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Abstract

Multilevel algorithms are proposed for reordering sparse symmetric matrices to
reduce the wavefront and pro�le. A graph representation of the matrix is used

and two graph coarsening methods are investigated. A multilevel algorithm that
uses a maximal independent vertex set for coarsening and the Sloan algorithm
on the coarsest graph is shown to produce orderings that are of a similar quality

to those obtained using the best existing combinatorial algorithm (the hybrid
Sloan algorithm). Advantages of the proposed algorithm over the the hybrid
Sloan algorithm are that it does not require any spectral information and is
signi�cantly faster, requiring on average half the CPU time.
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1 Introduction

We consider multilevel algorithms for ordering sparse symmetric matrices for
small wavefront and pro�le. The resulting ordering may be used to construct

a row order for use with the row-by-row frontal method applied to a matrix
with a symmetric sparsity pattern (see [22]). Since we are primarily concerned
with matrices that are positive de�nite, we work only with the pattern of the
matrix and do not take into account permutations needed for stability. In cases

where the matrix is non-de�nite, or is symmetric only in its sparsity pattern,
the actual factorization may be more expensive and require more storage.

Minimizing the pro�le of a matrix is known to be an NP-complete problem
[18]. A number of heuristic algorithms have been proposed, including the

Cuthill-McKee [4], Reverse Cuthill-McKee [6, 19], Gibbs-King [8], Gibbs-Poole-
Stockmeyer [7], and Sloan [26] algorithms. More recently, spectral orderings
based on the Fiedler vector of the Laplacian matrix associated with A have been

developed [1, 20, 21]. Kumfert and Pothen [17] propose combining the Sloan
algorithm with the spectral ordering. The resulting hybrid Sloan algorithm
(hereafter referred to as the Hybrid algorithm) has been shown to give much
better orderings for large problems than either the spectral method or the

Sloan method alone. This has been con�rmed by Reid and Scott [22], who
implemented the Sloan and Hybrid algorithms within the Harwell Subroutine
Library [11] code MC60.

One reason for the success of the Hybrid algorithm is that the spectral

algorithm takes a global view of the graph of the matrix. This global view is
fed into the Sloan algorithm as a priority vector, and the Sloan algorithm then
performs local optimizations.

The spectral algorithm has also been used in the area of graph partitioning
[9, 25]. More recently, researchers have found that, for large graphs, a multilevel
approach [2, 10, 13, 27] can provide an equally good global view, while being
much faster because the calculation of the spectral vector of a large matrix is

avoided. A number of e�cient and high-quality graph partitioning codes based
on the multilevel approach have been developed [10, 13, 27]. The success of the
multilevel approach in graph partitioning motivated the work reported in this
paper.

We propose a multilevel algorithm for the ordering of sparse symmetric
matrices. Numerical tests on a wide range of problems from di�erent application
areas con�rm that our multilevel algorithm yields orderings of comparable

quality to the Hybrid algorithm. Moreover, our algorithm does not require any
spectral information and is signi�cantly faster than the Hybrid algorithm. So
far as the authors know, the only other attempt at using a multilevel approach
in this context has been by Bolman and Hendrickson [3]. Their algorithm

combined a multilevel approach with a 1-sum local re�nement procedure.
However, they were not able to consistently improve on the quality of the
original Sloan algorithm.

This paper is organised as follows. In Section 2, de�nitions and terminology

are introduced, and the Sloan and Hybrid algorithms are recalled. In Section 3,
our multilevel approach is presented. Numerical results comparing our method
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with the Sloan and the Hybrid algorithms are given in Section 4. Section 5
summarizes our �ndings and considers future directions for research.

2 Background

2.1 De�nitions

We �rst need to introduce some nomenclature and notation. Let A = faijg be
an n� n symmetric matrix. At the i-th step of the factorization of A, row k is

said to be active if k � i and there exists a column index l � i such that akl 6= 0.
The i-th wavefront fi of A is de�ned to be the number of rows that are active
during the i-th step of the factorization. The maximum and root-mean-squared

(RMS) wavefronts are, respectively,

F (A) = max
1�i�n

ffig

and

rmsf(A) =

 Pn
i=1 f

2
i

n

! 1

2

:

The pro�le of A is the total number of entries in the lower triangle when any
zero ahead of the �rst entry in its row is excluded, that is,

P (A) =
nX
i=1

max
aij 6=0
fi+ 1� jg: (1)

It is straightforward to show that

P (A) =
nX
i=1

fi:

For a frontal solver these statistics are important because

� the memory needed to store the frontal matrix is F 2

� P is the total storage needed for the factorised matrix

� the number of 
oating-point operations when eliminating a variable is

proportional to the square of the current wavefront size.

Our goal therefore is to construct an e�cient ordering algorithm that reduces
the above quantities.

It is often convenient when developing ordering algorithms to treat the

matrix A in terms of its adjacency graph. An undirected graph G is de�ned to
be a pair (V;E), where V is a �nite set of vertices (or nodes) and E is a �nite
set of edges de�ned as unordered pairs of distinct vertices. In a weighted graph,
each vertex and edge has a weight associated with it. The adjacency graph G(A)
of the square symmetric matrix A comprises the vertices V (A) = f1; 2; : : : ; ng
and the edges

E(A) = f(i; j) j aij 6= 0; i > jg :
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Two vertices i and j are said to be neighbours (or to be adjacent) if they are
connected by an edge. The notation i $ j will be used to show that i and j

are neighbours. The adjacency set for i is the set of its neighbours, that is,

adj(i) = fj j j $ i; i; j 2 V g:

The degree of i 2 V is deg(i) = jadj(i)j, the number of neighbours. If X is a
subset of V , its adjacency set is de�ned to be

adj(X) = [j2Xadj(j) n X:

Observe that, given the graph representation of a symmetric matrix, the

i-th wavefront can be de�ned as the vertex i plus the set of vertices adjacent to
the vertex set f1; 2; : : : ; ig, that is,

fi = adj (f1; 2; : : : ; ig) [ fig :

A path of length k in G is an ordered set of distinct vertices

fv1; v2; : : : ; vk; vk+1g, with vi $ vi+1 (1 � i � k). Two vertices are connected

if there exists a path between them. A graph G is connected if each pair of
distinct vertices is connected. The distance, dist(u; v), between two vertices u
and v in G is the length of the shortest path connecting them. The eccentricity

of a vertex u is de�ned to be

e(u) = maxfdist(u; v) j v 2 Gg:

The diameter of G is then

�(G) = maxfe(u) j u 2 Gg:

A vertex u is a peripheral vertex if its eccentricity is equal to the diameter of
the graph, that is, e(u) = �(G). A pseudoperipheral vertex u is de�ned by the
condition that, if v is any vertex for which dist(u; v) = e(u), then e(v) = e(u).
The pair u; v of pseudoperipheral vertices de�ne a pseudodiameter.

Throughout our discussion, it is assumed that the matrix A of interest is
irreducible so that its adjacency graph G(A) is connected. Disconnected graphs
can be treated by considering each component separately.

