
RAL-TR-2008-017

June 16, 2008

H. Sue Dollar Nicholas I. M. Gould Martin Stoll

Andrew J. Wathen

A Bramble-Pasciak-like method with

applications in optimization



c© Science and Technology Facilities Council

Enquires about copyright, reproduction and requests for additional copies of this report should
be addressed to:

Library and Information Services
SFTC Rutherford Appleton Laboratory
Harwell Science and Innovation Campus
Didcot
OX11 0QX
UK
Tel: +44 (0)1235 445384
Fax: +44(0)1235 446403
Email: library@rl.ac.uk

The STFC ePublication archive (epubs), recording the scientific output of the Chilbolton,
Daresbury, and Rutherford Appleton Laboratories is available online at:
http://epubs.cclrc.ac.uk/

ISSN 1358-6254

Neither the Council nor the Laboratory accept any responsibility for loss or
damage arising from the use of information contained in any of their reports
or in any communication about their tests or investigation



RAL-TR-2008-017

A Bramble-Pasciak-like method with applications in

optimization

H. Sue Dollar1, Nicholas I. M. Gould1 2, Martin Stoll2, Andrew J. Wathen2

ABSTRACT

Saddle-point systems arise in many applications areas, in fact in any situation where an extremum principle

arises with constraints. The Stokes problem describing slow viscous flow of an incompressible fluid is a

classic example coming from partial differential equations and in the area of Optimization such problems

are ubiquitous.

In this manuscript we show how new approaches for the solution of saddle-point systems arising in

Optimization can be derived from the Bramble-Pasciak Conjugate Gradient approach widely used in PDEs

and more recent generalizations thereof. In particular we derive a class of new solution methods based on

the use of Preconditioned Conjugate Gradients in non-standard inner products and demonstrate how these

can be understood through more standard machinery. We show connections to Constraint Preconditioning

and give the results of numerical computations on a number of standard Optimization test examples.
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1 Introduction

Saddle-point systems arise in many applications areas, in fact in any situation where an extremum principle

arises with constraints. The Stokes problem describing slow viscous flow of an incompressible fluid is a

classic example coming from partial differential equations; here minimisation of viscous energy (or flow

induced by a body force or boundary forcing) is constrained by conservation of mass (see for example [6]).

In the area of Optimization, such problems of finding optima in the prescence of constraints are ubiquitous.

We consider saddle-point problems of the general form

Kz ≡

[
A BT

B −C

] [
x

y

]
=

[
b

g

]
≡ d (1)

where A ∈ R
n×n and C ∈ R

m×m are symmetric matrices and B ∈ R
m×n. We assume that K is non-

singular, sufficient conditions for which are that B is of full rank, C is positive semidefinite and A is positive

definite on the kernel of B (see [1]). In practice, the properties for the blocks A and C usually vary with the

underlying application. In the context of partial differential equations and mixed finite element methods

we can usually assume that A is positive definite and C is positive semi-definite whereas in many problems

arising in Optimization, A can be indefinite (for example when directions of negative curvature arise in

sequential quadratic programming). The notation used in this paper is reasonably standard, but note

that in line with the possibility of indefinite blocks, λmin(M) denotes leftmost eigenvalue and λmax(M)

the rightmost eigenvalue of a symmetric matrix M .

There are many methods for solving saddle-point problems (see [1] for a survey). In this paper we

give a formulation that represents a framework for many solvers, some already known and some new.

In particular, we introduce a new method based on the Bramble-Pasciak cg method [3] and a variant

of a method recently introduced by Forsgren, Gill and Griffin [9] which extends the idea of constraint

preconditioning ( [?]). An important feature of our reformulation is that the various methods can be

interpreted as Preconditioned Conjugate Gradient methods in non-standard inner products (see [29]).

However we also show how such methods can be thought of as acting in the standard ℓ2 inner product

with different preconditioning.

We derive a method similar to the Bramble-Pasciak method which is very similar to the method of

Forsgren, Gill and Griffin in the case that C is positive definite but which is well defined and an effective

method even if C is semidefinite (including the extreme case that it is zero). We present the results of

numerical computations on Optimization examples from the CUTEr test set ( [14]).

2 Reformulation

It follows directly that any solution z to (1) also satisfies

(
σ

[
A BT

B −C

]
+

[
A BT

B −C

] [
D FT

F E

] [
A BT

B −C

]) [
x

y

]

= σ

[
b

g

]
+

[
A BT

B −C

] [
D FT

F E

] [
b

g

] (2)

for arbitrary σ, symmetric matrices D ∈ R
n×n and E ∈ R

m×m and a matrix F ∈ R
m×n. We denote

the coefficient matrix and right-hand side of (2) as K(σ,D,E, F ) and d(σ,D,E, F ), respectively, and

note that K = K(1, 0, 0, 0) and d = d(1, 0, 0, 0). Many well-known methods can be represented using this

reformulation. For example,

• K(0, I, I, 0) gives the normal equations for (1);

• K(−1, A−1, 0, 0) gives the Schur-complement method for finding y when A is nonsingular;
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• K(0, A−1, C−1, 0) gives the primal-dual Schur complement method for finding x and y simultaneously

when both A and C are nonsingular; and

• K(1, 0, (1 + ν)C−1, 0) for a given ν (in particular ν = 1) gives the system to which Forsgren, Gill,

Griffin apply the preconditioned conjugate gradient (pcg) method, see [9]. The matrices C and

A + BT C−1B are assumed to be positive definite.

