)

while if A is empty, (5.76) and (5.79) yield

kwk+1 � w(�k)k = O(�
k+1
k + �k) (5.81)

= O(�
k+
1
2

k + �k); (5.82)

because of (5.61). Putting (5.80) and (5.82) together proves (5.70).

Using the triangle inequality, (3.32), (5.61) and (5.70), there exists a constant �� > 0 such

that

kwk+1 � w�k � kwk+1 � w(�k)k+ kw(�k)� w�k (5.83)

� �dst(�

k+

1
2

k + �k) + ���k; (5.84)

� (�dst + ��)(�

k+

1
2

k + �k); (5.85)

which proves (5.71) with ��dst = �dst + ��. 2

Remark 5.1. In condition (5.72), the minimum is certainly asymptotically attained for an active

index, if any. In that case, ifAS5 is satis�ed, this minimum is of the order of �k (and of the order

of �
1=2
k ifAS5 fails to be satis�ed)|see for instance [11, 21]. In our case, in order for the sequence

fkrxL(wk+1)k�g to converge to zero, we thus require that �D(�k) converges to zero faster than

�
1=2
k (as guaranteed by (5.60)), which is usually suÆcient in practice to ensure convergence of the

outer minimization.

Examining (4.55), we see that in the nondegenerate case, and when there are active con-

straints, we asymptotically have kvk[k] � �nd�
p
�kkvk� for some constant �nd� > 0. Hence, con-

ditions (4.44) and (5.60) amount to krxL(wk+1)k� = O(�
k+
1
2

k ) which may be weaker than the

usual stopping criterion krxL(wk+1)k� = O(�k) whenever 
k < 1
2
. In this case, the right-hand

sides of (5.70) and (5.71) are O(�
k+
1
2

k ), which is weaker than the usual bound O(�k). If 
k > 1
2
,

the stopping criterion is tightened but the right-hand sides of (5.70) and (5.71) are required to

take the traditional form O(�k). Finally, if 
k = 1
2
, the stopping criterion (4.44) and the bounds

(5.70) and (5.71) coincide with the traditional ones.
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In the degenerate case, (4.55) becomes kvk[k] � �d�kvk� for some constant �d� > 0, and shows,

together with (4.53), that the norms k � k[k] and k � k� are equivalent in the nullspace of A. Using

(5.60), condition (4.44) then amounts to krxL(wk+1)k� = O(�
k+1
k ) and shows that we are more

restrictive in this case for any 
k > 0.

5.2 Simple choices for the starting point

In the unpreconditioned primal case, it has previously been suggested [3] that the tolerance �D(�)

be set to O(�). In that case, inequality (4.44) implies that

krxL(wP
k+1)k = O(�k) = O

�
�k
�k+1

�
(5.86)

for the primal choice wP
k+1 = (xk+1; yk+1; �k+1C

�1(xk+1)e). This observation parallels [5, Lemma 1]

and reinforces the results in [17] by suggesting that if the parameter �k is reduced too fast (i.e.

�k+1 � �k), it is unlikely that w
P
k+1 will be an accurate estimate of the solution w(�k+1) for the

forthcoming outer iteration.

By contrast, [3] suggests that, letting xOk+1 = xk+1 and zOk+1 = �kC
�1(xk+1)e (as op-

posed to the value �k+1C
�1(xk+1)e which would have been used in a purely primal context

without extrapolation), a good initial point for BS(�k+1) might be wk+1;0 = wO
k+1 + dNk+1 =

(xk+1;0; yk+1;0; zk+1;0), where d
N
k+1 is the full Newton step taken from wO

k+1 = (xOk+1; y
O
k+1; z

O
k+1)

(for some yOk+1). Simply restating a few vital steps from [3], it can be shown that dNk+1 is asymp-

totically feasible and

krxL(wk+1;0)k = O(�2k);
kC(xk+1;0)zk+1;0 � �k+1ek = O(�2k);

which would be accepted by any primal-dual stopping rule for which �C(�) = �D(�) = O(�)
provided that �k+1 = 
(�2k). Continuing in this vein, we would subsequently have

zk+1;0 = �k+1C
�1(xk+1;0)e+O

 
�2k
�k+1

!
;

which then provides the bound




rxf(xk+1;0)� �k+1J
T (xk+1;0)C

�1(xk+1;0)e



 = O

 
�2k
�k+1

!
:

Hence, if the inner minimization corresponding to �k+1 is started with xk+1;0 = xOk+1 + [dNk+1]x
and zk+1;0 = zOk+1 + [dNk+1]z, and assuming a subsequent Newton step is acceptable to the inner

minimization method (this can be shown to be the case), the size of rxL(w) at the resulting

iterate will be O(�4k=�2k+1). Consequently, if we wish the resulting iterate to satisfy a primal

stopping rule of the form �D(�) = O(�), this requires that

�k+1 = 
(�
4=3
k ); (5.87)

which suggests a superlinear rate of convergence in � is possible.
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5.3 An alternative choice based on extrapolating the central path

