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Abstract
The effect of static transverse density modulations in the background plasma on
fast electron transport is considered. It is shown that such density modulations
can drive resistive filamentation in the fast electron beam when the target is
sufficiently hot for the Spitzer resistivity to apply. The mechanism of magnetic
field generation and filamentation is described both in terms of a semi-analytic
model and a linearized analytic model. The results of numerical simulations
showing the development of driven filamentation are presented.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The transport of relativistic electron beams (fast electrons) produced by the interaction of an
ultraintense (Iλ2 > 1018 W cm−2µm2) laser pulse with a overdense plasma is a field that
has been the subject of extensive research. A number of experiments have examined various
aspects of fast electron transport [1–8], and this has been accompanied by efforts to develop
suitable numerical [9–13] and analytic models [14–16].

A significant motivating factor behind these efforts is the fast ignition scheme for inertial
confinement fusion [17]. The potential for laser-irradiated foils to be used as ion [18, 19]
or x-ray sources [20] is another important motivation. The realization of these applications
requires a good understanding of the physics of fast electron transport.

An important aspect of fast electron transport is the magnetic filamentation of a fast
electron beam. This has been the subject of a number of recent investigations, both numerical
[21–23] and analytical [24–27]. Usually this has been done for a collisionless (non-resistive)
regime, although some valuable work has been done on the resistive regime, particularly by
Gremillet et al [28]. Thus far, the effect of transverse (as opposed to the longitudinal effects
examined in [27]) background density inhomogeneities have been neglected. By this we mean
that there is a static inhomogeneity in the density of the background plasma. In this paper
we examine the effect of transverse density modulations in the collisional/resistive regime
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(specifically in a regime exhibiting Spitzer resistivity). It is shown that static background
density modulations with an amplitude of 5% and a wavelength of several microns can produce
strong filamentation in less than 1 ps by means of kinetic numerical simulations.

Fast electron transport often occurs under conditions in which it cannot be assumed that the
background is perfectly homogeneous. Some slab targets can be intrinsically inhomogeneous,
e.g. foam targets, or inhomogeneities can arise due to hydrodynamic effects caused by the
laser pre-pulse. In a full fast ignition ICF scenario the fast electrons will propagate through
a strongly inhomogeneous plasma. It may also be possible for the hydrodynamic response
of the background plasma to the fast electron beam to create significant density modulations
under certain conditions. All these considerations provide a strong motivation for a better
understanding of the role of density inhomogeneities in fast electron transport.

It is proposed that static transverse background density modulations lead to a form of driven
resistive filamentation. In qualitative terms this can be seen by considering a perturbation
consisting of a single column of higher density surrounded by an annulus of lower density in
a hot, dense plasma. Even if the fast electron current density parallel to these modulations
is fairly uniform, the denser column must heat up more slowly and the annulus must heat up
faster, because the specific heat capacity is linearly proportional to density. In this hot plasma
the Spitzer resistivity applies, η ∝ T

−3/2
b (where Tb is the background temperature), so the

troughs become increasingly less resistive compared with the crests. By then considering
Faraday’s law, ∂tB = −∇ × E, one sees that this must generate magnetic field which pushes
fast electrons into the crest. If this magnetic field then modulates the fast electron current
density, then there is the potential for resistive filamentation.

This paper is organized as follows: first the proposed mechanism is described in
mathematical terms, specifically by both a semi-analytic ‘rigid beam’ model, and by a linearized
analytic model that includes the response of the fast electron beam. The third section describes
the numerical code employed in this paper. In the fourth section the simulation results are
presented and interpreted.

2. Theory

In this section the filamentation mechanism is described in terms of: (a) a semi-analytic model
that accounts for transverse inhomogeneity and strong heating, but not the response of the fast
electron beam, and (b) an analytic model that includes the linear response of the fast electrons,
but which assumes a beam that is initially uniform in the transverse direction and only weak
heating of the background plasma. In both cases it is assumed that the dense plasma is initially
at a sufficiently high temperature that the Spitzer resistivity should apply ( >100 eV for many
solid density plasmas).