There are also a variety of methods that solve (1) by applying the conjugate gradient (cg) method within

a non-standard inner-product. The general framework (2) may also be used to represent such methods:

• pcg applied to K(−1, A−1
0 , 0, 0) (with appropriate preconditioner) gives the well-respected Bramble-

Pasciak configuration for a given A0, see [3]. The matrices A and BA−1BT + C are assumed to be

positive definite, and A0 is such that A − A0 is also symmetric and positive definite.

• pcg applied to K(−γ, I,−I, 0) (with appropriate preconditioner) gives Liesen and Parlett’s method

for a given γ, see [17,18]. The matrix A is assumed to be positive definite and γ lies in the interval

[λmax(C), λmin(A)] . This method extends that of Benzi and Simoncini [2] to the case where C 6= 0.

• pcg applied to K(−(α+βγ), αA−1
0 +βI,−βI, 0) (with appropriate preconditioner) gives an example

of the combination preconditioning method of Stoll and Wathen, see [28]. The assumptions of both

Bramble-Pasciak and Liesen and Parlett must hold, and α, β and γ must be chosen such that

K(−(α + βγ), αA−1
0 + βI,−βI, 0) = αK(−1, A−1

0 , 0, 0) + βK(−γ, I,−I, 0) is positive definite.

• pcg applied to K(1, A−1
0 (BT C−1

0 B−A−1
0 )A−1

0 , C−1
0 ,−C−1

0 BA−1
0 ) (with appropriate preconditioner)

represents the method presented by Schöberl and Zulehner for the case C = 0 [25] for given A0 and

C0. The matrix A is assumed to be positive definite on the kernel of B, A0 is such that A0 − A

is symmetric and positive definite, and C0 is such that BA−1
0 BT − C0 is symmetric and positive

definite.

It may not be obvious why the above formulations produce algorithms that (in exact arithmetic) produce

iterates which are equivalent to those produced by the cg methods within a non-standard inner-product.

In Section 3, we will reveal why we can reformulate the methods as above. We intend that these refor-

mulations will provide the reader with an insight into the properties of the non-standard inner-product

cg methods without having to use the non-standard inner-product. Of course, simply reformulating (1)

as (2) in itself offers no immediate advantage. However, if K(σ,D,E, F ) possesses one of more desirable

properties, (2) may be preferable to (1).

Before considering the non-standard inner-product conjugate gradient methods, we will consider what

properties need to hold to guarantee that K(σ,D,E, F ) is symmetric and positive definite (and thus

one may use methods such as cg rather than minres). Clearly, D and E need both be symmetric.

Furthermore, we may factorize K(σ,D,E, F ) as

K(σ,D,E, F ) =

[
Θ1 ΘT

2

Θ2 Θ3

]

=

[
I ΘT

2 Θ−1
3

0 I

] [
Θ1 − ΘT

2 Θ−1
3 Θ2 0

0 Θ3

] [
I 0

Θ−1
3 Θ2 I

]
(3)

or

K(σ,D,E, F ) =

[
I 0

Θ2Θ
−1
1 I

] [
Θ1 0

0 Θ3 − Θ2Θ
−1
1 ΘT

2

] [
I Θ−1

1 ΘT
2

0 I

]
, (4)

where

Θ1 = σA + ADA + BT FA + AFT B + BT EB, (5)

Θ2 = σB + BDA − CFA + BFT B − CEB, (6)

Θ3 = BDBT − CFBT − BFT C + CEC − σC. (7)
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Using Sylvester’s law of inertia [13], we obtain the following theorem:

Theorem 2.1. Let Θ1, Θ2 and Θ3 be as defined in (5)–(7). K(σ,D,E, F ) is symmetric and positive

definite if and only if

• D and E are symmetric,

• Θ3 is positive definite, and

• Θ1 − ΘT
2 Θ−1

3 Θ2 is positive definite.

Equivalently, K(σ,D,E, F ) is symmetric and positive definite if and only if

• D and E are symmetric,

• Θ1 is positive definite, and

• Θ3 − Θ2Θ
−1
1 ΘT

2 is positive definite.

Clearly, K(σ,D,E, F ) is symmetric and positive definite if and only if K−1K(σ,D,E, F )K−1 is sym-

metric and positive definite. This is equivalent to requiring that

σK−1 +

[
D FT

F E

]

be symmetric and positive definite. We will consider different cases for A and C separately. Proofs for the

following corollaries may be found in Appendix A.

