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1 Introduction

The efficiency of sparse direct solvers for the solution of linear systems Az = b with a symmetric sparsity
pattern, in terms of both the storage needed and work performed, is dependent upon the order in which
the variables are eliminated, that is, the order in which the pivots are selected. Many solvers include a
preordering step that aims to use information on the sparsity pattern of A to find a permutation P so that,
if the pivots are chosen in order from the diagonal of the permuted matrix, the computed factors are sparser
than if the pivots were chosen in order from the diagonal of the original matrix. If A is symmetric and
positive definite, the pivot sequence chosen from the sparsity pattern alone can be used by the factorization
phase without modification and a Cholesky factorization PAPT = LL" can be computed. More generally,
numerical pivoting must be incorporated during the factorization phase to maintain numerical stability
and, in this case, the pivot sequence computed by the symbolic analyse phase may have to modified.

The problem of finding a permutation P that results in the smallest amount of fill-in for a Cholesky
factorization is NP-complete [20] and so heuristics are used to find a good ordering. Two main classes of
methods are widely used: those based on nested dissection [11] and those based on the minimum degree
algorithm [19]. In recent years, nested dissection has often been found to be the method of choice for
many very large problems (typically those of order greater than 50,000 [10]). However, it can be more
expensive than the most efficient implementations of the minimum degree algorithm, which is preferred
for more modest size problems and for very sparse problems. Many direct solvers typically offer a range of
ordering options (see Gould, Scott and Hu [14] for a recent review) that include variants of both the nested
dissection and minimum degree algorithms. Currently, the most successful variant of the minimum degree
algorithm is the approximate minimum degree algorithm (AMD) and, in particular, the AMD algorithm
introduced by Amestoy, Davis and Duff [1] is widely used. A Fortran 77 implementation of AMD is
available in the HSL mathematical software library [15] within the package MC47 (and as Algorithm 837
from ACM Transactions on Mathematical Software [2]). The AMD algorithm is more efficient than
classical implementations of the minimum degree algorithm since it uses computationally cheap bounds
on the minimum degree in place of the exact minimum degree. Numerical results [1] have shown that,
not only is AMD more efficient, it also produces orderings of a similar quality to those obtained using the
minimum degree algorithms.

Although AMD is generally very successful, an important exception is when the matrix A has some
dense (or almost dense) rows and columns. In this case, the run time for AMD can be high. AMD
uses the undirected graph of the matrix and selects each node in turn to have minimum (approximate)
degree. Once a node is selected, it is eliminated from the graph and replaced by adding edges between its
neighbours so that the neighbours become a clique. If a row is full, the corresponding node will always
be adjacent to the eliminated node so its adjacency list has to be scanned and updated, requiring O(n?)
operations for a problems with n variables. This makes the algorithm prohibitively expensive.

The objective of this paper is to propose a variant of AMD that is designed to overcome this limitation.
The rows and columns will be classified initially and then reclassified as the computation proceeds, resulting
in an algorithm that computes orderings of comparable quality and is significantly faster when some of
the rows and columns have many more entries than the average for the matrix.

This paper is organised as follows. In Section 2, we review the minimum degree and AMD algorithms.
The proposed modified AMD algorithm is derived in Section 3 and theoretical aspects considered within
Section 4. In Section 5, we describe the use of supervariables within the codes used to generate the
numerical results presented in this paper.

The starting point for this work was a modification of the AMD code and algorithm, done by the first
author, that has been used and distributed since 2000 within the MUMPS package [3, 16]. We note that Duff
also included this modified code within Version 1.0.0 of the HSL sparse symmetric solver MA57 [6]. This
earlier work, which has not been documented within the literature, was the starting point for the present

paper.



2 The minimum degree and AMD algorithms

The minimum degree and AMD algorithms may be presented using the graph model of Rose [17, 18]. The
nonzero pattern of a symmetric n by n matrix A can be represented by an undirected graph G = (VO7 EO)
with nodes VY = {1,...,n} and edges E°. An edge (4, j) is present in E° if and only if a;; # 0 and i # j;
1 and j are said to be adjacent.

The elimination graph G* = (V’“, Ek) describes the nonzero pattern of the n(®) by n'*) reduced matrix
A still to be factored after k pivots have been chosen and eliminated. The external degree d¥ of a node
i is defined to be the number of nodes it is adjacent to in the elimination graph G*. The minimum degree
algorithm chooses node p as the kth pivot such that p has minimal external degree in the graph G*~'. For
clarity, we will sometimes drop the superscript & during our discussions. Algorithm 1 gives an outline of
the minimum degree algorithm. The term wvariable is used to indicate a node that has not been removed
from the elimination graph.

Algorithm 1 The minimum degree algorithm

For each i € V9, set d; to be the exact external degree of i
k=1
while k£ <n do
Select variable p € V¥~! that minimizes d,
Eliminate p
For each variable i adjacent to p in G¥~1, update d;
k=k+1

end while

At step k, the graph G* depends on G*~' and the kth pivot. G* is found by selecting the kth pivot
from V#~1 adding edges to E*~! to make the nodes adjacent to p in G¥~! a clique (a fully connected
subgraph) and then removing p (and its edges) from the graph. The edges added to the graph correspond
to fillin. This addition of edges means that, if G* is stored explicitly, we cannot know the storage
requirements in advance. To remedy this, a quotient graph is used instead of an elimination graph
(see Section 2.1). Unfortunately, the calculation of the exact external degree of a variable may then be
expensive. Alternatively, the AMD algorithm calculates an upper bound, d;, on the exact external degree
of a variable and then compares the upper bounds when choosing the next pivot. This generally results
in the AMD algorithm being more efficient than the minimum degree algorithm. Numerical results have
shown that the AMD algorithm also produces orderings of a similar quality to that of the minimum degree
algorithm [1].

