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1 IntrodutionThe eÆieny of sparse diret solvers for the solution of symmetri linear systems Ax = b, in terms of boththe storage needed and work performed, is dependent upon the order in whih the variables are eliminated,that is, the order in whih the pivots are seleted. Many solvers inlude a preordering step that aims touse information on the sparsity pattern of A to �nd a permutation so that, if the pivots are hosen inorder from the diagonal of the permuted matrix, the omputed fators are sparser than if the pivots werehosen in order from the diagonal of the original matrix. If A is positive de�nite, the pivot sequenehosen from the sparsity pattern alone an be used by the fatorization phase without modi�ation anda Cholesky fatorization PAP T = LLT ; where P is a permutation matrix and L is lower triangular, anbe omputed. More generally, numerial pivoting must be inorporated during the fatorization phase tomaintain numerial stability and, in this ase, the pivot sequene omputed by the symboli analyse phasemay have to modi�ed.The problem of �nding a permutation P that results in the smallest amount of �ll-in for a Choleskyfatorization is NP-omplete [15℄ and so heuristis are used to �nd a good ordering. Two main lasses ofmethods are widely used: those based on nested dissetion [9℄ and those based on the minimum degreealgorithm [14℄. In reent years, nested dissetion has often been found to be the method of hoie formany very large problems (typially those of order greater than 50,000) [8℄. However, it an be moreexpensive than the most eÆient implementations of the minimum degree algorithm, whih is preferredfor more modest size problems and for very sparse problems. Currently, the most suessful variant ofthe minimum degree algorithm is the approximate minimum degree algorithm (AMD) and, in partiular,the AMD algorithm introdued by Amestoy, Davis and Du� [1℄ is widely used. The AMD algorithm ismore eÆient sine it uses omputationally heap bounds on the minimum degree in plae of the exatminimum degree and, in pratie, it produes orderings that are omparable in quality [1℄.Although AMD is generally very suessful, an important exeption is when the matrix A has somedense (or almost dense) rows and olumns. In this ase, the run time for AMD an be high. AMDuses the undireted graph of the matrix and selets eah node in turn to have minimum (approximate)degree. One a node is seleted, it is eliminated from the graph and replaed by adding edges between itsneighbours so that the neighbours beome a lique. If a row is full, the orresponding node will alwaysbe adjaent to the eliminated node so its adjaeny list has to be sanned and updated, requiring O(n2)operations for a problems with n variables. This makes the algorithm prohibitively expensive.We will ompare three variants of the AMD algorithm that aim to eÆiently form a pivot order whenthe matrix A has some dense rows and olumns. The �rst two were proposed by Carmen [3℄ and Davis [5℄:eah performs a preproessing stage during whih the rows and olumns that it onsiders to be dense areremoved, and then the AMD algorithm is applied to the remaining matrix. The variant that was originallyintrodued by Amestoy for use within the parallel diret solver MUMPS [11℄ and was reently disussed byAmestoy et al. [2℄ uses a more sophistiated dynami partition of the rows into dense and sparse rowsto eÆiently ompute the pivot order. Our experiments have shown that all three variants an performpoorly (either in terms of the quality of the pivot order or the time taken to ompute it) and this leads usto present a new variant that ombines the speed of the methods of Carmen and Davis with the robustnessof the Amestoy method.This paper is organised as follows. In Setion 2, we review the minimum degree and AMD algorithms.The methods of Carmen, Davis, and Amestoy et al. are desribed and ompared in Setion 3. The newvariant of the AMD algorithm that we propose is introdued in Setion 4. In Setion 5, we draw ouronlusions.2 The minimum degree and AMD algorithmsThe minimum degree and AMD algorithms may be presented using the graph model of Rose [12, 13℄. Thenonzero pattern of a sparse symmetri matrix A of order n an be represented by an undireted graph1



