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1 Introdu
tionThe eÆ
ien
y of sparse dire
t solvers for the solution of linear systems Ax = b with a symmetri
 sparsitypattern, in terms of both the storage needed and work performed, is dependent upon the order in whi
hthe variables are eliminated, that is, the order in whi
h the pivots are sele
ted. Many solvers in
lude apreordering step that aims to use information on the sparsity pattern of A to �nd a permutation P so that,if the pivots are 
hosen in order from the diagonal of the permuted matrix, the 
omputed fa
tors are sparserthan if the pivots were 
hosen in order from the diagonal of the original matrix. If A is symmetri
 andpositive de�nite, the pivot sequen
e 
hosen from the sparsity pattern alone 
an be used by the fa
torizationphase without modi�
ation and a Cholesky fa
torization PAP T = LLT 
an be 
omputed. More generally,numeri
al pivoting must be in
orporated during the fa
torization phase to maintain numeri
al stabilityand, in this 
ase, the pivot sequen
e 
omputed by the symboli
 analyse phase may have to modi�ed.The problem of �nding a permutation P that results in the smallest amount of �ll-in for a Choleskyfa
torization is NP-
omplete [20℄ and so heuristi
s are used to �nd a good ordering. Two main 
lasses ofmethods are widely used: those based on nested disse
tion [11℄ and those based on the minimum degreealgorithm [19℄. In re
ent years, nested disse
tion has often been found to be the method of 
hoi
e formany very large problems (typi
ally those of order greater than 50,000 [10℄). However, it 
an be moreexpensive than the most eÆ
ient implementations of the minimum degree algorithm, whi
h is preferredfor more modest size problems and for very sparse problems. Many dire
t solvers typi
ally o�er a range ofordering options (see Gould, S
ott and Hu [14℄ for a re
ent review) that in
lude variants of both the nesteddisse
tion and minimum degree algorithms. Currently, the most su

essful variant of the minimum degreealgorithm is the approximate minimum degree algorithm (AMD) and, in parti
ular, the AMD algorithmintrodu
ed by Amestoy, Davis and Du� [1℄ is widely used. A Fortran 77 implementation of AMD isavailable in the HSL mathemati
al software library [15℄ within the pa
kage MC47 (and as Algorithm 837from ACM Transa
tions on Mathemati
al Software [2℄). The AMD algorithm is more eÆ
ient than
lassi
al implementations of the minimum degree algorithm sin
e it uses 
omputationally 
heap boundson the minimum degree in pla
e of the exa
t minimum degree. Numeri
al results [1℄ have shown that,not only is AMD more eÆ
ient, it also produ
es orderings of a similar quality to those obtained using theminimum degree algorithms.Although AMD is generally very su

essful, an important ex
eption is when the matrix A has somedense (or almost dense) rows and 
olumns. In this 
ase, the run time for AMD 
an be high. AMDuses the undire
ted graph of the matrix and sele
ts ea
h node in turn to have minimum (approximate)degree. On
e a node is sele
ted, it is eliminated from the graph and repla
ed by adding edges between itsneighbours so that the neighbours be
ome a 
lique. If a row is full, the 
orresponding node will alwaysbe adja
ent to the eliminated node so its adja
en
y list has to be s
anned and updated, requiring O(n2)operations for a problems with n variables. This makes the algorithm prohibitively expensive.The obje
tive of this paper is to propose a variant of AMD that is designed to over
ome this limitation.The rows and 
olumns will be 
lassi�ed initially and then re
lassi�ed as the 
omputation pro
eeds, resultingin an algorithm that 
omputes orderings of 
omparable quality and is signi�
antly faster when some ofthe rows and 
olumns have many more entries than the average for the matrix.This paper is organised as follows. In Se
tion 2, we review the minimum degree and AMD algorithms.The proposed modi�ed AMD algorithm is derived in Se
tion 3 and theoreti
al aspe
ts 
onsidered withinSe
tion 4. In Se
tion 5, we des
ribe the use of supervariables within the 
odes used to generate thenumeri
al results presented in this paper.The starting point for this work was a modi�
ation of the AMD 
ode and algorithm, done by the �rstauthor, that has been used and distributed sin
e 2000 within the MUMPS pa
kage [3, 16℄. We note that Du�also in
luded this modi�ed 
ode within Version 1.0.0 of the HSL sparse symmetri
 solver MA57 [6℄. Thisearlier work, whi
h has not been do
umented within the literature, was the starting point for the presentpaper. 1