Unfortunately, the AMD algorithm can be very inefficient when the matrix A has some dense (or almost
dense) rows and columns. When a pivot p is eliminated, the upper bound d; for each i that is adjacent
to p must be updated. If i is dense or almost dense, it is (almost) certainly adjacent to p and updating
d; will involve a large number of comparisons. This will make the algorithm prohibitively expensive. For
clarity, we will refer to this variant of AMD as the classical AMD algorithm throughout the remainder of
this paper.

In Table 1, we list a subset of the matrices that we used in our tests. These were selected to give a good
representation as to how the different algorithms perform on the matrices in the whole of our test set. Each
test example is available from the University of Florida Sparse Matrix Collection [5] and, if unsymmetric,
has been symmetrized by working with the sum of the given matrix and its transpose. The order n, the
number of off-diagonal nonzero entries nz of A, the maximum external degree d,, .., the average external
degree u, and the standard deviation o of the external degrees of each (symmetrized) matrix is given. The
problems have been listed in increasing order of o/u. We distinguish between those with o/u less than or
greater than one. The first seven problems in Table 1 have comparable numbers of nonzero entries in all



Problem n nz dimaz n o olu

apachel 80800 542184 7 6.71 048 0.07
G3_circuit 1585478 7660826 6 483 064 0.13
ncvgbgpl 50000 349968 9 7.00 200 0.29
fordl 18728 101576 20 542 1.65 0.30
tuma 22967 87760 5 382 134 035
bcsstk30 28924 2043492 219 70.6 31.7 045
inline_1 503712 36816170 843 731 356 049
1pl1 32460 328036 253 10.1 155 1.53
gupta3 16783 9323427 14672 556 1234 2.22
mip1 66463 10352819 66395 156 351 2.25
net-4 88343 2441727 4791 276 853 3.09
ckt11752 dc_1 49702 327834 2921 6.60 24.6 3.73
rajat23 110355 559733 3336 5.07 193 3.80
rajat22 39899 198081 3336 496 248 4.99
gupta?2 62064 4248286 8413 685 356 5.20
guptal 31802 2164210 8413 68.1 360 5.29
aOnsdsil 80016 355034 5003 4.44 50.0 11.3
blockgpl 60012 640033 40011 10.7 305 28.6
transb 116835 827879 114191 7.09 371 52.3
ins2 309412 2751484 309412 8.89 590 66.4

Table 1: Problems in test set: order n, number of nonzeros nz, the maximum external degree d,,q., the
mean g of the external degrees, and their standard deviation o.

of the rows of the matrices and for these problems we therefore expect there to be little advantage to be
gained by using a modified AMD algorithm instead of the classical AMD algorithm.

We will initially compare the performance of the minimum degree algorithm with that of the MC47
implementation of the classical AMD algorithm. The implementation of the minimum degree algorithm
is based on the version found within the HSL sparse solver MA27 [9]. In Table 2, we give the time to obtain
the ordering and the forecast number of real words required to hold the matrix factor L formed by the
factorization phase of MA57 [6] if no pivoting is performed. Throughout this paper, the latter piece of
information is used as a measure for the quality of the ordering and is generated by passing the pivot
order to the analyse phase MA57. All numerical results in this paper were obtained using a 3.6 GHz Intel
Xeon dual processor Dell Precision 670 with 4 Gbytes of RAM that was running Red Hat Enterprise Linux
Server release 5.1 (kernel 2.6.18-53.1.13.el5). The Nag 95 compiler with the -O4 option was used. All
times are CPU times in seconds.

As expected, we observe that the classical AMD algorithm is significantly more efficient than the
minimum degree algorithm for the problems whose ratio o/u is greater than one and the quality of the
orderings remains comparable. Observe that the times to obtain the pivot orders differ by at least an
order of magnitude for the gupta* problems. The time required to obtain the pivot order for some of
the problems is much higher than expected when compared with problems with similar values of n and
nz : for example, compare problems bcsstk30 and guptal. The algorithm proposed in Section 3 aims to
substantially reduce these times while maintaining the quality of the ordering.

2.1 Quotient graphs

The quotient graph, also referred to as the generalized element model [7, 8, 9], allows us to model the
factorization of A whilst avoiding the need to use more storage than that required to store the original



Minimum Degree | Classical AMD

Problem Time nz(L) Time nz(L)
apachel 0.39 14.8 | 0.24 13.4
G3_circuit 5.77 238 4.82 193
ncvxbgpl 0.20 5.88 | 0.19 4.33
ford1l 0.03 0.33 | 0.02 0.31
tumal 0.02 0.73 | 0.02 0.58
bcsstk30 0.05 4.71 0.05 3.79
inline_1 2.25 255 1.73 219
1pl1 0.88 0.97 | 0.19 0.97
gupta3 71.9 5.72 | 6.93 5.72
mipl 8.44 388 | 6.70 39.0
net4-1 3.65 2.46 1.49 2.38
ckt11752_dc_1 0.34 0.59 | 0.13 0.56
rajat23 0.43 0.45 | 0.23 0.46
rajat22 0.21 0.15 | 0.09 0.15
gupta2 1260 5.86 70.2 5.89
guptal 239 2.02 23.3 2.06
alOnsdsil 4.95 0.34 2.33 0.34
blockgpl 15.1 0.38 | 5.27 0.38
transb 112 0.68 67.6 0.68
ins?2 1220 1.53 516 1.53

Table 2: The times and the number of reals in L (x10°) for the classical minimum degree algorithm and
the classical approximate minimum degree algorithm.

graph G° [12]. Using the terminology of the generalized element model, we refer to nodes removed
from the elimination graph as elements and the uneliminated nodes as wvariables. In the following, we
introduce our notation, summarize the properties of the quotient graph representation and recall the
AMD approximation. For a detailed description please refer to [1].