The semi-analytic estimate of the magnetic field growth uses the ‘rigid beam’ approach
of Davies [15]. In this approach a static fast electron current density is assumed that varies
only in y, i.e. jf = jf(y). The model is 1D and assumes that the system is homogeneous in x

and z. The heating of the background plasma is described by

∂T

∂t
= ηj 2

x

eCne
, (1)

where T is in units of eV, and C determines the specific heat capacity of the plasma (equal
to 3/2 for an ideal plasma). Thermal conduction is neglected in this model. The resistivity is
given by the Spitzer resistivity,

η = AT −3/2

where A = 10−4Z ln �,
(2)
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and the magnetic field grows according to

∂Bz

∂t
= ∂(ηjx)

∂y
. (3)

Since both the background electron density and the fast electron current are static, one
can immediately integrate equation (1) to obtain

T =
(

5

2

Aj 2
x t

eCne
+ T

5/2
init

)2/5

. (4)

The magnetic field growth rates can now be derived straightforwardly. Starting by
expanding equation (3) one obtains

∂Bz

∂t
= A

T 3/2

∂jx

∂y
− 3

2

Ajx

T 5/2

∂T

∂y
. (5)

The ∂T /∂y term can be expanded by using equation (4) to yield

∂Bz

∂t
= A

T 3/2

∂jx

∂y
− 3

A2j 2
x t

eCneT 4

∂jx

∂y
+

3

2

A2j 3
x t

eCn2
eT

4

∂ne

∂y
. (6)

This equation can be interpreted as follows: the first term is the collimation/filamentation
term that acts to generate magnetic field that pushes fast electrons towards regions of high
current density, the second and third terms are the ‘beam hollowing’ terms that acts to generate
magnetic field that pushes fast electrons towards regions of higher resistivity. However the
third term is a special modification that is caused by the modulation of the background: since
the regions of higher cold electron density should heat more slowly they should be more
resistive than the surrounding troughs, and thus a magnetic field should be generated which
drives fast electrons into the crests in the cold electron density. The background modulation
will eventually affect all three terms.

The transverse density modulations are now introduced by specifying that

ne(y) = n0

(
1 + δ cos

(
2πy

λ

))
. (7)

Note that ne ≈ Zni for λ � λD, i.e. quasineutrality is assumed since the Debye length of
the background plasma is much smaller than perturbations on the micrometre scale. The fast
electron current density is given by

jx(y) = j0 exp

(
− (y − yb)

2

2r2
b

)
. (8)

Now that the model is complete, it can be integrated for parameters that have relevance
to ultraintense laser–solid interactions. Specifically we consider Z ln � = 26, C = 3/2,
T0 = 200 eV, n0 = 6 × 1029 m−3, λ = 5 µm and δ = 0.05. For the fast electron beam we
take j0 = 5 × 1015 A m−2, rb = 7 µm, and the beam is centred in the middle of the grid. The
results of this calculation carried up to 500 fs and 1 ps are shown in figure 1.

It can be seen from figure 1, by comparing the top and bottom plots, that the magnetic
field is certainly altered by the modulations to the background density. It can also be seen,
from the middle plots, that the mechanism that is responsible for this is that embodied by the
third term in equation (6). There is not sufficient modulation to the background temperature,
and hence the resistivity, to strongly modulate the first term in equation (6). However, what
needs to be addressed is whether these changes to the magnetic field are actually significant
enough to alter the fast electron flow.

The response of the fast electrons can be considered in the first instance by a linearized
analytic model. Certain assumptions must be made in order to make this tractable. In the
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Figure 1. Results of integrating equation (6) up to 500 fs (left) and 1 ps (right). Top plots show
Bz(T) (red) and ne(m−3) (sinusoidal; black). Middle plots show magnetic field growth rates for the
first (largest amplitude; black), second (medium amplitude; blue) and third (smallest amplitude;
red) terms in equation (6) separately. Bottom plots show Bz(T) at 500 fs (left) and 1 ps (right)
without any density perturbation.

