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On using Cholesky-based factorizations for solving rank-deficient

sparse linear least-squares problems
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ABSTRACT

By examining the performance of modern parallel sparse direct solvers and exploiting our knowledge of the

algorithms behind them, we perform numerical experiments to study how they can be used to efficiently

solve rank-deficient sparse linear least-squares problems arising from practical applications. We consider

both the regularized normal equations and the regularized augmented system. We employ the computed

factors of the regularized systems as preconditioners with an iterative solver to obtain the solution of the

original (unregularized) problem. Furthermore, we look at using limited-memory incomplete Cholesky-

based factorizations and how these can offer the potential to solve very large problems.
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1 Introduction

In recent years, a number of methods have been proposed for preconditioning sparse linear least-squares

problems; a brief overview with a comprehensive list of references is included in the introduction to

the paper by Bru et al. [4]. The recent study of Gould and Scott [20, 21] reviewed many of these

methods (specifically those for which software has been made available) and then tested and compared

their performance using a range of examples coming from practical applications. One of the outcomes of

that study was some insight into which least-squares problems in the widely-used sparse matrix collections

CUTEst [19] and UFL [10] currently pose a real challenge for direct methods and/or iterative solvers. In

particular, it found that most of the available software packages were not reliable or efficient for rank-

deficient least squares problems (at least, not when run with the recommended settings for the input

parameters that were employed in the study). In this paper, we look further at such problems and

focus on the effectiveness of both sparse direct solvers and incomplete factorization preconditioners for

solving them. A key theme is the use of regularization (see, for example, [15, 48, 49]). We propose

computing a factorization (either complete or incomplete) of a regularized problem and then using this as

a preconditioner for an iterative solver to recover the solution of the original (unregularized) problem.

The problem we are interested in is

min
x
‖b−Ax‖2, (1.1)

where A ∈ IRm×n (m ≥ n) is large and sparse and b ∈ IRm. Our focus is on the case where A is not of full

column rank. Solving (1.1) is mathematically equivalent to solving the n× n normal equations

Cx = AT b, C = ATA. (1.2)

A well-known issue associated with solving (1.2) is that the condition number of the normal matrix C

is the square of the condition number of A so that the normal equations can be highly ill-conditioned

[3]. Indeed, if A does not have full column rank, C is positive semidefinite and computing a Cholesky

factorization breaks down, that is, a zero (or, in practice, a negative) pivot is encountered at some stage

of the factorization. In such cases, a black-box sparse Cholesky solver cannot be applied directly to

(1.2). It is thus of interest to consider modifying C by adding a regularization term to allow the use of

a Cholesky solver; this is explored in Section 3 and compared with using a sparse symmetric indefinite

solver for factorizing C. In particular, we look at employing the factors of the regularized normal matrix

as a preconditioner for the iterative method LSMR [14].

An alternative approach is to solve the mathematically equivalent (m+n)× (m+n)augmented system

Ky = c, K =

[
γIm A

AT 0

]
, y =

[
γ−1r(x)

x

]
, c =

[
b

0

]
, (1.3)

where γ > 0, r(x) = b−Ax is the residual vector, and Im denotes the m×m identity matrix. The condition

of K depends upon γ and the maximum and minimum singular values of A; it varies significantly with γ but

with an appropriate choice (see [1, 3, 48]), K is much better conditioned than C. Important disadvantages

of working with (1.3) are that K is indefinite and it is generally significantly larger than the normal matrix.

A sparse direct indefinite solver computes a factorization of K of the form (PL)D(PL)T , where P is a

permutation matrix, L is unit lower triangular and D is block diagonal with 1 × 1 and 2 × 2 blocks on

the diagonal corresponding to 1 × 1 and 2 × 2 pivots (see, for example, [11, 27]). Using an indefinite

solver may result in a more expensive (and certainly more complex) factorization process than a Cholesky

solver and, as reported in [20, 21], for large least squares problems, the amount of memory needed may

be prohibitive. One reason for this is that the analyse phase of most widely-used sparse direct solvers

chooses the pivot order on the basis of the sparsity pattern of the matrix and makes the assumption that

the diagonal is non-zero. When (as in the augmented system) this is not the case, it can be necessary

during the subsequent numerical factorization to make significant modifications to the pivot order, leading

to much higher levels of fill in the factors (entries in the factor L that were zero in the system matrix
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K) than was predicted during the analyse phase (see, for example, [28, 30]). Modifications to the pivot

order are needed when a candidate pivot is found to be unstable. The conditions for deciding whether

a pivot is stable typically depend on a threshold parameter (see Section 2); choosing this parameter is

a compromise between retaining sparsity and ensuring stability. In Section 4, we examine the effects of

relaxing the threshold parameter. We also look at regularizing the problem by modifying the (2, 2) block

of (1.3) before performing the factorization and then using the factors as a preconditioner for an iterative

solver to restore the accuracy in the solution of the original system.

When memory is an issue for a direct solver, an alternative approach is to use an incomplete

factorization preconditioner in conjunction with an iterative solver. Incomplete Cholesky (IC)

factorizations have long been widely used as preconditioners for the numerical solution of large sparse,

symmetric positive-definite linear systems of equations; for an introduction and overview see, for example,

[2, 46, 51] and the many references therein. More recently, a number of authors have considered incomplete

LDLT factorizations of symmetric quasi-definite matrices [39], saddle-point systems [52] and general

indefinite systems [22, 53]. The use of a limited memory IC factorization combined with LSMR to solve

(1.1) is considered in Section 5, and in Section 6 we explore using incomplete LDLT factorizations to solve

the augmented system. Our conclusions are drawn in Section 7.

1.1 Test environment

We end this introduction by describing our test environment and test problems. The characteristics of

the machine used to perform our tests are given in Table 1.1. All software is written in Fortran and all

Table 1.1: Test machine characteristics

CPU Two Intel Xeon E5620 quadcore processors

Memory 24 GB

Compiler gfortran version 4.7 with options -O3 -fopenmp

BLAS open BLAS

reported timings are CPU times in seconds. In our experiments, the direct solvers HSL MA87 and HSL MA97

(see Section 2) are run in parallel, using 8 processors. We do not attempt to parallelize the sparse matrix-

vector products used by the iterative solvers; moreover, the software to compute incomplete factorizations

is serial. In each test, we impose a time limit of 600 seconds per problem. For the iterative methods, the

number of iterations for each problem is limited to 100,000.

Our test problems are taken from the CUTEst linear programme set [19] and the UFL Sparse Matrix

Collection [10]. In each case, the matrix is “cleaned” (duplicates are summed, out-of-range entries and

explicit zeros are removed along with any null rows or columns); details of the resulting test problems are

summarized in Table 1.2. Here the nullity is computed by running HSL MA97 on the augmented system

(1.3) with the pivot threshold parameter set to 0.5 (see Section 2); the reported nullity is the difference

between m+ n and the returned estimate of the matrix rank. Note that this estimate can be sensitive to

the choice of ordering and scaling: HSL MA97 was used with no scaling and the nested dissection ordering

computed by Metis [32]. In our experiments, if a right-hand side b is provided, it is used, otherwise, we

take b to be the vector of 1’s.