G0 = �V 0; E0� with nodes V 0 = f1; : : : ; ng and edges E0: An edge (i; j) is present in E0 if and only ifaij 6= 0 and i 6= j: Nodes i and j are adjaent to eah other (neighbours) in graph G0 if the edge (i; j) ispresent in E0:The elimination graph Gk = �V k; Ek� desribes the nonzero pattern of the redued matrix A(k) oforder n(k) still to be fatored after k pivots have been hosen and eliminated. The external degree dki ofnode i is de�ned to be the number of nodes adjaent to node i in Gk: The minimum degree algorithmhooses a node p that has minimal external degree in the graph Gk�1 as the kth pivot. Algorithm 1 givesan outline of the minimum degree algorithm. The term variable is used to indiate a node that has notbeen removed from the elimination graph.Algorithm 1 The minimum degree algorithmFor eah variable i 2 V 0; set d0i to be the external degree of ik = 1while k � n doSelet variable p 2 V k�1 to minimize dk�1pEliminate pFor eah variable i adjaent to p in Gk�1; update dkik = k + 1end whileThe graph Gk depends on Gk�1 and the hoie of the kth pivot. Gk is found by seleting the kth pivotfrom V k�1; adding edges to Ek�1 to make the nodes adjaent to p in Gk�1 a lique (a fully onnetedsubgraph) and then removing p (and its edges) from the graph. The edges added to the graph orrespondto �ll-in. This addition of edges means that, if Gk is stored expliitly, we annot know the storagerequirements in advane. To remedy this a quotient graph is used instead of an elimination graph [1℄.However, the alulation of the external degree of a variable may then be expensive. Alternatively, theAMD algorithm alulates an upper bound, di; on the external degree of a variable and then uses the upperbounds when hoosing the next pivot. This generally results in the AMD algorithm being more eÆient.Numerial results have shown that the AMD algorithm also produes orderings that are omparable inquality to the best lassial minimum degree algorithms [1℄.Unfortunately, the AMD algorithm an be very ineÆient when the matrix A has some dense (oralmost dense) rows and olumns. When a pivot p is eliminated all of its adjaent neighbours must updatetheir upper bounds di: If i is (almost) dense, it is (almost) ertainly adjaent to p and updating di willinvolve a large number of omparisons. Thus (almost) every step is expensive. For larity, throughout theremainder of this paper, we will refer to this variant that takes no aount of dense rows and olumns asthe lassial AMD algorithm.In Table 1, we list our test set. Eah example is available from the University of Florida Sparse MatrixColletion [4℄ and, if unsymmetri, has been symmetrized by working with the sum of the given matrixand its transpose. The order n; the number of o�-diagonal nonzero entries nz; the maximum externaldegree dmax; the average external degree �; and the standard deviation � of the external degrees of eah(symmetrized) matrix is given. The listed matries inlude those that Amestoy et al. found to ontaindense (or near dense) rows and have �=� � 1: Amestoy et al. found that, for matries with �=� < 1;lassial AMD performed well and so we restrit attention to those with �=� � 1:We initially ompare the performane of the lassial minimum degree algorithm with the lassialAMD algorithm. The versions of these algorithms that are in the HSL [10℄ sparse diret solver MA57 [6℄(version 3.2.0) are used. In Table 2, we give the time to obtain the ordering and the foreast number ofreals required to hold the matrix fator. Throughout this paper, the latter piee of information is used asa measure for the quality of the ordering and is generated by passing the pivot order to the analyse phaseof MA57. All numerial results were obtained using a 3.6 GHz Intel Xeon dual proessor Dell Preision2



Problem n nz dmax � � �=�lpl1 32460 328036 253 10.1 15.5 1.53gupta3 16783 9323427 14672 556 1234 2.22mip1 66463 10352819 66395 156 351 2.25net-4 88343 2441727 4791 27.6 85.3 3.09kt11752 d 1 49702 327834 2921 6.60 24.6 3.73rajat23 110355 559733 3336 5.07 19.3 3.80rajat22 39899 198081 3336 4.96 24.8 4.99gupta2 62064 4248286 8413 68.5 356 5.20gupta1 31802 2164210 8413 68.1 360 5.29a0nsdsil 80016 355034 5003 4.44 50.0 11.3blokqp1 60012 640033 40011 10.7 305 28.6trans5 116835 827879 114191 7.09 371 52.3ins2 309412 2751484 309412 8.89 590 66.4rajat29 643994 4026512 454043 6.25 783 125Table 1: The test set: order n, number of nonzeros nz, the maximum external degree dmax; the mean �of the external degrees, and their standard deviation �:
Minimum Degree Classial AMDProblem Time nz(L) Time nz(L)lpl1 1.22 0.97 0.28 0.97gupta3 115 5.72 8.74 5.72mip1 40.8 38.9 10.2 39.0net4-1 9.28 2.46 1.79 2.38kt11752 d 1 0.49 0.59 0.19 0.56rajat23 0.65 0.45 0.33 0.46rajat22 0.29 0.15 0.13 0.15gupta2 2020 5.86 88.9 5.89gupta1 405 2.02 28.9 2.06a0nsdsil 14.6 0.34 2.70 0.34blokqp1 47.4 0.38 8.11 0.38trans5 246 0.68 123 0.68ins2 2080 1.53 825 1.53rajat29 > 104 | 4040 9.77Table 2: Comparison of the times and the predited number of reals in L (�106) generated by orderingsfrom the minimum degree algorithm and the lassial approximate minimum degree algorithm.