analytic model that is presented here, it is assumed that the fast electron beam is initially
uniform in the transverse direction, and that the heating of the background plasma is weak (i.e.
T ≈ Tinit). The fast electrons are given a fluid description:

nf = nf,0 + n1(y, t), (9)

uf,x = ux,0, (10)

uf,y = uy,1(y, t). (11)

Since uf,y � uf,x , γ ≈ (1 − u2
x,0/c

2)−1/2. The fast electron beam is also assumed to
have a small transverse energy spread, characterized by Tf,⊥. The linearized fluid equations
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that describe the fast electrons are
∂n1

∂t
+ nf,0

∂uy,1

∂y
= 0, (12)

∂uy,1

∂t
= eux,0Bz

γme
− Tf,⊥

γme

∂n1

∂y
. (13)

This is coupled to equation (6), the second term of which is neglected in the limit of weak
heating, and equation (7). The approximation n2

e = n2
e,0 is used in the denominator of the

third term of equation (6). Solutions of the following form are now sought to this system of
coupled equations: n1 = nf,0N(t) cos(kpy), uy,1 = U(t) sin(kpy), Bz = B(t) sin(kpy), where
kp = 2π/λ. By combining equations (6), (7), (12) and (13), one can obtain a single ODE
for N :

∂3N

∂t3
+ β

∂N

∂t
− αN = µt, (14)

where

α = e2u2
x,0nf,0k

2
p

γme

A

T 3/2
, (15)

β = k2
pTf,⊥
γme

, (16)

µ = eux,0k
2
pδ

γme

(
3

2

A2j 3
x

eCne,0T 4

)
. (17)

The solution to this ODE can be found straightforwardly by applying the constraints that
N(0) = 0, N ′(0) = 0 and N ′′(0) = 0:

N = C1egt − µt

α
+ C2e−gt/2 cos(ht) + C3e−gt/2 sin(ht), (18)

where (defining D = (β/3)3 + (α/2)2)

C1 = −C2 =
µ

α

9
4g + h2

g

, (19)

C3 =
3
4g2 + h2

9
4g2h + h3

µ

α
, (20)

g = (α/2 +
√

D)1/3 − (
√

D − α/2)1/3, (21)

h =
√

3

2

[
(α/2 +

√
D)1/3 + (

√
D − α/2)1/3

]
. (22)

Having obtained this solution, it can be plotted over a range of variables. In figure 2, N is
plotted at t = 500 fs for a range of δ, and λ at jx = 1014 A m−2 and jx = 1015 A m−2. The
background density is set at 6 × 1029 m−3 and the background temperature is set at 200 eV.
The fast electron transverse temperature is set at Tf,⊥ = 20 keV, γ = 2, ux,0 ≈ c.

From equation (4) it is found that the temperature increase over 500 fs is only 3% for
jx = 1015 A m−2, so the weak-heating approximation is valid in this case. From figure 2
it can be seen that at jx = 1015 A m−2 there is a wide range of λ and δ over which the
filamentation mode (of equation (18)) will grow to large amplitude (well beyond the linear
regime in fact). In contrast, at jx = 1014 A m−2 the mode grows only to 10−4 which is
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Figure 2. Plots of log10 N from equation (18) for jx = 1014 A m−2 and jx = 1015 A m−2 at
500 fs for a range of λ and δ. Other parameters are set at: γ = 2, ux,0 = c, Tf,⊥ = 20 keV,
ne,0 = 6 × 1029 m−3, T = 200 eV.

fairly weak. Given the j 3
x dependence in the third term of equation (6) this is not entirely

unexpected. The fast electron current density close to the laser spot can be estimated by
fconvIlaser = nfvfTf . Assuming a conversion efficiency, fconv > 0.1, and a suitable fast electron
temperature scaling (e.g. Tf = 0.511(

√
1 + Iλ2/(1.38 × 1018 W cm−2 µm2) − 1) MeV [29]),

one finds that the fast electron current density on injection is typically 1016 A m−2. One
therefore expects there to be a significant region in the target over which the fast electron
current density will be sufficiently high to drive the growth of this filamentation mode in less
than 1 ps.