2 The minimum degree and AMD algorithmsThe minimum degree and AMD algorithms may be presented using the graph model of Rose [17, 18℄. Thenonzero pattern of a symmetri
 n by n matrix A 
an be represented by an undire
ted graph G0 = �V 0; E0�with nodes V 0 = f1; : : : ; ng and edges E0: An edge (i; j) is present in E0 if and only if aij 6= 0 and i 6= j;i and j are said to be adja
ent.The elimination graph Gk = �V k; Ek� des
ribes the nonzero pattern of the n(k) by n(k) redu
ed matrixA(k) still to be fa
tored after k pivots have been 
hosen and eliminated. The external degree dki of a nodei is de�ned to be the number of nodes it is adja
ent to in the elimination graph Gk: The minimum degreealgorithm 
hooses node p as the kth pivot su
h that p has minimal external degree in the graph Gk�1: For
larity, we will sometimes drop the supers
ript k during our dis
ussions. Algorithm 1 gives an outline ofthe minimum degree algorithm. The term variable is used to indi
ate a node that has not been removedfrom the elimination graph.Algorithm 1 The minimum degree algorithmFor ea
h i 2 V 0; set di to be the exa
t external degree of ik = 1while k � n doSele
t variable p 2 V k�1 that minimizes dpEliminate pFor ea
h variable i adja
ent to p in Gk�1; update dik = k + 1end whileAt step k; the graph Gk depends on Gk�1 and the kth pivot. Gk is found by sele
ting the kth pivotfrom V k�1; adding edges to Ek�1 to make the nodes adja
ent to p in Gk�1 a 
lique (a fully 
onne
tedsubgraph) and then removing p (and its edges) from the graph. The edges added to the graph 
orrespondto �ll-in. This addition of edges means that, if Gk is stored expli
itly, we 
annot know the storagerequirements in advan
e. To remedy this, a quotient graph is used instead of an elimination graph(see Se
tion 2.1). Unfortunately, the 
al
ulation of the exa
t external degree of a variable may then beexpensive. Alternatively, the AMD algorithm 
al
ulates an upper bound, di; on the exa
t external degreeof a variable and then 
ompares the upper bounds when 
hoosing the next pivot. This generally resultsin the AMD algorithm being more eÆ
ient than the minimum degree algorithm. Numeri
al results haveshown that the AMD algorithm also produ
es orderings of a similar quality to that of the minimum degreealgorithm [1℄.Unfortunately, the AMD algorithm 
an be very ineÆ
ient when the matrix A has some dense (or almostdense) rows and 
olumns. When a pivot p is eliminated, the upper bound di for ea
h i that is adja
entto p must be updated. If i is dense or almost dense, it is (almost) 
ertainly adja
ent to p and updatingdi will involve a large number of 
omparisons. This will make the algorithm prohibitively expensive. For
larity, we will refer to this variant of AMD as the 
lassi
al AMD algorithm throughout the remainder ofthis paper.In Table 1, we list a subset of the matri
es that we used in our tests. These were sele
ted to give a goodrepresentation as to how the di�erent algorithms perform on the matri
es in the whole of our test set. Ea
htest example is available from the University of Florida Sparse Matrix Colle
tion [5℄ and, if unsymmetri
,has been symmetrized by working with the sum of the given matrix and its transpose. The order n; thenumber of o�-diagonal nonzero entries nz of A; the maximum external degree dmax; the average externaldegree �; and the standard deviation � of the external degrees of ea
h (symmetrized) matrix is given. Theproblems have been listed in in
reasing order of �=�: We distinguish between those with �=� less than orgreater than one. The �rst seven problems in Table 1 have 
omparable numbers of nonzero entries in all2



Problem n nz dmax � � �=�apa
he1 80800 542184 7 6.71 0.48 0.07G3 
ir
uit 1585478 7660826 6 4.83 0.64 0.13n
vqbqp1 50000 349968 9 7.00 2.00 0.29ford1 18728 101576 20 5.42 1.65 0.30tuma 22967 87760 5 3.82 1.34 0.35b
sstk30 28924 2043492 219 70.6 31.7 0.45inline 1 503712 36816170 843 73.1 35.6 0.49lpl1 32460 328036 253 10.1 15.5 1.53gupta3 16783 9323427 14672 556 1234 2.22mip1 66463 10352819 66395 156 351 2.25net-4 88343 2441727 4791 27.6 85.3 3.09
kt11752 d
 1 49702 327834 2921 6.60 24.6 3.73rajat23 110355 559733 3336 5.07 19.3 3.80rajat22 39899 198081 3336 4.96 24.8 4.99gupta2 62064 4248286 8413 68.5 356 5.20gupta1 31802 2164210 8413 68.1 360 5.29a0nsdsil 80016 355034 5003 4.44 50.0 11.3blo
kqp1 60012 640033 40011 10.7 305 28.6trans5 116835 827879 114191 7.09 371 52.3ins2 309412 2751484 309412 8.89 590 66.4Table 1: Problems in test set: order n, number of nonzeros nz, the maximum external degree dmax; themean � of the external degrees, and their standard deviation �:of the rows of the matri
es and for these problems we therefore expe
t there to be little advantage to begained by using a modi�ed AMD algorithm instead of the 
lassi
al AMD algorithm.We will initially 
ompare the performan
e of the minimum degree algorithm with that of the MC47implementation of the 
lassi
al AMD algorithm. The implementation of the minimum degree algorithmis based on the version found within the HSL sparse solver MA27 [9℄. In Table 2, we give the time to obtainthe ordering and the fore
ast number of real words required to hold the matrix fa
tor L formed by thefa
torization phase of MA57 [6℄ if no pivoting is performed. Throughout this paper, the latter pie
e ofinformation is used as a measure for the quality of the ordering and is generated by passing the pivotorder to the analyse phase MA57. All numeri
al results in this paper were obtained using a 3.6 GHz IntelXeon dual pro
essor Dell Pre
ision 670 with 4 Gbytes of RAM that was running Red Hat Enterprise LinuxServer release 5.1 (kernel 2.6.18-53.1.13.el5). The Nag f95 
ompiler with the -O4 option was used. Alltimes are CPU times in se
onds.As expe
ted, we observe that the 
lassi
al AMD algorithm is signi�
antly more eÆ
ient than theminimum degree algorithm for the problems whose ratio �=� is greater than one and the quality of theorderings remains 
omparable. Observe that the times to obtain the pivot orders di�er by at least anorder of magnitude for the gupta* problems. The time required to obtain the pivot order for some ofthe problems is mu
h higher than expe
ted when 
ompared with problems with similar values of n andnz : for example, 
ompare problems b
sstk30 and gupta1. The algorithm proposed in Se
tion 3 aims tosubstantially redu
e these times while maintaining the quality of the ordering.2.1 Quotient graphsThe quotient graph, also referred to as the generalized element model [7, 8, 9℄, allows us to model thefa
torization of A whilst avoiding the need to use more storage than that required to store the original3