We now intend to parallel the approach of Section 5.2 in the primal-dual case, with the hope of

improving the bound (5.86). Assume we update the barrier parameter from �k to �k+1. In order

to solve problem BS(�k+1) eÆciently, it is natural to aim to choose a starting point which is as

close as possible to a stationary point w(�k+1) of this problem. We thus wish to (approximately)

solve the system

	(w;�k+1) = 0: (5.88)

An attractive possibility is therefore to choose the starting point for the inner minimization as

the result of a single Newton iteration for this system. This point, which we denote wPD
k+1, is

obtained from the solution of the linearized version of (5.88), that is

rw	(wk+1;�k+1)(w
PD
k+1 � wk+1) = �

0
B@

rxL(wk+1)

0

C(xk+1)zk+1 � �k+1e

1
CA ; (5.89)

where rw	(w;�) is given by (2.15). If we let

dk+1 = ([dk+1]x; [dk+1]y; [dk+1]z) = wPD
k+1 � wk+1; (5.90)

we may eliminate [dk+1]z, use the �rst identity of (4.40) together with (4.39), the fact that

rxL(wk+1) = rxf(xk+1) +AT yk+1 � JT (xk+1)zk+1, rearrange and obtain the reduced system"
V (xk+1; zk+1) AT

A 0

# "
[dk+1]x
[wPD

k+1]y

#
= �

"
rx�(xk+1; �k+1)

0

#
(5.91)

from which we may recover

[dk+1]z = �zk+1 + �k+1C
�1(xk+1)e� C�1(xk+1)Zk+1J(xk+1)[dk+1]x:

Note that the right-hand side of (5.91) is independent of zk+1. This system entirely determines

[dk+1]x and [wPD
k+1]y provided that the matrix V (xk+1; zk+1) is positive de�nite on the nullspace

of A and A has full rank. This is equivalent to requiring that the matrix V (xk+1; zk+1) is second-

order suÆcient (see x2.1.2).
Before studying the implications of this step in terms of local convergence rate, we �rst give

an alternative geometrical interpretation of the step dk+1, in the spirit of [5], arising from the

implicit function theorem.

From the point wk+1 and with the barrier parameter �k, assume we wish to �nd an estimate

wEX
k+1 to an exact solution w+ of

	(w;�k+1) = 	(wk+1;�k); (5.92)

since we know from (4.43) and (4.44) that the right-hand side of (5.92) is \small". Notice that if

we compute w+ as the solution of (5.92), the equality constraints remain satis�ed.

Let us consider the following system

	(w;�) = 	(wk+1;�k) (5.93)

and think of its solution in the variable w as a function of the barrier parameter �, say w = '(�),

where the (implicit) function '(�) is de�ned in a small neighborhood of �k, and where wk+1 =
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'(�k). As already mentioned in x3, for small enough values of �k, the Jacobian rw	(wk+1;�k) =

rw	(wk+1; 0) is nonsingular and therefore the implicit function theorem yields that, in a small

vicinity of �k, the function ' is well-de�ned and di�erentiable. In particular, if we let w0k+1 =

'0(�k), we have

w0k+1 = � (rw	(wk+1;�k))
�1r�	(wk+1;�k) = (rw	(wk+1;�k))

�1

0
B@

0

0

e

1
CA : (5.94)

The estimate wEX
k+1 is computed as the following �rst-order Taylor expansion of '(�) about �k,

which represents an extrapolation from the parameters (�k;	(wk+1;�k)) to (�k+1;	(wk+1;�k))

and de�nes the step

wEX
k+1 = '(�k) + '0(�k)(�k+1 � �k) = wk+1 + w0k+1(�k+1 � �k): (5.95)

Assuming all the functions of interest are three times continuously di�erentiable, so that ' is

twice continuously di�erentiable, we have by Taylor's theorem that the point wEX
k+1 is within

O((�k+1 � �k)
2) of w+ = '(�k+1), see [5].

Since the matrix rw	(wk+1;�k) used in (5.94) is the same as the one needed to compute a

Newton step from wk+1 (see (2.15)), it is now possible to take, from wEX
k+1, the Newton step we

would have taken had we stayed at wk+1, which then de�nes the step

dNWk+1 = � (rw	(wk+1;�k))
�1	(wk+1;�k);

and thereby de�ne our composite extrapolation step

wPD
k+1

def
= wEX

k+1 + dNWk+1

= wk+1 + (rw	(wk+1;�k))
�1

0
B@
0
B@

0

0

e

1
CA (�k+1 � �k)�	(wk+1;�k)

1
CA

= wk+1 � (rw	(wk+1;�k))
�1

0
B@

rxL(wk+1)

0

C(xk+1)zk+1 � �k+1e

1
CA ; (5.96)

where we have used (2.6), (5.94), (5.95) and the de�nition of dNWk+1. The step (5.96) amounts

to an extrapolation from the parameters (�k;	(wk+1;�k)) to (�k+1; 0), in the spirit of the

predictor-corrector approach used in linear programming. Notice that, since the Jacobian matrix

rw	(w;�) is independent of �, the steps (5.89) and (5.96) are identical. This is not true in

the purely primal case, as the Jacobian matrix rw	(w;�) is no longer independent of �. An

illustration of the decomposition of the step (5.96) appears in Fig. 5.1.