The quotient graph GF = (V’“,Vk, E’“,Ek) implicitly represents the elimination graph, where G° = GY,
Vo=V, V' =0, E° = E and E° = 0. The nodes in G consist of variables (in the set V) and elements
(in the set V). The edges are also divided into two sets: edges between variables £ C V x V and between
variables and elements E C V x V. The sets E and F are enough to generate the elimination graph and,
hence, the edges between elements are not required.

The nodes adjacent to a variable i in the quotient graph G, denoted by Adjg (i), may be split into two
sets A; and &; according to whether they are variables or elements:

Ai = {j:(,j) e E}CV,
& = {e:(i,e)e E} CV.

The set A¥ is the subset of nonzero entries in row i of A9 that have not been modified by steps 1 through
k of the elimination process. Hence, A? = {j : a;; # 0} and A¥ C Aff1 for 1 <k <n.
If e is an element, then the variables adjacent to e in G are denoted by L. :

L. =Adjg(e) = {i: (i,e) € B} C V.



Finally, let

A = {J4i S ‘/},
E = {EZZGV}7
L = {LoiceT).

The quotient graph takes no more storage than the original graph since
AR| 188+ L] < A7)
for all k [12]. If ¢ is a variable in G, it is also a variable in G, and
Adjg (i) = Ai U (Ueee; Le) \ {i}, (1)

where the “\” is the standard set subtraction operator.

If variable p is selected as a pivot, element p is formed (p is removed from V and added to V). The
set, £, is then found using equation (1). Since (1) implies that £, \ {p} C £, for all elements e adjacent
to p, it must hold that all variables adjacent to an element e € £, are adjacent to the element p and these
elements e € &, are no longer needed. They are therefore absorbed into the new element p and deleted:
reference to them is replaced by reference to the new element p :

gF= (e u{py) \ e

Any entry j in Ai-“l where both ¢ and j are in £, would now have been modified by the elimination
process and, hence, needs deleting from Ai-“l :

Af = AT\ (L, U {p)).

Finally, A,, &, and L. for all e € &, are deleted.
The external degree d¥ of a variable i is given by the equation

. (Af U ce> V)

e€&;

A+ U Lo\ i}

ec&;

: (2)

Now,

di = JAf[+ | £\ {i}

ecEk

= AT\ (L u{pp)] + U Lo\ i} | u(g,\ {i})

ecgfT\EFT!

< AR\ (L u{ph| + U Le\{i} ]|+ 1L\ (i}
ecEF~N\gF !
< A+ U LN )|+ 1L\ (i

e€€f71

di™t + 1L, \ {i}],



and

di = |Af[+ U Lo\ {3

ecEk

= A+ )\ U Leng
cec\(p}

= A +Ic\ i+ U LeNL
eecf\{s}

AL\ M+ > 1L\ Lyl.
e€&i\{p}

IN

Clearly d¥ < n*) —1=n—k—1 and, hence, dr < Ef for all k&, where the approximate external degree of
a variable 7 is defined by

n—k—1
di = mind & 410, \ {i}| (3)
AN+ 1L\ i} + Deen g 1€\ Lyl

Further theoretical results about the relationship between the exact external degree and the approximate
minimum degree (3) may be found in [1].
The classical AMD algorithm with quotient graph notation is given in Algorithm 2.

3 An AMD algorithm for matrices with dense rows

An approximate minimum degree algorithm that takes dense rows into account can be derived using graph
partitions. Let 7 > 0 be a threshold that we set and EZ be an upper bound to the exact external degree of
a variable i. We will partition the matrix into full, quasi dense and sparse parts as follows. A variable in
the matrix A is called full if we can guarantee that its exact external degree is maximal; a variable 4 that is
not full is called quasi dense if c/i; > 7+ 1; finally, a variable is sparse if it is neither full or quasi dense. In
our new algorithm, we do not update the (approximate) external degree of a quasi dense or full variable,
which means that we use a different approximation to the external degree. Our new approximation of the
degree, ci will be derived in this section.

Suppose that there are ny full variables and n, quasi dense variables in the reduced matrix A): the
reduced matrix may then be permuted to take the form

A, Al | AT
AR —

A
[ Ai Aps AffzJ

where the rows and columns of A, correspond to the sparse variables, the rows and columns of 4, corre-
spond to the quasi dense variables, and the rows and columns of A correspond to the full variables.
Consider the case 7 > n and ny > 0. In this case, ny, = 0 and A™) may be permuted to the form

T
40— A | Ap

An | A



Algorithm 2 The classical AMD algorithm

V={1l...n}
0

,...,n do

1
Ai={j:a;; #0andi # j}

while k£ < n do
select variable p € V' that minimizes 35;1
Ly =ApU (Ueeg,Le) \ {p}
for eachie L, do
Ai = Ai\ (£, U {p})
E=(EU{phH \ &
n—k—1
di =ming @412, \ {il
| AN\ AH + 1L \N i + Xeeen oy 1£e \ Lol
end for
V= (VU{p}) \ &
V=V \{p}
A, =10
E =0
k=k+1

end while




Observing that a full variable will always remain full within the reduced matrix as the elimination process
progresses, our strategy for computing a pivot order is to apply classical AMD to Ay to form a pivot
order (with respect to A,) and to then append the list of full variables to the end of this pivot order. If a
variable is detected as becoming full whilst applying classical AMD to Ag, this variable is removed from
the reduced matrix and added to the list of full variables. A variable i is detected as full if |£;| < 2 and
its approximate minimum degree is maximal (see Section 4 for further details).