Minimum Degree Classi
al AMDProblem Time nz(L) Time nz(L)apa
he1 0.39 14.8 0.24 13.4G3 
ir
uit 5.77 238 4.82 193n
vxbqp1 0.20 5.88 0.19 4.33ford1 0.03 0.33 0.02 0.31tuma1 0.02 0.73 0.02 0.58b
sstk30 0.05 4.71 0.05 3.79inline 1 2.25 255 1.73 219lpl1 0.88 0.97 0.19 0.97gupta3 71.9 5.72 6.93 5.72mip1 8.44 38.8 6.70 39.0net4-1 3.65 2.46 1.49 2.38
kt11752 d
 1 0.34 0.59 0.13 0.56rajat23 0.43 0.45 0.23 0.46rajat22 0.21 0.15 0.09 0.15gupta2 1260 5.86 70.2 5.89gupta1 239 2.02 23.3 2.06a0nsdsil 4.95 0.34 2.33 0.34blo
kqp1 15.1 0.38 5.27 0.38trans5 112 0.68 67.6 0.68ins2 1220 1.53 516 1.53Table 2: The times and the number of reals in L (�106) for the 
lassi
al minimum degree algorithm andthe 
lassi
al approximate minimum degree algorithm.graph G0 [12℄. Using the terminology of the generalized element model, we refer to nodes removedfrom the elimination graph as elements and the uneliminated nodes as variables. In the following, weintrodu
e our notation, summarize the properties of the quotient graph representation and re
all theAMD approximation. For a detailed des
ription please refer to [1℄.The quotient graph Gk = �V k; V k; Ek; Ek� impli
itly represents the elimination graph, where G0 = G0;V 0 = V; V 0 = ;; E0 = E and E0 = ;: The nodes in G 
onsist of variables (in the set V ) and elements(in the set V ). The edges are also divided into two sets: edges between variables E � V �V and betweenvariables and elements E � V � V : The sets E and E are enough to generate the elimination graph and,hen
e, the edges between elements are not required.The nodes adja
ent to a variable i in the quotient graph G; denoted by AdjG(i); may be split into twosets Ai and Ei a

ording to whether they are variables or elements:Ai = fj : (i; j) 2 Eg � V;Ei = fe : (i; e) 2 Eg � V :The set Aki is the subset of nonzero entries in row i of A0i that have not been modi�ed by steps 1 throughk of the elimination pro
ess. Hen
e, A0i = fj : aij 6= 0g and Aki � Ak�1i for 1 � k � n:If e is an element, then the variables adja
ent to e in G are denoted by Le :Le � AdjG(e) = fi : (i; e) 2 Eg � V:
4



Finally, let A = fAi : i 2 V g ;E = fEi : i 2 V g ;L = �Le : e 2 V 	 :The quotient graph takes no more storage than the original graph sin
e��Ak��+ ��Ek��+ ��Lk�� � ��A0��for all k [12℄. If i is a variable in G; it is also a variable in G; andAdjG(i) = Ai [ ([e2EiLe) n fig ; (1)where the \n" is the standard set subtra
tion operator.If variable p is sele
ted as a pivot, element p is formed (p is removed from V and added to V ). Theset Lp is then found using equation (1). Sin
e (1) implies that Le n fpg � Lp for all elements e adja
entto p; it must hold that all variables adja
ent to an element e 2 Ep are adja
ent to the element p and theseelements e 2 Ep are no longer needed. They are therefore absorbed into the new element p and deleted:referen
e to them is repla
ed by referen
e to the new element p :Eki = �Ek�1i [ fpg� n Ek�1p :Any entry j in Ak�1i where both i and j are in Lp would now have been modi�ed by the eliminationpro
ess and, hen
e, needs deleting from Ak�1i :Aki = Ak�1i n (Lp [ fpg) :Finally, Ap; Ep and Le for all e 2 Ep are deleted.The external degree dki of a variable i is given by the equationdki = ����� Aki [e2Ei Le! n fig�����= ��Aki ��+ ����� [e2Ei Le n fig����� : (2)Now, dki = ��Aki ��+ ������ [e2Eki Le n fig������= ��Ak�1i n (Lp [ fpg)��+ ������0� [e2Ek�1i nEk�1p Le n fig1A [ (Lp n fig)������� ��Ak�1i n (Lp [ fpg)��+ ������0� [e2Ek�1i nEk�1p Le n fig1A������+ jLp n figj� ��Ak�1i ��+ ������0� [e2Ek�1i Le n fig1A������+ jLp n figj= dk�1i + jLp n figj ; 5



and dki = ��Aki ��+ ������ [e2Eki Le n fig������= ��Aki ��+ ������(Lp n fig) [0� [e2Eki nfpgLe n Lp1A������= ��Aki ��+ jLp n figj+ ������ [e2Eki nfpgLe n Lp������� ��Aki ��+ jLp n figj+ Xe2Einfpg jLe n Lpj:Clearly dki � n(k) � 1 = n� k� 1 and, hen
e, dki � dki for all k; where the approximate external degree ofa variable i is de�ned bydki = min8><>: n� k � 1dk�1i + jLp n figjjAi n figj+ jLp n figj+Pe2Einfpg jLe n Lpj: (3)Further theoreti
al results about the relationship between the exa
t external degree and the approximateminimum degree (3) may be found in [1℄.The 
lassi
al AMD algorithm with quotient graph notation is given in Algorithm 2.3 An AMD algorithm for matri
es with dense rowsAn approximate minimum degree algorithm that takes dense rows into a

ount 
an be derived using graphpartitions. Let � > 0 be a threshold that we set and bdi be an upper bound to the exa
t external degree ofa variable i: We will partition the matrix into full, quasi dense and sparse parts as follows. A variable inthe matrix A is 
alled full if we 
an guarantee that its exa
t external degree is maximal; a variable i that isnot full is 
alled quasi dense if bdi � � +1; �nally, a variable is sparse if it is neither full or quasi dense. Inour new algorithm, we do not update the (approximate) external degree of a quasi dense or full variable,whi
h means that we use a di�erent approximation to the external degree. Our new approximation of thedegree, bdi; will be derived in this se
tion.Suppose that there are nf full variables and nq quasi dense variables in the redu
ed matrix A(k): theredu
ed matrix may then be permuted to take the formA(k) = 2666664 As ATq1 ATf1Aq1 Aq ATf2Af1 Af2 Af
3777775 ;where the rows and 
olumns of As 
orrespond to the sparse variables, the rows and 
olumns of Aq 
orre-spond to the quasi dense variables, and the rows and 
olumns of Af 
orrespond to the full variables.Consider the 
ase � > n and nf > 0: In this 
ase, nq = 0 and A(k) may be permuted to the formA(k) = 26664 As ATf1Af1 Af 37775 :6



Algorithm 2 The 
lassi
al AMD algorithmV = f1 : : : ngV = ;for i = 1; : : : ; n doAi = fj : aij 6= 0 and i 6= jgEi = ;d0i = jAijend fork = 1while k � n dosele
t variable p 2 V that minimizes dk�1pLp = Ap [ �[e2EpLe� n fpgfor ea
h i 2 Lp doAi = Ai n (Lp [ fpg)Ei = (Ei [ fpg) n Epdki = min8><>: n� k � 1dk�1i + jLp n figjjAi n figj+ jLp n figj+Pe2Einfpg jLe n Lpjend forV = �V [ fpg� n EpV = V n fpgAp = ;Ep = ;k = k + 1end while