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670 with 4 Gbytes of RAM that was running Red Hat Enterprise Linux Server release 5.1 (kernel 2.6.18-53.1.13.el5). The Nag f95 ompiler with the -O4 option was used. All times are CPU times in seonds.For rajat29, the minimum degree algorithm failed to ompute a pivot order within 10000 seonds and,hene, no results are given.As expeted, we observe that the lassial AMD algorithm is signi�antly more eÆient than theminimum degree algorithm for our test problems while the quality of the orderings is omparable. Observethat the times to obtain the elimination orderings di�er by at least an order of magnitude for the gupta*problems. However, as Amestoy et al. [2℄ show, for problems in our test set, the times to generate theelimination ordering with the lassial AMD algorithm are very high when ompared with problems ofsimilar size and number of entries but no dense rows: the algorithms desribed in Setion 3 aim tosubstantially redue these times while maintaining the quality of the ordering.3 Variants of AMD for eÆiently deteting and treating denserowsThe problem of forming variants of the AMD algorithm that eÆiently detet and treat dense rows hasreently been onsidered by Carmen [3℄, Davis [5℄ and Amestoy et al. [2℄. Using the names given by theirauthors, we refer to these variants as AMDpre, CS AMD and QAMD, respetively. The amd funtion ofMatlab R (version 7.5) uses the CS AMD algorithm.3.1 The AMDpre and CS AMD algorithmsThe AMDpre [3℄ and CS AMD [5℄ algorithms both use a preproessing step to searh the matrix A forrows that they onsider to be dense. The matrix A is reordered to take the formA = 26664 A1 ATrAr Ad 37775 ;where Ar and Ad are onsidered dense. The lassial AMD algorithm is then applied to A1 and the denserows are appended to the end of the resulting pivot ordering: the authors assume that the dense rows allexperiene roughly the same amount of �ll-in and order them in inreasing value of their external degreewithin A:The CS AMD algorithm lassi�es a row in A as dense if its external degree is greater than �pn; where� > 0 is a �xed onstant (the default is � = 10). We remark that Reid inorporated an option that usesa similar idea into the implementation of the minimum degree algorithm within the HSL [10℄ sparse solverMA27 [7℄.The AMDpre algorithm uses a proedure that is equivalent to that given in Algorithm 2. The threshold takes the form  = �pn; where � > 0 (the default value is � = 1). The major di�erene between thisand the simpler CS AMD variant is that AMDpre updates the external degrees when a row is seleted asdense and removed from A1: This results in a more ompliated implementation but a smaller thresholdan be used to remove roughly the same number of dense rows.3.2 The QAMD algorithmThe QAMD algorithm was developed independently of the AMDpre and CS AMD algorithms. It wasoriginally used by Amestoy in the parallel diret solver MUMPS[11℄. It uses a somewhat di�erent approahsine the partitioning of the matrix is dynami, allowing the matrix to be partitioned more than one asthe ordering proeeds. In [2℄, Amestoy et al. de�ne a row to be full if all of its entries are (symbolially)4



Algorithm 2 The AMDpre method for hoosing A1Set A1 = ACalulate the external degrees of the rows in A1while maximum external degree �  doRemove from A1 the row (and orresponding olumn) that has largest external degreeUpdate the external degrees of the rows in A1end whilenonzero; a row is quasi dense if it has a high proportion of nonzero entries (so that its external degree islarge); a row is sparse if it is neither full nor quasi dense. Amestoy et al. partition the matrix A asA = 2666664 As ATq1 ATf1Aq1 Aq ATf2Af1 Af2 Af