2.2 The Sloan algorithm

The Sloan algorithm [26], as presented in [17, 22], orders the vertices of a
weighted adjacency graph. The weighted graph is derived from the unweighted
graph by \condensing" vertices to form supervertices. Vertices i and j are
condensed into a supervariable if

i [ adj(i) = j [ adj(j): (2)

The weight of a supervertex is the number of unweighted vertices it represents.
The use of condensing can sometimes reduce the size of the graph considerably,
thus reducing the time required for reordering [5, 22]. This is particularly true

for matrices arising from �nite-element calculations where it is common for
there to be several degrees of freedom at each node in the �nite-element grid.

The Sloan algorithm for reordering a graph has two distinctive phases:
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1. selection of a start vertex s and an end vertex e

2. vertex reordering.

Step 1 looks for a pseudodiameter of the weighted graph and chooses s and e to

be the endpoints of the pseudodiameter. A pseudodiameter may be computed
using a modi�cation of the Gibbs-Poole-Stockmeyer algorithm (see [22]). In
Step 2, the pseudodiameter is used to guide the reordering. Each vertex of the
weighted graph is given a priority P (i) where

P (i) = �W1 inc(i) +W2 dist(i; e) (3)

and (W1;W2) are positive weights. The �rst term, inc(i), is the amount by
which the wavefront will increase if vertex i is ordered next. The second term,
dist(i; e), is the distance between i and the end vertex e. The start vertex s

is ordered �rst then, at each stage, the next vertex is chosen among eligible
vertices with the highest priority. Thus, a balance is maintained between the
aim of keeping the wavefront small and bringing in vertices that have been left

behind (far away from e). The list of eligible vertices comprise those that are
in the front (neighbours of one or more renumbered vertices) or neighbours of
one or more vertices in the front. The best choice for the weights (W1;W2)
is problem dependent. Based on experimentation, Reid and Scott [22] suggest

that the two pairs of weights (2; 1) and (16; 1) should be tried and the better
ordering chosen. By default, when implementing the Sloan algorithm, the code
MC60 tries both these pairs of weights but the user may also choose to select
other weights.

Once an ordering for the vertices of the weighted graph has been obtained,
an ordering for A can be constructed.

2.3 The Hybrid algorithm

The �rst term in (3) a�ects the priority function in a local way, by giving higher
priority to vertices that will result in a small (or negative) increase to the current
wavefront. This is done in a greedy fashion, without consideration of the long-
term e�ect. The second term acts in a more global manner, ensuring vertices

lying far away from the end vertex are not left behind. Step 2 of the Sloan
algorithm can therefore be viewed as an algorithm that re�nes the ordering
implied by the distance function dist(i; e).

The distance function in (3) can be replaced by other orderings that provide
a global view. In particular, the spectral ordering may be used. The spectral
algorithm associates a Laplacian matrix L = flijg with the symmetric matrix
A as follows:

lij =

8><
>:

�1; if i 6= j and i$ j;

deg(i); if i = j;

0; otherwise:
(4)

An eigenvector corresponding to the smallest positive eigenvalue of the
Laplacian matrix is called a Fiedler vector. The spectral algorithm orders the
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vertices of G(A) by sorting the components of the Fiedler vector into monotonic
order. This approach has been found to produce small pro�les and wavefronts
[1].

The spectral algorithm has been used in the context of graph partitioning [9],

where it has been found that results can be improved by incorporating a local
re�nement step. This re�nement performs local optimizations and smoothes out
local oscillations that may be present. In the context of wavefront reduction, the

Hybrid algorithm of Kumfert and Pothen [17] combines the spectral algorithm
with Step 2 of the Sloan algorithm. In our view, it is this combination of global
and local ordering algorithms that accounts for the good performance of the
Hybrid algorithm, particularly for very large problems.

The Hybrid algorithm, as presented in [22], chooses as the start vertex s the
�rst vertex in the spectral ordering and replaces (3) with the priority function

P (i) = �W1 inc(i)�W2 � p(i): (5)

Here � is a normalising factor and p(i) is the position of vertex i in the spectral

ordering, also referred to as its global priority value. � is chosen so that
the factor for W2 varies up to dist(s; e), as in (3) (see [22]). On the basis
of their numerical experimentation, Reid and Scott [22] propose the pairs of

weights (1; 2) and (16; 1). Note that (1; 2) is recommended instead of the

pair (2; 1) used by the Sloan algorithm. Reid and Scott argue that the global
priority based on the spectral ordering has been found to be better than that
obtained from a pseudodiameter, justifying a larger value for W2 in this case.

Numerical experiments have shown that, for large problems, the Hybrid method
can signi�cantly outperform the original Sloan algorithm, although it requires
signi�cantly more CPU time. This is illustrated in Section 4.

3 The Multilevel Ordering Algorithm

The matrix ordering algorithm proposed in this paper is based on a multilevel
approach. Given the adjacency graph G(A), a series of graphs are generated,

each coarser than the preceding one. The coarsest graph is then ordered. This
ordering is recursively prolonged to the next �ner graph, local re�nement is
performed at each level, and the �nal ordering on the �nest graph gives an

ordering for A.

3.1 The Multilevel Approach

In the context of graph partitioning, the multilevel approach generates a series of
coarser and coarser graphs [2, 10, 14, 27]. The aim is for each successive graph to

encapsulate the information needed to partition its \parent", while containing
fewer vertices and edges. The coarsening continues until a graph with only
a small number of vertices is reached. This can be partitioned cheaply. The
partitions on the coarse graphs are recursively prolonged (usually by injection)

to the �ner graphs, with further re�nement at each level.
One of the �rst uses of a multilevel approach for the partitioning of

undirected graphs was reported by Barnard, Pothen and Simon [2]. Motivated
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by the need to reduce the time for computing the Fiedler vector, Barnard et al.

combined a multilevel approach with a spectral bisection algorithm. It was soon
realized [10, 15, 27] that the multilevel approach provides a global view of the
problem, and therefore can be used to advantage with a good local optimizer.

In graph partitioning, the Kernighan-Lin algorithm [16] is used and, combined
with the multilevel approach, has proved very successful at rapidly computing
high quality partitions.

Given the success of the multilevel approach for graph partitioning, it is
perhaps surprising that, as far as the authors are aware, there has only been
one reported attempt at applying it to the problem of pro�le and wavefront
reduction. Bolman and Hendrickson [3] introduce a weighted 1-sum metric

�1(A) =
nX
i=1

X
j$i; j<i

wij(i� j);

where wij are edge weights, and aim to minimise �1(A). The edge weights are all
one on the �nest graph; on the coarser graphs, edge weights are assigned as edges
are collapsed (see Section 3.1.1 below). Although Bowman and Hendrickson's

objective is to minimise the matrix envelope

Env(A) =
nX
i=1

max
j$i; j<i

fi� jg;

(which is equal to P (A) � n, where P (A) is the pro�le (1) of A), they report
that they found it more e�cient and e�ective to work with the 1-sum. Bowman

and Hendrickson propose combining a multilevel approach with a re�nement
algorithm that is similar to Kernighan-Lin and is based on swapping consecutive
vertices. The gain in swapping each such pair of vertices k and k+1 is calculated

initially and then updated during the re�nement. The gain from a swap is
measured using the weighted 1-sum. Numerical results presented in [3] are not
very encouraging because, as well as being slower than the Sloan algorithm, the
quality of the ordering produced by the Bowman and Hendrickson multilevel

algorithm is often poorer.
Our view is that, because the reordering phase of the Sloan algorithm

provides a good local re�nement algorithm, it should be used directly with
the multilevel approach, and this is the basis of our new multilevel wavefront

reduction algorithm. Our proposed algorithm has three distinct phases:
coarsening, coarsest graph ordering, and, �nally, prolongation and re�nement.
We discuss each of these phases before outlining our proposed algorithm.