7



Observing that a full variable will always remain full within the redu
ed matrix as the elimination pro
essprogresses, our strategy for 
omputing a pivot order is to apply 
lassi
al AMD to As to form a pivotorder (with respe
t to As) and to then append the list of full variables to the end of this pivot order. If avariable is dete
ted as be
oming full whilst applying 
lassi
al AMD to As; this variable is removed fromthe redu
ed matrix and added to the list of full variables. A variable i is dete
ted as full if jEij � 2 andits approximate minimum degree is maximal (see Se
tion 4 for further details).Now 
onsider the 
ase where nq > 0 and nf � 0: Suppose that we have a (redu
ed) matrix of the form26666666664
1 � � ?2 � � � ?� � 3 � ?� 4 � � ?� � 5 � ?� � � � 6 ?? ? ? ? ? ? 7

37777777775 ;where variable 6 is 
onsidered to be quasi dense and variable 7 is full. Eliminating variable 1 from thematrix results in the following �ll-in:26666666664
1 � � �2 � � � ?� � 3 � � ?� 4 � � ?� � 5 � ?� � � � � 6 ?� ? ? ? ? ? 7

37777777775 :Observe that variable 6 has be
ome full within the redu
ed matrix and variable 7 remains full. If theentries in row 1 of the original matrix were to be in di�erent 
olumns, then the pattern of variable 6 mightremain quasi dense: 26666666664
1 � � ?� 2 � � � ?� 3 � ?� 4 � � ?� � 5 � ?� � � � 6 ?? ? ? ? ? ? 7

37777777775!
26666666664

1 � � �� 2 � � � ?� 3 � ?� 4 � � ?� � 5 � ?� � � � 6 ?� ? ? ? ? ? 7
37777777775 :Hen
e, elimination of a sparse variable results in a quasi dense variable be
oming full or remaining quasidense. As it may be expensive to 
al
ulate the new degree of a quasi dense variable, we initially ignoreboth quasi dense variables and full variables and apply the approximate minimum degree algorithm to As:On
e ea
h of the variables in As has been eliminated or 
agged as either full or quasi dense, the algorithmrestarts by rede
laring ea
h of the quasi dense variables to be sparse, 
al
ulating their exa
t degree withinthe redu
ed matrix and applying the algorithm to the reassigned As: Finally, when all of the variables inA have been eliminated or 
agged as full, the full variables are appended to the end of the pivot sequen
e.The adja
en
y lists Ai and Ei of a quasi dense variable i are not updated until a restart is performed.Hen
e, during a restart, these lists must be reformed: this 
an be 
ostly. We 
ompute the exa
t externaldegree for ea
h variable, whi
h may also be expensive. However, we hope that the 
ost of restarting will below relative to the 
ost of applying 
lassi
al AMD to our test problems. We note that our variant requiresno more workspa
e than that required by the 
lassi
al AMD method.To limit the e�e
t of a bad initial 
hoi
e of � and take into a

ount the evolution of the graph stru
ture,� may be updated at ea
h restart step of the algorithm. Doing so, for example, one 
an start with a fairly8



aggressive initial value of � (sele
ting many quasi dense variables) to a

elerate the �rst set of pivoteliminations. Then, during ea
h restart, � 
an be reset with a more 
onservative strategy (in the senseof sele
ting less quasi dense variables) to preserve the quality and limit the extra 
ost due to numerousrestarts on a large subgraph. We therefore use the notation �l to depi
t the value of � after l restarts havebeen performed.Suppose that F is the set of variables that are 
urrently 
agged as full, Q is the set of variables 
urrently
agged as quasi dense, and S = F [Q; then an upper bound bdki for dki isbdki = min8><>: n� k � 1bdk�1i + jLp n figjjSj+ jAi n (fig [ S)j+ jLp n (fig [ S)j+Pe2Einfpg jLe n (Lp [ S)j: (4)A rigorous derivation of equation (4) and the proof that it is an upper bound for the exa
t external degree
an be found in Se
tion 4. We have derived Algorithm 3 for obtaining a pivot order that should be similarto that generated by the standard AMD algorithm but will avoid the ineÆ
ien
y problems 
aused bydense (or almost dense) variables. For the interested reader, Algorithm 4, given in the Appendix, uses thenotation introdu
ed in Se
tion 2 to give a more detailed version of Algorithm 3. We dis
uss the 
hoi
e of�l in Se
tion 3.2.3.1 Element absorptionIn addition to the natural absorption of elements into Ep; in the 
lassi
al AMD algorithm, any element esatisfying jLe n Lpj = 0 is also absorbed into element p; even if e is not adja
ent to p: This is 
ommonlyreferred to as aggressive absorption and improves the degree bounds [1℄. We employ this idea in our variantof AMD, but in addition to the 
ondition jLe n Lpj = 0 we must now 
he
k that element p is adja
ent toall of the quasi dense variables. This additional 
ondition is ne
essary be
ause the adja
en
y lists of quasidense variables are only updated when a restart is performed.3.2 Choosing the threshold �lThe 
hoi
e of the threshold �l in Algorithm 3 will have a signi�
ant e�e
t on the speed and eÆ
a
y ofthe algorithm. If �l is too large, we may need to re
al
ulate bdi many times for variables that have a largedegree: this will be slow. If �l is too small, a large number of restarts may be required, whi
h will also beslow. Furthermore, �l being too small means that many sparse rows may be in
orre
tly 
lassi�ed as quasidense and, hen
e, some bdi are likely to be severe over-estimates of the 
orresponding external degrees,resulting in a poor 
hoi
e of pivot. We 
ompare various strategies for 
hoosing �l in this se
tion.Strategy AThe �rst strategy that we will 
onsider is to always set�l = n:This value means variables are 
lassed as either sparse or full sin
e bdi � �l + 1 will never hold andthis strategy will result in Algorithm 3 never entering the restart stage. We observed that this strategyperformed similarly to 
lassi
al AMD for all but one of our test problems. For problem ins2, strategy A
al
ulated a pivot order in 276 se
onds (roughly half the time of 
lassi
al AMD) with no loss in the qualityof the pivot order.Strategy BOur se
ond strategy uses the simple 
hoi
e �l = pn� k + 1: (5)9