As � & 0, the trajectory given by (5.93) and represented by '(�) obviously gets closer and

closer to the primal-dual central path C represented by w(�), until both coincide at w�. Moreover,

in this case, its derivative

'0(�) = � (rw	(wk+1;�))
�1r�	(wk+1;�)

converges to

� (rw	(w
�; 0))�1

0
B@

0

0

�e

1
CA



Superlinear Convergence of Primal-Dual Interior Point Algorithms for NLP 19

Æ

Æ

Æ

Æ
Æ

C0

ci(x)

cj(x)x�

x(�k)

C

xk+1

dNWk+1

dEXk+1

xEXk+1
xPDk+1

Figure 5.1: The above picture simpli�es the situation as the x-space only is considered. The

infeasible region is the \outer" part of the picture. Constraints i and j are active at the lo-

cal constrained minimizer x�. The exact solution of the current barrier subproblem, x(�k), lies

exactly on the primal-dual central path C. The second path C0 that is pictured is de�ned im-

plicitely by 	(w;�) = 	(wk+1;�k) as in equation (5.93). The two outermost paths represent the

neighborhood of C de�ned by the forcing functions �C(�) and �D(�). The extrapolated step dEXk+1

taken from wk+1 leaves the path C0 tangentially and leads to wEX
k+1. To that step is added the

Newton step dNWk+1 that would have been taken from wk+1, as represented on the picture. The

step dEXk+1 + dNWk+1 is the step leading to wPD
k+1 as given by (5.89).

because of (2.15), which, in view of (3.34), equals _w(0). The two paths thus coincide up to �rst

order at w�. This intuitively guarantees that expanding the function ' asymptotically gives an

accurate approximation of the primal-dual central path.

6 Local convergence analysis

Having proposed the point wPD
k+1 as a possible starting point for the inner minimization, we now

wish to analyze its properties from the point of view of improving the local convergence rate of the

algorithm. We will prove that this particular choice is not only strictly feasible|in contrast with

the purely primal case [17]|but also dramatically improves on the bound (5.86). In fact we shall

show that this point asymptotically satis�es the stopping criterion (4.41){(4.44), which means

that the inner minimization algorithm is ultimately not needed. In particular, this means that,

asymptotically, only one linear system (5.89) need be solved per update of the barrier parameter

�.

We start by verifying that this system is asymptotically well posed, at least along the con-

verging subsequence.
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Lemma 6.1 Under the assumptions of Theorem 5.1, there exists a closed and bounded

neighborhood V of w� such that the matrix V (x; z) de�ned by (4.39) is positive de�nite over

the nullspace of A for all w 2 V.

Proof. The result follows from the application of [16, Theorem 8, (iii)] to the reduced

Hessian matrix NTV (x; z)N . 2

This result indicates that the systems (5.89) and (5.91) are asymptotically well posed for

k 2 K suÆciently large.

In the next major stage of our analysis, we verify that the stopping conditions for the inner

minimization are all satis�ed at wPD
k+1, provided we impose further conditions on the barrier

parameter updating rule. Furthermore, we also show that the bound (5.86) can be improved in

this context.

Theorem 6.2 Under AS1{AS6, assume w� is a solution of NLP, that the sequence

fwk+1gK ! w�, where fwk+1g is a sequence of iterates generated by Algorithm 4.1 with yk+1

de�ned by (4.45), and that the functions f and ci (i = 1; : : : ; p) are three times continuously

di�erentiable over an open neighborhood of x�. Assume furthermore that (5.59){(5.61) are

satis�ed, that 0 < �� < 1=2 is a given constant, that 0 < 
k � (1� 2�� )=(1 + 2�� ), and that

the barrier parameter updating rule satis�es

�k+1 = 
(��kk ) 1 + �� � �k � 2

1 + 
k+1
� �� : (6.97)

Then, we have that, for k 2 K suÆciently large,

AxPDk+1 = b (6.98)

(c(xPDk+1); z
PD
k+1) > 0 (6.99)

kC(xPDk+1)z
PD
k+1 � �k+1ek � �C(�k+1) and (6.100)

krxf(x
PD
k+1)� JT (xPDk+1)z

PD
k+1k[k+2] � �D(�k+1); (6.101)

and

k	(wPD
k+1;�k+1)k = o(�k+1): (6.102)

Proof. Observe �rst that (5.61) and (6.97) imply that

�2k = o(�k+1): (6.103)

We start by proving (6.98). From (5.89), the direction dk+1 satis�es the equations

rxxL(xk+1; zk+1)[dk+1]x +AT [dk+1]y � JT (xk+1)[dk+1]z = �rxL(wk+1); (6.104)