Corollary 2.2. If A is symmetric and nonsingular, and

SA = C + BA−1BT ,

Υ1 = D + σA−1 − σA−1BT S−1
A BA−1,

Υ2 = σF + S−1
A BA−1,

Υ3 = E − σS−1
A ,

then K(σ,D,E, F ) is symmetric and positive definite if and only if

• D and E are symmetric,

• Υ3 is positive definite, and

• Υ1 − ΥT
2 Υ−1

3 Υ2 is positive definite.

Corollary 2.3. If C is symmetric and nonsingular, and

SC = A + BT C−1B,

∆1 = D + σS−1
C ,

∆2 = F + σC−1BS−1
C ,

∆3 = E + σC−1BS−1
C BT C−1 − C−1,

then K(σ,D,E, F ) is symmetric and positive definite if and only if

• D and E are symmetric,

• ∆1 is positive definite, and
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• ∆3 − ∆2∆
−1
1 ∆T

2 is positive definite.

Corollary 2.4. If C = 0, the columns of Z ∈ R
n×(n−m) span the nullspace of B, B† =

(
BT B

)−1
B is the

Moore-Penrose inverse of B [13] and

SZ = ZT AZ,

Γ1 = D + σZS−1
Z ZT ,

Γ2 = F + σB†T
(
I − AZS−1

Z ZT
)
,

Γ3 = E + σB†T
(
AZSZZT A − A

)
B†.

K(σ,D,E, F ) is symmetric and positive definite if and only if

• D and E are symmetric,

• Γ1 is positive definite,

• Γ3 − Γ2Γ
−1
1 ΓT

2 is positive definite.

Conditions for the case where C is rank-deficient but nonzero may be derived by factoring C as

C = UT

[
Ĉ 0

0 0

]
U,

where Ĉ is nonsingular and U is unitary. Premultiplying K by

[
I 0

0 U

]
and post multiplying by the

inverse of this matrix reveals a saddle-point system to which either Corollary 2.3 or Corollary 2.4 could

be applied.

3 Equivalence of non-standard inner-product CG methods and

standard PCG methods

In this section, we illustrate the equivalence of the reformulation and a class of methods that apply cg
with a non-standard inner-product. Such examples can be found in [2, 3, 8, 18, 25, 29]. These methods

all have a common framework. That is, matrices P and H are formed such that P is nonsingular,

H is symmetric and positive definite, and P−1K is self-adjoint in the inner-product 〈·, ·〉 defined by

〈x, y〉H = xT Hy, i.e., HP−1K is symmetric. Moreover, P and H are chosen such that P−1K is positive

definite in the inner-product 〈·, ·〉H . The methods then use this non-standard inner-product within the

CG method, as illustrated in Algorithm 1. At iteration k of Algorithm 1, span
{
p(0), p(1), . . . , p(k−1)

}
=

span
{
r(0), r(1), . . . , r(k−1)

}
, r(k)T Hr(j) = 0 and p(k)T HP−1Kp(j) = 0 for all j < k, see [18, Theorem 3.2].

Hence, Algorithm 1 may be reformulated as Algorithm 2.

We observe that P−1K is self-adjoint and positive definite in the inner-product 〈·, ·〉H if and only if

HP−1K is symmetric and positive definite. Thus, an alternative method for solving (1) is to apply the

pcg method (with a preconditioner L) to the equivalent symmetric and positive definite system

HP−1Kz = HP−1d. (8)

Such a method is given by Algorithm 3. Eliminating s(k) from Algorithm 3 we obtain Algorithm 4.

Observe that when L = H, Algorithms 2 and 4 are equivalent (in exact arithmetic). Thus, application

of a non-standard inner-product cg method with matrices H and P produces iterates that are equivalent

to those formed by applying the standard pcg method to the symmetric and positive definite problem

(8) with symmetric and positive definite preconditioner H. The convergence of Algorithms 1 and 2 can,
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Algorithm 1 Non-standard inner-product cg (variant 1)

Given z(0) = 0, set r(0) = P−1
(
d − Kz(0)

)
and p(0) = r(0)

for k = 0, 1, . . . do

α = 〈r(k),p(k)〉H

〈P−1Kp(k),p(k)〉H

z(k+1) = z(k) + αp(k)

r(k+1) = r(k) − αP−1Kp(k)

β = 〈P−1Kr(k+1),p(k)〉H

〈P−1Kp(k),p(k)〉H

p(k+1) = r(k+1) − βp(k)

end for

Algorithm 2 Non-standard inner-product cg (variant 2)

Given z(0) = 0, set r(0) = P−1
(
d − Kz(0)

)
and p(0) = r(0)

for k = 0, 1, . . . do

α = r(k)T Hr(k)

p(k)T HP−1Kp(k)

z(k+1) = z(k) + αp(k)

r(k+1) = r(k) − αP−1Kp(k)

β = r(k+1)T Hr(k+1)

r(k)T Hr(k)

p(k+1) = r(k+1) + βp(k)

end for

Algorithm 3 Preconditioned conjugate gradient method for solving HP−1Kx = HP−1b with symmetric

and positive definite preconditioner L

Given z(0) = 0, set s(0) = HP−1
(
d − Kz(0)