Algorithm 3 The revised approximate minimum degree algorithmFor ea
h variable i; set bd0i = d0i (the exa
t external degree of variable i)k = 1; l = 0Compute �0Using �0; assign ea
h variable to be either sparse, quasi dense or fullwhile k � n doif any uneliminated sparse variables are present thenSele
t an uneliminated sparse or quasi dense variable p that minimizes bdk�1pEliminate pfor ea
h sparse i adja
ent to p in A(k) doUse (4) to 
ompute bdkiReassign i to be sparse, quasi dense or full using �lend fork = k + 1else if any quasi dense variables are present thenRestart:l = l + 1for ea
h quasi dense variable i doSet bdki = dki (the exa
t external degree of variable i in A(k))if bdki is maximal thenAssign i to be fullelseAssign i to be sparseend ifend forCompute �lelseEliminate all full variables.k = n+ 1end ifend while

10



This was motivated by the work of Carmen [4℄. We observed that strategy B frequently 
arries out a largenumber of restarts for problems that initially satisfy � > �: As the algorithm progresses, the variablesbe
ome denser and, hen
e, we expe
t the proportion of variables 
lassed as quasi dense to in
rease if (5)is used. This will, of 
ourse, result in a large number of restarts. For example, strategy B 
al
ulated apivot order for problem mip1 in 2.44 se
onds with 188 restarts and nz(L) = 39:0� 106: As expe
ted, thequality of the pivot order may su�er signi�
antly if a large number of restarts is performed. For problemgupta3, strategy B 
al
ulates a pivot order in 2.46 se
onds (roughly a third of the time of 
lassi
al AMD)with 35 restarts. However, the number of reals in the fa
tor L is more than 7 times greater than that of
lassi
al AMD (nz(L) = 41:3� 106).Strategy CThe simple strategies A and B do not 
onsistently improve upon the 
lassi
al AMD algorithm and so wenow explore more 
omplex strategies. Our third strategy uses the mean of the maximum and minimumexa
t external degrees of the variables that are not full:dmin = min (di : i 2 V n F ) ;dmax = max (di : i 2 V n F ) ; (6)�l = dmin + dmax2 + 1: (7)If dmax is mu
h larger than the average external degree, then �l should 
apture the dense variables. Resultsfor strategy C are in
luded in Table 3.Strategy DThe �rst author previously developed an AMD variant for matri
es with some dense rows and 
olumnsthat was in
luded within the MUMPS pa
kage. This variant initialized the threshold to be�l = ��+ �dmax + 1; (8)where � is the average external degree, dmax is de�ned by (6), and the values � = 9:9 and � = 0:1 where
hosen experimentally. Results for strategy D are also in
luded in Table 3.Comparing the times in Table 3, we observe that, for problems in the lower half of the table, there
an be signi�
ant savings by using a restarting strategy. Consider, for example, problem gupta2 whi
hhas initial mean external degree 68.5 and standard deviation 356. This problem is notorious be
ausethe 
lassi
al AMD algorithm is extremely ineÆ
ient. Strategies C and D are faster by a fa
tor of about12|14. Applying strategy D to problem ins2 results in the time dropping by a fa
tor of about 1500.In general, the larger the value �=� is, the more dramati
 the improvement is for strategy D. This is aswe would expe
t sin
e a problem with a large value of �=� will 
ontain some variables that have mu
hlarger initial degrees than the average and, hen
e, will have a set of variables that are 
onsidered as dense.For problem ins2, strategy C only dete
ts one of the variables that be
omes dense and, hen
e, performspoorly 
ompared to strategy D.For the test problems satisfying � � �; we observe that strategies C and D 
an be slower than 
lassi
alAMD and the quality of the ordering may also su�er. Consider, for example, problem G3 
ir
uit that has�=� = 0:13: The fore
ast number of reals in L is more than double for strategy C. Furthermore, be
auseof the large number of restarts, strategy C is signi�
antly slower. This is to be expe
ted sin
e if � � �;then �l = dmin + dmax2 + 1 � �and, hen
e, approximately half of the remaining variables will be 
lassi�ed as quasi dense during ea
hrestart. 11



Problem AMD C D Eapa
he1 Time/Restarts 0.24 0.58 / 21 0.28 / 3 0.30 / 2nz(L) 13.4 24.1 13.2 12.9G3 
ir
uit Time/Restarts 4.82 9.49 / 22 5.94 / 4 5.80 / 3nz(L) 193 517 204 196n
vxbqp1 Time/Restarts 0.19 0.32 / 16 0.21 / 2 0.21 / 2nz(L) 4.33 9.29 4.70 4.58ford1 Time/Restarts 0.02 0.03 / 13 0.03 / 2 0.02 / 2nz(L) 0.31 0.41 0.31 0.31tuma1 Time/Restarts 0.02 0.02 / 16 0.02 / 2 0.01 / 1nz(L) 0.58 0.86 0.64 0.61b
sstk30 Time/Restarts 0.05 0.08 / 11 0.06 / 1 0.07 / 1nz(L) 3.79 5.77 4.04 3.87inline 1 Time/Restarts 1.73 3.13 / 11 2.85 / 2 2.56 / 2nz(L) 219 362 249 253lpl1 Time/Restarts 0.19 0.15 / 7 0.13 / 2 0.13 / 2nz(L) 0.974 1.48 1.18 1.20gupta3 Time/Restarts 6.93 2.53 / 1 2.40 / 1 2.58 / 1nz(L) 5.72 6.44 6.52 6.52mip1 Time/Restarts 6.70 1.38 / 1 1.18 / 1 0.57 / 1nz(L) 39.0 39.1 39.5 39.7net4-1 Time/Restarts 1.49 0.64 / 2 0.63 / 1 0.56 / 2nz(L) 2.38 2.45 2.53 3.09
kt11752 d
 1 Time/Restarts 0.13 0.09 / 1 0.09 / 1 0.09 / 2nz(L) 0.56 0.57 0.59 0.63rajat23 Time/Restarts 0.23 0.26 / 1 0.19 / 1 0.16 / 2nz(L) 0.46 0.46 0.47 0.47rajat22 Time/Restarts 0.09 0.06 / 1 0.05 / 1 0.05 / 1nz(L) 0.15 0.15 0.15 0.15gupta2 Time/Restarts 70.2 5.65 / 1 5.02 / 1 3.98 / 1nz(L) 5.89 5.95 5.91 5.98gupta1 Time/Restarts 23.3 2.48 / 3 1.11 / 1 1.89 / 1nz(L) 2.06 2.06 2.06 2.06a0nsdsil Time/Restarts 2.33 0.06 / 2 0.06 / 1 0.06 / 1nz(L) 0.34 0.35 0.35 0.35blo
kqp1 Time/Restarts 5.27 0.03 / 1 0.05 / 1 0.03 / 1nz(L) 0.38 0.38 0.38 0.38trans5 Time/Restarts 67.6 1.82 / 1 0.14 / 1 0.14 / 1nz(L) 0.68 0.68 0.70 0.70ins2 Time/Restarts 516 246 / 1 0.34 / 1 0.35 / 1nz(L) 1.53 1.53 1.59 1.59Table 3: Comparison of the times, the number of restarts and the number of reals in L (�106) for 
lassi
alAMD and strategies C, D and E.
12