3.1.1 The coarsening phase

There are a number of ways to coarsen an undirected graph, two of which are
brie
y discussed here. The most popular method is based on edge collapsing
[10, 15], in which pairs of adjacent vertices are selected and each pair is coalesced

into one new vertex. Each vertex of the resulting coarse graph has an associated
weight, equal to the number of original vertices it represents. Each edge of the
coarse graph also has a weight associated with it. Initially, all edge weights are
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Figure 1: Graph coarsening by edge collapsing: the original graph G with 788 vertices
(left); G1 with 403 vertices (centre); G2 with 210 vertices (right).

set to one. During coarsening, edge weights are unchanged unless both merged

vertices are adjacent to the same neighbour. In this case, the new edge is given
a weight equal to the sum of the weights of the edges it replaces. The edges to
be collapsed are usually selected using a maximal matching. This is a maximal

set of edges, no two of which are incident to the same vertex.

For undirected graph partitioning, heavy-edge matching [15] has been found
to work well. Here, the idea is to preferentially collapse heavier edges. When
looking through a neighbour list for an unmatched vertex, an edge with the

largest weight is selected. Heavy-edge matching has the advantage that the
total weight of the edges of the resulting coarse graph is relatively small,
and consequently its partitioning is more likely to give a small edge-cut (the
sum of the weights of the edges cut by the partitioning). Additionally, if

the partitioning on the coarsest graph is injected to the �ner graphs without
further re�nement, the edge-cut on the coarsest graph equals that on the �nest

(original) graph. This fact, hereafter referred to as the inheritance property,
results in the original problem being encapsulated well by the coarser problems.

Figure 1 illustrates a graph G with 788 vertices, together with 2 levels of
coarsening using edge collapsing, giving graphs G1 and G2 with 403 and 210
vertices, respectively.

Other coarsening methods have been proposed. In [2], a maximal

independent vertex set of a graph is chosen as the vertices for the coarse
graph. An independent set of vertices is a subset of the vertices such that
no two vertices in the subset are connected by an edge in the graph. An

independent set is maximal if the addition of an extra vertex always destroys
the independence. An algorithm for constructing a maximal independent set
is discussed in Section 4.2. Edges of the coarse graph are formed through a
process based on the Galerkin product (see Section 3.1.4 for details), which

e�ectively links two vertices in the maximal independent vertex set by an edge
if their distance apart is no greater than three. Figure 2 illustrates the same
original graph G with 788 vertices, together with 2 levels of coarsening using

this method, giving graphs with 332 and 94 vertices, respectively.
In Section 4, the results of using both edge collapsing and the maximal

independent vertex set for coarsening within our wavefront reduction algorithm
are presented.
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Figure 2: Graph coarsening based on the maximal independent vertex set: the original
graph G with 788 vertices (left); G1 with 332 vertices (centre); G2 with 94 vertices
(right).

The chosen coarsening process is applied recursively until one of the
following is achieved:

� the number of levels exceeds a preset limit

� the number of vertices in the coarsest graph is less than a preset number

(chosen to be 100 in this study)

� the ratio of the number of vertices in two successive graphs exceeds a
preset constant (0.8 in this study).

The last condition is necessary, particularly if edge collapsing is used, for the
following reasons. After a number of levels of coarsening it is possible that the

coarsest graph has one supervertex with a very high vertex weight, possibly
exceeding 50% of the total. In this case, subsequent coarsening will not reduce
the size of the graph signi�cantly. Furthermore, a multilevel algorithm with

only a small reduction between �ne and coarse graph sizes will have a high

algorithmic complexity. We therefore stop coarsening if the ratio of the number
of vertices in successive graphs is greater than 0.8.

3.1.2 The coarsest graph ordering

Because the coarsest graph has a small number of vertices and edges, it can

be reordered quickly using any standard pro�le reduction algorithm. We have
used both the Sloan and the Hybrid algorithms and present results for both
approaches in Section 4.

3.1.3 The prolongation and re�nement phase

During the prolongation phase, the vertices of the �ne graph are given global
priority values by mapping the coarse graph ordering onto the �ne graph. This
mapping can be represented by a prolongation matrix P . If the coarse and �ne

graphs have nc and nf vertices, respectively, the prolongation matrix is of order
nf � nc.

When coarsening is by edge collapsing, the position of a vertex j in the
coarse graph ordering is injected to give the global priority values of its parent
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(or parents). A parent of j is de�ned to be a vertex on the �ne graph that either
coalesces into j, or remains as j itself. The prolongation matrix has entries pij
given by

pij =

(
1; if �ne graph vertex i is a parent of coarse graph vertex j;
0; otherwise:

(6)

When coarsening is based on a maximal independent vertex set, the coarse
graph vertices comprise the maximal independent set of the �ne graph. The

global priority value of a vertex in the �ne graph that belongs to the maximal
independent set is de�ned as the position of this vertex in the coarse graph
ordering. The global priority value of a �ne graph vertex not in the maximal
independent set is calculated by averaging the global priority values of its

neighbours that belong to the maximal independent set (by de�nition there
is at least one such neighbour). For each coarse graph vertex j, let fine(j)
denote the corresponding �ne graph vertex. For each �ne graph vertex i, de�ne
mdeg(i) to be the number of neighbouring �ne graph vertices that belong to

the maximal independent set. The prolongation matrix has entries

pij =

8><
>:

1; if i = fine(j);
1

mdeg(i)
; if i$ fine(j); i 6= fine(j);

0; otherwise:

(7)

The global priority values are re�ned using Step 2 of the Sloan algorithm

(that is, by using the priority function (5)) to give the �nal ordering for the �ne
graph.

3.1.4 The multilevel algorithm

We now formulate our multilevel wavefront reduction algorithm. For this it
is convenient to introduce some further notation. The subscripts f and c are
used to represent �ne and coarse graph quantities, respectively. For example,

Gf denotes the �ne graph with nf vertices and Gc is the graph with nc vertices
obtained after coarsening (nc < nf ). We will associate with Gf an nf � nf
matrix Gf which has zero diagonal entries and nonzero o�-diagonal entries eij
if and only if vertices i and j are adjacent in Gf with edge weight eij . Gc is

de�ned analogously.
If P denotes an nf�nc prolongation matrix, the coarse graph may expressed

as the Galerkin product

Gc  PT Gf P:

This expression means that the matrix product PTGfP is computed and the

matrix Gc is obtained by setting the diagonal entries of the resulting matrix to
zero.