We employ the preconditioned LSMR algorithm of Fong and Saunders [14]. Like the more established

LSQR algorithm [41, 42], it is based on Golub-Kahan bidiagonalization of A. However, while in exact

arithmetic, LSQR is mathematically equivalent to applying the conjugate gradient method to (1.2), LSMR

it is equivalent to applying MINRES [40], so that the quantities ‖AT rk‖2 and ‖rk‖2 (where xk and

rk = b−Axk are the least squares solution and residual on the k-th step, respectively) are monotonically

decreasing. Fong and Saunders report that LSMR may be a preferable solver because of this and because

it may be able to terminate significantly earlier. Experiments in [20, 21] confirm this view and support
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Table 1.2: Statistics for our test set. m, n and nnz(A) are the row and column counts and the number

of nonzeros in A. nullity is the estimated deficiency in the rank, density(A) is the largest ratio of number

of nonzeros in a row of A to n over all rows, density(C) is the ratio of the number of entries in C to n2,

and max|Cii| and min|Cii| are the largest and smallest diagonal entries in C. A − denotes insufficient

memory to compute the statistic.

Problem m n nnz(A) nullity density(A) density(C) max|Cii| min|Cii|
CUTEst examples

1. BAXTER 30733 27441 111576 2993 0.0017 0.0016 3.2×105 1.0×10−1

2. DBIR1 45775 18804 1077025 103 0.0119 0.0119 8.5×106 1.0

3. DBIR2 45877 18906 1158159 101 0.0123 0.0069 3.0×106 1.0

4. LPL1 129959 39951 386218 44 0.0004 0.0003 5.4×102 1.0

5. NSCT2 37563 23003 697738 287 0.0273 0.0157 3.8×106 1.0

6. PDS-100 514577 156016 1096002 227 0.0000 0.0001 1.0 1.0

7. PDS-90 475448 142596 1014136 227 0.0000 0.0001 9.8 1.0

UFL Sparse Matrix Collection examples

8. beaflw 500 492 53403 4 0.8130 0.8945 2.2×105 9.5×10−1

9. 162bit 3606 3476 37118 15 0.0040 0.0195 2.5×101 7.2×10−3

10. 176bit 7441 7150 82270 38 0.0022 0.0103 3.7×101 3.0×10−3

11. 192bit 13691 13093 154303 81 0.0012 0.0057 5.4×101 2.5×10−4

12. 208bit 24430 23191 299756 191 0.0008 0.0036 6.6×10−1 1.2×10−4

13. Maragal 6 21251 10144 537694 516 0.5857 0.7491 1.0×101 1.1×10−2

14. Maragal 7 46845 26525 1200537 2046 0.3604 0.3099 1.3×103 1.4×10−2

15. Maragal 8 60845 33093 1308415 7107 0.0503 0.0356 1.9 3.6×10−2

16. mri1 114637 65536 589824 603 0.0037 0.0003 1.3 1.3

17. mri2 104597 63240 569160 - 0.0660 0.0078 1.3 1.3

18. tomographic1 59360 45908 647495 3436 0.0003 0.0009 4.4 4.5×10−4

our choice of LSMR.

Following Gould and Scott [21], in our experiments with LSMR we use the stopping rule

ratio(rk) < δ with ratio(rk) =
‖AT rk‖2/‖rk‖2
‖AT r0‖2/‖r0‖2

. (1.4)

Unless indicated otherwise, we set the convergence tolerance δ to 10−6. Note that (1.4) is independent of

the choice of preconditioner.

When solving the augmented system (1.3) using an indefinite preconditioner, we use right

preconditioned restarted GMRES [47]. Since GMRES is applied to the augmented system matrix K,

the stopping criteria is applied to K. With the available implementations of GMRES, it is not possible

during the computation to check whether the stopping condition (1.4) (which is based on A) is satisfied;

it can, of course, be checked once GMRES has terminated. Instead, in our experiments involving (1.3),

we use the scaled backward error
‖Kyk − c‖2
‖c‖2

< ε, (1.5)

where yk is the computed solution of the augmented system on the k-th step. We set the tolerance ε to

10−7. This stopping criterion is also applied in experiments involving MINRES.

2 Sparse direct solvers

Sparse direct solvers have long been used to solve both the normal equations and the augmented system.

Here we briefly introduce such solvers, highlighting a number of features that are particularly relevant to

understanding their performance when used for rank-deficient least squares problems.
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Sparse direct methods are designed to solve symmetric linear systems Az = f (A = {Ai,j}) by

performing a factorization

A = LDLT ,

where L is a unit lower triangular matrix and D is a block diagonal matrix with non-singular 1 × 1 and

2× 2 blocks. In practice, a more general factorization of the form

SAS = (PL)D(PL)T

is computed, where S is a diagonal scaling matrix and P is a permutation matrix that holds the pivot

order. If A is positive definite, D is diagonal with positive diagonal entries and, in this case, L may be

redefined to be the lower triangular matrix L⇐ LD1/2, giving the Cholesky factorization

SAS = (PL)(PL)T .

For efficiency in terms of both time and memory it is essential to choose P to exploit the sparsity of A.

The structure of the factor L is the union of the structure of the permuted matrix PTAP and new entries

known as fill. The amount of fill is highly dependent on the choice of P . Direct solvers choose P in

an analyse phase that precedes the numerical factorization and generally works solely with the sparsity

pattern of A.

For positive-definite systems, the chosen pivot order can be used unaltered by the numerical

factorization. However, for indefinite systems, it may be necessary to make modifications to maintain

numerical stability. This is done by delaying the elimination of variables that could cause instability until

later in the factorization when the associated pivot (that is, the 1 × 1 or 2 × 2 block used to eliminate

one, respectively, two variables) can be safely used. The exact method used to select pivots during the

numerical factorization varies from solver to solver, but essentially each seeks to avoid dividing a large

off-diagonal entry by a small diagonal one. If the elimination of variable k is delayed, either an update

from another elimination will increase the magnitude of the diagonal entry Ak,k, or column k will become

adjacent to column k + 1 with the property that Ak,k+1 is large and hence can be incorporated into a

stable 2× 2 pivot.