)

Solve Lq(0) = s(0) and set p(0) = q(0)

for k = 0, 1, . . . do

α = s(k)T q(k)

p(k)T HP−1Kp(k)

z(k+1) = z(k) + αp(k)

s(k+1) = s(k) − αHP−1Kp(k)

Solve Lq(k+1) = s(k+1)

β = s(k+1)T q(k+1)

s(k)T q(k)

p(k+1) = z(k+1) + βp(k)

end for

Algorithm 4 Simplified version of preconditioned conjugate gradient method for solving HP−1Kx =

HP−1b with symmetric and positive definite preconditioner L

Given z(0) = 0, set q(0) = L−1HP−1
(
d − Kz(0)

)
and p(0) = q(0)

for k = 0, 1, . . . do

α = q(k)T Lq(k)

p(k)T HP−1Kp(k)

z(k+1) = z(k) + αp(k)

q(k+1) = q(k) − αL−1HP−1Kp(k)

β = q(k+1)T Lq(k+1)

q(k)T Lq(k)

p(k+1) = q(k+1) + βp(k)

end for
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hence, be described by the eigenvalues of P−1K, and that of Algorithms 3 and 4 are described by the

eigenvalues of L−1HP−1K.

We note that, in our framework (2), the matrix HP−1 corresponds to

σI +

[
A BT

B −C

] [
D FT

F E

]
.

We will illustrate the above observations by considering the Bramble-Pasciak cg method. This method

assumes that A is symmetric and positive definite and sets

H =

[
A − A0 0

0 S0

]
and P =

[
A0 0

B −S0

]
,

where A0 is an approximation to A, A−A0 is symmetric and positive definite, and S0 is a symmetric and

positive definite approximation to C + BA−1BT . We note that Bramble and Pasciak [3] only considered

S0 = I but this was extended to more general S0 in [16, 19, 26]. Setting σ = −1, D = A−1
0 , E = 0, and

F = 0, we can confirm that

HP−1 = σI +

[
A BT

B −C

] [
D FT

F E

]
.

The entries in the matrix HP−1K are independent of the choice of S0.

Corollary 2.2 implies that HP−1K will be symmetric and positive definite if and only if both BA−1BT +

C and A−1
0 −A−1 are positive definite. We note that these are exactly the same conditions as those derived

by Klawonn [16].

Finally, in Figure 1, we plot the convergence history of the Bramble-Pasciak cg method and the

standard pcg method without preconditioning (CG) and with preconditioner L = H (PCG) when applied

to a Stokes problem of dimension 59 that was generated by ifiss [5]. We set A0 = 0.5A and S0 = I.

The matrix P was constructed such that P−1K has good convergence properties but we have no reason

to expect that HP−1K will also have good convergence properties. We would therefore expect that the

Bramble-Pasciak and pcg methods will outperform the unpreconditioned pcg method: Figure 1 confirms

our prediction. As expected, when the preconditioner L = H is used within pcg the convergence curve

is almost identical to that of the Bramble-Pasciak cg method (the slight deviation is due to round-off

error).

4 Using the reformulation

In Sections 2 and 3, we illustrated that different methods for solving saddle-point problems can be presented

within the same framework, see (2). Furthermore, we showed that non-standard inner-product cg methods

for solving saddle-point systems can be reformulated as standard pcg methods. In this section, we will

review the properties of the Forsgren, Gill and Griffin method and derive a Bramble-Pasciak-style method

that may have similar convergence properties. Our new method allows us to relax the assumption that C

is symmetric and positive definite which is required in the Forsgren, Gill and Griffin approach.

4.1 The method of Forsgren, Griffin and Gill (FGG)

Forsgren, Gill and Griffin [9] work with a saddle-point problem of the general form

K(ν)

[
x

y

]
≡

[
A + (1 + ν)BT C−1B −νBT

−νB νC

] [
x

y

]
=

[
b + (1 + ν)BT C−1g

−νg

]
(9)

where ν ∈ R and, as we have already observed, K(ν) ≡ K(1, 0, (1 + ν)C−1, 0) in our general setting.

We emphasize the fact that C must be definite in this formulation. The case ν = −1 gives the standard
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Figure 1: Bramble-Pasciak cg unpreconditioned cg for HP−1Kz = HP−1d, and pcg for HP−1Kz =

HP−1d with preconditioner H for a Stokes problem of dimension 59.

saddle-point formulation, ν = 0 a condensed system which is equivalent to the Schur-complement method

for finding the solution, and ν = 1 the doubly augmented system with matrix

K(1) =

[
A + 2BT C−1B −BT

−B C

]
. (10)

Note that K(ν) is positive definite if A + BT C−1B > 0, C > 0 and ν > 0. In addition, a general

preconditioner

M(ν) =

[
G + (1 + ν)BT C−1B −νBT

−νB νC

]
(11)

is introduced, where G is an approximation to A and G+BT C−1B > 0. Again, M(ν) represents different

preconditioners for different instances of ν. In practice it is often useful to use the decomposition

[
G + (1 + ν)BT C−1B −νBT

−νB νC

]
=

[
I (1 + ν)BT C−1

0 −νI

] [
G BT

B −C

]

to solve a system with the preconditioner M(ν). Note that the first factor here is easily inverted and the

second factor is in the form of a constraint preconditioner ( [?]). The eigenvalues of the preconditioned

system M(ν)−1K(ν) are independent of ν and are given by the eigenvalues of

(G + BT C−1B)−1(A + BT C−1B) (12)

together with m unit eigenvalues. Therefore, in exact arithmetic, convergence is given in at most n + 1

steps.

