

GUIDELINES

FOR PERSISTENTLY IDENTIFYING SOFTWARE

USING DATACITE

A JISC RESEARCH DATA SPRING PROJECT

Version 1.0

Ian Gent, University of St Andrews; Catherine Jones, Science and

Technology Facilities Council and Brian Matthews, Science and

Technology Facilities Council.

September 2015

Contents
1. Introduction ... 1

1.1. Scope .. 2

2. What is software? ... 2

2.1. A Model of Software Entities .. 2

3. Issues in persistently identifying software.. 4

3.1. What are you identifying? ... 4

3.2. Build and runtime environment .. 5

4. Recommendations for DataCite Metadata fields ... 6

4.1. DataCite mandatory fields .. 6

4.1.1. DataCite optional fields ..10

Page | 1

1. Introduction
Software underpins the academic research process, regardless of discipline. With the increased

focus on the long term value of data and other research outputs, more attention needs to be

paid to how software used in these processes is both identified and preserved for the long term

as much data are meaningless without the related software.

Key reasons for persistently identifying software include the following.

 To ensure that others can identify the software used in a specific circumstance; this may be

related to a publication describing the software.

 To enable citation of the software so that appropriate credit can be given to the creators

(rather than using citation of a publication describing the software as a proxy for the

software.)

 To be able to be sure that the correct experiment/software can be rerun to verify results

recorded elsewhere

 To enable the preservation of software, unique identification enables the repository to know

what is in the collection.

 To identify different versions as they would have different persistent identifiers

Many of these reasons are underpinned by the assumption that the software can be found. To

be able to find and reuse software the following types of information may be used. It should be

acknowledged that the discovery metadata doesn’t need to be as detailed as metadata to

enable reuse and that some of this information applies to many types of research output.

 Purpose: what was it designed to do

 Programming language: what is it written in? If the intention is to be able to modify the

retrieved software, then what it is written in, may be a decision in whether it is suitable for

the end-users needs and hence may form part of the search criteria.

 Environment: what tools and operating system will I need to be able to run or modify it?

The end user may be looking for example for a Linux version rather than a windows version.

 Who wrote it: Do I trust them & their organisation?

 Where does it live? Do I trust the software repository, what version does the identifier point

to?

 What license is it issued under? What does this enable me to do with the software?

The purpose of this document is to encourage consistency in the discoverability of software, by

giving guidance to those who are intending to use DataCite DOIs as the persistent identifier

scheme for software.

We note that DataCite DOIs are not the only persistent identifier scheme available; however

there is an increasing use of DataCite DOIs for artefacts and there is acceptance of DOIs in the

academic community due to the use of CrossRefs DOIs for scholarly articles.

Page | 2

1.1. Scope

This document is aimed at those who create or manage software which has the potential to be

long lived but are not necessarily software engineers and those in institutions who support those

developers. We assume that the software produced will be created within the academic domain

to solve/address research issues and so this document doesn’t address commercial software,

whether or not it is used in research. This software may be written by a single person, a sole

developer or PhD student, or it may be written by a team of developers, but it is not

commercially focussed. Much of this software will be written by domain specialists rather than

software engineers and so they may not have had much formal training in software

development best practice. Some of this software will have a short development life span but

yet may make an important contribution to the analysis or understanding of a specific topic.

Other software will have a long life time and have many developers working on it. The unifying

factor is that the software has value to the research community and so needs to be permanently

identified so that it can be unambiguously referenced and accessed.

2. What is software?
To be able to discuss the issues around persistently identifying software, there needs to be a

common understanding of what is meant by the term software. A reasonable starting definition

below is from Wikipedia, and demonstrates the issues around where the application program

stops and the environment needed to run it starts.

“Computer software includes computer programs, libraries and their associated

documentation. The word software is also sometimes used in a more narrow

sense, meaning application software only.”1

In this definition there is nothing explicit about what format the computer software will be in: is it

source code which needs to be compiled/interpreted to be able to use it, is it some form of

running code? Having the source code doesn’t necessarily mean that one will be able to get it

to work without a good understanding of the dependencies and operating system it was

designed for.