The global priority vector p of a graph is a vector with entries p(i), where
p(i) is the global priority value of vertex i. This vector indicates the preferred

ordering of the vertices. For the Hybrid algorithm, the global priority vector
is obtained by ordering the vertices based on the values of the Fiedler vector.
Note that the global priority vector need not be a permutation vector. We
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let CoarsestOrder(G; w) be an algorithm that takes the coarsest graph G with
associated vertex weights w, and returns an ordering for G. Furthermore, we let
SloanRefine(G; w; p0) denote the algorithm that takes the graph G, its vertex
weights w, and a global priority vector p0, and returns a re�ned ordering for G
using (5) with p = p0.

With this notation, if MinSize is the preset number of vertices beyond
which there is no further coarsening, our multilevel wavefront reduction

algorithm can be formally presented as follows. The starting point is the �ne
graph Gf with vertex weights wf and associated matrix Gf .

function MultilevelOrder (Gf ; wf)

� If nf < MinSize then

{ pf = CoarsestOrder(Gf ; wf )

{ return pf

� The coarsening phase:

{ set up the nf � nc prolongation matrix P

{ Gc  PT Gf P

{ wc = PT wf

{ pc = MultilevelOrder (Gc; wc)

� The prolongation and re�nement phase:

{ p0f = P pc

{ pf = SloanRefine(Gf ; wf ; p
0
f)

{ return pf

Figure 3 illustrates the multilevel algorithm applied to the test problem
bcsstk11 (see Appendix). A maximal independent vertex set is used for
coarsening (see Section 4.2 for details). Notice that on the coarsest level,
the lower right-hand part of the matrix after reordering (bottom right) has

no nonzero entries. This is because the graph corresponding to the bcsstk11
matrix has nine components, eight of which are small, and coarsening gives
eight isolated vertices on the coarsest level. Since diagonal elements are not

displayed, after reordering there is an 8� 8 null matrix in the lower right hand
part of the coarsest matrix.

The two-level ordering algorithm using heavy-edge coarsening is illustrated
in Figure 4. Edges (v1; v2), (v3; v4) and (v5; v6) are collapsed to give the coarse

graph vertices u1, u2 and u3. Based on (6), the prolongation matrix is

P =

0
BBBBBBB@

1 0 0

1 0 0
0 1 0
0 1 0

0 0 1
0 0 1

1
CCCCCCCA
:
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?

6

?

6

-

Figure 3: An illustration of the multilevel algorithm using problem bcsstk11. The
original matrix (top left) of order 1473 is coarsened twice to give the coarse matrices
on the left (of order 162 and 30, respectively). The coarsest matrix is ordered (bottom
right), and prolongated and re�ned to give the �nal ordering (top right) for the original
matrix. The multilevel algorithm gives a RMS wavefront of 46.55, which is smaller
than that given by the Sloan algorithm (51.40) and the Hybrid algorithm (47.76), and
signi�cantly smaller than the RMS wavefront of the original matrix (104.34).
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With the edge weights chosen as in the �gure, it follows that

PTGfP =

0
BBBBBBB@

1 0 0

1 0 0
0 1 0
0 1 0
0 0 1

0 0 1

1
CCCCCCCA

T 0
BBBBBBB@

0 5 2 0 0 0

5 0 2 0 1 2
2 2 0 4 1 0
0 0 4 0 1 0
0 1 1 1 0 3

0 2 0 0 3 0

1
CCCCCCCA

0
BBBBBBB@

1 0 0

1 0 0
0 1 0
0 1 0
0 0 1

0 0 1

1
CCCCCCCA
=

0
B@ 10 4 3

4 8 2
3 2 6

1
CA :

Thus, setting the diagonal entries to zero, we have

Gc =

0
B@ 0 4 3

4 0 2
3 2 0

1
CA :

The edge weights for the three edges of the coarse graph are 4, 3 and 2

respectively, as shown in Figure 4 (middle). The vertex weights for the �ne

graph (top left of the �gure) are chosen to be wf = (2; 1; 4; 3; 1; 3)T . The vertex
weights for the coarse graph are therefore

wc = PTwf =

0
BBBBBBB@

1 0 0
1 0 0
0 1 0

0 1 0
0 0 1
0 0 1

1
CCCCCCCA

T 0
BBBBBBB@

2
1
4

3
1
3

1
CCCCCCCA
=

0
B@ 3

4
7

1
CA :

Assuming the coarse graph is ordered as pc(u1) = 1, pc(u2) = 2 and pc(u3) = 3,

the global priority vector for the �ne graph is

p0f = P pc =

0
BBBBBBB@

1 0 0
1 0 0

0 1 0
0 1 0
0 0 1
0 0 1

1
CCCCCCCA

0
B@ 1

2

3

1
CA =

0
BBBBBBB@

1
1

2
2
3

3

1
CCCCCCCA
:

This is shown on the top right-hand part of Figure 4.
Figure 5 illustrates the two-level ordering algorithm using a maximal

independent vertex set. The vertices v1, v4 and v6 are chosen to form the

maximal independent set. Vertex v2 has two neighbours in the maximal
independent set (v1, v6), therefore mdeg(v2) = 2. Similarly, mdeg(v3) =
mdeg(v5) = 2. Thus according to (7), the prolongation matrix is

P =

0
BBBBBBB@

1 0 0
1
2 0 1

2
1
2

1
2 0

0 1 0

0 1
2

1
2

0 0 1

1
CCCCCCCA
:
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Figure 4: A graph (top left) is coarsened by heavy-edge collapsing to give the coarse
graph (middle). The coarse graph is ordered and the ordering is prolonged to give
the priority vector for the �ne graph (top right). Numbers in parentheses are vertex
weights, numbers in ellipses are the ordering, numbers in squares are the global priority
values and numbers along the edges are edge weights.
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4
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4
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1
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u2 (5.5)
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v6 (3)

u3 (4)

1

2

2.5
2

1.5

Figure 5: A graph (top left) is coarsened using the maximal independent vertex set
(shaded and circled) to give the coarse graph (middle). This coarse graph is ordered
and the ordering is prolonged to give the priority vector for the �ne graph (top right).
Numbers in brackets are vertex weights, numbers in ellipses are the ordering, numbers
in squares are the global priority values and numbers along the edges are edge weights.
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It follows that the Galerkin product is

PTGfP =
1

4

0
BBBBBBB@

2 0 0

1 0 1
1 1 0
0 2 0
0 1 1

0 0 2

1
CCCCCCCA

T 0
BBBBBBB@

0 5 2 0 0 0

5 0 2 0 1 2
2 2 0 4 1 0
0 0 4 0 1 0
0 1 1 1 0 3

0 2 0 0 3 0

1
CCCCCCCA

0
BBBBBBB@

2 0 0

1 0 1
1 1 0
0 2 0
0 1 1

0 0 2

1
CCCCCCCA
=

0
B@ 8 4 4:5

4 5:5 3

4:5 3 5:5

1
CA :

Setting the diagonal to zero gives the coarse graph matrix

Gc =

0
B@ 0 4 4:5

4 0 3

4:5 3 0

1
CA :

The edge weights for the three edges of the coarse graph are 4, 4.5 and 3
respectively, as shown in Figure 5 (middle). The vertex weights for the �ne
graph again taken to be wf = (2; 1; 4; 3; 1; 3)T , the vertex weights for the coarse

graph are given by

wc = PTwf =
1

2

0
BBBBBBB@

2 0 0

1 0 1
1 1 0
0 2 0
0 1 1

0 0 2

1
CCCCCCCA

T 0
BBBBBBB@

2

1
4
3
1

3

1
CCCCCCCA
=

0
B@ 4:5

5:5
4

1
CA : (8)

Assuming again that the coarse graph is ordered as pc(u1) = 1, pc(u2) = 2 and

pc(u3) = 3, the global priority vector for the �ne graph is

p0f = Ppc =
1

2

0
BBBBBBB@

2 0 0
1 0 1
1 1 0

0 2 0
0 1 1
0 0 2

1
CCCCCCCA

0
B@ 1

2

3

1
CA =

0
BBBBBBB@

1
2
1:5

2
2:5
3

1
CCCCCCCA
: (9)

This is shown on the right-hand side of Figure 5.