Strategy EThe relationship between the initial standard deviation of the variable degrees and their mean valueappears to make a signi�
ant di�eren
e to the performan
e of the various strategies used so far. StrategyD may be interpreted as a 
rude attempt at taking the mean and standard deviation into a

ount be
ausea large value of dmax relative to the mean � will generally 
orrespond to a large standard deviation � andvi
e versa. We observe that if � > �; strategy D is usually faster than the other strategies. However, itis generally only performing one restart. We may analyse this as follows: if dmax � �; then �l � 0:1dmaxand we are guaranteed to 
lassify some of the variables as quasi dense. After the restart, the di�eren
ebetween dmax and � will, in general, have dramati
ally fallen and, hen
e, �l � 10�: This will result in few,if any, variables being 
lassi�ed as quasi dense.We might expe
t that performing more than one restart would be bene�
ial and we would like athreshold �l that allows this. Ideally, the problem size and the di�eren
e between the standard deviationand mean of the external degrees should all be re
e
ted in the threshold.If � is large relative to �; our experiments showed that a threshold of the form ��+ �� + 1; where �and � are positive 
onstants, was e�e
tive for dete
ting quasi dense rows. As the ratio �=(�+1) in
reased,we observed that larger values of � were more desirable and this led us to try a threshold of the form��+ �� (�= (�+ 1))1:5 :If � is small relative to �; then the problem has no quasi dense rows and, hen
e, the threshold shouldbe very large. For 
 > 0; the expression �� + 
�2= (� + 1) + 1 was found to be very e�e
tive, in this
ase, be
ause �2= (� + 1) will be very large. The same value of � was used as in the 
ase where � is highrelative to �:Noting that � (�= (�+ 1))1:5 will be small when � is small relative to �; and �2= (� + 1) will be smallwhen � is large relative to �; we 
an 
ombine our above observations. Therefore, for strategy E we set�l = ��+ �� (�= (�+ 1))1:5 + 
�2= (� + 1) + 1; (9)where � = 9; � = 0:5 and 
 = 2 are numeri
ally 
hosen values. Disappointingly, the results in Table 3show that we have not been able to 
onsistently improve on the performan
e of strategy D and have onlyin
reased the number of restarts for a small number of problems. Strategy E is faster than strategy Dfor problems mip1 and gupta2, while strategy D is faster for problem gupta1. The quality of the pivotorders are similar for all of these problems apart from net-4, whi
h is worse.So far, the same de�nition for the threshold �l has been used on ea
h restart as was used during theinitialization stage. In MUMPS and Version 1.0.0 of MA57, on restart �l is de�ned to be�l = maxf2� �l�1; 0:5 (dmin + dmax) + 1g: (10)We will 
all the strategies that use (7), (8), (9) to 
ompute �0 and then (10) to 
ompute �l (l = 1; 2; : : :)on ea
h restart strategies C', D' and E' respe
tively. Their performan
es are 
ompared in Table 4. Theproblems with � � � have been omitted be
ause the results are very similar to those for strategies C, Dand E. We observe that there is little di�eren
e between the performan
e of strategies D and D', and Eand E'. We therefore propose using 
lassi
al AMD for problems with � � � and strategy E for problemswith � > � : we 
all this strategy QAMD.4 A

ura
y of the approximate degree bdAs in Se
tion 3, let F be the set of variables that are 
urrently 
agged as full, Q be the set of variables
urrently 
agged as quasi dense, and S = F [Q;. Suppose that edi is the exa
t external degree of variablei with respe
t to applying the approximate minimum degree algorithm to As; where As is the submatrix13



Problem C' D' E'lpl1 Time/Restarts 0.14 / 4 0.12 / 4 0.13 / 4nz(L) 1.53 1.62 1.46gupta3 Time/Restarts 2.56 / 1 2.42 / 1 2.58 / 1nz(L) 6.44 6.52 6.52mip1 Time/Restarts 1.39 / 1 1.18 / 1 0.57 / 2nz(L) 39.1 39.5 39.8net4-1 Time/Restarts 0.64 / 1 0.63 / 1 0.56 / 2nz(L) 2.45 2.53 3.09
kt11752 d
 1 Time/Restarts 0.10 / 1 0.10 / 1 0.10 / 2nz(L) 0.57 0.59 0.63rajat23 Time/Restarts 0.26 / 1 0.19 / 1 0.16 / 2nz(L) 0.46 0.47 0.47rajat22 Time/Restarts 0.07 / 1 0.05 / 1 0.04 / 1nz(L) 0.15 0.15 0.15gupta2 Time/Restarts 5.65 / 1 5.03 / 1 3.98 / 1nz(L) 5.95 5.91 5.98gupta1 Time/Restarts 2.47 / 1 1.11 / 1 1.88 / 1nz(L) 2.06 2.06 2.06a0nsdsil Time/Restarts 0.06 / 1 0.05 / 1 0.06 / 1nz(L) 0.35 0.35 0.35blo
kqp1 Time/Restarts 0.03 / 1 0.06 / 1 0.03 / 1nz(L) 0.38 0.38 0.38trans5 Time/Restarts 1.80 / 1 0.14 / 1 0.14 / 1nz(L) 0.68 0.70 0.70ins2 Time/Restarts 248 / 1 0.35 / 1 0.34 / 1nz(L) 1.53 1.59 1.59Table 4: Comparison of the times, the number of restarts and the number of reals in L (�106) for strategiesC', D' and E'.of A as de�ned in Se
tion 3. If p is the kth pivot, we obtain the following upper bound for dki :dki � jSj+ edki= jSj+ ��Aki n (fig [ S)��+ ������0� [e2Eki Le1A n (fig [ S)������= jSj+ ��Aki n (fig [ S)��+ jLp n (fig [ S)j+ ������ [e2Eki nfpg (Le n (Lp [ S))������� jSj+ ��Aki n (fig [ S)��+ jLp n (fig [ S)j+ Xe2Eki nfpg jLe n (Lp [ S)jAs in Se
tion 2, dki � n � k + 1 and dki � dk�1i + jLp n figj : Hen
e, bdki is an upper bound for the exa
tdegree dki whenbdki = min8><>: n� k � 1bdk�1i + jLp n figjjSj+ ��Aki n (fig [ S)��+ jLp n (fig [ S)j+Pe2Eki nfpg jLe n (Lp [ S)j:14