4.2 A Bramble-Pasciak-like approach

In this section, we show the equivalence of the method proposed by Forsgren et al. and a Bramble-Pasciak-

like method. Multiplying K by -1 and block-symmetrically permuting its rows (and columns) we obtain

7



a matrix of the form

K =

[
C −B

−BT −A

]
.

Applying Bramble-Pasciak to this matrix we obtain

H =

[
C − C0 0

0 A0

]
and P =

[
C0 0

−BT −A0

]
,

where A0 and C0 are symmetric and nonsingular. Removing the permutation and multiplication we obtain

the preconditioner

P =

[
A0 BT

0 −C0

]
with P−1 =

[
A−1

0 A−1
0 BT C−1

0

0 −C−1
0

]
(13)

and the bilinear form matrix

H =

[
A0 0

0 C − C0

]
. (14)

It is easy to show that HP−1K is symmetric (i.e., P−1K self-adjoint in the bilinear form given by H) and

that

HP−1K = K(1, 0, C−1
0 , 0).

Thus, if C is positive definite and C0 = 1
1+ν

C, we obtain the FGG reformulation (see Section 2).

We stress the fact that the FGG method assumes that the matrix C is definite whereas the derivation

of Bramble-Pasciak-like method does not require this assumption.

Typically, the properties of A and C depend on the underlying application. We will now discuss some

of the common cases. Since, as we noted in Section 3, the iteration is applied implicitly to a system with

matrix P−1K, and as the eigenvalues of such a matrix influence convergence, we analyze the eigenvalues of

the matrix P−1K for various choices of A0 and C0. If A0 and C0 can be chosen such that H and HP−1K

are positive definite, then this would enable us to solve (1) by applying pcg (with preconditioner H) to

the equivalent system (8). Using H as the preconditioner enables us rewrite the method in the style of a

non-standard inner-product cg method (Algorithms 1 and 2 in Section 3).

If H is symmetric and positive definite, but HP−1K is symmetric but not positive definite, then we

cannot reliably apply the cg method. However, we may solve (8) by applying minres [20] and using H

as the preconditioner. In a similar manner to that employed in Section 3, we can show that the iterates

generated are equivalent (in exact arithmetic) to those of the H−minres method defined in [27]. Another

possibility is to use the itfqmr method of Freund [10] where a simplified version of the nonsymmetric

Lanczos process is used based on the identity HP−1K = KP−T H. An implementation of itfqmr is

given in [27] - the itfqmr method is also known as simplified qmr or sqmr.

In the case of the block C being positive semi-definite, e.g. C = 0, we can use H-minres whenever

H is positive definite and itfqmr whenever HP−1K = KP−T H holds.

4.2.1 C positive definite

The case where C is positive definite can sometimes be found in optimization [9] (as well as other areas

[1]) and usually occurs because of some explicit regularization [22]. Optimality conditions imply that

A + BT C−1B should be positive definite. Suppose that we set C0 = C, then the eigenvalues of P−1K are

given by the following theorem:

Theorem 4.1. Let

K =

[
A BT

B −C

]
and P =

[
A0 BT

0 −C

]

with nonsingular A0 and C. Then P−1K has

• m eigenvalues at 1,

8
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Figure 2: Eigenvalue distribution for P (ν)−1K(ν) and P−1K, where C0 = C and A0 = G + BT C−1B.

• the remaining n eigenvalues are defined by the generalized eigenvalue problem
(
A + BT C−1B

)
x = λA0x.

Proof. It is straightforward to show that

P−1K =

[
A−1

0

(
A + BT C−1B

)
0

−C−1B I

]
.

Hence, there are m eigenvalues equal to 1 and the remaining eigenvalues satisfy
(
A + BT C−1B

)
x = λA0x.

Note that if A0 = G + BT C−1B, then P−1K will have the same eigenvalues as M(ν)−1K(ν), where

K(ν) and M(ν) are defined by equations (9) and (10), respectively. We confirm these results by considering

the matrix CVXQP3 S of dimension 175 taken from the CUTEr [15] test set and comparing the eigenvalues

of M(ν)−1K(ν) and P−1K, see Figure 2. In this example, C = I and G = diag(A).

However, if C0 = C, then H in (14) will be singular and, therefore, Algorithms 1 and 2 may breakdown.