A[dk+1]x = 0; (6.105)
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and

Zk+1J(xk+1)[dk+1]x + C(xk+1)[dk+1]z = �k+1e� C(xk+1)zk+1; (6.106)

where rxxL(x; z) is de�ned in (4.40). It follows from (6.105) that xPDk+1 satis�es the equality

constraints, which implies that (6.98) holds for all k 2 K. Note that since the right-hand

side of (6.104){(6.106), which is �((�k+1 � �k)(0 0 � eT )T +	(wk+1;�k)), is O(�k) because
of (4.43),(4.44) and (5.59){(5.61), and as the Jacobian rw	(wk+1;�k+1) remains uniformly

nonsingular in the vicinity of w�, we also obtain that

dk+1 = O(�k); (6.107)

for all suÆciently large k 2 K. As a consequence, the sequence fwPD
k+1gk2K also converges to

w� since �k converges to zero.

We next show that c(xPDk+1) > 0, which is part of (6.99). If constraint i is inactive, fci(xk+1)gK !
ci(x

�) > 0 as �k & 0. Taylor's expansion of ci around xk+1, (5.62) and (6.107) give that

ci(xk+1 + [dk+1]x) = ci(xk+1) +O(�k);

and thus, asymptotically,

0 < 1
2
ci(xk+1) � ci(x

PD
k+1) � 2ci(xk+1); (6.108)

which shows that xPDk+1 is strictly feasible with respect to the inactive constraints. Now

consider the active constraints, if any. Premultiplying (6.106) by Z�1k+1 and rearranging, we

obtain that for all i = 1; : : : ; p:

ci(xk+1) +rxci(xk+1)
T [dk+1]x = �k+1[zk+1]

�1
i � [zk+1]

�1
i ci(xk+1)[[dk+1]z]i: (6.109)

For all active indices, (5.63), (5.64) and (6.107) show that the last term of the right-hand side

of (6.109) is O(�2k) so that we obtain:

ci(xk+1) +rxci(xk+1)
T [dk+1]x = �k+1[zk+1]

�1
i +O(�2k) (i 2 A): (6.110)

Substituting this equation in the expansion

ci(xk+1 + [dk+1]x) = ci(xk+1) +rxci(xk+1)
T [dk+1]x +O(k[dk+1]xk2); (6.111)

where we have used (5.62), and using (6.107) gives, for all i 2 A:

ci(xk+1 + [dk+1]x) = �k+1[zk+1]
�1
i +O(�2k): (6.112)

If constraint i is active, fci(xk+1)gK ! ci(x
�) = 0 as �k & 0. Using now the bounds (5.64),

(6.112) yields
�k+1

�z
+O(�2k) � ci(x

PD
k+1) �

�k+1

�z
+O(�2k): (6.113)

Combining (6.103) and (6.113), we obtain

0 <
1

2�z
�k+1 � ci(x

PD
k+1) �

2

�z
�k+1 (6.114)
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as soon as �k is suÆciently small. Relations (6.108) and (6.114) together show that xPDk+1 is

asymptotically strictly feasible.

In order to complete our proof of (6.99), we now consider the feasibility of zPDk+1. Note that

since the direction dk+1 is O(�k) because of (6.107), the same holds for [dk+1]z. We then have

that, for every i 2 A,
[zk+1]i + [[dk+1]z]i = [zk+1]i +O(�k); (6.115)

which implies, by AS5 and for suÆciently large k 2 K, that
0 < 1

2
[zk+1]i � [zPDk+1]i � 2[zk+1]i; (6.116)

so that [zPDk+1]i is asymptotically positive. For the inactive constraints, (6.107) indicates that

there exists �d > 0 such that k[dk+1]xk � �d�k. From (6.106) and the Cauchy-Schwarz

inequality, we know that for all i = 1; : : : ; p,

[zk+1]i + [[dk+1]z]i = c�1i (xk+1)
�
�k+1 � [zk+1]i(rxci(xk+1))

T [dk+1]x
�

(6.117)

� c�1i (xk+1) (�k+1 � [zk+1]ikrxci(xk+1)kk[dk+1]xk) : (6.118)

Using (5.62), (5.65) and (6.118), we have that, for i 62 A and k 2 K suÆciently large,

[zPDk+1]i � c�1i (xk+1)
�
�k+1 � [zk+1]i�
�

d�k
�

� c�1i (xk+1)

 
�k+1 �

(1 + �C�)

�c
�
�

d�2k

!

> 0

where the last inequality follows from (6.103). Thus (6.99) holds for suÆciently large k 2 K.
We next prove (6.102). In view of (2.15), our di�erentiability assumptions, (5.64), (5.65) and

(6.107) imply that the partial derivatives with respect to x, y and z of each of the elements

of rw	(w;�) clearly remain bounded in a neighbourhood of w� as � goes to zero by (5.62).