3777775 ;where the rows in As are sparse, the rows in Aq are quasi dense, and the rows in Af are full. QAMDapplies the AMD algorithm to the submatrix As but, if a row beomes quasi dense or full, its variable isremoved from As and plaed into Aq or Af ; respetively. When all of the variables in As have been eithereliminated or relassi�ed, the exat external degrees of the quasi dense rows are alulated and these rowsare then relassi�ed to be either sparse or full and the algorithm restarts. The algorithm an restart anumber of times until only full variables remain uneliminated. The orresponding variables are appendedto the end of the pivot order (the order in whih they are appended is arbitrary).A threshold � > 0 is used to selet quasi dense rows. In [2℄, a variable i is relassi�ed as quasi denseif is not known to be full and dsi + nq + nf � �; where nq and nf are the numbers of quasi dense anddense rows, respetively, and dsi is the approximate degree of variable i with respet to the matrix As: Thethreshold is updated at the beginning of eah restart using a de�nition of the form � = �(�; �): A moredetailed desription of the QAMD algorithm and the hoie of � is given in [2℄.We remark that, although the QAMD algorithm an be implemented using the same amount of memoryas the lassial AMD algorithm, the implementation is ompliated beause the quotient graph needs tobe reformed eah time during eah restart.3.3 Comparison of AMDpre and QAMDIn Table 3, we ompare the performane of the AMDpre, CS AMD and QAMD methods with that of thelassial AMD algorithm. The default parameters for eah method are used. We have highlighted the besttimes (and those within 10 perent of the best) and the best values of nz(L) for eah problem. We observethat, as expeted, there is generally a signi�ant redution in the time required to ompute the orderingwhen the problem has some rows that are dense. AMDpre is generally faster than both CS AMD andQAMD. For some problems, CS AMD fails to detet many of the dense rows and this results in a slowrun time. For example, for gupta2, CS AMD �nds 258 dense rows while AMDpre �nds 1193, leading tothe CS AMD time being almost 40 times slower than AMDpre. Sine both variants produe orderings ofomparable quality, we favour AMDpre and will only onsider the AMDpre and QAMD algorithms in theremainder of this setion.For some problems, for example gupta*, AMDpre is at least an order of magnitude faster than QAMD.This is beause AMDpre only needs to store the struture of the submatrix A1 but QAMD requires thewhole struture to be stored and oasionally searhed to allow the method to restart orretly. In terms ofthe quality of the ordering, for some problems (inluding lpl1 and net4-1), AMDpre outperforms QAMDbut for others (inluding mip1 and a0nsdsil) the onverse is true.5



Problem lassial AMDpre CS AMD QAMDlpl1 Time 0.28 0.27 0.28 0.19nz(L) 0.97 0.99 0.97 1.20gupta3 Time 8.74 0.14 0.55 4.30nz(L) 5.72 5.60 5.35 6.52mip1 Time 10.2 0.40 0.96 0.81nz(L) 39.0 44.8 39.3 39.7net4-1 Time 1.79 0.49 0.58 0.78nz(L) 2.38 2.39 2.37 3.09kt11752 d 1 Time 0.19 0.11 0.15 0.15nz(L) 0.56 0.57 0.56 0.63rajat23 Time 0.33 0.19 0.29 0.23nz(L) 0.46 0.47 0.46 0.47rajat22 Time 0.13 0.05 0.06 0.06nz(L) 0.15 0.15 0.15 0.16gupta2 Time 88.9 0.37 13.4 5.74nz(L) 5.89 6.30 5.77 5.98gupta1 Time 28.9 0.09 2.98 2.84nz(L) 2.06 2.08 2.00 2.06a0nsdsil Time 2.70 0.07 0.07 0.09nz(L) 0.34 0.39 0.39 0.35blokqp1 Time 8.11 0.03 0.03 0.04nz(L) 0.38 0.38 0.38 0.38trans5 Time 123 0.15 0.16 0.22nz(L) 0.68 0.69 0.69 0.70ins2 Time 825 0.31 0.30 0.53nz(L) 1.53 1.59 1.59 1.59rajat29 Time 4040 2.34 2.62 3.32nz(L) 9.77 9.97 9.87 11.7Table 3: Comparison of the times and the predited number of reals in L (�106) generated by orderingsfrom the lassial AMD, AMDpre, CS AMD and QAMD algorithms.