3. Numerical model

The numerical code is the LEDA code which is a 2D hybrid Vlasov–Fokker–Planck (VFP)
code [30]. This uses a KALOS-like [13] algorithm to describe the fast electrons, whilst the
background electrons are given a hybrid description similar to the one in the hybrid code of
Davies [10]. The distribution function of the fast electrons is expressed as a truncated spherical
harmonic expansion with terms of the form f m

l (x, y, p)P m
l (cos θ) exp(imφ). Substituting

this expansion into the VFP equation yields a set of equations for the f m
l (x, y, p) coefficients.

A brief description of the solution of these equations by means of the KALOS algorithm is given
in [13, 31]. This code was previously used in an investigation of the ‘structured collimator’
concept [30], and the core elements of the version of the code used in this investigation does not
differ significantly from the version employed in that work. Reflective boundary conditions
are used in both x and y.

The resistivity model used in this investigation is the Spitzer model, i.e. η =
10−4Z ln �T −3/2, with an ideal specific heat capacity, and Z ln � = 26, throughout. This
models an Al target. The perturbation to the background density was specified using the
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Table 1. Parameters employed in runs A–H.

Run L (µm) d (µm) δ λ (µm)

A 5 20 0.025 25
B 5 20 0.05 25
C 5 20 0.1 25
D 5 20 0.2 25
E 5 20 0.05 12.5
F 5 20 0.05 6.25
G 5 20 0.05 3.125
H n/a n/a n/a n/a

following formulae:

Sx = 1

2

(
1 + tanh

(
x − d

L

))

Sy = δ cos

(
2πy

λ

)

ni = ni,0(1 + SxSy).

(23)

This modulation to the background plasma density is completely static. In reality, no
such perturbation can be completely static. It is however a very good approximation for two
reasons. Firstly, as previously mentioned, λ > 1 µm is being considered. This is much greater
than the cold Debye length, which is typically less than 1 nm at solid density. Therefore,
quasineutrality will be very well maintained. Secondly the thermal relaxation of the density
perturbation occurs on a time-scale of λ/cs, where cs = √

ZkBT/mi is the sound speed in
the plasma. For a temperature of 500 eV, λ = 1 µm, and an ion charge to mass ratio of 1/2
this takes ≈7 ps. Therefore, provided the simulation time is limited to 1 ps, the use of a static
density profile is justified. Since this will force magnetic fields to grow on the spatial scale of
λ, according to the arguments presented in section 2, neglecting magnetic diffusion in the code
must be addressed. The characteristic time for magnetic diffusion is given by µ0L

2/η, where
L is characteristic scale length. Setting L = 3 µm (the smallest λ used in any simulation;
see table 1), and noting that the highest resistivity is η = 9.2 × 10−7 � m, one determines a
minimum characteristic diffusion time of 12 ps which is much greater than the simulation time
of 1 ps.

The fast electrons are injected in the first spatial cell, at the left-hand end of the grid, and
the ‘laser’ intensity is modelled by an energy flux of fast electrons

I = βI0 exp(−(y − ym)2/R2), (24)

which is constant over the injection time, tpulse. The parameter R determines the extent of the
region of fast electron injection, with the full width at half-maximum size of the spot being
equal to 2R

√
ln 2. The fast electron temperature, Tf , is determined by Beg’s law [32] for

I0 < 1019 W cm−2, and by the scaling law of Wilks [29] for I0 > 1019 W cm−2. The injected
fast electron distribution function is specified to be

finjected ∝ cosM θp2 exp

(
−c

√
p2 + m2

ec
2/kBTf

)
. (25)

This distribution is a relativistic Maxwellian which is beamed into the target. The degree
of anisotropy is controlled by the cosM θ term, which is close to 1/2 when θ = 67◦/

√
M

(a better approximation the larger M is). Therefore θ1/2 = 67◦/
√

M is the half-maximum
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Figure 3. Plots of fast electron density (log10(m
−3)) at 800 fs in run A (top left), B (top right),

C (bottom left) and D (bottom right).

angular spread of the injected electrons. The choice of divergence angle is taken primarily
from experimental work [33] (supported by PIC simulations), which indicates that the full
divergence angle of the electron beam between I = 1019–1020 W cm−2 is 30 ◦–45 ◦.