Consequently, applying Taylor's theorem to 	, we have

	(wPD
k+1;�k+1) = 	(wk+1;�k+1) +rw	(wk+1;�k+1)dk+1 +O(kdk+1k2): (6.119)

From the de�nition (5.89) of wPD
k+1, the �rst two terms of (6.119) vanish, and hence we deduce

k	(wPD
k+1;�k+1)k = O(�2k) (6.120)

from (6.107). We �nally deduce (6.102) from this bound and (6.103).

That (6.100) holds now immediately follows from (6.102) and (5.59). We next prove (6.101).

Using (4.53), we have that

krxL(wPD
k+1)k[k+2] � �

�1=2
M krxL(wPD

k+1)k� � �
�1=2
M krxL(wPD

k+1)k = O(�2k); (6.121)

where the last equation follows from (6.120). Now, using (6.97) and (5.60), we have that

�2k = O
 
�

2
�k

k+1

!
= o

�
�
1+
k+1
k+1

�
= o(�D(�k+1));

which, with (6.121), implies that (6.101) holds for k 2 K suÆciently large. 2
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An important consequence of this result is that, once wPD
k+1 has been computed, the inner

minimization is ultimately unnecessary, since this \starting point" already satis�es the stopping

conditions for this minimization. Thus we choose, in what follows,

xk+2
def
= xPDk+1; zk+2

def
= zPDk+1; and yk+2 according to (4.45). (6.122)

Observe that this makes the complete algorithm asymptotically independent of the procedure

chosen for the inner minimization, since this procedure is asymptotically never used.

Observe also that, from (5.70) and (6.107),

kwPD
k+1 � w(�k)k = O

�
�

k+

1
2

k + �k

�
;

and from (3.31), we have kw(�k) � w(�k+1)k = O(�k � �k+1) = O(�k). Combining these two

observations, we obtain

kwPD
k+1 � w(�k+1)k = O

�
�

k+

1
2

k + �k

�
: (6.123)

In the primal-dual case, [1] and [15] show that the radius of the sphere of convergence of Newton's

method for BS(�k+1) is both �nite and bounded away from zero. Hence, equation (6.123) shows

that wPD
k+1 asymptotically lies inside that sphere and thus that Newton's method started from

wPD
k+1 would generate points that converge quadratically to w(�k+1), if an inner minimization

were to be used. Also note that (6.97) indicates that the rate of decrease of the barrier parameter

must not be too large.

Theorem 6.2 shows that, as soon as the barrier parameter is suÆciently small, the point (5.89)

lies strictly inside the feasible region. In a practical implementation, it might be preferable to

decide whether or not the algorithm is in a suÆciently advanced stage to use (5.89) by checking

its feasibility in conjunction with a test of the form

krxL(wPD
k+1)k[k+2] � max(�; krxL(wk+1)k[k+2]);

for some parameter � > 0, and to ignore the \improved" starting point if this test is violated.

If we now wish to pursue our rate of convergence analysis, we must be more speci�c about the

rule used to update the barrier parameter. So far, we have assumed that �k+1 � �k and (6.97);

from now on, we will assume that

�k+1 = �(��kk ) (6.124)

where �k remains within the bounds speci�ed in (6.97).

The rate of convergence of f�kg implied by the updating rule (6.124) directly depends on the

sequence f
kg chosen in (5.60). The rule implies

�k+1 = 


 
�

2
1+
k+1

���

k

!
;

from which we may retrieve the rule (5.87) if we choose 
k � (2 � 3�� )=(4 + 3�� ) for all k. If

we choose �� suÆciently small and impose limk!1 
k = 0, then the rate at which the barrier

parameter approaches zero can be made as close to quadratic as one desires.

It is important to make a distinction between a rate of convergence in � and a rate of con-

vergence in the variables w of the problem. In view of (3.32), if one is able to compute the
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exact solution of BS(�) for every �, w(�) converges to w� exactly as fast as � decreases to zero.

Intuitively, when 
k � 1
2
, and because (5.70) and (5.71) are always satis�ed, one can reasonably

expect the same rate of convergence in the approximate solutions wk+1 as in �k, and we have

observed this in practice. However, it is not immediately clear that this may be made rigorous,

since the bound (5.71) is only one-sided. In the next results, we show that even in the case


k < 1
2
, not only can we show that fwk+1gK converges R-superlinearly to w�, but we obtain

Q-superlinear convergence of the whole sequence fwk+1g without restrictions on the sequence of

scalars f
kg. The following lemma parallels [10, Lemma 5.13].

Lemma 6.3 Under AS1{AS6, assume w� is a solution of NLP, that fwk+1gK ! w�, where

fwk+1g is a sequence of iterates generated by Algorithm 4.1 with yk+1 de�ned by (4.45),

and that the functions f and ci (i = 1; : : : ; p) are three times continuously di�erentiable

over an open neighborhood of x�. Assume furthermore that (5.59){(5.61) are satis�ed, that

0 < �� < 1=2 is a given constant, that 0 < 
k � (1 � 2�� )=(1 + 2�� ), that the barrier

parameter �k is updated using (6.124), and that it is small enough to ensure that wPD
k+1

de�ned by (5.89) is strictly feasible. Then, we have the estimate

wk+2 = w(0) + �k+1 _w(0) + o(�k+1); (6.125)

for all suÆciently large k 2 K, where wk+2 is de�ned by (6.122) and _w(0) 6= 0.