There are several modern sparse direct solvers available for solving positive-definite problems. Some

are designed exclusively for such systems (including CHOLMOD [6] and HSL MA87 [25]) while others can

also be used to solve indefinite systems (notably, MA57 [11], HSL MA97 [27], MUMPS [38], WSMP [23],

PARDISO [43] and SPRAL SSIDS [24]). We employ the packages HSL MA87 and HSL MA97 from the HSL

mathematical software library [31]; an overview of both packages together with a numerical comparison is

provided by Hogg and Scott [29]. HSL MA87 is designed to run on multicore architectures. It splits each part

of the computation into tasks of modest size but sufficiently large that good level-3 BLAS performance can

be achieved. The dependencies between the tasks are implicitly represented by a directed acyclic graph

(DAG). By contrast, HSL MA97 is a parallel multifrontal code that is able to solve both positive-definite

and indefinite systems (although its performance on positive-definite systems is generally not competitive

with that of HSL MA87). In a multifrontal method, the factorization of A proceeds using a succession of

assembly operations of small dense matrices, interleaved with partial factorizations of these matrices. The

assembly operations can be recorded as a tree, known as an assembly tree. The assembly proceeds from

the leaf nodes up the tree to the root node(s). Typically, most of the flops are performed at the root

node and the final few levels of the tree. For the efficient and stable partial factorization of the dense

submatrices, HSL MA97 uses separate computational kernels for the positive-definite and indefinite cases.

For the latter, HSL MA97 employs the sufficient (but not necessary) conditions given by Duff et al. [12] for

threshold partial pivoting to be stable. Let A(k) denote the Schur complement after columns 1, . . . , k − 1

of A have been eliminated, and let u ∈ [0, 0.5] be the pivot threshold. The criteria for stability are:

• a 1× 1 pivot on column k is stable if

max
i>k
|A(k)

i,k | < u−1|A(k)
k,k| (2.1)
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• a 2× 2 pivot on columns k and k + 1 is stable if∣∣∣∣∣∣
(
A(k)
k,k A(k)

k,k+1

A(k)
k+1,k A(k)

k+1,k+1

)−1
∣∣∣∣∣∣
(

maxi>k+1 |A(k)
i,k |

maxi>k+1 |A(k)
i,k+1|

)
≤ u−1

(
1

1

)
, (2.2)

where the modulus of the matrix is interpreted element-wise. Additionally, it is required that the

pivot can be stably inverted.

In the case where u is zero, this is interpreted as requiring that the pivot be nonsingular. Observe that

these conditions imply that each entry in L is bounded in modulus by u−1. The choice of u is a compromise

between stability and sparsity: the larger u is, the more stable the factorize will be but the fill in L may

increase. The default value within HSL MA97 is 0.01 and, unless stated otherwise, this value is used in our

experiments. Note that including pivoting in an indefinite sparse direct solver is necessary for stability

but it has the major disadvantage of hindering parallelism.

Both HSL MA87 and HSL MA97 employ a technique known as node amalgamation. This has become well

established as a means of improving the factorization speed at the expense of the number of entries in

the factor L and the operation counts during the factorization and subsequent solve phase. During the

analyse phase, a child node in the tree is merged with its parent if either both parent and child have fewer

than a prescribed number nemin of variables that are eliminated or merging parent and child generates no

additional nonzeros in L. The value of the parameter nemin determines the level of node amalgamation,

with a value in the range 8 to 32 typically recommended as providing a good balance between sparsity and

efficiency in the factorize and solve phases (see [25, 44]). In our experiments, we set nemin equal to 32.

3 Direct solver as a preconditioner for LSMR

If A does not have full column rank, the normal matrix C = ATA is symmetric and positive semi definite

and thus attempting to compute a Cholesky factorization will suffer breakdown. Breakdown occurs when

a zero (or negative) pivot is encountered; if this happens, a Cholesky solver will terminate the computation

with an error flag. A possibly remedy is to employ a global shift α > 0 and to then compute a Cholesky

factorization of the shifted and scaled matrix

Cα = SATAS + αI. (3.1)

The shift α is also referred to as a Tikhonov regularization parameter. The choice of α should be related

to the smallest eigenvalue of SATAS, but this information is not readily available. Clearly, α wants to be

small; if the initial choice α is too small, it may be necessary to restart the factorization more than once,

increasing α on each restart until breakdown is avoided. If the regularized scaled normal equations

Cαxα = S(C + S−1αIS−1)Sxα = SAT b

are solved, the computed value of the least squares objective ‖rα‖2 = ‖b − ASxα‖2 may differ from

the optimum for the original problem. We can seek to recover the solution x to (1.1) by applying a

refinement process. The standard approach for linear systems is to employ a small number of steps of

iterative refinement. However, iterative refinement is not effective when applied to the normal equations

if the normal matrix is ill conditioned [3]. We thus propose using the Cholesky factors LαL
T
α of Cα as a

preconditioner for LSMR applied to the original (unshifted) problem.

In our experiments, we use l2-norm scaling of the normal matrix, that is, S2
ii = 1/‖Cei‖2 (where ei

is the i-th unit vector) so that each column of C is normalised by its 2-norm. In Figure 3.1, we plot the

number of iterations required by preconditioned LSMR and the total CPU time for problem Maragal 6

using values of the shift α in the range 10−14 to 10−3; here Lα is computed using the positive-definite

solver HSL MA87 with Metis [32] nested dissection ordering. In Table 3.1, we report results for our test

set with α = 10−14. With the l2-norm scaling, it was not necessary to use a larger α for any of our test
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Figure 3.1: The effect of the shift α on the number of LSMR iterations (left) and the CPU time (right)

for problem Maragal 6. HSL MA87 is used to compute a preconditioner for LSMR.

Table 3.1: Results for solving the least squares problem using the Cholesky solver HSL MA87 to compute a

preconditioner for LSMR. The shift is α = 10−14. nnz(Lα) denotes the number of entries in the HSL MA87

factor, time is the total solution CPU time (in seconds), and itn is the number of LSMR iterations. The

value of the least squares objective before and after applying LSMR is ‖rα‖2 and ‖r‖2, respectively. Results

are also given for HSL MA97 run in indefinite mode (with no shift).

Problem HSL MA87 (positive definite) HSL MA97 (indefinite)

nnz(Lα) time ‖rα‖2 ‖r‖2 itn nnz(L) time ‖r‖2
BAXTER 6.83×106 0.32 6.683×101 5.929×101 24 6.95×106 0.44 5.929×101

DBIR1 4.27×106 0.42 1.667×102 1.667×102 1 4.61×106 0.87 1.667×102

DBIR2 4.94×106 0.46 1.665×102 1.665×102 1 4.85×106 0.96 1.665×102

LPL1 7.44×106 0.17 7.088×101 7.088×101 1 7.94×106 0.39 7.088×101

NSCT2 8.81×106 0.79 1.838×102 1.838×102 1 8.44×106 1.96 1.838×102

PDS-100 5.91×107 1.15 2.849×102 2.849×102 1 5.79×107 2.87 2.849×102

PDS-90 5.23×107 0.98 2.685×102 2.685×102 1 5.14×107 2.47 2.685×102

beaflw 1.17×105 0.05 4.346 4.162 7 1.15×105 0.05 4.200

162bit 2.82×106 0.08 1.177×101 1.177×101 1 2.85×106 0.25 1.177×101

176bit 1.02×107 0.33 1.842×101 1.842×101 1 1.03×107 1.37 1.842×101

192bit 2.85×107 1.29 2.485×101 2.485×101 1 2.98×107 5.68 2.485×101

208bit 8.60×107 6.62 3.850×101 3.850×101 1 8.57×107 25.5 3.850×101

Maragal 6 4.96×107 6.79 1.069×101 1.069×101 2 5.06×107 18.1 1.069×101

Maragal 7 1.43×108 22.4 1.369×101 1.369×101 2 1.39×108 44.3 1.369×101

Maragal 8 8.85×107 7.42 2.379×102 2.378×102 26 9.18×107 23.8 2.379×102

mri1 8.27×106 0.17 2.674×101 2.674×101 1 8.79×106 0.65 2.674×101

mri2 3.43×107 1.99 1.413×102 1.413×102 1 3.79×107 5.90 1.413×102

tomographic1 2.96×107 0.70 4.185×101 4.185×101 2 3.27×107 2.58 4.185×101
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examples. We see that, in a many of cases, the requested accuracy is achieved with a single step of LSMR.