In some 
ases, this bound will be equal to the exa
t degree or may be a sharper bound than that used inAlgorithm 2. In pra
ti
e, if there are only a small number of dense rows, the values of bdi and di will besimilar:Theorem 4.1. Let S = S1 [S2; where S1 = S \ �Ai [ �Se2Ei Le�� and S2 = S n �Ai [ �Se2Ei Le�� : Thefollowing inequalities hold:� di = bdi = di holds for all variables i =2 S when S2 = ; and jEij � 2;� di + jS2j � bdi � di + jS2j holds for all variables i =2 S:Proof. Rearranging the expression for bdi; where i =2 S; and using the fa
t that Ai \Le = ; for all elementse 2 Ei; we obtainbdi = jSj+ jAi n (fig [ S)j+ jLp n (fig [ S)j+ Xe2Einfpg jLe n (Lp [ S)j= jAi n figj+ jS n Aij+ jLp n (fig [ S)j+ Xe2Einfpg jLe n (Lp [ S)j= jAi n figj+ jS n Aij+ jLp n figj � jLp \ Sj+ Xe2Einfpg (jLe n Lpj � j(Le n Lp) \ Sj)= jAi n figj+ jLp n figj+ Xe2Einfpg jLe n Lpj+ jS n (Ai [ Lp)j � Xe2Einfpg j(Le n Lp) \ Sj= jAi n figj+ jLp n figj+ Xe2Einfpg jLe n Lpj+ jS2j+ jS1 n (Ai [ Lp)j � Xe2Einfpg j(Le n Lp) \ S1j :If S2 = ; and jEij � 1; 
learly jS2j = 0 andjS1 n (Ai [ Lp)j � Xe2Einfpg j(Le n Lp) \ S1j = jS1 n (Ai [ Lp)j = 0:If S2 = ; and jEij = 2 (the 
urrent element p and a prior element e; say), jS2j = 0 andS1 = (Ai [ Lp [ (Le n Lp)) \ S1S1 n (Ai [ Lp) = (Le n Lp) \ S1:In both 
ases we observe that bdi = di and, hen
e, di = bdi = di [1, Theorem 4.1℄.Considering the general 
ase we obtainS1 = 0�Ai [ Lp [0� [e2Einfpg (Le n Lp)1A1A \ S1S1 n (Ai [ Lp) = [e2Einfpg ((Le n Lp) \ S1)jS1 n (Ai [ Lp)j � Xe2Einfpg j(Le n Lp) \ S1j :Hen
e, bdi � di + jS2j :
15



Again, using the fa
t that Ai \Le = ; for all elements e 2 Ei; we 
an rearrange the expression for di asdi = jAi n figj+ ����� [e2Ei Le! n fig�����= jAi n figj+ jLp n figj+ ������ [e2Einfpg (Le n Lp)������= jAi \ Sj+ j(Lp n fig) \ Sj+ ������ [e2Einfpg ((Le n Lp) \ S)������+ jAi n (fig [ S)j+ jLp n (fig [ S)j+ ������ [e2Einfpg (Le n (Lp [ S))������= jS1j+ jAi n (fig [ S)j+ jLp n (fig [ S)j+ ������ [e2Einfpg (Le n (Lp [ S))������� jSj � jS2j+ jAi n (fig [ S)j+ jLp n (fig [ S)j+ Xe2Einfpg j(Le n (Lp [ S))j= bdi � jS2j :This 
ompletes the proof.The �rst statement in Theorem 4.1 may be used to test whether a variable is full or not. Unfortunately,
he
king whether S2 = ; holds for a variable i may be as expensive as 
al
ulating the exa
t degree of thevariable. If S = F; then we 
an guarantee that S2 = ; and, hen
e, we use jSj = jF j within the test for afull variable rather than S2 = ;:5 Indistinguishable variables and mass eliminationIn the analysis presented in this paper, we have 
onsidered ea
h variable separately. However, in the 
odesused to generate the numeri
al results we have taken full advantage of the possibility of two variables havingthe same sparsity pattern in the redu
ed matrix A(k): Two variables i and j are 
alled indistinguishableif they are adja
ent and also have identi
al adja
en
y lists in the elimination graph 
orresponding toA(k): Working with a quotient graph means that it is eÆ
ient to 
he
k whether two sparse variables areindistinguishable [1℄. If any other variable is eliminated, then the indistinguishable variables will remainindistinguishable: they will have the same degree until one is sele
ted as a pivot. If i is sele
ted as the
urrent pivot, then j 
an be sele
ted next without 
ausing any additional �ll-in.We may merge i and j into a supervariable 
ontaining both i and j; labeled by its prin
ipal variable(i; say) [7, 9℄. Variables that are not prin
ipal variables are 
alled simple variables. We denote the setof simple variables in a supervariable with prin
ipal i as i and de�ne i = fig if i is the only variablein the supervariable. When p is sele
ted as a pivot at the k th step, all variables in p are eliminated.The number of degree 
al
ulations performed is, in general, greatly redu
ed when supervariables are used.Non-prin
ipal variables and their in
ident edges are removed from the quotient graph stru
ture when theyare dete
ted. The set notation A and L refers to either a set of supervariables or the variables representedby supervariables, depending on the 
ontext.It is possible that some of the variables that are adja
ent to a pivot 
an be eliminated at the same timewithout 
ausing additional �ll. This is known as mass elimination [13℄. Unfortunately, we 
annot test forthis unless the pivot is adja
ent to all of the quasi dense variables sin
e the adja
en
y lists of quasi densevariables are only updated when a restart is performed.16