4 Numerical results

In this section, our multilevel approach is compared with the Sloan and Hybrid

algorithms on a large set of test problems. All codes are written in Fortran and

were developed with a view to e�cient implementation. The experiments are
performed on a COMPAQ computer with a 300 MHz Alpha EV5 processor.

The MC60 code of Reid and Scott [22] is used in the experiments for the Sloan
algorithm, for ordering the coarsest graph, and for subsequent re�nement. We
experimented with using vertex weights when calling MC60 at each of the levels,
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but found that it led to a deterioration in the quality of the orderings (see
Section 4.4 for further details). Therefore, unless speci�ed otherwise, we set
the vertex weights equal to one when calling MC60. Edge weights are not used
in this paper.

The spectral ordering needed for the Hybrid algorithm is computed using a
multilevel Fiedler vector code written by the �rst author. This code implements
the algorithm as described in [2].

We take the coarse graph ordering algorithm CoarsestOrder to be either the
Sloan or the Hybrid algorithm. We denote by Sloan(S;K) (and Hybrid(S;K))
the Sloan (respectively, Hybrid) algorithm on the coarsest graph and with
coarsening scheme S on up to K levels. Thus Sloan(S; 1) is the standard Sloan

algorithm and Hybrid(S; 1) the Hybrid algorithm. Coarsening schemes based
on edge collapsing and maximal independent vertex set are denoted by S = EC

and S = MIV , respectively. Thus Sloan(EC; 3) is the multilevel algorithm
with edge collapsing and a maximum of 3 levels, and the Sloan algorithm used

on the coarsest graph.
Our suite of 101 test problems is listed in alphabetical order in the

Appendix. The problems are all symmetric, and range in order from 66

(dwt66) to 224,617 (Halfb). The problems come from a variety of practical
applications and have been taken from the Harwell-Boeing Sparse Matrix
Collection (http://www.cse.clrc.ac.uk/Activity/SparseMatrices),
MatrixMarket (http://math.nist.gov/MatrixMarket), and the test set of

Kumfert and Pothen [17], with additional �nite element problems supplied by
Christian Damhaug of Det Norske Veritas, Norway. Also given in the Appendix
are the initial RMS wavefronts (rmsf) for each matrix and the ratio, �, between

the RMS wavefronts before and after reordering with the Hybrid algorithm. In
general, the Hybrid algorithm substantially improves the ordering (although
there are a small number of exceptions, notably problems bscctk13, bcsstk31,
and sstmodel).

4.1 Multilevel algorithm with coarsening by edge collapsing

Because of its success in graph partitioning, coarsening by edge collapsing was

the �rst strategy we tried. Figure 6 compares the RMS wavefront for the Sloan,

Hybrid, and multilevel algorithms. For the multilevel algorithm, the Sloan
algorithm is used to order the coarsest graph (results for the Hybrid algorithm
on the coarsest graph are included in Section 4.3). In this and subsequent
�gures, comparisons are given with respect to the Hybrid algorithm so that

the RMS wavefront for each algorithm is divided by the corresponding RMS
wavefront for the Hybrid algorithm, and averaged over the test cases to give a
relative score for the algorithm. The smaller the score, the better the algorithm.
With this metric, the Hybrid algorithm always has a score of one. To show the

e�ect of matrix order, the scores for each algorithm for matrices of order greater
than 37� 3k(1 � k � 8) are plotted separately in the �gure, with the number
of matrices over the threshold printed in brackets. A log scale is used for the x

axis (matrix order).
A number of interesting features can be observed. The �rst observation
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Figure 6: A comparison the RMS wavefronts of the Sloan, the Hybrid and the
Sloan(EC;K) algorithms.

is that, relative to the Hybrid algorithm, the RMS wavefront given by the
Sloan algorithm deteriorates as the order of the matrix increases. Overall,
the RMS wavefront for the Sloan algorithm is about 12% greater than for the
Hybrid algorithm, whilst for the largest 10 matrices, it is about 41% more. This

deterioration further con�rms the lack of a global view of the Sloan algorithm
and supports the earlier �ndings reported in [17, 22].

The second observation is that, as the number of levels K in the

multilevel Sloan(EC;K) algorithm increases, the RMS wavefront decreases.
The multilevel algorithm without a preset limit for the maximum number

of levels, Sloan(EC;1), is signi�cantly better than the Sloan algorithm.
However, it does not perform quite as well as the Hybrid algorithm, producing

RMS wavefronts that are on average 5% larger (10% larger for the 10 largest
problems).

This performance of the multilevel algorithm based on edge collapsing is
perhaps not entirely unexpected. As already discussed, for graph partitioning,

the edge collapsing strategy has the inheritance property. This is not the case
for wavefront ordering. The wavefront for a given ordering of a coarse graph is
unlikely to be the same as that for the corresponding �ne graph. Although this

does not exclude the usefulness of the multilevel approach for the wavefront
reduction problem, it does remove the special preference for edge collapsing
based coarsening over other coarsening methods.

We also note that, for coarsening by edge collapsing, a pseudodiameter of

the coarse graph need not correspond well to a pseudodiameter of the original
graph. This will be the case if the graph is coarsened along one direction, as
illustrated in Figure 7. Here the coarse graph start and end vertices Sc, Ec are
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S

E

E
f

S
f

f
S

cS
cE

fE

Figure 7: The (�ne) graph on the left and its coarsened graph on the right. The
heavy edges are collapsed. The modi�ed Gibbs-Poole-Stockmeyer algorithm of Reid
and Scott [22] applied to the �ne graph would give the start and end vertices S and E.
On the coarse graph (right), it would give Sc and Ec, when injected to the �ne graph
the start and end vertices become Sf and Ef .

far from the �ne graph start and end vertices S;E. Although it is di�cult to
tell whether this directional coarsening occurs in our test problems, the fact

that it can happen is of concern.
In terms of CPU time (Figure 8), the Sloan(EC;K) algorithm is about 40%

faster than the hybrid algorithm. The Sloan algorithm is more than four times
faster than the Hybrid algorithm. This is in line with an observation made by

Kumfert and Pothen [17], where a factor of �ve is reported.

4.2 Multilevel algorithm with coarsening based on the maximal

independent vertex set

Although coarsening by edge collapsing has been popular and successful in
multilevel algorithms for graph partitioning, results in Section 4.1 show that

for wavefront reduction, this approach improves on the Sloan algorithm but
is not as good as the Hybrid algorithm. Directional coarsening is a possible
reason.