In the standard run a uniform spatial grid with 280 cells in x, 140 cells in y and a cell size
of 0.75 µm was used. The momentum grid used 75 grid points and 22 harmonics were used
in the expansion. The laser pulse was modelled by setting I0 = 5 × 1019 W cm−2, R = 6 µm
and tpulse = 500 fs. The chosen value of I0 corresponds to Tf = 2.6 MeV. The divergence
angle was set to M = 8(≈ 24◦ half angle), which is slightly greater than that indicated by
experimental results (as discussed above). The laser absorption efficiency, β, was set to 0.3.
The simulations were run up to 1 ps.

4. Results and discussion

4.1. Simulation results

The effect of transverse density modulations was studied by carrying out a series of runs with
an initial temperature of 200 eV. The parameters used in these runs (labelled A–H) are tabulated
below. Note that H is a ‘control run’ where no density perturbations are present.

In these simulations, varying degrees of filamentation are observed, and this is evident
in the fast electron density. The fast electron densities in runs A–D at 800 fs are shown in
figure 3, and the fast electron densities in runs E–H at 800 fs are shown in figure 4. The fast
electrons are injected from the LHS of the computational domain. The degree of filamentation
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Figure 4. Plots of fast electron density (log10(m
−3)) at 800 fs in run E (top left), F (top right),

G (bottom left) and H (bottom right).

becomes stronger at shorter modulation wavelengths and at larger δ. This broadly agrees with
the theoretical models (see figure 2).

This filamentation is clearly magnetic, as can be seen in the plots of the Bz component
of the magnetic flux density which are shown in figure 5 (for runs D–F). The filamentation
wavelength observed in both the magnetic field and the fast electron density appears to be equal
to the wavelength of the background density modulation. This is much clearer in line-outs of
the numerical output (see figure 7). The background temperature and resistivity in runs D–F
are shown in figure 6.

One can better understand these simulations by examining the line-outs (in y) of various
parameters from a typical run alongside a line-out of the background ion density. Line-outs of
Bz, nf , Tb, and jx,f in run E at 750 fs and x = 60 µm are plotted in figure 7. Figure 7 clarifies
what is shown in figure 4 in the sense that it clearly shows that both the fast electron density
and current density are being channelled into the crests of the density profile. It also shows that
a decollimating magnetic field has been generated in the central background density trough.
These plots show that the nature of the filamentation conforms very strongly to predictions
which are stated in section 2.

In summary, on examining this set of figures, it is clear that there is a magnetic filamentation
effect that ‘follows’ the underlying pattern of the density modulations (from figures 3–5). By
this we mean that the fast electrons filament along the crests of the background perturbation,
and this enforces the characteristic length scale of the filamentation. As δ is increased, and λ

is decreased, the filamentation effect becomes stronger. When one examines some line-outs of
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Figure 5. Plots of the Bz(T) component of the magnetic flux density at 800 fs in runs D (top),
E (middle) and F (bottom).

various parameters it is clear that this seems to agree with the arguments and models presented
in section 2, however further examination is required.

4.2. Intepretation

In order to explain the observed filamentation of the fast electron beam, we will use run F as a
‘case study’. The induction equation (i.e. equation (6)) can be written as B = η∇×jf +(∇η)×jf .
The first term of this expression corresponds to the first term in equation (6), and the second term
corresponds to the sum of the second and third terms of equation (6). An outline of the proposed
explanation for the observed filamentation can now be stated as follows: (i) The η∇ × jf term
is dominant but it is modulated by the (∇η) × jf term to produce a modulated magnetic field.
(ii) This modulation of the magnetic field drives a modulation of the fast electron density and
current density. (iii) There is an enhancement of the η∇ × jf magnetic field growth due to these
modulations which cause them to grow rapidly due to positive feedback. Thus the filaments
are produced, and they coincide with the ‘ridges’ in the background density.