Proof. Proceeding as in the proof of Theorem 6.2, a second-order Taylor expansion of

	(w;�) about (w;�) = (w�; 0) and the optimality conditions (2.7) yield

	(wk+2;�k+1) = rw	(w
�; 0)(wk+2 � w�) +r�	(w

�; 0)�k+1 + r (6.126)

= rw	(w
�; 0)(wk+2 � w�) +

0
B@

0

0

��k+1e

1
CA+ r; (6.127)

where

krk = O(max(kwk+2 � w�k2; �2k+1)): (6.128)

We may rewrite (6.127) as0
B@

rxL(wk+2)

0

C(xk+2)zk+2

1
CA = rw	(w

�; 0)(wk+2 � w�) + r: (6.129)

Since rxL(wk+2) lies in the nullspace of A because of (4.47) and (6.122), we have,

krxL(wk+2)k = krxL(wk+2)k� = krxL(wPD
k+1)k� = o(�k+1) (6.130)

and

C(xk+2)zk+2 = �k+1e+ o(�k+1); (6.131)

using (6.102). Consequently, substituting into (6.129) and using the nonsingularity ofrw	(w
�; 0),

we obtain

wk+2 = w(0) + �k+1 _w(0) + o(�k+1) + (rw	(w
�; 0))�1 r; (6.132)
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where we observed that w� = w(0) and (rw	(w
�; 0))�1 [0 0 eT ]T = _w(0) 6= 0 because of

(3.34).

To complete the proof, it remains to show that krk = o(�k+1). From (6.130) and (6.131), for

suÆciently large k 2 K, krxL(wk+2)k�+kC(xk+2)zk+2k is smaller than the threshold " given
in Lemma 3.1, and thus, applying (3.31) with the parameters (rxL(wk+2); 0; C(xk+2)zk+2)

and (0; 0; 0) yields

kwk+2 � w�k = �(krxL(wk+2)k� + kC(xk+2)zk+2k) (6.133)

= O(�k+1); (6.134)

where the last equality is due to (6.130) and (6.131). We thus obtain that kwk+2 � w�k2 =
O(�2k+1) = o(�k+1), and thus (6.128) clearly implies that krk = o(�k+1) and proves (6.125).

2

The result contained in Lemma 6.3 parallels the well-known expansion

w(�k+1) = w(0) + �k+1 _w(0) + o(�k+1);

that holds for exact solutions of BS(�). It also con�rms the suggestion in Fig. 5.1 that the

trajectory C0 is close to the primal-dual central path. Moreover, it reinforces the observation that

the paths C and C0 coincide up to �rst order at w�.

Note that without loss of generality, we may assume that the components of the vector _w(0)

de�ned in (3.34) are all nonzero. A suitable change of coordinates can always transform this

nonzero vector into the vector of all ones without modifying the nature of problem NLP. The

identity (6.125) thus holds componentwise, so that we immediately have the following corollary.

Corollary 6.4 Under the assumptions of Lemma 6.3, we have

[wk+2]i = [w�]i + �k+1[ _w(0)]i + o(�k+1); i = 1; : : : ; n+m+ p; (6.135)

for all suÆciently large k 2 K, with wk+2 de�ned by (6.122) and [ _w(0)]i 6= 0 for all i =

1; : : : ; n+m+ p.

Consequently, there exists a constant �w > 0 such that, for all k 2 K suÆciently large,

j[wk+2]i � [w�]ij � �w�k+1; i = 1; : : : ; n+m+ p; (6.136)

which, unlike (5.71), is independant of the sequence f
kg.
So far, we have simply assumed that w� is a limit point of the sequence fwk+1gk2K. We

are now in position to prove that the whole sequence of iterates wk+1 converges Q-superlinearly

to w�. Moreover, as in (6.135), this convergence occurs componentwise, showing that all errors

j[wk+2]i � [w�]ij are of comparable size, and thus that all variables converge to their limit at a

comparable rate. The following result is inspired by [10, Theorem 5.14].
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Theorem 6.5 Under AS1{AS6, assume w� is a solution of NLP, that the sequence

fwk+1gK ! w�, where fwk+1g is a sequence of iterates generated by Algorithm 4.1 with

yk+1 de�ned by (4.45), and that the functions f and ci (i = 1; : : : ; p) are three times contin-

uously di�erentiable over an open set containing F . Assume furthermore that (5.59){(5.61)
are satis�ed, that 0 < �� < 1=2 is a given constant, that 0 < 
k � (1 � 2�� )=(1 + 2�� ), and

that the barrier parameter �k is updated using (6.124). Assume �nally that (6.122) is used

for all k 2 K large enough to ensure that Theorem 6.2 holds. Then the complete sequence

fwk+1g converges to w� and���� [wk+2]i � [w�]i
[wk+1]i � [w�]i

���� = �(��k�1k ) i = 1; : : : ; n+m+ p; (6.137)

for k suÆciently large, which implies that the iterates wk+1 converge componentwise Q-

superlinearly to w�.