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A potential problem with AMDpre is that it an remove a large number of sparse rows and this willresult in the quality of the ordering being lost. To illustrate this, we used the HSL pakage YM11 togenerate a banded random matrix with n = 60000; bandwidth equal to 2pn; nz = 20436000; dmax = 405and � = 340: The lassial AMD and QAMD methods both alulate an ordering in 1.78 seonds withnz(L) = 5:36 � 108: By omparison, AMDpre removes a total of 18661 rows/olumns and takes 1.26seonds. However, the quality of the pivot order has been lost as nz(L) = 4:83� 109:Conversely, we an produe test problems where the AMDpre method will struggle to detet the denserows. Suppose A is of the form A = � S UTU T � ; (1)where S is a tridiagonal matrix, only the top right hand entry of U is nonzero, and T is a matrix fromour test set that ontains some dense rows. No matter how large the order of S beomes, it will be thesame rows of T that ause the slow down in the eÆieny of AMD and, hene, roughly the same numberof rows should be removed for di�erent dimensions of S: If we apply AMDpre to A; then as the order of Sinreases, the threshold  = �pn also inreases. Therefore, rows that were lassi�ed as dense for smallerorders may no longer be lassi�ed as dense. Suppose we set T to be the matrix gupta1 and let the orderof A be mn (m = 1; 2; : : :): In Figure 1, we ompare the time to alulate the elimination ordering of thematrix with di�erent values of m: As m inreases, the time inreases at a faster rate for AMDpre thanQAMD. In Figure 2, we plot the number of rows that are deteted as dense and, hene, removed duringthe preproessing stage of AMDpre. As expeted, as m inreases, the number of rows deteted as densedrops substantially. Both variants produe orderings of omparable quality. Note that CS AMD wouldsu�er in a similar manner as the problem size inreases. The behaviour seen in Figure 2 was observedwhen T was hosen to be any of the problems in our test set but for some problems, the time di�erenewas less marked than we see in Figure 1.More generally, Algorithm 2 will fail to orretly detet all of the dense rows in a matrix if the maximumdegree is smaller than �pn but still signi�antly larger than the average external degree of the resultingmatrix A1: This suggests that we require a method that ombines the power of the QAMD method fordeteting dense rows with the eÆieny of the AMDpre method.4 The AMDD algorithmThe results in the previous setion have highlighted the weaknesses of the existing attempts to modifythe AMD algorithm to improve performane in the ase of some dense rows. In this setion, we introduea new variant that is designed to overome these weaknesses.Let i be a dense row. If row and olumn i are removed from the matrix A; we expet the mean of value ofthe degrees of the variables to be redued signi�antly more than if i were a sparse row. This suggests that,instead of omparing the degree of a variable against the threshold  = �pn as used in the preproessingstage of the AMDpre method, we should ompare the mean before and after row/olumn i is removed.Consider again the matrix A given by (1). As the order of A is inreased, the di�erene in the value of themean external degree before and after a row (and orresponding olumn) is removed dereases. Numerialexperimentation on the problems in our test set and the additional problems onsidered in Setion 3.3 hasshown that de�ning t(n1) as t(n1) = Æ ln(n1)n1 ;where Æ = 40; produes a variant of AMD that is both eÆient and maintains the quality of the ordering.the method was not found to be very sensitive to the hoie of Æ : values between 30 and 50 produed, ingeneral, similar results.Note that, if �1 is the mean external degree of A1; removing row and olumn i from A1 results in a7
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Algorithm 3 The AMDD method for hoosing A1Set A1 = A; n1 = n and q to be an empty listFor eah row i 2 A1; set di to be the external degree of iCalulate the mean �1 of the external degrees of the rows in A1Selet row i from A1 that has largest external degreewhile �1 � �1n1�2din1�1 � t(n1) doAdd i to the beginning of the list qRemove row and olumn i from A1n1 = n1 � 1Update t(n1)Update the mean �1 of the external degrees of the rows in A1Selet row i from A1 that has largest external degreeend whileApply lassial AMD to A1 to form a pivot orderAppend the list q to the end of this pivot order to form a pivot order for A
QAMD AMDDProblem Time nz(L) Time nz(L)lpl1 0.19 1.20 0.28 0.99gupta3 4.30 6.52 0.17 5.54mip1 0.81 39.7 0.44 44.9net4-1 0.78 3.09 0.53 2.39kt11752 d 1 0.15 0.63 0.12 0.57rajat23 0.23 0.47 0.19 0.47rajat22 0.06 0.16 0.05 0.15gupta2 5.74 5.98 0.32 6.37gupta1 2.84 2.06 0.11 2.07a0nsdsil 0.09 0.35 0.08 0.39blokqp1 0.04 0.38 0.04 0.38trans5 0.22 0.70 0.16 0.68ins2 0.53 1.59 0.34 1.59rajat29 3.32 11.7 2.25 9.93Table 4: Comparison of the times and the estimated number of reals in L (�106) generated by orderingsfrom QAMD and AMDD algorithms.