We did experiment with running HSL MA97 in positive-definite mode but, as reported in [29], it is generally

slower than HSL MA87.

An alternative to computing a Cholesky factorization and using the factor to precondition LSMR is

to solve the normal equations using a sparse symmetric indefinite direct solver that allows the system

matrix to be singular provided the equations to be solved are consistent. This has the advantage of

not requiring the use of a shift α but because of pivoting, it may be more expensive than performing a

Cholesky factorization. Results for our test problems run with HSL MA97 in indefinite mode are included

in Table 3.1 (using the l2-norm scaling, Metis ordering and threshold parameter u = 0.01). Observe that

the positive-definite solver applied to the scaled and shifted normal equations is faster than the indefinite

solver; in many cases, the former is faster by more than a factor of 2.

4 Solving the augmented system with a direct solver

4.1 Using a direct solver for Ky = c

We now consider applying HSL MA97 to the augmented system (1.3). The computed factorization is

SKS = (PL)D(PL)T ,

with S a diagonal scaling matrix, P a permutation matrix, and D is block diagonal (with 1 × 1 and

2 × 2 blocks). During the factorization of the augmented system, the zero (2, 2) block can lead to many

modifications being made to the pivot order that was chosen by the analyse phase in order to preserve

stability; this is reflected in the number of delayed pivots reported by HSL MA97 (ndelay). It is well known

that for some sparse indefinite problems, the choice of the scaling S can have a significant impact on

reducing the number of delayed pivots and hence the fill in L and overall performance (see, for example,

[26]). When developing HSL MA97, Hogg and Scott studied pivoting strategies for tough sparse indefinite

systems [30]. As no single method works best on all problems, HSL MA97 offers a number of in-built scaling

algorithms that are implemented using auxiliary HSL packages [31]. These options (1) generate a scaling

using a weighted bipartite matching (MC64) [13]; or (2) generate an equilibration-based scaling (MC77)

[45]; or (3) use a matching-based ordering and the scaling that is generated as a side-effect of this process

(MC80); or (4) generate a scaling by minimising the absolute sum of log values in the scaled matrix (MC30).

Note that, with the exception of MC80, these scalings do not exploit the block structure of K but treat

K as a general indefinite sparse symmetric matrix. In addition to the HSL MA97 options, we compute the

l2-norm scaling of K and the l2-norm scaling of A. In the latter case, we set

S =

[
Im

S̃

]
, (4.1)

where S̃ii = 1/‖Aei‖2. We illustrate the effects of scaling on a subset of our problems in Table 4.1. Here

we use the default threshold parameter u = 0.01 and Metis ordering and set the parameter γ = 1 in

(1.3). These examples were chosen because they were found to be sensitive to the scaling; for some of

our other test examples, it had a much smaller effect. Closer examination shows that, if we compute

the diagonal entries of C, the ratio of the largest to the smallest entry for these examples is large (see

Table 1.2), indicating poor initial scaling. As expected, no single scaling gives the best results on all

problems. The matching-based MC64 scaling can lead to sparse factors but it can be slow to compute.

Based on our findings, we use l2-norm scaling of A for our remaining experiments with HSL MA97 applied

to the augmented system and we set γ = 1 ([1]).

Results for solving the augmented system are given in Table 4.2. Compared to employing a direct solver

to factorize the normal equations (Table 3.1), we see that, in general, factorizing the augmented system

with the default threshold parameter u = 0.01 results in significantly more entries in the factors plus

a slower computation time. In some optimization applications (see, for example, [17, 49]), it is common
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Table 4.1: The effects of scaling on the performance of HSL MA97 for solving the augmented system (1.3)

(u = 0.01, Metis ordering, and γ = 1). nnz(L) denotes the number of entries in the factor, ndelay is

the number of delayed pivots, time is the total solution CPU time (in seconds). l2(K) and l2(A) denote

l4-norm scaling of K and A, respectively. For each problem, the sparsest factors and fastest times are in

bold.

Problem Scaling nnz(L) ndelay time

BAXTER none 8.36×106 2.74×104 0.50

MC30 1.62×106 5.66×103 0.24

MC64 1.13×106 1.08×103 0.26

MC77 2.12×106 6.00×103 0.29

MC80 1.49×106 1.37×102 0.27

l2(K) 5.72×106 2.00×104 0.38

l2(A) 1.38×107 3.41×104 0.73

DBIR1 none 9.79×107 1.73×105 47.6

MC30 1.16×108 1.88×105 52.6

MC64 9.02×106 5.02×103 1.44

MC77 1.58×108 2.33×105 140

MC80 2.03×107 3.93×104 3.62

l2(K) 1.05×108 1.80×105 62.1

l2(A) 8.76×106 1.12×103 1.15

DBIR2 none 1.23×108 1.23×105 26.6

MC30 2.68×107 3.37×104 3.79

MC64 8.54×106 4.00×102 1.41

MC77 1.33×108 1.27×105 61.2

MC80 1.96×107 1.12×104 3.17

l2(K) 1.00×108 1.04×105 18.5

l2(A) 8.85×106 9.62×102 1.14

Table 4.2: Results for solving the augmented system (1.3) using the direct solver HSL MA97 with threshold

parameter u set to 0.01 and 10−8. nnz(L) denotes the number of entries in the factor, ndelay is the

number of delayed pivots, time is the total solution CPU time (in seconds), and the value of the least

squares objective is ‖r‖2.