By examining the magnetic field and the magnetic field growth rates due to both the η∇×jf
and the (∇η)× jf term, which are shown at three different times in figure 8, one concludes that
the first and last parts of the explanation are consistent with this information. Figure 8 indeed
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Figure 6. Plots of the background temperature (left) and resistivity (right) at 800 fs in runs D (top),
E (middle) and F (bottom).

shows that the magnetic field growth is dominated by the η∇ × jf term. However at early times
this magnetic field growth is modulated by the (∇η) × jf term. At late times, once the beam
is strongly filamented, the η∇ × jf term can generate the modulated magnetic field alone.

How does this relate to the predictions made by the models presented in section 2? At
early times the ‘rigid beam’ model gives the correct insights into the physics. Specifically
it predicts that η∇ × jf is dominant, but modulated by (∇η) × jf , which is exactly what is
seen in the numerical simulations. Late in the simulations, the ‘rigid beam’ model does not
correctly describe the physics, but this is obviously because the fast electron beam profile
has been strongly changed due to filamentation (which clearly invalidates the assumption of
a ‘rigid beam’). The linearized analytic model must give some insight into the evolution at
later times as that model effectively predicted that the modulation of the fast electron current
density would be sufficient to modulate the η∇×jf term, and that this would lead to exponential
growth of the filaments. In qualitative terms the linearized analytic model and the simulations
both show that this occurs; this is examined quantitatively in the following section.
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Figure 7. Plots of Bz (top left), nf (top right), Tb (bottom left), and jx,f (bottom right) in run
E at 750 fs and x = 60 µm in red. Sinusoidal (black) lines are the background ion density for
comparison.

Some explanation is required regarding the temperature profile shown in figure 6 which
shows that the region that coincides with the filaments actually become hotter and hence
less resistive than the surrounding material late in the simulation. This does not contradict the
explanation that has been given. This can be seen by looking at the evolution of the temperature
profile along x = 75 µm in run F. This is shown in figure 9, along with the corresponding
line-out of Bz. It is seen that at early times (250–500 fs) the central trough heats up more
quickly than the nearby crests. It is this non-uniform heating that modulates the magnetic field
in this time (cf figure 8). Only at late times (750 fs) when filamentation has already become
very strong, do the filaments become much hotter than the surrounding material.

4.3. Growth rates

These simulations cannot be directly compared with a standard linearized resistive
filamentation theory. Such theories make a number of assumptions which are simply not valid
in these numerical simulations. For example, Gremillet et al [28] assume that the transverse
extent of the beam is infinite, that the plasma resistivity is constant and that the fast electrons
are close to a monoenergetic beam in momentum space. Similar assumptions are made in the
linearized theory presented in section 2. None of these apply to the simulations, so a direct
comparison is not appropriate. Nonetheless some quantitative comparison between linear
theory and the simulations can be attempted.
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Figure 8. Plots of the Bz(T) component of the magnetic flux density (i)–(iii), plots of η∇×jf (T s−1)

(iv)–(vi), plots of (∇η) × jf (T s−1) (viii)–(ix), at 250 fs, 500 fs and 750 fs, respectively in run F.

Obtaining a characteristic ‘growth rate’ of the filamentation in these simulations is not
straightforward because of the inherent spatial inhomogeneity. In order to quantitatively
analyse the filamentation we will consider the temporal evolution of the de collimating part
in the magnetic field that grows near the central axis. Above the central axis this is a positive
spike in Bz(see figure 9). The magnitude of this Bz > 0 spike (B∗

z ) is plotted for x = 75 µm in
run F in figure 10. In order to appreciate the applicability of the linearized theory developed in
section 2, the maximum fast electron current density and background temperature at x = 75 µm
in run F are plotted against time in figure 11.