Proof. First note that (6.136) and the convergence of �k+1 to zero implies that fwk+2gk2K
also converges to w�. Hence we may reapply (6.136) with K replaced by K [ fk + 1gk2K and

obtain that fwk+3gk2K also converges to w�. Applying this argument inductively, we obtain

that the complete sequence fwkg converges to w� and therefore that K may be identi�ed with

the set of all positive integers. Our assumptions then yield that Theorem 6.2 holds and that

(6.122) is used for all k suÆciently large. Moreover, the estimate (6.135) also holds for all k

suÆciently large, implying that j[wk+1]i� [w�]ij = �(�k) since we noted that, without loss of

generality, we have [ _w(0)]i 6= 0 for i = 1; : : : ; n+m+ p. This proves that���� [wk+2]i � [w�]i
[wk+1]i � [w�]i

���� = �

�
�k+1

�k

�
i = 1; : : : ; n+m+ p;

which then gives (6.137) because of (6.124). The componentwise Q-superlinear convergence

of the iterates to w� then follows from the convergence of �k to zero and the inequality

�k � 1 + �� . 2

Theorem 6.5 has the following consequence.

Corollary 6.6 Under the assumptions of Theorem 6.5, suppose that

�k =
2

1 + 
k+1
� �� (6.138)

with 
k satisfying (5.61) and

lim
k!1


k = 0:

Then, for any � 2 (1; 2 � �� ), there exists a constant q� > 0 such that

j[wk+2]i � [w�]ij � q�j[wk+1]i � [w�]ij� i = 1; : : : ; n+m+ p:
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Proof. First recall that Corollary 6.4 and the fact that [ _w(0)]i 6= 0 for i = 1; : : : ; n+m+ p

implies that j[wk+1]i � [w�]ij = �(�k) for all k suÆciently large. This and (6.124) yield that

j[wk+2]i � [w�]ij
j[wk+1]i � [w�]ij� = �(��k��k ) i = 1; : : : ; n+m+ p:

Our assumptions and the fact that, for any � 2 (1; 2� �� ),

�k =
2

1 + 
k+1
� �� � �

for k suÆciently large then implies the desired result. 2

Interior point methods of the type studied above are thus likely to achieve a rate of convergence

that is in practice as fast as that of exterior-penalty methods. In addition, the rate of convergence

implied by our theory is governed by �� , and Corollary 6.6 shows that this rate can be made as

close to quadratic as we wish by choosing �� suÆciently close to zero in (6.138). Note that

Corollary 6.4 also holds for [10, Lemma 5.13] in connection with exterior penalty methods, and

thus that componentwise Q-superlinear convergence also occurs in that case.

Remark 6.1. Most of the qualitative observations made in this paper essentially remain true in

the purely primal case. When considering the primal approach, one has to replace (2.6) by

	p(x; y;�) =

"
rxLp(x; y;�)

Ax� b

#

where rxLp(x; y;�) = rxf(x)+A
T y��JT (x)C�1(x)e, since the left-hand side of (4.43) is always

identically zero. The primal case is analyzed both for interior and exterior penalty functions by

Dussault [5]. From the quantitative point of view, one obtains two-step superlinear convergence

in the primal case as opposed to one-step superlinear convergence in the primal-dual case, using

the same sort of Newton-like extrapolation step. In the primal case, the extrapolation step itself

is not enough to satisfy the termination tolerances, and one has to perform an additional Newton

step. The result obtained in [5] is that the updating rule for the barrier parameter has to satisfy

�k+1 = 
(�
4=3
k ), thereby limiting the speed of convergence.

7 An application

We now show that the theoretical framework developed above can be applied. In particular we

�rst examine why it applies to the method proposed in [2]. This algorithm consists in an inner

iteration imbricated in an outer one. We do not describe the inner minimization here, but refer

the interested reader to [2] for a discussion. SuÆce it to say that it uses a trust-region algorithm

with a primal-dual model of the log-barrier function (1.3). The stopping conditions for this inner

iteration are exactly (4.41)-(4.44) augmented by the requirement that

�minMk+1
[V (xk+1; zk+1)] � ��E(�k); (7.139)

for some forcing function �E(�). This additional condition is meant to enforce convergence to a

second-order critical point of the log-barrier function.
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The global convergence of the resulting minimization procedure (inner and outer minimiza-

tions together) to weak second-order critical points is guaranteed under standard assumptions

[2, Theorem 4.12]. These assumptions are slightly di�erent from those used here: in particular,

strict complementarity slackness is not required, and approximate second-order derivatives of the

objective function and constraints are allowed, while we concentrate here on the case where they

are exact. However, this convergence result depends on three additional conditions, namely that

lim
k!1

�D(�k)
p
�k

mini ci(xk+1)
= 0; (7.140)

that the tolerance �C(�) is asymptotically of the form O(�), and that the barrier function is

bounded from below on F for all generated iterates and all small �. Note that (5.59) implies

that �C(�k) is asymptotically of the order of �k, and that (5.60) implies that condition (7.140)

is satis�ed because of (5.63) and (5.66). As a consequence we see that the global convergence

theory for the particular implementation described in [2] is not upset by our choice of stopping

tolerances. Moreover, the boundedness of the log-barrier function is guaranteed here, because of

AS2, Theorem 5.1 and the fact that our analysis only considers convergent subsequences.