Now consider the case where n, > 0 and ny > 0. Suppose that we have a (reduced) matrix of the form

1 X ¥ %
2 x X * %
X X 3 X *
X 4 x x x|,
X X 9 x *
* x 0 %
L *x * *x * * x T |

where variable 6 is considered to be quasi dense and variable 7 is full. Eliminating variable 1 from the
matrix results in the following fill-in:

1 ° e o
2 X X ¥ ok

° 3 x O %
X 4 x x %

X X 5 % %

ol x O x x 6 %
Lo x * * * % 7 |

Observe that variable 6 has become full within the reduced matrix and variable 7 remains full. If the
entries in row 1 of the original matrix were to be in different columns, then the pattern of variable 6 might
remain quasi dense:

M1 x . (lo o o]
X 2 X X ¥k | 2 X X EI
x 3 X * x 3 X *

X 4 X x x | = X 4 X x %

X X 5 % * X X 5 x *

¥ % ¥ x 0 % o | x ¥ % 06 %
L * % *x % x x 7 | Lo*****'?_

Hence, elimination of a sparse variable results in a quasi dense variable becoming full or remaining quasi
dense. As it may be expensive to calculate the new degree of a quasi dense variable, we initially ignore
both quasi dense variables and full variables and apply the approximate minimum degree algorithm to Ay.
Once each of the variables in A4 has been eliminated or flagged as either full or quasi dense, the algorithm
restarts by redeclaring each of the quasi dense variables to be sparse, calculating their exact degree within
the reduced matrix and applying the algorithm to the reassigned A,. Finally, when all of the variables in
A have been eliminated or flagged as full, the full variables are appended to the end of the pivot sequence.

The adjacency lists A; and &; of a quasi dense variable i are not updated until a restart is performed.
Hence, during a restart, these lists must be reformed: this can be costly. We compute the exact external
degree for each variable, which may also be expensive. However, we hope that the cost of restarting will be
low relative to the cost of applying classical AMD to our test problems. We note that our variant requires
no more workspace than that required by the classical AMD method.

To limit the effect of a bad initial choice of 7 and take into account the evolution of the graph structure,
T may be updated at each restart step of the algorithm. Doing so, for example, one can start with a fairly



aggressive initial value of 7 (selecting many quasi dense variables) to accelerate the first set of pivot
eliminations. Then, during each restart, 7 can be reset with a more conservative strategy (in the sense
of selecting less quasi dense variables) to preserve the quality and limit the extra cost due to numerous
restarts on a large subgraph. We therefore use the notation 7; to depict the value of 7 after | restarts have
been performed.

Suppose that F'is the set of variables that are currently flagged as full, @) is the set of variables currently
flagged as quasi dense, and S = F U ), then an upper bound c/iZ“ for d¥ is

n—k—1
df = minqg 4+ (L, )\ {i}] (4)
1S+ 14 \ ({3 US) + 1L, \ ({i US| + X cen o L6\ (£, US)].

A rigorous derivation of equation (4) and the proof that it is an upper bound for the exact external degree
can be found in Section 4. We have derived Algorithm 3 for obtaining a pivot order that should be similar
to that generated by the standard AMD algorithm but will avoid the inefficiency problems caused by
dense (or almost dense) variables. For the interested reader, Algorithm 4, given in the Appendix, uses the
notation introduced in Section 2 to give a more detailed version of Algorithm 3. We discuss the choice of
7, in Section 3.2.

3.1 Element absorption

In addition to the natural absorption of elements into &,, in the classical AMD algorithm, any element e
satisfying | L, \ £,] = 0 is also absorbed into element p, even if e is not adjacent to p. This is commonly
referred to as aggressive absorption and improves the degree bounds [1]. We employ this idea in our variant
of AMD, but in addition to the condition |L. \ £,] = 0 we must now check that element p is adjacent to
all of the quasi dense variables. This additional condition is necessary because the adjacency lists of quasi
dense variables are only updated when a restart is performed.

3.2 Choosing the threshold 7,

The choice of the threshold 7; in Algorithm 3 will have a significant effect on the speed and efficacy of
the algorithm. If 7; is too large, we may need to recalculate ci many times for variables that have a large
degree: this will be slow. If 7; is too small, a large number of restarts may be required, which will also be
slow. Furthermore, 7; being too small means that many sparse rows may be incorrectly classified as quasi
dense and, hence, some EZ are likely to be severe over-estimates of the corresponding external degrees,
resulting in a poor choice of pivot. We compare various strategies for choosing 7; in this section.

Strategy A
The first strategy that we will consider is to always set
T = N.

This value means variables are classed as either sparse or full since ci > 7 + 1 will never hold and
this strategy will result in Algorithm 3 never entering the restart stage. We observed that this strategy
performed similarly to classical AMD for all but one of our test problems. For problem ins2, strategy A
calculated a pivot order in 276 seconds (roughly half the time of classical AMD) with no loss in the quality
of the pivot order.