Thus digital objects referred to as “software” may have quite different physical manifestations,

and we should be clear what is being referenced using a particular identifier so that user has an

idea of what artefacts are being referenced and how they may be used when accessed. We

propose a model of software entities to assist in describing these artefacts.

2.1. A Model of Software Entities

Software development generally takes place within a project lifecycle of design and release. As

software evolves, changing its scope, functionality and the constraints imposed by the

computing environment, new digital artefacts are made available – as “versions” with particular

features. So while in some circumstances, a user may want to refer to the whole software

1
 https://en.wikipedia.org/wiki/Software Retrieved 12/6/2015

https://en.wikipedia.org/wiki/Software

Page | 3

entity across its lifetime, in other cases, a particular version may be references, supporting a

particular set of characteristics. For example, an

organisation may declare that it supports Microsoft

Word in general, but for a particular document, a

particular version of MS Word may be required.

To aid with distinguishing what software entities

should be persistently identified, the following model

describes different software entities and their

relationships across the lifetime of a software

product. It may be appropriate to assign persistent

identifiers at any and each of these four levels

depending on the use it is designed to support,

though in general it would be acceptable to miss out

some of these entities.

We define four entities reflecting the software

lifecycle as in the diagram above

Product: the top-level conceptual entity

encompassing the whole development and release lifecycle of the software. It is likely to be how

the system may be commonly or informally referred to. Using an identifier at this level may be

appropriate to reference the general concept of a particular software artefact regardless of the

specific version, or the continued use of this software over a long period,. It of use if different

versions are going to be referenced as it can stand as a unifying record.

Version: The version of a software product is a single, coherent release of the product with a

well-defined functionality and behaviour. It usually includes the way in which it interacts with the

computing environment. This level may be needed to identify a specific team of contributors, or

where a particular functionality of the version (which may be different in other versions) is being

referred to. For example, this may be required for validation of results.

Variant: Versions may have a number of variations adapted to different operating environments

(e.g. version of Windows, MacOS or Linux). A software Variant is usually a manifestation of the

product that is adapted for deployment in a specific software operating environment. In this

MANTID EXAMPLE

Mantid is an open source

development for scientific data

analysis used within the

Neutron Scattering community It

assigns DataCite DOIs for

attribution and reuse

There is a product level DOI for

the whole software package
http://dx.doi.org/10.5286/SOFTWARE/

MANTID. Each new version has

new functionality and different

developers and so there is also

a version with its own specific

DOI. e.g.
http://dx.doi.org/10.5286/SOFTWARE/

MANTID3.2.1

The relationships between

these objects are identified in

the DataCite Metadata.

http://dx.doi.org/10.5286/SOFTWARE/MANTID
http://dx.doi.org/10.5286/SOFTWARE/MANTID
http://dx.doi.org/10.5286/SOFTWARE/MANTID3.2.1
http://dx.doi.org/10.5286/SOFTWARE/MANTID3.2.1

Page | 4

case, the functionality of the version is maintained as much as is practical. However, due to the

different behaviours of different platforms, there may be variations in product behaviour, such as

in error conditions and user interaction. This may be the appropriate level to use for validation of

results or emulation.

Instance: An actual occurrence of a software product which is found on a particular

environment or machine is known as an Instance. It may be also referred to as an installation or

deployment. This would be an appropriate level for packaging, citation and so reproduction of

results in a virtual environment.

Note that in this model, the actual physical object which is being referenced by an entity is most

likely to be an aggregation of other objects – i.e. a collection of files which constitute the

software entity itself. These files may be executables, source code, configuration files,

documentation and other objects. The model of software above does not specify in general

what will be in these aggregations; we discuss these issues in the next section.

3. Issues in persistently identifying software
Within a software version or variant, the actual digital artefacts in the aggregation are not

specified, but a user will want to know what digital objects they will access when they

dereference a persistent identifier. In this section, we discuss what is it exactly that is being

identified and what you need to know about the build and runtime environment.