When used for the multilevel spectral algorithm, a maximal independent

set is chosen in a greedy fashion by picking unmatched vertices at random
and, when a vertex is picked, masking its neighbouring vertices as matched
[1, 2]. We, however, adopt a more sophisticated algorithm that both yields
slightly improved orderings and requires less CPU time (see Section 4.4 for

a more detailed discussion). Our algorithm is based on that of Ruge and
Stuben [23], which has been used successfully in the �eld of algebraic multigrid.
This algorithm was designed for unsymmetric matrices; we have modi�ed it for
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Figure 8: A comparison of the CPU times for the Sloan, the Hybrid and the
Sloan(EC;K) algorithms.

symmetric matrices. At each step, each vertex in V lies in one of three sets:
it is either uncoloured (VU), or is in the maximal independent set (VC), or is
not a candidate for the maximal independent set (VF ). Each vertex has a gain
value associated with it, indicating the preference for this vertex to belong to

VC . Initially, each vertex i is uncoloured (lies in VU ) and is assigned a gain
value gain(i) equal to its degree. The gains are held in a priority queue. At
each step, a uncoloured vertex with the highest gain is removed from the queue

and is moved into VC. Its neighbours are then moved into VF . They are also
removed from the queue. For each such new vertex in VF , the gain values of its

uncoloured neighbours are increased by one. The procedure is repeated until
the queue is empty (that is, until all the vertices belong to either VC or VF ).

In this algorithm, the gain of an uncoloured vertex is always equal to the
number of neighbours in VU plus twice the number of neighbours in VF . An
uncoloured vertex with a large number of neighbours in VF is therefore more
likely to be moved into VC . This ensures that VF vertices are well \covered" by

VC vertices, yielding a more uniform distribution of VC vertices and a better
prolongation operator than the greedy approach. Our maximal independent
vertex set algorithm is outlined below.

Maximal independent vertex set algorithm

� initialisation:

{ VC = ;

{ VU = V
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{ for each vertex i 2 V
gain(i) = deg(i)

� do while VU 6= ;

{ imax : gain(imax) = maxj2VU (gain(j))

{ VU = VUnfimaxg

{ VC = VC [ fimaxg

{ for each vertex j 2 adj(imax) \ VU
VU = VUnfjg
for each vertex k 2 adj(j) \ VU
gain(k) = gain(k) + 1

Once the maximal independent vertex set has been computed, the

prolongation operator P is de�ned by (7). The coarse graph vertex weights
wc are calculated as in (8) and the global priority vector p0f for the �ne graph is

computed as in (9). For MC60, the entries of p0f are each rounded to the nearest

integer.
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Figure 9: A comparison of the RMS wavefronts for the Sloan, the Hybrid and
the Sloan(MIV;K) algorithms.

Figure 9 compares the RMS wavefront for the Sloan and the Hybrid

algorithms with the Sloan(MIV;K) algorithm using the above maximal
independent vertex set algorithm. It is seen that, as the number of levels

increases, the multilevel orderings improve. The multilevel algorithm without
a preset maximum number of levels, Sloan(MIV;1), produces orderings of
comparable quality to the Hybrid algorithm and, in terms of CPU time
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Figure 10: A comparison of the CPU times for the Sloan, the Hybrid and the
Sloan(MIV;K) algorithms.

(Figure 10), is substantially faster, requiring about half the time of the Hybrid
algorithm. Since Sloan(MIV;1) is generally no more expensive in terms of
CPU time than Sloan(MIV;K) with K > 2 and it produces the smallest RMS
wavefronts, we recommend not imposing a maximum number of levels on the

multilevel algorithm.

4.3 Sloan versus Hybrid on coarsest graph

The coarsest graph has only a small number of vertices and so it can rapidly

be ordered using any appropriate algorithm. In all the results presented so
far, the Sloan algorithm has been used but the Hybrid algorithm can be
used instead. This gives the multilevel Hybrid algorithm, Hybrid(MIV;K).
Figure 11 compares the RMS wavefront for this algorithm with that for the

Sloan and the Hybrid algorithms. We see that, for any preset maximum number
of levels K, results for the Hybrid(MIV;K) algorithm are comparable to those
for the Hybrid algorithm. Even if there are only two levels, the quality of

the ordering on the coarsest (level 2) graph is such that the application of a
prolongation and re�nement step is able to produce a high quality ordering on
the �ne graph. This is in contrast to Sloan(MIV; 2) where, on the coarsest
graph, the Sloan algorithm does not yield such a good ordering. As the

number of levels increase, the performance of Sloan(MIV;K) is comparable
to Hybrid(MIV;K), indicating that, because the Sloan algorithm performs
well on small problems, in terms of quality, the choice between the Sloan and

the Hybrid algorithms on the coarsest graph is not important when that graph
is small. However, using the Sloan algorithm has the advantage of not requiring
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Figure 11: A comparison of the RMS wavefronts for the Sloan, the Hybrid and
the Hybrid(MIV;K) algorithms.

any spectral information to be computed.
The fact that the quality of the Hybrid(MIV;K) orderings varies little

with the number of levels K indicates that the multilevel process based on the
maximal independent set combined with Sloan re�nement is of good quality, in

the sense that it preserves, if not enhances, the quality of the ordering achieved
on the coarsest graph using the Hybrid algorithm. In fact, we could use the
quality of the Hybrid(S;K) algorithm to measure the quality of the multilevel

scheme based on the coarsening strategy S. For example, Figure 12 shows the
RMS wavefront for the Hybrid(EC;K) algorithm. It is seen that in general,

the more levels there are, the poorer the quality of the ordering. This is in
contrast to Figure 11, and indicates that the edge-collapsing based multilevel

approach may not be able to preserve the high quality ordering achieved on the
coarsest level.

The CPU times comparisons for the Sloan, the Hybrid andHybrid(MIV;K)
algorithms are given in Figure 13. The Hybrid(MIV;K) algorithm needs only

half the CPU time of the Hybrid algorithm. For small K, it is slightly more
expensive than Sloan(MIV;K) because of the extra cost associated with using
the Hybrid algorithm on the coarsest graph.

Table 1 lists the RMS wavefronts for the Hybrid, Sloan(MIV;1) and
Hybrid(MIV;1) algorithms for each of the test problems of order greater
than 10000. The smallest wavefront for each problem (and those within 3
per cent of the smallest) are given in bold. It can be seen that, although the

three algorithms on average produce orderings with similar RMS wavefronts,
their behaviour on individual matrices can di�er signi�cantly. This is typical
of heuristic-based algorithms and, for a given problem, which algorithm will
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Figure 12: A comparison of the RMS wavefront for the Sloan, the Hybrid and
the Hybrid(EC;K) algorithms.
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Table 1: RMS wavefronts for the Hybrid, the Sloan(MIV;1) and the

Hybrid(MIV;1) algorithms on matrices of order > 10000.