Strategy B

Our second strategy uses the simple choice

n=vn—k+1 (5)



Algorithm 3 The revised approximate minimum degree algorithm

For each variable i, set (f? = d) (the exact external degree of variable 7)
k=1,1=0
Compute 79
Using 79, assign each variable to be either sparse, quasi dense or full
while k£ <n do
if any uneliminated sparse variables are present then
Select an uneliminated sparse or quasi dense variable p that minimizes (27;;’]
Eliminate p
for each sparse i adjacent to p in A% do
Use (4) to compute dﬁf
Reassign ¢ to be sparse, quasi dense or full using 7;
end for
k=k+1
else if any quasi dense variables are present then
Restart:
l=1+1
for each quasi dense variable i do
Set c/iZ” = d¥ (the exact external degree of variable i in A(*))
if (/17: is maximal then
Assign i to be full
else
Assign i to be sparse
end if
end for
Compute 7
else
Eliminate all full variables.
k=n+1
end if
end while

10



This was motivated by the work of Carmen [4]. We observed that strategy B frequently carries out a large
number of restarts for problems that initially satisfy o > u. As the algorithm progresses, the variables
become denser and, hence, we expect the proportion of variables classed as quasi dense to increase if (5)
is used. This will, of course, result in a large number of restarts. For example, strategy B calculated a
pivot order for problem mip1 in 2.44 seconds with 188 restarts and nz(L) = 39.0 x 10%. As expected, the
quality of the pivot order may suffer significantly if a large number of restarts is performed. For problem
gupta3, strategy B calculates a pivot order in 2.46 seconds (roughly a third of the time of classical AMD)
with 35 restarts. However, the number of reals in the factor L is more than 7 times greater than that of
classical AMD (nz(L) = 41.3 x 10).

Strategy C

The simple strategies A and B do not consistently improve upon the classical AMD algorithm and so we
now explore more complex strategies. Our third strategy uses the mean of the maximum and minimum
exact external degrees of the variables that are not full:

dpminn, = min(d;: 1€ V\ F),
dmar = max(d;: i€ V\F), (6)
dm'n dmaz
n = %+1. (7)

If dyay is much larger than the average external degree, then 7; should capture the dense variables. Results
for strategy C are included in Table 3.

Strategy D

The first author previously developed an AMD variant for matrices with some dense rows and columns
that was included within the MUMPS package. This variant initialized the threshold to be

T =au+ Bdmaz +1, (8)

where 1 is the average external degree, d,4, is defined by (6), and the values @ = 9.9 and § = 0.1 where
chosen experimentally. Results for strategy D are also included in Table 3.

Comparing the times in Table 3, we observe that, for problems in the lower half of the table, there
can be significant savings by using a restarting strategy. Consider, for example, problem gupta2 which
has initial mean external degree 68.5 and standard deviation 356. This problem is notorious because
the classical AMD algorithm is extremely inefficient. Strategies C and D are faster by a factor of about
12 14. Applying strategy D to problem ins2 results in the time dropping by a factor of about 1500.
In general, the larger the value o/pu is, the more dramatic the improvement is for strategy D. This is as
we would expect since a problem with a large value of o/u will contain some variables that have much
larger initial degrees than the average and, hence, will have a set of variables that are considered as dense.
For problem ins2; strategy C only detects one of the variables that becomes dense and, hence, performs
poorly compared to strategy D.

For the test problems satisfying ¢ < u, we observe that strategies C and D can be slower than classical
AMD and the quality of the ordering may also suffer. Consider, for example, problem G3_circuit that has
o/u = 0.13. The forecast number of reals in L is more than double for strategy C. Furthermore, because
of the large number of restarts, strategy C is significantly slower. This is to be expected since if ¢ < u,

then
= dmin+dmaz +1z/l
2
and, hence, approximately half of the remaining variables will be classified as quasi dense during each

restart.

11



Problem AMD C D E
apachel Time/Restarts | 0.24 058 /21 028 /3 0.30/2
nz(L) 13.4 24.1 13.2 12.9
G3_circuit Time/Restarts 482 949 /22 594/4 580/3
nz(L) 193 o17 204 196
ncvxbgpl Time/Restarts 019 032/16 021/2 0.21/2
nz(L) 4.33 9.29 4.70 4.58
ford1l Time/Restarts | 0.02 0.03 /13 0.03/2 0.02/2
nz(L) 0.31 0.41 0.31 0.31
tumal Time/Restarts 0.02 0.02/16 0.02/2 0.01/1
nz(L) 0.58 0.86 0.64 0.61
besstk30 Time/Restarts | 0.05 0.08 /11 0.06/1 0.07/1
nz(L) 3.79 5.77 4.04 3.87
inline_1 Time/Restarts 1.73 313 /11 285/2 2.56/2
nz(L) 219 362 249 253
Ipl1 Time/Restarts | 0.19 0.15/7 013/2 0.13/2
nz(L) 0.974 1.48 1.18 1.20
guptad Time/Restarts 6.93 253 /1 240/1 258)/1
nz(L) 5.72 6.44 6.52 6.52
mipl Time/Restarts | 6.70 138 /1 118 /1 0.57/1
nz(L) 39.0 39.1 39.5 39.7
net4-1 Time/Restarts | 149 0.64/2 0.63/1 0.56 /2
nz(L) 2.38 9.45 2.53 3.00
ckt11752_dc.1 | Time/Restarts | 0.13 009 /1 0.09/1 0.09/2
nz(L) 0.56 0.57 0.59 0.63
rajat23 Time/Restarts 023 026/1 019/1 0.16/2
nz(L) 0.46 0.46 0.47 0.47
rajat22 Time/Restarts | 0.09 0.06 /1 0.05/1 0.05/1
nz(L) 0.15 0.15 0.15 0.15
gupta2 Time/Restarts | 70.2 565 /1 502/1 398/1
nz(L) 5.89 5.95 5.91 5.98
guptal Time/Restarts 23.3 248 /3 111/1 189/1
nz(L) 2.06 2.06 2.06 2.06
aOnsdsil Time/Restarts | 2.33  0.06 /2 006/1 0.06/1
nz(L) 0.34 0.35 0.35 0.35
blockqgpl Time/Restarts | 527 0.03/1 005/1 0.03/1
nz(L) 0.38 0.38 0.38 0.38
transh Time/Restarts | 67.6 1.82/1 0.14/1 0.14/1
nz(L) 0.68 0.68 0.70 0.70
ins2 Time/Restarts 016 246 /1 034/1 035/1
nz(L) 1.53 1.53 1.59 1.59