Problem u = 0.01 u = 10−8

nnz(L) ndelay time ‖r‖2 nnz(L) ndelay time ‖r‖2
BAXTER 1.38×107 3.41×104 0.73 5.929×101 1.49×106 4.75×103 0.22 5.929×101

DBIR1 8.76×106 1.12×103 1.15 1.667×102 8.75×106 1.08×103 1.13 1.667×102

DBIR2 8.85×106 9.62×102 1.13 1.665×102 8.46×106 1.11×102 1.12 1.665×102

LPL1 1.45×107 4.34×103 1.02 7.088×101 1.38×107 3.0 0.97 7.088×101

NSCT2 1.07×107 5.73×103 0.79 1.838×102 7.60×106 1.05×103 0.69 1.838×102

PDS-100 1.05×108 0.0 6.67 2.849×102 1.05×108 0.0 6.61 2.849×102

PDS-90 1.00×108 0.0 8.06 2.685×102 1.00×108 0.0 8.07 2.685×102

beaflw 2.65×105 2.95×102 0.05 4.162 2.51×105 6.70×101 0.03 4.162

162bit 4.25×106 3.42×102 0.33 1.177×101 4.23×106 1.59×102 0.31 1.177×101

176bit 1.52×107 2.33×103 2.07 1.842×101 1.50×107 1.07×103 1.98 1.842×101

192bit 4.51×107 9.00×103 7.85 2.485×101 4.44×107 3.80×103 7.59 2.485×101

208bit 1.30×108 2.45×104 44.1 3.850×101 1.28×108 1.09×104 42.1 3.850×101

Maragal 6 2.30×107 4.18×104 3.02 1.069×101 2.30×107 4.17×104 2.75 1.069×101

Maragal 7 7.03×107 3.48×104 9.32 1.369×101 7.03×107 3.47×104 8.41 1.369×101

Maragal 8 1.75×108 2.92×105 89.2 2.378×102 1.77×108 2.89×105 58.0 2.379×102

mri1 1.71×107 1.70×104 1.42 2.674×101 1.65×107 1.48×104 1.33 2.674×101

mri2 1.48×108 1.79×105 74.7 1.413×102 1.44×108 1.75×105 38.7 1.413×102

tomographic1 5.10×107 7.62×104 5.98 4.185×101 4.68×107 6.00×104 4.78 4.185×101
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practice to try and make the factorization of indefinite systems more efficient in terms of time and memory

by employing a relaxed threshold parameter u and to only increase u if the linear system is not solved

with sufficient accuracy. Thus in Table 4.2 we also include results for u = 10−8. With the exception of

problems BAXTER and NSCT2, this gives only a modest reduction in the number of entries in the factors and

in the number of delayed pivots but there can be a significant reduction in the time (including problems

Maragal 8 and mri2). Further examination reveals that pivots are still being rejected at the non-root

nodes and passed up the assembly tree to the root node, where a dense factorization is performed. The

delayed pivots result in the root node being much larger than was predicted by the analyse phase and, in

this case, the factorization of the root node accounts for most of the operations and time. Using a small

value of the threshold parameter significantly reduces the time for the root node factorization and it is

this that leads to the overall reduction in the time.

4.2 Regularized augmented system

To attempt to reduce the number of entries in the factors of the augmented system resulting from delayed

pivots, we consider the regularized system

Kβyβ = c, Kβ =

[
Im A

AT −Inβ

]
, yβ =

[
r(xβ)

xβ

]
, c =

[
b

0

]
, (4.2)

where r(xβ) = b − Axβ and β > 0 (see, for example, [16, 48]). This a symmetric quasi-definite (SQD)

system. Vanderbei [55] shows that, in exact arithmetic, SQD systems are strongly factorizable, i.e., a

signed Cholesky factorization of the form LDLT (with D diagonal having both positive and negative

entries) exists for any symmetric permutation P . Thus P can be chosen to maintain sparsity. However,

the signed Cholesky factorization may be unstable. A stability analysis is given by Gill et al. [17] (see

also [15, 18]), which shows the importance of the effective condition number of Kβ for the stability of the

factorization.

We note that other regularizations of the augmented system have been proposed. In particular,

Saunders [48, 49] and George and Saunders [15] use the SQD matrix

Kβ1β2 =

[
Imβ1 A

AT −Inβ2

]
,

with β1, β2 > 0 and in their experiments they set β1 = β2 = 10−6. Saunders suggests that this may be

favorable when A is ill-conditioned.

We apply our sparse symmetric indefinite solver HSL MA97 to the scaled regularized augmented matrix

SKβS with the threshold parameter u set to 0.0 and S given by (4.1). With this choice, there may still

be a small number of delayed pivots. This is because if the candidate pivot is zero or very small with

a “large” off-diagonal entry, the pivot must be delayed (thus the permutation P from the analyse phase

may change during the factorization). With β > 0, the computed value of the least squares objective

‖rβ‖2 = ‖b− AS̃xβ‖2 may differ from the optimum for the original problem and if the stopping criterion

(1.4) is not satisfied, we propose using the factors as a preconditioner for an iterative method [15]. Here we

use right preconditioned GMRES applied to the original augmented system (1.3). An alternative would

be to use the symmetric solver MINRES [40]. This requires a positive definite preconditioner and so we

could employ the method presented by Gill et al. [16] to modify Dβ and Lβ (this approach has been used

recently by Greif et al. [22]).

Our results using GMRES are given in Figure 4.1 and Table 4.3. The figure looks at the effects of

varying the regularization parameter β on the number of iterations and the solution time for problem

Maragal 6. As β increases, so too do the iteration count and time. For the results in Table 4.3, we set

β = 10−8. In our experiments, this gives no delayed pivots. While the precise choice of β is not important,

if β is “too small”, some pivots may get delayed and the factorization is less stable, resulting in more

GMRES iterations being needed for the requested accuracy than for a larger β. Comparing Tables 4.2
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Figure 4.1: The effect of the regularization parameter β on the number of GMRES iterations (left) and

the CPU time (right) for problem Maragal 6 (threshold u = 0.0).

Table 4.3: Results for solving the regularized augmented (SQD) system with β = 10−8 using the direct

solver HSL MA97 with threshold parameter u = 0.0. nnz(Lβ) denotes the number of entries in the factor,

timef and timet are the HSL MA97 and total solution CPU times (in seconds), the value of the least squares

objective before and after applying preconditioned GMRES is ‖rβ‖2 and ‖r‖2, respectively, and itn is the

number of GMRES iterations.

Problem nnz(Lβ) timef timet ‖rβ‖2 ‖r‖2 itn

BAXTER 1.07×106 0.22 1.84 7.496×101 5.929×101 234

DBIR1 8.38×106 1.12 1.16 1.667×102 1.667×102 1

DBIR2 8.44×106 1.11 1.12 1.665×102 1.665×102 0

LPL1 1.38×107 0.97 0.97 7.088×101 7.088×101 0

NSCT2 7.38×106 0.67 0.67 1.838×102 1.838×102 0

PDS-100 1.05×108 6.64 6.66 2.849×102 2.849×102 0

PDS-90 1.00×108 8.18 8.20 2.685×102 2.685×102 0

beaflw 2.32×105 0.04 0.04 4.180 4.162 4

162bit 4.16×106 0.29 0.31 1.179×101 1.177×101 2

176bit 1.46×107 1.95 2.07 1.844×101 1.842×101 4

192bit 4.32×107 7.30 7.54 2.489×101 2.485×101 3

208bit 1.25×108 41.2 42.7 3.865×101 3.850×101 8

Maragal 6 1.50×107 1.28 1.50 1.069×101 1.069×101 8

Maragal 7 2.29×107 2.27 2.27 1.369×101 1.369×101 0

Maragal 8 2.31×107 3.74 4.62 2.388×102 2.386×102 17

mri1 1.34×107 1.00 1.01 2.674×101 2.674×101 0

mri2 8.72×106 1.06 1.08 1.413×102 1.413×102 0

tomographic1 3.16×107 2.70 3.08 4.206×101 4.194×101 5
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and 4.3, we note that we obtain much sparser factors than previously and, as the number of iterations of

GMRES is generally modest (indeed, in many cases we did not need to use GMRES to obtain the requested

accuracy), we have significantly faster total solution times (note, in particular, problems Maragal 8 and

mir2). We observe that for problem BAXTER, we can reduce the number of GMRES iterations if we use a

smaller β: with β = 10−11, only 11 iterations are needed.

