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ABSTRACT

When using incomplete factorization preconditioners with an iterative method to solve large sparse linear
systems, each application of the preconditioner involves solving two sparse triangular systems. These
triangular systems are challenging to solve efficiently on computers with high levels of concurrency. On
such computers, it has recently been proposed to use Jacobi iterations to solve the triangular systems from
incomplete factorizations. These Jacobi iterations may not always converge, or converge quickly enough, for
all problems. Thus in this paper we investigate the range of problems for which this approach is effective.
We also show that by using block Jacobi relaxation, we can extend the range of problems for which such an
approach can be effective.
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1 Introduction

As computers increasingly rely on various forms of parallelism to obtain high performance, the design
and performance optimization of large-scale numerical algorithms must focus on the efficient exploitation
of parallel architectures. Unfortunately, simple algorithms frequently become remarkably complex when
implemented in parallel and the most efficient parallel algorithm may not be the one that is most intuitive.

In this paper, we investigate a non-intuitive approach to solving the sparse triangular systems that
arise when using incomplete factorization preconditioners with an iterative method for solving sparse linear
systems. The conventional method of solving triangular systems is to use forward or backward substitution
and this can be parallelized using level scheduling [2, 16, 24]. Here we investigate using an iterative method—
in particular, Jacobi relaxation. The use of an iterative method is feasible when an approximate solution is
acceptable, as in the case of preconditioning.

In recent previous work, this approach demonstrated significant reductions in total solution time for the
preconditioned conjugate gradient (PCG) method on highly parallel architectures such as Intel Xeon Phi
co-processors and graphics processing units (GPUSs) [3, 7], even though additional PCG iterations may be
required to achieve the requested accuracy. The improved speed for each triangular solve is because, for
some problems, particularly with high levels of fill, level scheduling is unable to reveal sufficient parallelism
to fully exploit the GPU hardware. On the other hand, Jacobi relaxation, which primarily relies on the
sparse-matrix vector product (SpMV) operation to compute a residual vector, is highly parallel and can
exploit the substantial efforts that have been invested in optimizing SpMV on various parallel architectures.

Although the iterative triangular solve approach can result in significant speedups on highly parallel
architectures, the approach does not work on all problems. It is possible for the iterations on the triangular
systems to converge too slowly and thus be uncompetitive with the conventional level-scheduled substitution
method. The goal of this paper is to investigate the range of applicability of using iterative triangular solves
for incomplete factorization preconditioning by testing it with a large set of sparse symmetric positive definite
(SPD) linear systems. Further, we introduce the idea of using block Jacobi iterations, which improves the
robustness of the iterative approach. Our hypothesis is that for matrices that model many types of physical
systems, especially partial differential equations, an iterative approach to solving the systems involving its
triangular factors can be effective. In particular, although these matrices may not be diagonally dominant
and may be ill-conditioned, many have relatively large diagonal entries compared to the off-diagonal entries.
If the incomplete factorizations of these matrices are stable, they are also likely to have relatively large
diagonal entries. Systems with such matrices can typically be solved efficiently by iterative methods. If
convergence is poor, a block diagonal scaling can improve diagonal dominance.

Alternatives to sparse triangular solves for incomplete factorization preconditioning have been proposed
before. One major alternative is to compute and use sparse approximate inverses of the incomplete factors,
so that preconditioning reduces to SpMV operations [5, 27]. Related to this is representing the inverse of
a sparse triangular matrix as the product of sparse triangular factors [1, 22]. Another possible approach is
to use Neumann series approximations to the inverse of the incomplete factors [5, 26]. Preconditioning is
again reduced to a sequence of SpMV operations. This approach was found to be potentially competitive
with other techniques for nonsymmetric problems but it lacks robustness, while for symmetric problems a
number of more efficient alternatives are available [5]. The Neumann series technique is the same as the
Jacobi relaxation approach investigated here if a diagonal scaling is first applied to the system in the former.
Recently, based on the encouraging results in [7] for using Jacobi iterations to solve triangular systems,
Briickle and Huckle [6] have suggested the use of other stationary iterations for solving sparse triangular
systems.

In the symmetric case, the amount of parallelism in level scheduled sparse triangular solves can be
increased by using multicolor reordering of the rows and columns of the original matrix and computing the
incomplete Cholesky factors of this reordered matrix [17]. However, multicolor reorderings generally give
poorer PCG convergence results compared to other orderings such as the band reducing RCM ordering [8]
or profile reducing Sloan ordering [25] (see, for example, [4, 10, 11, 13, 14, 21]). For some “easy” problems,
the convergence rate may be degraded by 60 to 100% but this can be compensated for by the additional
parallelism in the solves. For harder problems, however, multicolor reorderings may result in no convergence.



The rest of this paper is organized as follows. In Section 2, we describe the use of Jacobi and block
Jacobi relaxation for the iterative solution of triangular systems. In particular, supervariable blocking and
graph partitioning-based blocking techniques are introduced. Section 3 presents our experimental study
and demonstrates the potential effectiveness of Jacobi solves using a large set of test problems. Concluding
remarks are made in Section 4.