Table 3: Comparison of the times, the number of restarts and the number of reals in L (x10%) for classical
AMD and strategies C, D and E.
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Strategy E

The relationship between the initial standard deviation of the variable degrees and their mean value
appears to make a significant difference to the performance of the various strategies used so far. Strategy
D may be interpreted as a crude attempt at taking the mean and standard deviation into account because
a large value of d,;,,, relative to the mean p will generally correspond to a large standard deviation o and
vice versa. We observe that if o > u, strategy D is usually faster than the other strategies. However, it
is generally only performing one restart. We may analyse this as follows: if dy,q, > p, then 7 & 0.1d,,44
and we are guaranteed to classify some of the variables as quasi dense. After the restart, the difference
between d,,,, and p will, in general, have dramatically fallen and, hence, 7; & 10u. This will result in few,
if any, variables being classified as quasi dense.

We might expect that performing more than one restart would be beneficial and we would like a
threshold 7; that allows this. Ideally, the problem size and the difference between the standard deviation
and mean of the external degrees should all be reflected in the threshold.

If o is large relative to u, our experiments showed that a threshold of the form ay + o + 1, where
and § are positive constants, was effective for detecting quasi dense rows. As the ratio o/(u+ 1) increased,
we observed that larger values of 8 were more desirable and this led us to try a threshold of the form
ap+ Bo (o) (n+1)"°.

If o is small relative to p, then the problem has no quasi dense rows and, hence, the threshold should
be very large. For v > 0, the expression au + yu?/ (0 +1) + 1 was found to be very effective, in this
case, because p?/ (0 + 1) will be very large. The same value of « was used as in the case where o is high
relative to .

Noting that o (¢/ (1 + 1))""® will be small when ¢ is small relative to , and p2/ (o + 1) will be small
when o is large relative to u, we can combine our above observations. Therefore, for strategy E we set

n=ap+po(of (n+1)"7 +yu’/ (0 +1) +1, (9)

where @« = 9, f# = 0.5 and 7 = 2 are numerically chosen values. Disappointingly, the results in Table 3
show that we have not been able to consistently improve on the performance of strategy D and have only
increased the number of restarts for a small number of problems. Strategy E is faster than strategy D
for problems mipl and gupta?2, while strategy D is faster for problem guptal. The quality of the pivot
orders are similar for all of these problems apart from net-4, which is worse.

So far, the same definition for the threshold 7; has been used on each restart as was used during the
initialization stage. In MUMPS and Version 1.0.0 of MA57, on restart 7; is defined to be

71 = max{2 X 71, 0.5 (dmin + dmaz) + 1}. (10)

We will call the strategies that use (7), (8), (9) to compute 7y and then (10) to compute 7, (I =1,2,...)
on each restart strategies C’, D’ and E’ respectively. Their performances are compared in Table 4. The
problems with o < u have been omitted because the results are very similar to those for strategies C, D
and E. We observe that there is little difference between the performance of strategies D and D’, and E
and E’. We therefore propose using classical AMD for problems with o < p and strategy E for problems
with ¢ > p : we call this strategy QAMD.

4 Accuracy of the approximate degree d

As in Section 3, let F' be the set of variables that are currently flagged as full, @ be the set of variables
currently flagged as quasi dense, and S = F'U (),. Suppose that d; is the exact external degree of variable
i with respect to applying the approximate minimum degree algorithm to A,, where A, is the submatrix

13



Problem | ok D’ E’

Ipll Time/Restarts | 0.14 /4 0.12 /4 013 /4
nz(L) 1.53 1.62 1.46
gupta3 Time/Restarts | 2.56 /1 242 /1 258 /1
nz(L) 6.44 6.52 6.52
mipl Time/Restarts | 1.39 /1 1.18 /1 0.57 /2
nz(L) 39.1 39.5 39.8
net4-1 Time/Restarts | 0.64 /1 063 /1 0.56 /2
nz(L) 9.45 9.53 3.00
ckt11752_dc_1 | Time/Restarts | 0.10 /1 0.10 /1 0.10 /2
nz(L) 0.57 0.59 0.63
rajat23 Time/Restarts | 026 /1 019 /1 0.16 /2
nz(L) 0.46 0.47 0.47
rajat22 Time/Restarts | 0.07 /1 0.05/1 0.04/1
nz(L) 0.15 0.15 0.15
gupta2 Time/Restarts | 5.65 /1 503 /1 398/1
nz(L) 5.95 5.91 5.98
guptal Time/Restarts | 247 /1 111 /1 1.88/1
nz(L) 2.06 2.06 2.06
alnsdsil Time/Restarts | 0.06 /1 0.05 /1 0.06/1
nz(L) 0.35 0.35 0.35
blockqp1 Time/Restarts | 0.03 /1 0.06 /1 0.03/1
nz(L) 0.38 0.38 0.38
transb Time/Restarts | 1.80 /1 014 /1 0.14 /1
nz(L) 0.68 0.70 0.70
ins2 Time/Restarts | 248 /1 035 /1 034/ 1
nz(L) 1.53 1.59 1.59