The number of entries in the factors and the total solution times using HSL MA97 to solve the regularized

augmented system (4.2) and HSL MA87 applied to the shifted normal equations are compared in Figure 4.2.

A point above the line y = 1 indicates using the normal equations is the better choice; the converse is true

for a point below the line. We see that in many cases there is little to choose between the approaches in

terms of the size of the factors but that for a small number of examples (including the Maragal problems)

the augmented system factors are significantly sparser. However, the normal equation approach with the

positive-definite solver is faster for most of the remaining problems.
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Figure 4.2: Ratios of the number of entries in the factor (left) and the CPU time (right) for the regularized

augmented system solved using HSL MA97 in indefinite mode and the shifted normal equations solved using

the positive-definite solver HSL MA87.

5 Incomplete factorization of the normal matrix C

5.1 Limited memory approach

An incomplete Cholesky (IC) factorization takes the form LLT in which some of the fill entries that would

occur in a complete factorization are ignored. The preconditioned normal equations become

(AL−T )T (AL−T )z = L−1CL−T z = L−1AT b, z = LTx.

Performing preconditioning operations involves solving triangular systems with L and LT . Over the years,

a wealth of different IC variants have been proposed, including structure-based methods, those based on

dropping entries below a prescribed threshold and those based on prescribing the maximum number of

entries allowed in L (see, for instance, [2, 46, 51] and the references therein). Here we use the limited

memory approach of Scott and Tůma [50, 51], which generalises the ICFS algorithm of Lin and Moré [35].

The basic scheme is based on a matrix factorization of the form

C = (L+R)(L+R)T − E, (5.1)

where L is the lower triangular matrix with positive diagonal entries that is used for preconditioning, R is

a strictly lower triangular matrix with small entries that is used to stabilize the factorization process but

is subsequently discarded, and E = RRT . On the j-th step of the factorization, the first column of the
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Schur complement is decomposed into a sum of two vectors

lj + rj ,

such that |lj |T |rj | = 0 (with the first entry in lj nonzero), where lj (respectively, rj) contains the entries

that are retained in (respectively, discarded from) the incomplete factorization. On the next step of a

complete decomposition, the Schur complement of order n− j would be updated by subtracting the outer

product of the pivot row and column. That is, by subtracting

(lj + rj)(lj + rj)
T .

In the incomplete case, the positive semi definite term

Ej = rjr
T
j

is not subtracted. Moreover, to further limit the memory required, drop tolerances are (optionally) used.

If at some stage a zero or negative pivot is encountered, the factorization suffers breakdown and, as in

Section 3, a shift is applied and the incomplete factorization of the shifted matrix (3.1) is computed.

A software package HSL MI35 that implements this limited memory IC algorithm for least squares

problems has been developed. This code is a modification of HSL MI28 [50], which is designed for symmetric

positive-definite systems. Modifications were needed to allow the user to specify the maximum number of

entries allowed in each column of the incomplete factor L (in HSL MI28 the user specified the amount of fill

allowed but as columns of the normal matrix C may be dense, or close to dense, this change was needed

to keep L sparse). Furthermore, there is no need to form and store all of C explicitly; rather, the lower

triangular part of its columns can be computed one at a time and then used to perform the corresponding

step of the incomplete Cholesky algorithm before being discarded. HSL MI35 includes a number of scaling

and ordering options so that an incomplete factorization of

Cα = PTSCSP + αI

is computed, where P is a permutation matrix chosen on the basis of sparsity, S is a diagonal scaling matrix

and α ≥ 0.0. Based on extensive experimentation in [50], the defaults are the profile reduction ordering

of Sloan [54] and the l2-norm scaling, which needs only one column of C at a time. In the following, lsize

and rsize denote the parameters that control the maximum number of entries in each column of L and R,

respectively. In each test, the input value of the shift α is 0.001. In the event of breakdown, it is increased

until the incomplete factorization is successful (see [50] for details). The recorded times include the time

to restart the factorization following any breakdowns.

Figure 5.1 illustrates the potential benefits of employing intermediate memory R in the construction of

L. Here we set lsize = 200 and vary rsize from 0 to 1000; the drop tolerances are set to 0.0. For each value

of rsize, the number of entries in L is nnz(L) = 6.63×106. We see that increasing the intermediate memory

stabilizes the factorization, reducing the shift and giving a higher quality preconditioner that requires fewer

LSMR iterations and less time. Note that because the number of restarts following a breakdown decreases

as rsize increases, the time for computing the IC factorization does not necessarily increase with rsize.

In Table 5.1, we report results for HSL MI35 applied to our test set; default settings are used for the

ordering, scaling and dropping parameters. We experimented with a range of values for the parameters lsize

and rsize that control the memory and for each example chose values that perform well. As the memory

increases, the preconditioner quality improves and the number of LSMR iterations decreases. However,

the factorization times generally increase and, as nnz(L) increases, each application of the preconditioner

becomes more expensive. Thus the best values of lsize and rsize in terms of the total time are highly

problem dependent; the results given in Table 5.1 illustrate this. We struggle to solve problem BAXTER:

a larger number of iterations are required and the computed ‖r‖2 is significantly larger than reported

elsewhere. If we compare the results for the remaining problems with those in Table 3.1 for the direct solver

applied to the normal equations, we see that, with the exception of the bit problems, the serial IC times
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Figure 5.1: The effect of increasing the amount of intermediate memory used in the construction of the IC

preconditioner on the size of the shift (left), the number of LSMR iterations (centre) and the total CPU

time (right) in seconds for problem Maragal 8.

Table 5.1: Results for LSMR with the IC factorization preconditioner from HSL MI35 applied to C = ATA.

lsize and rsize control the memory used by HSL MI35, nnz(L) denotes the number of entries in the factor

L, α is the shift, timef and timet are the factorization and total solution CPU times (in seconds), the

value of the least squares objective is ‖r‖2 and the number of LSMR iterations is itn.