3.1. What are you identifying?

Different users might have different needs for identifying software. One user might wish to refer

to the source code, while the executable might be critical for another. Another might need to

refer to a particular version of an executable (for example with debug information). Yet another

might need to refer to a particular installation of the software, either in general terms (MS

Windows) or very specific terms (the version installed on a particular machine in a particular

office on a particular date.).

Typically software is composed of several items packaged together. These might include binary

files, source code files, installation scripts, libraries, usage documentation, and user manuals

and tutorials. A more complete record may include requirements and design documentation, in

a variety of software engineering notations (for example, UML), test cases and harnesses,

prototypes, even in some cases, formal proofs. These items may have their own persistent

identifiers.

As well as the composite nature of software, it is also a dynamic artefact as new versions are

produced as errors are corrected, functionality changed, and the environment (hardware,

operating system, software libraries) evolves. But earlier versions may still need to be recalled

to reproduce particular behaviour.

Page | 5

3.2. Build and runtime environment

A key aspect of software is the environment it runs in.

This can be the hardware environment, the core

operating system, or other aspects of the environment

such as the programming language used, and installed

packages. Different versions of the same software may

need entirely different environments, platforms or

operating systems as well as changes in the versions of

libraries or programming languages supporting them.

Software run in different environments can be very

different or very similar from the point of view of the

person identifying or citing it, and so we have to provide

the facility to identify it as appropriate. Just as in other

areas, there are many levels of detail that might be

necessary. It might be enough to refer to a Windows,

Mac or Linux version. Or a very fine-grained reference to

a version might be necessary. Similar variation in need of precision exists with hardware, for

example 32- or 64-bit versions. As well as traditional hardware environments, we now

commonly have distributed and virtualised environments, either locally or in clouds. Capturing

complete environment information is a complex task, especially where dependencies are

concerned, however basic information can be identified and added as a starting point.

An example of software set-

up being important is the

difference between Python 2

and Python 3 as they are not

backwards compatible, so

that programs written using

Python 3 will not run in a

Python 2 environment.

Whereas documents created

in Microsoft Word 2003 can

be opened in Word 2010.

Page | 6

4. Recommendations for DataCite Metadata fields
DataCite DOIs have emerged as a solution for persistently identifying a number of research

objects, initially for data, but now including grey literature, theses and software. The metadata

schema that DataCite has developed, in discussion with the research community, must be

flexible enough to accurately cite and describe this wide range of research objects, in a

multitude of disciplines, countries and other contexts.

This section gives guidance on the use of specific DataCite metadata fields when applied to

software. Every piece of software is different and they live in different organisational contexts,

so it is not always possible to give a single piece of guidance which applies to all situations, so

this section has adopted an approach of identifying relevant issues; giving examples of what is

already in use; and highlighting where we feel there is a need for changes to DataCite fields

themselves.

For each property we have identified as having specific uses for software there is a table which

gives the DataCite Description of the property; some discussion, examples and

recommendations as to how it might be applied to software; identification of stakeholders in the

contents of the property; and then some questions for those applying the values to ask

themselves to enable them to reach the best decision for their organisation.

For cross-institutional projects there should be a decision made as to who should issue the DOI

for the software, bearing in mind the long term nature of such a decision. For software there are

alternatives to academic institutions as code repositories also offer this functionality. Curation,

credit and user behaviour should all be taken into consideration.

4.1. DataCite mandatory fields

These fields are those that are required in order to assign a DataCite DOI to any research

object. They form the basis of the citation and are key to discoverability. They are also not

necessarily as straightforward as could be anticipated due to the complexities of describing

software.

DataCite Property Identifier

DataCite Description The Identifier is a unique string that identifies a resource

Purpose This is the DOI itself. After the designated prefix, the issuer
can set the rest of the unique identifier.

Approaches taken include:

 Automatically assigned string

 Indication of issuer/automatically assigned string

 SOFTWARE/Version details

These reflect the differences in scale of issuing.

It is unlikely that the identifier will be used as part of a search
strategy when the item is not known.

Page | 7

Stakeholders ISSUER: Is there a local policy for identification naming
schemes?