Table 4: Comparison of the times, the number of restarts and the number of reals in L (x10%) for strategies
C’, D’ and E’.
of A as defined in Section 3. If p is the kth pivot, we obtain the following upper bound for d¥ :

df < |S|+d}

2

S|+ AP\ ({i} U S)| + (U Ee) \({i}us)

ecEk

= S|+ AN (US| + I\ {iTus)+| [ (Le\(Lu9)
c€€f\{p}

S|+ [AF\ (US| + 1L, \ ({iTuS) + Y L\ (L, US)
e€€f\{p}

IN

As in Section 2, d* <n —k+1 and df < di-“l + L, \ {i}|. Hence, d¥ is an upper bound for the exact

K3
degree d¥ when

n—k—1
= min{ d" ' +|L,\ {i}|

2

S|+ [AEN {3 US) |+ 1L, \ (i} US|+ Xeer(py |1Le \ (L, US)].

d;
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In some cases, this bound will be equal to the exact degree or may be a sharper bound than that used in
Algorithm 2. In practice, if there are only a small number of dense rows, the values of d; and d; will be
similar:

Theorem 4.1. Let S = S, US,, where S; = SN (Ai U (Ueeg,- Ee)) and Sy = S\ (.Ai U (Ueesi Le)) . The
following inequalities hold:
o d;, = &; = d; holds for all variables i ¢ S when So = 0 and |&;| < 2;

e d; +|5 < d; <d; + |Sa| holds for all variables i ¢ S.

Proof. Rearranging the expression for c?i, where i ¢ S, and using the fact that A; N L, = @ for all elements
e € &;, we obtain

~

di = [S|+|AN\N{FUS)+IL\{FUS)+ D L\ (L,US)
e€&i\{p}
= AN IS\Al+ L\ {BUS)+ DY L\ (L, u9)
e€&i\{r}
= JANBH IS\ A+ 1L\ i} = 1L, 081+ Y (1L \ Lyl = (L \ L) N S))
ee&i\{p}
= JAN{YF I\ LM+ D0 1L\ LI +IS\ (AU L)~ D [(Le\Lp)N S|
eci\{r} ee&i\{p}
= AN+ L\ + Y L \Lpl +[Sa] + SN (A UL~ Y [(Le\ L) NSl
eci\{r} ee&i\{p}

If Sy =0 and |&;| < 1, clearly |S2| =0 and
ISIN (UL = Y0 1L\ Lp) N S1] =151\ (A U Lp)] = 0.
e€&i\{p}
If Sy = and |&;| = 2 (the current element p and a prior element e, say), |S2| = 0 and
Si o= (A UL, UL\ Ly))N Sy
Si\ (A UL, = (L\Ly)NSy.

~ —

In both cases we observe that EZ = d; and, hence, d; = d; = d; [1, Theorem 4.1].
Considering the general case we obtain

Sy = (AUEU( E\L))) S
ec&\{p}
Le\ Ly

Si\(AiUL,) = )N Si)
222 \{p}

SIN(AUL)] < Y0 [(Le\ L) NS
ecé:\{p}

Hence, d; < d; + |Sa] .
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Again, using the fact that A; N L. = (§ for all elements e € &;, we can rearrange the expression for d; as

(U Ee> \{i}
ec&;
= AN 1L\ N+ U L\ L)

ee&i\{p}

di = [A\{i}[+

= JAnS +IC\{iHnsI+| | (L \L)ns)
ee&i\{p}

HAN{B U+ I\ {BuS)+ [ L\ (Lu9)
e€€i\{p}

= IS+ AN U +IL\{FUs)+ | [ (Le\(Lu9)

e€&i\{p}
< S| =[S+ AN\ (I US) + 1L, \ (i US) [+ D (L \(£,U9))
e€&i\{p}
= di —|Ss].
This completes the proof. O

The first statement in Theorem 4.1 may be used to test whether a variable is full or not. Unfortunately,
checking whether So = ) holds for a variable i may be as expensive as calculating the exact degree of the
variable. If S = F, then we can guarantee that So = () and, hence, we use |S| = |F| within the test for a
full variable rather than Sy = (.

5 Indistinguishable variables and mass elimination

In the analysis presented in this paper, we have considered each variable separately. However, in the codes
used to generate the numerical results we have taken full advantage of the possibility of two variables having
the same sparsity pattern in the reduced matrix A*). Two variables i and j are called indistinguishable
if they are adjacent and also have identical adjacency lists in the elimination graph corresponding to
A®) Working with a quotient graph means that it is efficient to check whether two sparse variables are
indistinguishable [1]. If any other variable is eliminated, then the indistinguishable variables will remain
indistinguishable: they will have the same degree until one is selected as a pivot. If ¢ is selected as the
current, pivot, then j can be selected next without causing any additional fill-in.