Problem lsize rsize nnz(L) α timef timet ‖r‖2 itn

BAXTER 100 100 2.96×105 0.001 0.13 55.9 8.444×101 26930

DBIR1 100 0 4.17×105 0.002 0.41 1.50 1.668×102 270

DBIR2 100 0 4.27×105 0.004 0.56 2.54 1.666×102 470

LPL1 100 0 9.03×105 0.001 0.16 1.05 7.088×101 170

NSCT2 100 0 6.84×105 0.008 1.23 2.37 1.838×102 300

PDS-100 20 20 2.89×106 0.001 1.09 3.17 2.849×102 90

PDS-90 20 20 2.63×106 0.001 1.00 2.99 2.685×102 90

beaflw 100 200 2.55×104 0.001 0.04 1.61 4.531 9380

162bit 20 20 7.07×104 0.001 0.05 0.16 1.177×101 300

176bit 20 20 1.46×105 0.001 0.12 0.61 1.842×101 590

192bit 20 20 2.67×105 0.002 0.35 2.40 2.485×101 1290

208bit 20 20 4.71×105 0.002 0.69 7.37 3.850×101 2200

Maragal 6 20 20 2.12×105 0.256 6.67 8.01 1.069×101 680

Maragal 7 100 0 2.57×106 0.128 17.7 19.6 1.369×101 170

Maragal 8 200 1000 1.41×106 0.001 14.2 64.2 2.387×102 5310

mri1 100 100 1.10×106 0.001 0.55 1.43 2.674×101 110

mri2 20 20 7.83×105 2.048 3.18 18.7 1.413×102 2500

tomographic1 100 0 3.19×106 0.001 0.76 7.94 4.194×101 540
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are not competitive with the times for the parallel direct solver. However, the IC factorization produces

significantly sparser factors, giving it the potential to be used successfully for much larger problems than

can be tackled by a direct solver. Observe that the shift α required by the IC factorization is significantly

larger than is used by the direct solver. Consequently, the number of iterations needed for convergence

can be large, significantly increasing the total solution time.

6 Preconditioning strategies for the augmented system

To compute an incomplete factorization preconditioner for the augmented system (1.3), one possibility is

to extend the positive-definite limited memory approach that was outlined in Section 5. This was proposed

by Scott and Tůma, who presented a limited memory incomplete signed Cholesky factorization [52]. They

compute an incomplete factorization of the form LDLT , where L is a lower triangular matrix with positive

diagonal entries and D is a diagonal matrix with entries ±1. In practice, an LDLT factorization of

K = PTSKSP +

[
α1I

−α2I

]
is computed, where α1 and α2 are non-negative shifts chosen to prevent breakdown of the factorization.

The preconditioner is taken to be LDL
T

, with L = S−1PL. Scott and Tůma choose the permutation P

not only on the basis of sparsity but also so that a variable in the (2, 2) block of K is not ordered ahead

of any of its neighbours in the (1, 1) block. The idea here is to try and prevent a small (or zero) pivot

candidate from being chosen; see [52] for details of this so-called constrained ordering.

An implementation is available as the HSL package HSL MI30. As with the IC code HSL MI35,

intermediate memory (R) is optionally used in the construction of the factor L and is then discarded.

The user controls the amount of fill allowed in each column of L (lsize) and the number of entries in each

column of R (rsize). The code also includes a range of ordering and scaling options as well as optional

dropping parameters (to control the discarding of small entries from L and R). Moreover, the user can

supply initial values for the shifts.

HSL MI30 is related to the recent LLDL software that was developed independently by Orban [39]. The

latter extends the ICFS code of Lin and Moré [35] to SQD matrices and thus can be applied to the

regularized augmented system (4.2). The main differences between HSL MI30 and LLDL are:

1. LLDL uses a single shift (that is, α1 = α2).

2. LLDL does not employ intermediate memory (that is, rsize = 0).

3. The HSL MI30 factorization suffers breakdown and is restarted with an increased shift whenever a

candidate pivot is not of the expected sign (or is zero). Thus if a pivot corresponding to an entry

in the (1, 1) block is negative, the factorization is stopped and restarted with an increased value of

α1. Likewise, if a pivot corresponding to an entry in the (2, 2) block is positive, the factorization is

stopped and restarted with an increased value of α2. In LLDL there is breakdown only if a pivot is

zero; in this case, α is increased and the factorization restarted.

4. LLDL does not use a constrained ordering but advises the user to preorder K using a sparsity-

preserving ordering, such as AMD (there is no in-built option for ordering K).

5. LLDL does not include an option to drop small entries during the factorization.

6. HSL MI35 allows “spare” space from one column of L to be used for the next column (so that if, after

dropping, column j of L has p < lsize fill entries then column j + 1 may have up to 2 ∗ lsize − p fill

entries).

For our experiments, we edited HSL MI30 so that it can optionally be used to implement the same algorithm

as LLDL; this facilitates testing using the same ordering and scaling. We refer to this as the LLDL option
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Table 6.1: Results for the signed IC factorization preconditioner HSL MI30 run with MINRES to solve the

augmented system. lsize and rsize control the memory used by HSL MI30, nnz(L) denotes the number of

entries in the factor L, α2 is the shift for the (2,2) block (in all cases, α1 = 0.0), timef and timet are the

factorization and total solution CPU times (in seconds), the value of the least squares objective is ‖r‖2,

ratio(r) is given by (1.4) and the number of MINRES iterations is itn.

Problem lsize rsize nnz(L) α2 timef timet ‖r‖2 ratio(r) itn

BAXTER 50 0 6.49×105 0.016 0.13 105 5.932×101 5.00×10−4 39660

DBIR1 20 0 2.08×106 16.4 1.53 5.90 1.667×102 1.89×10−10 515

DBIR2 50 0 2.41×106 0.512 1.35 77.5 1.665×102 2.46×10−12 1729

LPL1 20 20 1.19×106 0.001 0.60 0.77 7.088×101 1.82×10−7 21

PDS-100 20 0 6.08×106 0.000 1.74 2.51 2.849×102 3.16×10−7 18

PDS-90 20 0 5.72×106 0.000 1.67 2.38 2.685×102 2.89×10−7 18

beaflw 100 0 1.48×105 4.10 0.19 7.80 6.234×101 2.8 20730

162bit 20 20 1.45×105 0.000 0.10 0.22 1.179×101 2.25×10−6 224

176bit 20 20 3.03×105 0.000 0.22 0.46 1.842×101 2.39×10−6 205

192bit 50 50 8.86×105 0.001 1.54 3.48 2.487×101 2.49×10−6 679

208bit 50 50 1.60×106 0.001 2.93 10.0 3.852×101 2.05×10−6 1159

Maragal 6 20 20 6.75×105 1.020 2.61 5.71 1.069×101 7.73×10−7 1043

Maragal 7 20 20 1.61×106 0.512 4.75 7.81 1.369×101 8.21×10−7 353

Maragal 8 100 0 3.91×106 0.016 2.02 33.8 2.388×102 2.67×10−6 1970

mri1 20 20 2.30×106 0.001 0.95 1.78 2.674×101 4.43×10−6 45

mri2 100 0 1.43×107 0.512 61.92 92.4 1.413×102 9.16×10−7 628

tomographic1 50 0 5.28×106 0.001 1.68 12.3 4.195×101 1.17×10−6 507

Table 6.2: Results for the LLDL option run with MINRES to solve the augmented system. lsize controls the

fill in each column of the factor L, nnz(L) denotes the number of entries in the factor L, timef and timet
are the factorization and total solution CPU times (in seconds), the value of the least squares objective is

‖r‖2, ratio(r) is given by (1.4) and the number of MINRES iterations is itn. In all cases, α1 = α2 = 1.0.