Questions How many DOIs for software are going to be issued by the
organisation?
Is the solution scalable?
Are there any existing institutional policies for DOI naming than
need to be followed?
Is it important to you that the DOI has meaning?

DataCite Property Creator

Description The main researchers involved in producing the data, or the
authors of the publication, in priority order.

Purpose To identify the main people responsible for the software to
enable recognition and credit to be given.

The creator of software may not be straightforward to
ascertain, as software has a long life-span and may be worked
on by many people. The point during its development cycle
that the first DOI is given may also affect those identified as
creators.

The creators need to be listed in order of importance, so it
should be clear how this is decided upon. It could be down to
the amount of code contributed, or decided by the level of
input into the design and architecture.

See also the entry on contributors

Examples:

Student project/single developer
In this case, there is a sole developer and so the identity of the
creator is straightforward.

Project team – DOI on first production release
In this case, the DOI is assigned at the point of the first
production release and so the current team should be
straightforward to identify.

Project team- DOI after several years of production
releases
If the first DOI comes a significant time after the original
release then it may be hard to identify all those who
contributed to creating the software. The current release may
have been worked on by a small team but the intellectual
content will have built on the work of others.

To a certain extent, who is credited may depend on the
decisions taken on how future releases may be identified. If

Page | 8

future releases are to be given their own DOI, then a general
“top level” Product may be given a DOI with all creators and
then future releases be they variants/versions/instances only
name those who people have been involved in that object.
This is the approach taken with MANTID

Project team every major version released has a DOI
In this scenario, every version is persistently identified, so that
the creators for each DOI record can reflect those who
contributed to that specific version and the versions can be
connected through relationships.

Stakeholders CREATOR: Will want appropriate recognition and credit.
END-USER: May be used as part of relevance identification
and may form part of a search strategy

Questions Is it obvious who should be credited as a creator?
How important is affiliation?
If subsequent releases/versions will have a DOI, is there a
strategy for ensuring correct attribution?

DataCite Property Title

Description A name or title by which a resource is known.

Purpose Contains the most information in a mandatory field which can
be used by an end-user to locate and then work out what the
resource is.

The title may be obvious but if there are granularity issues then
the title chosen must be distinct from others to enable effective
discrimination between objects..

Recommendation that abbreviations are also put in full.

Stakeholders CREATOR: The title used is part of the “brand” of the software
END-USER: Important piece of information for relevance
decisions and the mandatory title is an important part of the
search retrieval results.

Questions If it a piece of software written by a single person for a specific
project does it actually have a name?
If this title is being used to find software is the official name
different from the common name?
What effective is versioning or branching of code going to have
on the name?
Are there any naming conventions that need to be adhered to?
Will the name used be unique enough for it to be found and
distinguished from other search results?

Page | 9

DataCite Property Publisher

Description The name of the entity that holds, archives, publishes prints,
distributes, releases, issues, or produces the resource. This
property will be used to formulate the citation, so consider the
prominence of the role.

Purpose This will be an organisation or corporate body who is
responsible for releasing the software. It may not be the same
as the issuing body as it may be a specific part of the
organisation. The concept of a Publisher in this context for
academic software is not well established especially if the
code repository/dissemination is done from an institutional
basis

This is used in the citation so it needs to be a meaningful
entity. This may be set by local policy.

Approaches to date include

 Corporate name of project

 Issuing body

 Centre/Body within the issuing body

Stakeholders ISSUER: will have a view on who should be acknowledged as
the Publisher
CREATOR: Depending on how DOIs are assigned the
CREATOR may not have a say in this. However they may
have a view on who should be acknowledged as the Publisher.

Questions Is the publisher set by local policy?
With what body/organisation is the software associated?

DataCite Property
PublicationYear

Description The year when the data was or will be made publicly available.

Purpose Whilst identifying the year in which the DOI is issued is not a
problem, care must be taken to ensure that if there are multiple
versions released in one year, that other DataCite metadata or
information, such as that on the landing page, enables users to
identify the newest one.