We may merge ¢ and j into a supervariable containing both ¢ and j, labeled by its principal variable
(i, say) [7, 9]. Variables that are not principal variables are called simple variables. We denote the set
of simple variables in a supervariable with principal i as i and define i = {i} if 7 is the only variable
in the supervariable. When p is selected as a pivot at the k th step, all variables in p are eliminated.
The number of degree calculations performed is, in general, greatly reduced when supervariables are used.
Non-principal variables and their incident edges are removed from the quotient graph structure when they
are detected. The set notation A and £ refers to either a set of supervariables or the variables represented
by supervariables, depending on the context.

It is possible that some of the variables that are adjacent to a pivot can be eliminated at the same time
without causing additional fill. This is known as mass elimination [13]. Unfortunately, we cannot test for
this unless the pivot is adjacent to all of the quasi dense variables since the adjacency lists of quasi dense
variables are only updated when a restart is performed.
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k
79

Using supervariables, the exact external degree d¥, the approximate external degree d;, and the ap-

proximate external degree using dense variables EZZ“ are defined by

di o= AR+ | ce ]\
eeEl
n—k—1
d; = mind @ 4|c,\ i
[AF N[+ Lo\ 1|+ X ocgmyqpy 1£e \ Lyl
n—k—1
df = min{ dit 4L\ |

SI4 AR\ (SU )|+ £, \ (§ US) + X, cempp Le\ (£,US),

In the Appendix, we present a supervariable version of the revised AMD algorithm (Algorithm 5).

6 Conclusions

We have described a new variant of the approximate minimum degree algorithm that aims to efficiently
detect and deal with the existence of any dense variable throughout the formation of a pivot order. This
work was based on an initial code implementing strategy D’ of the algorithm and distributed with the
MUMPS package since 2000 [3, 16]. Theoretical results relating the new upper bound for the degrees of
the variables to that of Amestoy, Davis and Duff [1] and the exact degree have been provided. They show
that the two bounds will be similar if there is only a small number of quasi dense rows.

We have experimentally demonstrated that using a restarting strategy for problems with o > p (that
is problems with some dense or near dense rows) can make significant savings on the CPU time required to
obtain the pivot order: the quality of the ordering is maintained. Strategy QAMD has been implemented
within the HSL package MC47 (version 2.1.0). Version 2.1.0 of MC47 is available now as part of the 2007
release of the mathematical software library HSL. All use of HSL requires a licence; details of how to
obtain a licence and the packages are available at www.cse.clrc.ac.uk/nag/hsl/.
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A Appendix

Algorithm 4 The revised approximate minimum degree algorithm

fori=1,...,n do
Ai ={j:ai #0andi#j}
E =10
d = |Ay|
if ri?:nflthen
F =FU{i}
else if &?ZTO—Flthen
Q=Qu{i}
end if
end for
k=1,1=0
while £ <n do
if V\(FUQ)#0 then
select variable p € V' \ (F U Q) that minimizes d& !
Lp=ApU (UeESPCE) \ {r}
for eachic £, \ (FUQ)do
A = A5\ (£, U{p})
£ = (& U{pD) \ &
n—k—1
—mind &4 (L, (i)
IFUQI+ AN\ (FUQU{HI+ L, \ (FUQU{IHI+ Xcee\py 1£e \ (FUQULY)|
if ((ﬂ‘—kl:nfk) and |&;| <2 and Q = 0 then
F=Fu{i
else ifrz? > 7+ 1 then
Q=Qu{i}
end if
end for
V= (VUu{p}) \& V=V\{p}
Ap =0, =10
k=k+1
else if Q # 0 then
Restart: | =1+ 1
for each i € Q do
Ai={j:a;; #0and j € V and i # j}
& ={jra;j#0andjeVandi+j}
7 = AN + | (Ueee, £6) \ 1)
Q=Q\{i}
if&z.c*l:nfkthen
F=FU/{i}
end if

end for

df

Compute 7
else
for each ¢ € F' do
V=vul{i}, V=Vv\{i}
k=k+1
end for
end if

end while
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Algorithm 5 The approximate minimum degree algorithm with supervariables

V={1...n},V=0,F=0,Q =0
Set 79 < n
fori=1,...,n do
Ai ={jaij £0and i £}, & =0, i = {i}, & = | 4]
if d =n—1 then
F=FUi
else if (T?—FT()anlthel’l
Q=QU i
end if
end for
k=1,1=0
while £ <n do
if V\(FUQ)#0 then
select variable p € V'\ (F U Q) that minimizes &7;*1
C:D:A:DU(UeEEPCE)\ p
for each i € £, )\ (FUQ)do
Ai=Ai\(LpU p ), & = (& U{pH\ &
n—k—|p|
d* =min{ "4 (L, i
IFUQI+[AN(FUQU i)+ |Lp\(FUQU i)+ ce\qpy [Le \(FUQUL)
if (&Z"—Hi\:nfk) and |&] < 2 and Q = 0 then
F=FuUi
else if@“%—\i\zn then
Q=Qui
end if
end for
supervariable detection
for each pair i and j € £, \ (FUQ) do
if i and j are indistinguishable then
i=iuj,df =df — 5|, V=V\{j}, 4 =0,& =0
end if
end for
V=WVu{ph)\&, V=V\{p}, 4, =0, =0.k=Fk+|p|
else if Q # 0 then
Restart: | =1+ 1
for each i€ @ do
Ai={j:a;j #0and j € V and i # j}
E={j:a;#0and jE€V andi#j}
& = AN+ | (Uee, £6) \ 1]
Q=0Q\i
if(/iz."71+\i\:n7k+1then
F=FUi
end if
end for
Compute 7
else
for each i € F' do
V=Vuli}, V=V \{i}, k=k+ i
end for
end if

end while
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