Figure 10 shows that once this spike in the magnetic field appears it grows rapidly, but does
not exhibit constant exponential growth. During the early growth of the spike (350–450 fs),
the background temperature (210–230 eV) is still fairly close to its initial value (200 eV).
The linearized weak-heating theory is most valid during this time, and when one plots the
magnitude of the magnetic field predicted by this theory against the simulation results one finds
that there is reasonable agreement. The choice of parameters being: jx = 6 × 1015 A m−2,
T = 200 eV, γ = 6, Z ln � = 26, ne,0 = 6 × 1029 m−3 and Tf,⊥ = 100 eV. The values of
λ and δ are the same as those for run F (see table 1). The analytic mode grows starting from
t = 400 fs.
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Figure 10. Growth of B∗
z during run F (both plots). The solid red line in left-hand plot is the

magnitude of the filamentation mode predicted by the linearized weak-heating theory (see text).
The solid blue line in the right-hand plot corresponds to an e-folding time of 200 fs.

At late times however the spike grows more slowly than theory would predict for
Tf,⊥ = 100 eV. In figure 10 it is shown that an e-folding time of 200 fs matches the growth rate
at late times. The linearized weak-heating theory predicts an e-folding time for appropriate
parameters (similar to those given above, except that T = 275 eV, and jx = 8×1015 A m−2) and
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a much higher transverse fast electron temperature, Tf,⊥ = 300 keV. This is sensible because at
this point the filamentation has grown beyond the bounds of the linear approximation, the fast
electrons are substantially deflected in the magnetic field, and the filamentation is beginning
to saturate.

This procedure was repeated for runs E and G, and the comparison between the linearized
weak-heating theory and the simulations is shown in figure 12. The same parameters were
used in the analytic model, except that the wavelength was set to the value appropriate to
the simulation. The comparison between the analytic theory and the simulation results is
reasonable at early times.

The most important fact to emerge from this analysis is that there is reasonable agreement
between the linearized weak-heating theory and the simulations during the early growth of
the filamentation mode. This indicates that the analytic theory should be able to predict those
regions of parameter space in which there is rapid growth of this filamentation mode.

5. Conclusions

In this paper we have described a new mechanism for driving resistive filamentation in the
Spitzer regime. This is based on static transverse density modulations in the background
plasma. Since this effectively modulates the specific heat capacity of the background plasma
this leads to an additional magnetic field generation term as the background is heated by the
drawing of a return current. This in turn modulates the magnetic field sufficiently to initiate
filamentation. Once filamentation is initiated the generation of magnetic field through the
standard resistive filamentation term, η∇ × jf , causes the filamentation to grow.

Both a semi-analytic, ‘rigid beam’ model, and a linearized analytic model were used
to study the magnetic field growth and filamentation under certain approximations. Kinetic
numerical simulations performed using the LEDA code were then performed to verify that this
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Figure 12. Growth of B∗
z during runs G (left) and E (right). The solid red lines correspond to

growth rate predictions made by the linearized weak-heating theory (see text). Solid lines are
shifted due to starting the analytic mode growth at 400 fs. The bending of the solid line in the
right-hand plot is due to the non-exponential terms in equation (18).

modulation did indeed initiate filamentation under more realistic conditions. It was found that
an initial density modulation of 5% and several microns wavelength was sufficient to produce
fairly strong filamentation in 1 ps. The growth rate of the filamentation mode observed in the
simulations is in reasonable agreement with the growth rate predicted by the linearized analytic
model.

This work has concentrated on the regime of Spitzer resistivity. In current laboratory
experiments, targets are initially cold (a few eV due to pre-pulse). Even in solid targets that
are at low temperatures an analogue of this mechanism should still operate. This is because
the specific heat capacity is linearly proportional to density (neTeπ

2k2
B/2EF in a free electron

gas), and because there is some variation of resistivity with temperature. However at low
temperatures the resistivity can increase with temperature, which means that the magnetic field
will act to push fast electrons into density troughs, not density crests, over this temperature
range. Although detailed resistivity calculations have shown that the Spitzer resistivity applies
at high temperatures [34], and the resistivity is thus independent of the plasma density, at low
temperatures there is a stronger dependence on plasma density that may have to be accounted
for. A study of the mechanism in initially cold targets will be the subject of future work.
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