Problem lsize nnz(L) timef timet ‖r‖2 ratio(r) itn

BAXTER 50 2.79×105 0.05 > 21.9 8.230×101 7.2608×10−4 > 100000

DBIR1 20 1.27×106 0.23 > 600 1.686×102 3.1478×10−3 > 96668

DBIR2 50 1.51×106 0.28 > 600 1.665×102 7.6498×10−4 > 86415

LPL1 20 1.04×106 0.22 17.5 7.088×101 1.9460×10−5 2472

PDS-100 20 3.65×106 1.21 23.6 2.849×102 6.4336×10−7 695

PDS-90 20 3.37×106 1.16 20.6 2.685×102 6.5083×10−7 667

beaflw 100 1.05×105 0.03 0.53 4.162 4.3794×10−8 960

162bit 20 1.15×105 0.04 3.34 1.179×101 3.3382×10−6 7089

176bit 20 2.38×105 0.09 13.2 1.845×101 2.3641×10−6 13771

192bit 50 7.05×105 0.26 84.7 2.488×101 2.4705×10−6 35921

208bit 50 1.28×106 0.52 187 3.863×101 2.1209×10−6 37512

Maragal 6 20 7.44×105 0.28 13.9 1.069×101 8.3166×10−7 4264

Maragal 7 20 1.68×106 0.62 13.8 1.369×101 1.1766×10−6 1457

Maragal 8 100 2.06×106 0.65 586 2.388×102 6.5873×10−6 56625

mri1 20 1.94×106 0.30 32.7 2.674×101 5.3777×10−6 2660

mri2 100 2.40×106 0.35 76.1 1.413×102 1.3771×10−6 6569

tomographic1 50 2.65×106 0.58 434 4.201×101 1.2579×10−6 33330

15



(although note that if Orban’s LLDL package is used, it will return similar but not identical results).

Numerical results are given in Tables 6.1 and 6.2. Again, values of the memory parameters lsize and rsize

are chosen after testing a range of values (we use the same lsize for HSL MI30 and for the LLDL option).

Recall ratio(r) is given by (1.4); it enables us to see whether the LSMR stopping criteria is satisfied. We

employ l2-norm scaling and AMD ordering; based on the recommendations from [20, 21], the iterative

solver is MINRES. For tests using the LLDL option, we set α1 = α2 = 1.0; this choice was made on the

basis of experimentation. We set the regularization parameter β to 10−6 (recall (4.2)) but our experience

is that, for our test set and chosen settings, using a nonzero value has little effect on the quality of the

results. We observe that, while HSL MI30 appears robust (it successfully solved all the problems in our

test set except NSCT2, which is omitted since we were unable to choose parameters that led to successful

convergence), with the LLDL option, not all the problems are solved within our limit of 600 seconds and

100,000 iterations. Moreover, for some examples, although MINRES reports convergence, the value of the

least squares objective is too large and the LSMR stopping criteria is far from being satisfied.

Comparing the factor sizes for HSL MI30 and the LLDL option, the latter generally has sparser factors.

This is because of points (4) and (6) above. However, the LLDL preconditioner is generally of poorer quality

and requires significantly more iterations, leading to a greater total time. If we compare the HSL MI30

results with those for HSL MI35 applied to the normal equations (Table 5.1), we see that HSL MI30 is more

expensive in terms of both the size of the incomplete factor and the total time (although the Maragal

problems are notable exceptions with HSL MI30 significantly faster). Moreover, for HSL MI30 we found it

was not always advantageous to use rsize > 0.

An alternative to using an incomplete Cholesky-based factorization is to employ a general incomplete

indefinite factorization code. Chow and Saad [8] considered the class of incomplete LU preconditioners

for solving indefinite problems and later Li and Saad [33] integrated pivoting procedures with scaling and

reordering. Building on this, Greif, He, and Liu [22] recently developed an incomplete factorization package

called SYM-ILDL for general sparse symmetric indefinite matrices. Here the system matrix may be any

sparse indefinite matrix; no advantage is made of the specific block structure of (1.3). Independently, Scott

and Tůma [53] report on the development of incomplete factorization algorithms for symmetric indefinite

systems and propose a number of new ideas with the goal of improving the stability, robustness and

efficiency of the resulting preconditioner. Experiments on our rank-deficient least squares test problems

have found that the indefinite factorization is much less robust that the signed IC approach and so are not

included here.

7 Concluding remarks

In this paper, we have used numerical experiments to study solving rank-deficient sparse linear least

squares problems. These are hard problems to solve. Our approach is to use existing software to compute

the factors of a regularized system and then to employ these factors as a preconditioner with an iterative

method to recover the solution of the original problem. We have explored using state-of-the-art parallel

sparse direct solvers to compute a complete factorization as well as recent approaches to compute limited-

memory incomplete factorizations. Regularization allows a Cholesky-based direct solver to be used to

factorize the scaled and shifted normal matrix C, avoiding the need for numerical pivoting that can

adversely affect the performance of a sparse indefinite direct solver. However, this requires C to be

available. If C cannot be formed or if it is unacceptably dense, the regularized augmented system with

the threshold parameter u = 0.0 offers a feasible alternative approach (see also [49]).

As well as direct solvers, we have considered limited memory IC factorizations. Our results show

that IC factorizations of the normal equations computed using the package HSL MI35 provide robust

preconditioners with significantly sparser factors than those from a complete factorization but they require

a much larger number of LSMR iterations to achieve the requested accuracy. The use of intermediate

memory in constructing these IC factors can significantly enhance the quality of the preconditioner without

adding extra fill. For the signed IC factorizations of the augmented system, it is less clear that intermediate
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memory is advantageous for solving rank-deficient least squares problems. In many of our test cases, the

total solution time for the signed IC factorizations of the augmented system is greater than for the IC

factorizations of the normal equations but, again, the former has the advantage of avoiding the construction

of the normal matrix.

Currently, the codes that compute the IC factorizations and then perform the subsequent forward and

back substitutions that are needed when using the factors as preconditioners are serial. As much of the

total time is taken by the iterative solver, in the future parallel implementations of the application of the

preconditioner needed. This is currently an area of active research [7].

Finally, although this paper has focused on tackling rank-deficient least squares problems using

sparse direct LLT and LDLT solvers and their incomplete factorization counterparts, a number of other

approaches are available. In particular, a QR factorization of A may be used, either a complete sparse

QR factorization as offered by SuiteSparseQR [9] and qr mumps [5], or an incomplete QR factorization

such as the Multilevel Incomplete QR (MIQR) factorization of Li and Saad [34]. Moreover, the results

reported in [20, 21] suggest that the BA-GMRES approach of Hayami et al. [36, 37] may offer a feasible

alternative.
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