Using supervariables, the exa
t external degree dki ; the approximate external degree dki ; and the ap-proximate external degree using dense variables bdki are de�ned bydki = ��Aki n i��+ ������0� [e2Eki Le1A n i ������dki = min8><>: n� k � 1dk�1i + jLp n i j��Aki n i��+ jLp n i j+Pe2Eki nfpg jLe n Lpjbdki = min8><>: n� k � 1bdk�1i + jLp n i jjSj+ ��Aki n (S [ i )��+ jLp n ( i [ S)j+Pe2Eki nfpg jLe n (Lp [ S)jIn the Appendix, we present a supervariable version of the revised AMD algorithm (Algorithm 5).6 Con
lusionsWe have des
ribed a new variant of the approximate minimum degree algorithm that aims to eÆ
ientlydete
t and deal with the existen
e of any dense variable throughout the formation of a pivot order. Thiswork was based on an initial 
ode implementing strategy D' of the algorithm and distributed with theMUMPS pa
kage sin
e 2000 [3, 16℄. Theoreti
al results relating the new upper bound for the degrees ofthe variables to that of Amestoy, Davis and Du� [1℄ and the exa
t degree have been provided. They showthat the two bounds will be similar if there is only a small number of quasi dense rows.We have experimentally demonstrated that using a restarting strategy for problems with � > � (thatis problems with some dense or near dense rows) 
an make signi�
ant savings on the CPU time required toobtain the pivot order: the quality of the ordering is maintained. Strategy QAMD has been implementedwithin the HSL pa
kage MC47 (version 2.1.0). Version 2.1.0 of MC47 is available now as part of the 2007release of the mathemati
al software library HSL. All use of HSL requires a li
en
e; details of how toobtain a li
en
e and the pa
kages are available at www.
se.
lr
.a
.uk/nag/hsl/.Referen
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A AppendixAlgorithm 4 The revised approximate minimum degree algorithmV = f1 : : : ng ; V = ;F = ;; Q = ;Set �0 � n+ 1for i = 1; : : : ; n doAi = fj : aij 6= 0 and i 6= jgEi = ;bd0i = jAijif bd0i = n� 1 thenF = F [ figelse if bd0i � �0 + 1 thenQ = Q [ figend ifend fork = 1; l = 0while k � n doif V n (F [Q) 6= ; thensele
t variable p 2 V n (F [Q) that minimizes bdk�1pLp = Ap [ �[e2EpLe� n fpgfor ea
h i 2 Lp n (F [Q) doAi = Ai n (Lp [ fpg)Ei = (Ei [ fpg) n Epbdki = min8><>: n� k � 1bdk�1i + jLp n figjjF [Qj+ jAi n (F [Q [ fig)j+ jLp n (F [Q [ fig)j+Pe2Einfpg jLe n (F [Q [ Lp)jif �bdki + 1 = n� k� and jEij � 2 and Q = ; thenF = F [ figelse if bdki � �l + 1 thenQ = Q [ figend ifend forV = �V [ fpg� n Ep; V = V n fpgAp = ;; Ep = ;k = k + 1else if Q 6= ; thenRestart: l = l+ 1for ea
h i 2 Q doAi = fj : aij 6= 0 and j 2 V and i 6= jgEi = �j : aij 6= 0 and j 2 V and i 6= j	bdk�1i = jAi n figj+ ����Se2Ei Le� n fig���Q = Q n figif bdk�1i = n� k thenF = F [ figend ifend forCompute �lelsefor ea
h i 2 F doV = V [ fig ; V = V n figk = k + 1end forend ifend while
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Algorithm 5 The approximate minimum degree algorithm with supervariablesV = f1 : : : ng ; V = ;; F = ;; Q = ;Set �0 < nfor i = 1; : : : ; n doAi = fj : aij 6= 0 and i 6= jg ; Ei = ;; i = fig; bd0i = jAijif bd0i = n� 1 thenF = F [ ielse if bd0i + �0 � n� 1 thenQ = Q [ iend ifend fork = 1; l = 0while k � n doif V n (F [Q) 6= ; thensele
t variable p 2 V n (F [Q) that minimizes bdk�1pLp = Ap [ �[e2EpLe� n pfor ea
h i 2 Lp n (F [Q) doAi = Ai n (Lp [ p ) ; Ei = (Ei [ fpg) n Epbdki = min8><>: n� k � j p jbdk�1i + jLp n i jjF [Qj+ jAi n (F [Q [ i )j+ jLp n (F [Q [ i )j+Pe2Einfpg jLe n (F [Q [ Lp)jif �bdki + jij = n� k� and jEij � 2 and Q = ; thenF = F [ ielse if bdki + jij � �l thenQ = Q [ iend ifend forsupervariable dete
tionfor ea
h pair i and j 2 Lp n (F [Q) doif i and j are indistinguishable theni = i [ j; bdki = bdki � jjj ; V = V n fjg; Aj = ;; Ej = ;end ifend forV = �V [ fpg� n Ep; V = V n fpg ; Ap = ;; Ep = ;; k = k + jpjelse if Q 6= ; thenRestart: l = l+ 1for ea
h i 2 Q doAi = fj : aij 6= 0 and j 2 V and i 6= jgEi = �j : aij 6= 0 and j 2 V and i 6= j	bdk�1i = jAi n ij+ ����Se2Ei Le� n i���Q = Q n iif bdk�1i + jij = n� k + 1 thenF = F [ iend ifend forCompute �lelsefor ea
h i 2 F doV = V [ fig; V = V n fig; k = k + jijend forend ifend while
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