Suppose that we instead choose C0 = (1 + ν)−1C, where ν 6= −1. If A0 is chosen to be a symmetric and

positive definite matrix, H will be symmetric and positive definite if and only if ν > 0 or ν < −1. Applying

Corollary 2.3 with σ = 1, D = 0, E = C−1
0 , and F = 0, we find that HP−1K is positive definite if and

only if A + BT C−1B and C−1
0 − C−1 are both positive definite. If C0 = (1 + ν)−1C, then C−1

0 − C−1

is positive definite if and only if ν > 0. This confirms the result by Forsgren et al. that K(ν) is positive

definite if A + BT C−1B > 0 and ν > 0, see Section 4.1. Theorem 4.2 provides results on the eigenvalues

of the resulting matrix P−1K :

Theorem 4.2. Let B have rank r > 0 and Z ∈ R
n×(n−r) be such that its columns span the nullspace of

B. Additionally, let

K =

[
A BT

B −C

]
and P =

[
A0 BT

0 −(1 + ν)−1C

]

9



with nonsingular A0 and C, where ν 6= 0 and ν 6= −1. Suppose that the generalized eigenvalue problem

ZT AZxz = λZT A0Zxz has j (0 ≤ j ≤ n − r) eigenvalues equal to 1 + ν. Then P−1K has

• at least j eigenvalues at 1 + ν,

• the remaining eigenvalues satisfy the quadratic eigenvalue problem

λ2A0x − λ
(
A + (1 + ν)

(
A0 + BT C−1B

))
x + (1 + ν)

(
A + BT C−1B

)
x = 0

subject to λ 6= 0 and λ 6= 1 + ν.

Proof. Assume that
(
λ,

[
xT yT

]T
)

represents an eigenpair of P−1K. Then

Ax + BT y = λ
(
A0x + BT y

)
, (15)

Bx − Cy = −
λ

1 + ν
Cy. (16)

(17)

Let λ = 1 + ν. Equation (16) implies that Bx = 0. Let Z ∈ R
n×(n−r) be such that its columns span

the nullspace of B and Y ∈ R
n×r be such that its columns span the range of the columns of BT . If

x = Y xy + Zxz, then Bx = 0 implies that xy = 0. Premultiplying (15) by
[

Y Z
]T

and substituting in

x = Zxz we obtain

Y T AZxz + (BY )
T

y = (1 + ν)
(
Y T A0Zxz + (BY )

T
y
)

, (18)

ZT AZxz = (1 + ν) ZT AZxz.

Hence, xz 6= 0 if and only if 1 + ν is an eigenvalue of the generalized eigenvalue problem ZT AZxz =

λZT A0Zxz. Given such an xz, y can be defined using (18).

Let λ 6= 1 + ν. Equation (16) implies that

y =
1 + ν

1 + ν − λ
C−1Bx.

Substituting this into (15) an rearranging we obtain the quadratic eigenvalue problem

λ2A0x − λ
(
A + (1 + ν)

(
A0 + BT C−1B

))
x + (1 + ν)

(
A + BT C−1B

)
x = 0.

This completes the proof.

Figure 3 shows the eigendistribution for M(ν)−1K(ν) and P−1K, where ν = 0.1, C0 = (1 + ν) C and

A0 = diag(A) + BT C−1B. The eigenvalues predicted by Theorem 4.2 are also plotted. As before, we

consider the matrix CVXQP3 S from the CUTEr test set with C = I.

In the case where a factorization of A0 = G + BT C−1
0 B should be avoided, it may be helpful to

decompose the matrix P as

P =

[
G + BT C−1

0 B BT

0 −C0

]
=

[
G BT

B −C0

] [
I 0

C−1
0 B I

]
.

Forsgren et al. recommend a similar trick for their method, see Section 4.1.

4.2.2 A positive definite and C positive semi-definite

If A is positive definite, then we may let A0 = A; the analysis presented here is not based on the assumption

that C is positive definite. The eigenvalues of P−1K are defined by Theorem 4.3.
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Figure 3: Eigenvalue distribution for M(ν)−1K(ν), P−1K, and the distribution predicted by Theorem 4.2,

where ν = 0.1, C0 = (1 + ν) C and A0 = G + BT C−1B.

Theorem 4.3. Let

K =

[
A BT

B −C

]
and P =

[
A0 BT

0 −(1 + ν)−1C

]

where A is positive definite, C0 is symmetric and (positive or negative) definite, and C−C0 is nonsingular.

Then P−1K has

• n eigenvalues at 1,

• the remaining m eigenvalues are defined by the generalized eigenvalue problem

(
C + BA−1BT

)
y = λC0y.

Proof. Assume that
(
λ,

[
xT yT

]T
)

represents an eigenpair of P−1K. Then

Ax + BT y = λ
(
Ax + BT y

)
(19)

Bx − Cy = −λC0y. (20)

Let λ = 1. Equation (19) trivially holds. Equation (20) implies that

Bx = (C − C0) y.

By assumption, C − C0 is nonsingular and, hence, there are n linearly independent eigenvectors of the

form [
x

(C − C0)
−1

Bx

]

associated with λ = 1.
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Let λ 6= 1. Equation (19) implies that Ax+BT y = 0. Therefore, x = −A−1BT y. Substituting this into

(20) gives the generalized eigenvalue problem

(
C + BA−1BT

)
y = λC0y.