In order to apply our rate of convergence results, we �nally have to verify that introducing

condition (7.139) in the set of stopping criterion for the inner minimization algorithm does not

a�ect our conclusions. Fortunately, we may deduce from Theorem 6.1 that the matrix V (x; z)

is asymptotically second-order suÆcient and thus ultimately that condition (7.139) will auto-

matically be satis�ed at the iterates generated by Algorithm 4.1 that are suÆciently close to a

local solution w�, among which the iterates wk+1 with k 2 K. Consequently, Theorem 6.5 and

Corollary 6.6 apply for the algorithm proposed by [2].

It is tempting, although technically diÆcult, to attempt applying our results to other primal-

dual methods for nonlinear optimization. In particular, the methods of Gay, Overton and Wright

[7] and Byrd, Liu and Nocedal [1] seem natural candidates. However, a fully uni�ed theory

appears to require more work. In particular, besides the fact that these methods handle the

full nonlinear program, including nonlinear equality constraints, and allow infeasible iterates

with respect to those constraints, they also di�er from our framework in further respects. The

method of Gay, Overton and Wright uses a watchdog technique to allow a possible non-monotone

behavior of the sequence of values of a log-barrier based merit function, while our technique does

not impose any condition on this sequence. The method of Byrd, Liu and Nocedal uses slack

variables to transform general inequalities into bound constraints. Both methods impose the

same accuracy requirement for (4.43) and (4.44) while our approach di�erentiates between those

two components of the optimality conditions (see (5.59){(5.61)). Moreover, the rules to update

the barrier parameter di�er in both cases from those considered here.

8 Conclusion

In this paper, we have studied the local convergence properties of primal-dual interior point

algorithms for minimizing a general, nonconvex, objective function subject to linear equality con-

straints and nonconvex inequality constraints, of which the method proposed by Conn, Gould,

Orban and Toint [2] is a prime example. Our analysis is inspired by those of [3, 5, 10, 21]. The

theoretical results show a convergence rate for barrier methods that is essentially as fast as that
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previously obtained for exterior penalty methods [10]. These results rely on a suitable extrapola-

tion of the central path from the current iterate wk+1 which leads to an asymptotically acceptable

wk+2, i.e. a point which immediately satis�es the tolerance requirements corresponding to the

updated barrier parameter �k+1. This is shown to imply a componentwise Q-superlinear conver-

gence rate, and one asymptotically has to solve, in each outer iteration, a single linear system

whose coeÆcient matrix is that of the Newton equations at wk+1. It is worth emphasizing that

the results presented here hold independently of the exact inner minimization procedure used,

provided it ensures that (4.41){(4.44) are satis�ed. The componentwise Q-superlinear conver-

gence of wk to w� also holds independently of any particular updating rule for the variable 
k
used in (5.60), provided it satis�es (5.61). Moreover, if the sequence f
kg converges to zero, then
the rate of convergence can be made as close to quadratic as desired by choosing �� suÆciently

small in (6.138). A consequence is that we may alternatively view the results of the present

paper as giving conditions on the stopping criterion of any barrier subproblem solver that ensure

componentwise Q-superlinear convergence of the outer iterates. This parallels the results of [13]

for linear complementarity problems.

Reasons why one should use extrapolated steps in barrier-type methods are developed in

[3, 12, 17], and an analysis similar to that developed in the present paper is developed in [1]

where one-step superlinear convergence of an interior point primal-dual trust-region algorithm

is exhibited. As superlinear convergence has already been observed in practice during tests on

quadratic programs (see [2]), the authors believe that it will be equally worthwhile to experiment

with the strategy sketched in this paper on highly nonlinear and high-dimensional optimization

problems. It should be mentioned however that the extrapolation strategy is only likely to be

numerically eÆcient in conjunction with a method that solves the Newton equations accurately,

without su�ering from any ill-conditioning that is not already present in problem NLP [5]. Fur-

thermore, higher convergence rates analysis, achievable by taking a further Newton step from the

extrapolated point, will be analyzed in a companion paper. In view of the analysis conducted in

[21], one may reasonably hope that the results exhibited in the present paper remain essentially

true when the linear independence constraint quali�cation is replaced by the weaker Mangasarian-

Fromovitz constraint quali�cation. One may also hope to obtain interesting, yet similar, results

when the strict complementarity condition is dropped. Relaxation of those assumptions is left

for future work.
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