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matrix with mean external degree �1n1 � 2din1 � 1 :Our proposed new variant, whih we all the AMDD method, is outlined in Algorithm 3. The AMDDmethod is simple to implement and uses the same amount of memory as the lassial AMD algorithm.In Figure 1, we observe that the time for AMDD to alulate a pivot order for problem (1) inreaseswith m at roughly the same rate as for the QAMD method. The key point is that, as m inreases, thereis only a small drop in the number of rows deteted as dense by AMDD (Figure 2).In Table 4, we ompare the time to ompute the elimination ordering and the estimated number ofreals in L generated by orderings from the QAMD and AMDD algorithms. We observe that, in general,AMDD is signi�antly faster than QAMD and the quality of the ordering is often better. Note that, if weapply AMDD to the random banded matrix that we reported on in Setion 3.3, then only 39 rows/olumnsare lassed as dense and the results are omparable to those of the lassial AMD and QAMD methods.5 ConlusionsWe have ompared a number of variants of AMD that aim to eÆiently ompute elimination orderings formatries ontaining some dense rows and shown that both CS AMD and QAMD an be slow ompared toAMDpre. Although AMDpre performs well on the majority of our test problems, we have shown that itis possible to onstrut problems where it fails to orretly detet the dense rows. This led us to proposea new variant, alled AMDD, that ombines the robustness of QAMD in deteting dense rows with thespeed of AMDpre. Our implementation of AMDD requires no extra storage over that required in theimplementation of the lassial AMD algorithm used within this paper and is muh more straightforwardthan that of QAMD beause it does not need to restart or sub-partition the dense rows. The urrentvariant of AMD implemented within the HSL pakage MC47 will be replaed by the AMDD variant.AknowledgmentsWe are grateful to Patrik Amestoy for helpful disussions on QAMD and to John Reid for several disus-sions on implementing minimum degree algorithms and for his areful reading of this paper.Referenes[1℄ P. Amestoy, T. Davis, and I. Duff, An approximate minimum degree ordering algorithm, SIAMJ. Matrix Anal. Appl., 17 (1996), pp. 886{905.[2℄ P. R. Amestoy, H. S. Dollar, J. K. Reid, and J. A. Sott, An approximate minimum de-gree algorithm for matries with dense rows, Teh. Rep. RAL-TR-2007-020, Rutherford AppletonLaboratory, 2007.[3℄ J. L. Carmen, An AMD preproessor for matries with some dense rows and olumns.http://www.netlib.org/linalg/amd/amdpre.ps.[4℄ T. Davis, The University of Florida Sparse Matrix Colletion, 2007.http://www.ise.u.edu/davis/tehreports/matries.pdf.[5℄ T. A. Davis, Diret methods for sparse linear systems, vol. 2 of Fundamentals of Algorithms, SIAM,Philadelphia, PA, 2006.[6℄ I. Duff, MA57{ a new ode for the solution of sparse symmetri de�nite and inde�nite systems,ACM Transations on Mathematial Software, 30 (2004), pp. 118{154.10
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