This completes the proof.

As a result the convergence of the Bramble-Pasciak-like setup with A0 = A is given in at most m + 1

steps. If C + BA−1BT and C0 are both positive definite, then all of the eigenvalues of P−1K will be

positive, however, C0 must be chosen such that C − C0 is positive definite in order to guarantee that H

is positive definite. If C + BA−1BT is positive definite and C0 is negative definite, then P−1K will have

m negative eigenvalues.

The case of A definite and C semi-definite typically occurs when working with the mixed finite element

formulation of the Stokes problem, see [6]. Such examples can be easily generated using the ifiss package

(cf. [5]). Instead of setting A0 = A, A0 is generally chosen to be a symmetric and positive definite

approximation to A, e.g. an Incomplete Cholesky decomposition and C0 an approximation to the positive

or negative Schur-complement. A more general analysis for arbitrary choices of A0 and C0 could be

performed in the same manner as that in [29]. However, this does not appear to produce useful bounds

for the eigenvalues.

4.2.3 Neither A nor C are positive definite

The case where neither A nor C are positive definite is a more severe case since we cannot set A0 = A

or C0 = 1
1+ν

C and expect to obtain a positive definite matrix H. One remedy is to modify A so that the

result is positive definite. This may either be achieved during an attempted sparse factorization of A by

suitable modifications to its diagonal entries [7,11] or by modifying the 1× 1 and 2× 2 diagonal blocks of

a computed sparse indefinite factorization, see [4, 23,24] and [12, Section 4.4.2.2].

5 Numerical Experiments

In this section, we provide examples to show how the Bramble-Pasciak like method can be applied to

different problems. The examples in this section are taken either from the CUTEr [15] test set or are

generated using the ifiss software package [5]. We will again use the structure presented in Section 4.2

where different setups of the original matrix are analyzed. The methods we compare in this section are

the cg of Forsgren, Gill and Griffin (when applicable, Section 4.1) and the Bramble-Pasciak-like cg. We

will also compare minres [6, 20] where the preconditioner is defined as the block-diagonal matrix

P =

[
A0 0

0 M0

]
,

where M0 is a given matrix, and H−minres (Section 4.2).

C positive definite

In this example, we consider the matrix CVXQP1 M from CUTEr which is of size 1500 × 1500. C will

either be the identity matrix or a diagonal matrix with entries of the form 10−k on the diagonal where

2 ≤ k ≤ 10. We set M0 = 0.9C, C0 = M0, and A0 = diag(A)+BT C−1
0 B. The right-hand side is such that

z is the vector of all ones. The results for the Bramble-Pasciak-like setup and the Forsgren-Gill-Griffin

method are shown in Figure 4 and Figure 5. Throughout this section, we compare the relative residuals,

where the size of the residual is measured by with the Euclidean norm.
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Figure 4: Comparison of the FGG method and the Bramble-Pasciak-like cg method (BPL) method for

the matrix CVXQP1 M with C = I.
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Figure 5: Comparison of the FGG method and the Bramble-Pasciak-like cg method (BPL) method for

the matrix CVXQP1 M with a random diagonal and positive definite matrix C.
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Figure 6: Comparison of the H-minres method, the Bramble-Pasciak-like cg method (BPL) and the

preconditioned minres method for the backward-facing step.

It can be seen that, for these two choices of C, the performance of the Bramble-Pasciak-like method

is very similar to that of by the FGG method. It should be noted that if the decomposed form of the

Bramble-Pasciak-like preconditioner (see Section 4.2) and the FGG preconditioner (see Section 4.1) are

used, we would expect similar timings for each iteration.

A positive definite

The examples we consider in this section are generated using ifiss to discretize the Stokes problem with

mixed finite elements: this provides a configuration where A is positive definite and C is positive semi-

definite, see [6]. The first test matrix is of size 6659× 6659 and describes the flow over a backward-facing

step. The matrix A0 is taken to be the incomplete Cholesky factorization with zero fill-in [21]. A matrix

M0 is generated by ifiss to be the positive-definite pressure mass matrix. It can be seen from the results

in Figure 6 that the Bramble-Pasciak-like cg method (with C0 = M0) is initially outperformed by the

H-minres method (with C0 = −M0) and the standard preconditioned minres method. However, the

latter two methods then almost stagnate for a large number of iterations (in terms of the Euclidean norm

applied to the residual) and, hence, the Bramble-Pasciak-like cg method reaches the desired relative

tolerace of 10−6 in significantly fewer iterations. We note that the Bramble-Pasciak-like method might

breakdown but we observe good behaviour for this problem.