Identi�er order Hybrid Sloan(MIV;1) Hybrid(MIV;1)

shuttle eddy 10429 62.55 60.55 59.75

bcsstk17 10974 226.63 229.63 240.93
bcsstk18 11948 288.24 197.25 195.37

bcsstk29 13992 301.50 192.74 192.74

barth5 15606 84.20 97.11 97.75
pds10 16558 566.94 680.36 680.36
copter1 17222 401.04 370.33 378.2

e40r0000 17281 162.94 162.38 162.34

Crplat2 18010 244.61 254.16 255.84
tandem vtx 18454 288.62 287.30 282.07

ford1 18728 99.42 108.95 109.56
bcsstk30 28924 303.03 296.99 321.30
Thread 29736 1857.44 1940.28 1864.85

bcsstk31 35588 750.81 526.19 558.09

�nance256 37376 179.18 130.42 116.95

bcsstk32 44609 471.84 578.90 618.11
skirt 45361 621.77 738.62 743.59
nasasrb 54870 336.84 344.67 337.29

Srb1 54924 327.74 333.39 332.48

copter2 55476 597.79 726.00 572.89

�nance512 74752 137.16 114.58 127.21

onera dual 85567 563.14 697.67 632.99
tandem dual 94069 451.83 436.37 440.46

MT1 97578 1035.08 1187.96 971.93

ford2 100196 305.05 327.58 343.31

Shipsec1 140874 1452.77 1666.05 1434.77

Fullb 199187 1867.09 1955.66 1992.47
Fcondp2 201822 1713.82 1542.18 1559.93

Troll 213453 3657.43 2343.68 2887.74

Halfb 224617 1347.94 1431.09 1486.26
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produce the best ordering cannot be predicted a priori.

4.4 Sensitivity of the multilevel algorithm

So far, we have established that a multilevel algorithm based on a maximal

independent vertex set gives orderings of comparable quality to the Hybrid
algorithm, but is signi�cantly faster. This section explores the multilevel
algorithm further by studying its sensitivity to the choice of a number of
parameters.
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Figure 14: The e�ect of the coarsest graph ordering on the RMS wavefront of
the multilevel algorithm. The Sloan(MIV;1) algorithm is used, but with only

one weight pair (chosen from (64; 1),: : :,(1; 64)), or two weight pairs (1; 2) and
(16; 1). All results relative to Sloan(MIV;1) with the weight pairs (2; 1) and
(16; 1) on the coarsest graph.

We have seen that, with an unlimited number of levels, the coarsest graph
ordering based on both the Sloan algorithm (Sloan(MIV;1)) and the Hybrid
algorithm (Hybrid(MIV;1)) yield orderings of similar quality. Following Reid
and Scott [22], in the Sloan algorithm, two orderings are generated from the

weight pairs (2; 1) and (16; 1), and the better of the two is chosen. Figure 14
illustrates the e�ect of using a single pair of weights. If we generate only one
ordering based on a single pair of weights (chosen among (64; 1), (16; 1), (4; 1),

(2; 1), (1; 1), (1; 2), (1; 4), (1; 16) and (1; 64)), the quality of the �nal ordering
obtained using the multilevel algorithm is not as good, although the di�erence
is usually less than 10%. If instead of the two pairs (2; 1) and (1; 16), we use

(1; 2) and (1; 16), the di�erence in the quality of the �nal ordering is extremely

small, indicating that the precise choice for the weights is not critical. As the
coarsest graph can be ordered very quickly because of its small size, if it is
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important to obtain the smallest possible wavefront, it may be worthwhile to
try a number of di�erent weights and choose the best ordering among them.
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Figure 15: The e�ect of the �rst pair of weights during the re�nement process
on the RMS wavefront of the multilevel algorithm Sloan(MIV;1). The second

pair of weights is �xed at (16; 1). All results are relative to the Hybrid algorithm.

We have also looked at the sensitivity of the ordering to the choice of weights
for the prolongation and re�nement stage of the multilevel algorithm. In all the
experiments reported so far, we used the weight pairs (1; 2) and (16; 1). This
choice of weight pair was recommended in Reid and Scott [22] for the Hybrid

algorithm, where it was argued that a larger W2 in (5) is preferred when p(i) is
of good quality. Figure 15 illustrates the e�ect of varying the �rst pair of weights
on the quality of the ordering given by Sloan(MIV;1). In this experiment,
the second pair is �xed at (16; 1), while the �rst pair is allowed to vary between

(4; 1) to (1; 16). We see that a weight pair (W1;W2) withW2 slightly larger than
or equal to W1 is bene�cial. In general, the weight pairs (1; 1), (1; 2) and (1; 4)
all give similar RMS wavefronts. We have also looked at the e�ect of varying the

�rst pair of weights on the quality of the ordering given by Hybrid(MIV;1),
and found that the same conclusion can be drawn.

We have stated that the use of vertex weights has a negative e�ect on
the quality of our multilevel algorithm. To illustrate this, Figure 16 shows

the RMS wavefront for Sloan(MIV;1) and Sloan(EC;1), with and without
vertex weights. Clearly, for both algorithms the use of vertex weights causes
a deterioration in the quality of the �nal ordering. We should point out that
we pass the vertex weights to the code MC60 in the array VARS (in the case

of the multilevel algorithm based on the maximal independent set, the vertex
weights are �rst rounded to integers). MC60 requires VARS(IS) to be set to the
number of vertices represented by the supervertex IS, where supervertices are
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derived by merging vertices that satisfy (2). Supervertices are therefore not the
same as the vertices in the coarse graphs obtained in the multilevel algorithm.
For example, vertices in the coarse graph resulting from the edge-collapsing
approach are formed by merging vertices that share edges (but not necessarily

satisfy (2)). This may explain why we have not been able to use vertex weights
in MC60 to advantage.
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Figure 16: The e�ect of using vertex weights on the RMS wavefront of the

multilevel algorithms Sloan(MIV;1) and Sloan(EC;1). All results are
relative to the Hybrid algorithm.

Finally, as discussed in Section 4.2, the more sophisticated algorithm of

Ruge and Stuben [23] for selecting the maximal independent set is favoured over
the greedy algorithm. The former tends to yield a more uniform distribution
of VC vertices and a better prolongation operator than the greedy approach.
Furthermore, in the Ruge and Stuben algorithm, coarse vertices are selected by

maximizing the number of neighbours in VF and VU . In general, this gives a
more aggressive coarsening, and less dense matrices on the coarse graphs. The
result is that a multilevel algorithm based on the Ruge and Stuben approach
requires less CPU time than the greedy algorithm. This is illustrated in

Figure 17, where Sloan(MIV;1) is compared with Sloan(MIV G;1), with
the latter denoting the multilevel algorithm using the greedy approach for
selecting the maximal independent set. Sloan(MIV;1) clearly takes less

CPU time and yields orderings of slightly higher quality. We have also
compared the two approaches for generating the maximal independent set on
the Hybrid(MIV;1) algorithm, and found that the same conclusion applies.

So far, we have been using the RMS wavefront to compare the algorithms.

Results based on the pro�les have not been given due to space limitations,
although the same conclusions may be drawn if the pro�le is used as a measure
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Figure 17: A comparison of the multilevel algorithms based on two approaches
of selecting a maximal independent vertex set. Sloan(MIV;1) is based on

the Ruge and Stuben algorithm [23]. Sloan(MIVG;1) is based on the greedy
algorithm. All results are relative to the Hybrid algorithm. The left y axis is
used for RMS wavefront (rmsf) and pro�le; the right y axis for CPU time.

of ordering quality. Figure 17 includes the pro�le for the Sloan(MIV;1) and

Sloan(MIV G;1) orderings relative to the Hybrid orderings. As can be seen,
the trend for the pro�le is very similar to that of the RMS wavefront.