Stakeholders ISSUER: may have a local policy

Questions Will there be more than one release per year?
How will the latest release be identified?
Will different releases be linked to each other? How will that be
achieved?

Page | 10

4.1.1. DataCite optional fields

This section does not cover all DataCite optional fields, we have chosen to concentrate on those

which we feel are particularly relevant to software generally.

DataCite Property Subject

Description Subject, keyword, classification code, or key phrase describing
the resource.

Purpose This can be used to add contextual information to the
metadata record which can be used for retrieval.

Adding relevant subject information will depend on the
audience and the purpose of the code. For example if the
software does a specific analysis on specific data, then using a
very detailed subject/keyword would be appropriate. If the
software can be used for multiple purposes, then a more
general term maybe more useful than a list of specific terms.

The additional information could come from an existing
thesaurus or could be a user generated tag/keyword. This may
depend on the user communities' general practice.

Stakeholders END-USER: may be interested in software for a particular
discipline and subject could assist in discovery of this.

Questions What is the purpose of the software?
What additional keywords, not already in the title, would help
users to find this software?
Would using a controlled term from an existing thesaurus help,
or is a tag/keyword better?

DataCite Property Contributor

Description The institution or person responsible for collecting, managing,
distributing, or otherwise contributing to the development of the
resource.

Purpose If this is used, then there is a controlled list of
contributorTypes. Those of specific relevance to software are
discussed below (this is not an exhaustive list):

 ContactPerson

 Distributor and HostingInstitution: If others are involved
in the dissemination of the software or run code
repositories etc, then they may be acknowledged.

 Funder: For software developed under a grant then it is
appropriate to recognise this.

 ProjectLeader, ProjectManager and ProjectMember:
For software which has been developed as part of a
project, then it may be appropriate to acknowledge
others who were not part of the software development
team but contributed to the success of the project.

 RightsHolder: If there is a specific license, then it may

Page | 11

be appropriate to add the rights holder to the record

Stakeholders CREATOR: This enables context and attribution for the
software

Questions Who else should be acknowledged in the DOI?
If the intention is to create multiple DOIs, will the same people
be acknowledged as contributors in all DOIs?

DataCite Property Date

Description Different dates relevant to the work.

Purpose
As well as the publication date, it is possible to add other
specific dates to the metadata. There is a controlled list of
dateTypes. Those of relevance to software are:

 Available: This could be used to denote when open
source software was opened up to Beta testers.

 Issued: This can be used to denote the release of a
version. If the code is being frequently revised/released
then this can help in identifying the latest version.
Updated: This could also be used for version dating,
however as a significant change will lead to a different
DOI being issued, we believe that issued is a better
term

Stakeholders CREATOR: A mechanism to ensure good versioning
information.
END-USER to be able identify the difference between versions
of the software which are published in the same year.

Questions How often will the software have a new release?
Is it likely to be less than a year?
What additional date information will add value to end users?

DataCite Property
ResourceType

Description A description of the resource.

Purpose If this is used then there is an additional term, called
ResourceTypeGeneral, and the possibility of adding further
information.
Possible controlled values for resourceTypeGeneral which
may apply to software in the widest terms:

 InteractiveResource: defined as a resource requiring
interaction with a user. If the DOI points not to source
code, but to a runnable version of the software, then
this may be a more correct term. However it depends
on the use of the resource once found and the end-
users understanding of the term.

 Service: defined as a system which provides value to

Page | 12

the end user. Running the software may well provide a
service, especially if the DOI is pointing to a runnable
resource.

Software: defined as a computer program in source code or
compiled form.

Stakeholders CREATOR to denote the type of resource
END-USER as part of search strategy to locate the correct
resource.

Questions Are these adequate?
How accurately does it describe the object?

DataCite Property relationType

Description Description of the relationship of the resource being registered
(A) and the related resource (B).

Purpose
This enables relationships between other records to be made.
This is particularly important for software which is being
actively developed as each major version will have a different
identifier and thus distinguishing which is the most recent
version may not be straightforward.

Relationships of particular relevance to software are:

Controlled List Values:

 IsContinuedBy and Continues: Forked versions?