The second test matrix is of size 9539 × 9539 and describes the flow over a channel domain [6]. The

matrix A0 is chosen such that A0 = .9A and M0 is again generated by ifiss as the positive-definite

pressure mass matrix. The results given in Figure 7 show that the Bramble-Pasciak-like cg method (with

C0 = M0) out performs the H-minres method (with C0 = −M0) and preconditioned minres. We note

that the Bramble-Pasciak-like method is not guaranteed to work for this example but, again, we observe

good results.
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Figure 7: Comparison of the H-minres method, the Bramble-Pasciak-like cg method (BPL) and the

preconditioned minres method for the flow over the channel domain.

A indefinite and C semi-definite

In this example, we again consider examples from the CUTEr testset where the block A is typically

indefinite with zero eigenvalues and the matrix C is positive semi-definite. In [9] it is assumed that the

matrix C if semi-definite has a zero block in the lower corner. In order guarantee this structure for real

world examples some preprocessing might be necessary. We present an example where we again consider

the CUTEr matrix CVXQP1 M with the block

C =

[
Ĉ 0

0 C̃

]
∈ R

m×m

where Ĉ is a matrix with eigenvalues at zero and C̃ is generated using the MATLAB command

1e-1*sprandsym(p,.1)+1e1*speye(p);

with p = m − 3.

We set A0 to be the modified Cholesky preconditioner of A, as presented in Section 4.2.3, and then

create a Schur-complement type matrix M0 = C + BA−1
0 BT . Note that we can always reliably apply

H−minres when C0 = −M0. We will also provide results for the Bramble-Pasciak-like method with

C0 = M0 (which is not guaranteed to work in the case of semi-definite C) and results using itfqmr for

the choice C0 = M0. From the results given in Figure 8, it can be observed that preconditioned minres
needs more iterations than the other methods to achieve the given relative tolerance of 10−6. The other

methods all perform similarly and converge in a couple of iterations.

The second example in this section is again taken from CUTEr. In particular, we use the matrix

CONT050 which is of size 4998 × 4998. The setup for C is the same as for CVXQP1 M and we again

compute a modified Cholesky matrix A0 for A which we then use to generate a Schur-complement-type

matrix C0 = C + BA−1
0 BT . The results are shown in Figure 9.

15



0 2 4 6 8 10 12
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

iterations

re
la

tiv
e 

re
si

du
al

 

 

H−MINRES
BPL
MINRES
ITFQMR

Figure 8: Comparison of the H-minres method, the Bramble-Pasciak-like cg method (BPL), the it-
fqmr method and the preconditioned minres method for the matrix CVXQP1 M with indefinite A

and semi-definite C.
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Figure 9: Comparison of the H-minres method, the Bramble-Pasciak-like cg method (BPL), the it-
fqmr method and the preconditioned minres method for the matrix CONT050 indefinite A and

semi-definite C.
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6 Conclusions

We have presented a reformulation of the saddle-point problem which represents a framework for many

well known solution methods for such problems. We have employed this structure to introduce a Bramble-

Pasciak-like method related to a constraint preconditioning technique. We have illustrated that competitive

results are obtained when applying this method to problems arising in Optimization.
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Appendix A Proofs

Let

σK−1 +

[
D FT

F E

]
=

[
Ω1 ΩT

2

Ω2 Ω3

]
,

for given values of Ω1, Ω2 and Ω3. We may factorize this as

[
Ω1 ΩT

2

Ω2 Ω3

]
=

[
I ΩT

2 Ω−1
3

0 I

] [
Ω1 − ΩT

2 Ω−1
3 Ω2 0

0 Ω3

] [
I 0

Ω−1
3 Ω2 I

]
. (21)
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Using Sylvester’s law of inertia, σK−1 +

[
D FT

F E

]
is positive definite if and if Ω3 and Ω1 − ΩT

2 Ω−1
3 Ω2

are both positive definite.

Equivalently, we may use the factorization

[
Ω1 ΩT

2

Ω2 Ω3

]
=

[
I 0

Ω2Ω
−1
1 I

] [
Ω1 0

0 Ω3 − Ω2Ω
−1
1 ΩT

2

] [
I Ω−1

1 ΩT
2

0 I

]
. (22)

Using Sylvester’s law of inertia, σK−1 +

[
D FT

F E

]
is positive definite if and if Ω1 and Ω3 − Ω2Ω

−1
1 ΩT

2

are both positive definite.

If A is nonsingular, then

K−1 =

[
A−1 − A−1BT S−1BA−1 A−1BT S−1

S−1BA−1 −S−1

]
,

where S = C + BA−1BT . Use of factorization (21) completes the proof of Corollary 2.2.

If C is nonsingular, then

K−1 =

[
S−1 S−1BT C−1

C−1BS−1 C−1BS−1BT C−1 − C−1

]
,

where S = A + BT C−1B. Use of factorization (22) completes the proof of Corollary 2.3.

If C = 0, the columns of Z ∈ R
n×(n−m) span the nullspace of B, and B† be the Moore-Penrose inverse

of B, then

K−1 =

[
ZS−1ZT

(
I − ZS−1ZT A

)
B†

B†T
(
I − AZS−1ZT

)
B†T

(
AZS−1ZT A − A

)
B†

]
,

where S = ZT AZ. Use of factorization (22) completes the proof of Corollary 2.4.
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