5 Conclusions and Future Work

New multilevel reordering algorithms for minimising the pro�le and wavefront of
symmetric matrices have been considered in this paper. A number of approaches

have been investigated. A multilevel algorithm, combining a coarsening strategy
based on the maximal independent set with the Sloan or Hybrid algorithms on
the coarsest graph, has been found to give orderings of similar quality to that of

the best existing algorithm (the Hybrid algorithm of Kumfert and Pothen [17]),
whilst being signi�cantly faster, requiring on average only half the CPU time.
Of particular note is the multilevel Sloan algorithm. With no limit imposed
on the maximum number of levels, this algorithm has been shown to yield

orderings of similar quality to that of the Hybrid algorithm, without requiring
any spectral information.

We are investigating the possibility of further improving the multilevel
algorithm so that it consistently outperforms the Hybrid algorithm, both in

terms of CPU time and ordering quality. We believe that to achieve this goal it
will be necessary to utilise the vertex and edge weights of the coarse graphs. We
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are looking at the best mechanism of including this information in the reordering
and re�nement of the coarse graphs. Another possible way of improving the
multilevel algorithm is to use a more sophisticated ordering algorithm on the
coarsest graph and then to look at translating improvements in the quality of

the ordering on the coarsest graph into corresponding improvements on the
original �ne graph.

It may also be possible to extend our multilevel approach to the ordering

of unsymmetric matrices for use with frontal solvers. This will build on the
work of Scott [24] on row ordering algorithms and the work of Hu, Maguire,
and Blake [12] on applying a multilevel algorithm for reordering unsymmetric
matrices into bordered form.
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A The test problems

Table 2: The suite of test problems. rmsf is the initial RMS wavefront and �

is the ratio between the RMS wavefronts before and after reordering with the
Hybrid algorithm.

Identi�er jV j jEj rmsf �

1138 bus 1138 1458 87.00 6.88
barth 6691 19748 2673.11 42.86
barth4 6019 17473 404.62 7.56

barth5 15606 45878 284.36 3.38
Baug 9600 232980 1459.93 6.07
bcspwr06 1454 1923 57.68 4.92

bcspwr07 1612 2106 61.00 4.99
bcspwr08 1624 2213 64.35 5.46
bcspwr09 1723 2394 308.51 21.86
bcspwr10 5300 8271 1294.66 47.68

bcsstk08 1074 5943 239.84 1.80
bcsstk11 1473 16384 104.34 2.18
bcsstk12 1473 16384 104.34 2.18
bcsstk13 2003 40940 229.18 0.97

bcsstk14 1806 30824 115.23 1.22
bcsstk15 3948 56934 263.35 1.44
bcsstk17 10974 208838 261.87 1.16

bcsstk18 11948 68571 468.72 1.63
bcsstk21 3600 11500 119.39 2.17
bcsstk23 3134 21022 353.47 1.50
bcsstk24 3562 78174 613.47 4.98

bcsstk28 4410 107307 190.39 1.42
bcsstk29 13992 302748 551.89 1.83
bcsstk30 28924 1007284 641.77 2.12
bcsstk31 35588 572914 672.80 0.90

bcsstk32 44609 985046 2905.61 6.16

bcsstm12 1473 9093 103.80 3.79
bcsstm13 2003 9970 52.36 0.87

blckhole 2132 6370 93.98 1.67
can 1054 1054 5571 274.78 8.83
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Table 3: The suite of test problems (continued).

Identi�er jV j jEj rmsf �

can 1072 1072 5686 279.31 8.41

commanche dual 7920 11880 2397.83 55.98
copter1 17222 96921 1127.23 2.81
copter2 55476 352238 21892.02 36.62
Crplat2 18010 471468 1286.38 5.26

dwg961b 961 4815 179.24 7.10
dwt 607 2262 55.43 2.08
dwt1005 1005 3808 137.66 4.03

dwt1007 1007 3784 26.93 1.31
dwt1242 1242 4592 105.20 3.18
dwt162 162 5100 18.95 2.02
dwt193 193 1650 43.84 1.80

dwt198 198 5970 30.90 4.37
dwt209 209 7670 50.32 3.44
dwt221 221 7040 50.39 5.54
dwt234 234 3000 9.36 1.48

dwt245 245 6080 18.48 1.82
dwt2680 2680 11173 234.42 6.90
dwt307 307 1108 27.36 1.06

dwt310 310 1069 9.85 1.02

dwt346 346 1440 27.15 1.36
dwt361 361 1296 15.38 1.09
dwt419 419 1572 107.07 5.50

dwt492 492 1332 79.51 8.92
dwt503 503 2762 78.60 2.77
dwt512 512 1495 14.55 1.24
dwt59 59 1040 8.22 1.72

dwt592 592 2256 55.18 2.96
dwt607 607 2262 55.43 2.08
dwt66 66 1270 11.01 3.74

dwt72 72 7500 3.46 1.03
dwt758 758 2618 37.95 3.65
dwt869 869 3208 25.02 1.49
dwt87 87 2270 29.38 4.68

dwt878 878 3285 31.92 1.38
dwt918 918 3233 131.14 6.58
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Table 4: The suite of test problems (continued).

Identi�er jV j jEj rmsf �

dwt992 992 7876 301.99 8.86
e40r0000 17281 270737 438.20 2.69

eris1176 1176 8688 81.59 3.59
Fcondp2 201822 5546247 10322.91 6.02
�nance256 37376 130560 7441.93 41.53
�nance512 74752 261120 14831.49 108.13

ford1 18728 41424 1954.25 19.66
ford2 100196 222246 4282.70 14.04
Fullb 199187 5754445 45506.16 24.37
Halfb 224617 6081602 35656.53 26.45

jagmesh4 1440 4032 32.62 1.66
jagmesh5 1180 3285 32.57 1.69
jagmesh7 1138 3156 39.52 2.13

jagmesh8 1141 3162 32.17 1.38
jagmesh9 1349 3876 54.67 2.31
lshp3466 3466 10215 109.46 2.38
mhd4800b 4800 11360 17.11 4.19

MT1 97578 4827996 2815.98 2.72
nasasrb 54870 1311227 401.75 1.19
nos7 729 1944 76.26 1.16
onera dual 85567 166817 9336.32 16.58

pds10 16558 66550 1129.78 1.99
plat1919 1919 15240 739.36 16.38
qc2534 2534 230413 177.61 1.00

s3rmt3m3 5357 101169 478.58 3.81
Shipsec1 140874 3836265 3290.65 2.27
shuttle eddy 10429 46585 1161.54 18.57
skirt 45361 1268228 1092.01 1.76

Srb1 54924 1453614 1527.03 4.66
sstmodel 3345 9702 34.27 0.61
tandem dual 94069 183212 5831.87 12.91
tandem vtx 18454 117448 4705.44 16.30

Thread 29736 2220156 6676.39 3.59
Troll 213453 5885829 4703.06 1.29
zenios 2873 12159 431.21 54.54
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