 IsNewVersionOf and IsPreviousVersionOf: Denoting
relationships between releases

 IsPartOf and HasPart: If individual modules, parts of
greater system

 IsDocumentedBy and Documents: Information on
documentation

 IsVariantFormOf and IsOriginalFormOf: Could be used
for different versions for different operating
systems/compilers etc

 IsCompiledBy and Compiles is not intended to be used in the
Computing sense of the terms.

Dependencies may need a new relationship type as
References/IsReferencedBy doesn’t have quite the right
connation.

Using the Software Entities Model, we suggest the following
relationships:

- Sub-product DOIs are related to product DOIs using
the DataCite metadata field relationType with value
IsPartOf to substitute isSubProductOf.

- Version DOIs are related to product DOIs using the
DataCite field relationType with value IsPartOf to
substitute isVersionOf.

Page | 13

- Variant DOIs are related to version DOIs or product
DOIs using the DataCite field relationType with value
IsVariantFormOf or IsPartOf to substitute IsVariantOf.

- Instance DOIs are related to variant DOIs or version
DOIs or product DOIs using the DataCite field
relationType with value IsPartOf to substitute
IsInstanceOf.

- Versions DOIs are related to each other, using the
DataCite field relationType with values
IsPreviousVersionOf and isNextVersionOf.

Stakeholders CREATOR: To show the relationships between different
resources to aid in understanding and discovery
END-USER to understand the different related resources.

Questions What relationships are of use to you & the end users?

DataCite Property Format

Description
Technical format of the resource

Purpose
This is a free text field, the recommendation is to use the file
extension of MIME type. Depending on the programming
language used, there are MIME types for the standard
languages, however this is probably not as useful as stating
the language in plain text.

Stakeholders CREATOR: To give information about the format of the
resource
END-USER to be able to understand what tools will be needed
to view and use the resource.

Questions What is the most meaningful value to put in this field?
Is it likely that this field will be used in an automated fashion for
anything? In which case using the formal MIME description
may be appropriate.

DataCite Property Version

Description The version number of the resource.

Purpose
The recommended practice is to assign a new DOI for a major
change of version. Good software engineering practice has
always tracked changes and given them version numbers. It is
recommended that this field is used for this as standard
practice.

The description field can be used to add a textual description
of the change.

Stakeholders CREATOR: To identify the resource precisely
END-USER to be able to distinguish versions from each other

Questions Does your software have a version number?

Page | 14

What numbering scheme are you going to use?
Has the way the software is versioned changed? How will that
be identified?
If the software forks how will the versioning identify this?

DataCite Property Rights

Description Any rights information for this resource.

Purpose
Ensure that the rights/license is explicit.

Stakeholders CREATOR: To assert rights on the software
END-USERS: To understand the rights on the software

Questions Have you decided on the license to use for this software?
Is it freely available?
If not is it clear who holds the rights?

DataCite Property Description

DataCite Description All additional information that does not fit in any of the other
categories. May be used for technical information.

Purpose
This enables extra information to be added to the metadata
record.

There is a controlled list of descriptionTypes and currently the
main ones used for software are “Abstract” and “Other”

What is actually entered in these fields falls into four main
categories

 More information about the purpose of the software

 More information on releases

 Information on where the active development is taking
place as code deposited with an article

 No additional information. This field must be part of the
Zenodo requirements and if it is not filled in then a
standard piece of text is added.

Using this field should help potential reusers to discover
whether it is appropriate for their own purposes. It can be used
in the Advanced search on the DataCite search function. So
categories of additional information might include:

 Purpose as the title may not be descriptive enough

 Programming language used and other technical
information

 Code repository where live development is taking
place.

Under the current descriptionTypes then it is recommended to
use Abstract.

Going forward we recommend the adoption of a new
descriptionType of TechnicalInfo. We also suggest whether

Page | 15

summary would be more appropriate than Abstract.

Stakeholders END-USERS: This would be used for discovery of the software
and to assist in end users assessing relevance of the software
to them.

Questions What information would someone need to know to make a
decision about whether to use the software without accessing
the digital object.