2 Jacobi and block Jacobi relaxation for triangular systems

Consider a triangular system of equations
Ry =c, (2.1)

where R is either upper or lower triangular. In our application in which we want to solve the system Az = b,
R is an incomplete factor of A and, in particular, in the symmetric case, R = L or LT, where L is an
incomplete Cholesky factor of A. The Jacobi iteration for solving (2.1) is

Ye+1 = Yx + D™ (c — Ryy), (2.2)
where D is the diagonal of R. We take the initial guess
yo = D te. (2.3)

We will refer to the number of Jacobi iterations performed as the number of Jacobi sweeps. The iteration
matrix

G=I-D"'R (2.4)

is strictly triangular with a zero diagonal. Thus the iteration is guaranteed to converge. However, in
practice, because G is triangular and thus non-normal, the iteration may diverge before converging. If this
initial divergence stage is long and/or causes numerical overflow, then using Jacobi iterations will not be
an effective method of solution. Thus effectiveness will depend on the degree of non-normality of G. Non-
normality can be measured in different ways. For triangular matrices, having only small off-diagonal entries
results in a small departure from non-normality.

Block Jacobi relaxation or, equivalently, block scaling of R, can reduce non-normality. If a block structure
is imposed on R then it can be trivially written as the sum

R=R+ D, (2.5)

where R is strictly block triangular and D is now block diagonal with i-th block D;;. The iteration is the same
as in (2.2), where the i-th block row of the iteration matrix (2.4) now has off-diagonal blocks G;; = D;;' R;;
(j #4). If the norm of D;; is large, then the norm of the off-diagonal blocks will be small, as desired.

In the rest of this section, we discuss possible techniques for determining a blocking for R such that the
diagonal blocks D;; have large norm. These are generally derived from a blocking for A.

Observe that, in general, we seek a blocking in which the block size is small compared to the order n
of A so as to limit the cost of applying block Jacobi. With small blocks, the cost of block Jacobi is not
significantly greater than for scalar Jacobi because the main cost in both is the computation of the residual

¢ — Ryy. For small blocks, one possibility to assist with efficiency is to store the inverses D;; L explicitly.

2.1 Simple matrix blocking

The simplest way to impose a blocking on R is to divide its rows such that each block of rows contains similar
numbers of rows. The columns are partitioned conformally, so that the diagonal blocks D;; are square. To
help ensure that the norms of the diagonal blocks are large, a locality-preserving ordering such as RCM or
Sloan can be applied to the original matrix A, which will tend to put nonzero entries near the diagonal of A
and thus of R.



2.2 Supervariable blocking and supervariable amalgamation

If a matrix has a supervariable structure, then a natural blocking is to use this structure. The set of
variables that correspond to a set of columns of A with the same sparsity pattern is called a supervariable.
Supervariables occur frequently as a result of each node or element of a partial differential equation (PDE)
discretization having multiple variables or degrees of freedom associated with it. These variables are typically
tightly coupled, leading to dense diagonal blocks corresponding to supervariables with large norm. A
supervariable blocking orders the rows and columns corresponding to a supervariable together in the matrix.
Incomplete factorization is then applied to the matrix in this ordering.

If blocks larger than the size of the supervariables are desired, then larger blocks can be formed by
amalgamating adjacent supervariables. In this case, it is important that adjacent supervariables represent
nearby nodes or elements in the PDE discretization. This can be accomplished with a locality-preserving
ordering applied to the supervariable structure (also called the condensed structure or quotient graph) before
the supervariables are amalgamated.

In this paper, we use a different, simpler approach for what we call supervariable blocking, one that
treats all matrices the same way, whether or not they have supervariable structure. This approach was
convenient for us when testing a large number of SPD matrices from different applications. First, the matrix
is reordered symmetrically using RCM ordering so that physically nearby variables are likely to be numbered
together. This also tends to preserve any existing supervariable structure, because variables belonging to a
supervariable will tend to stay numbered together. Then, the supervariable structure is found using a cheap
algorithm that simply compares the sparsity patterns of adjacent matrix columns. Supervariables may be
amalgamated into blocks with a given minimum block size by merging adjacent supervariables.

2.3 Graph partitioning-based blocking

Graph partitioning can be used to find blockings for a matrix, where each block corresponds to a partition of
the graph associated with the sparse matrix. Graph partitioning techniques minimize the number of edges
shared between partitions, which corresponds to minimizing the number of nonzeros (and their magnitudes)
that fall outside the diagonal blocks. Using supervariable blocking techniques, there can be a significant
number of nonzero entries that do not lie within the diagonal block structure.

Graph partitioning techniques are described in terms of the (edge-weighted) graph of the matrix A.
Typically, nodes in the graph that are a short distance apart correspond to tightly coupled variables and
should belong to the same block. In some cases, for example those from anisotropic PDE problems, the
strength of the coupling is less correlated with graph distance, so the values of the matrix entries need to be
considered in the blocking.

In the graph partitioning approach, the partitions are found and the matrix A is reordered such that the
variables in a partition are numbered together. The ordering of the partitions or blocks themselves in the
matrix is not specified by a graph partitioning, but may affect the quality of the incomplete factorization
preconditioner. The block structure may be ordered using a locality-preserving ordering, which typically
improves the quality of the incomplete factorization, especially if the block sizes are small. An incomplete
factorization is performed on A in the resulting ordering. The same blocking is applied to the incomplete
factors.

A number of algorithms for blocking have been proposed in the past, including the PABLO family of
algorithms [15] and the SCPRE algorithm of Duff and Kaya [12], which is based on Tarjan’s algorithm for
hierarchically decomposing a digraph into its subgraphs. General purpose graph partitioners may also be
used, but these are aimed at computing relatively large subdomains, and we have found them to be less
effective when, as in our case, small blocks are desired. PABLO is designed for constructing blockings for
block Jacobi. It is based on a greedy approach to try to optimize the strength of the connections within
the blocks. While it should be possible to obtain improved blockings by employing PABLO with carefully
selected parameters, it is impractical to tune the parameters for each individual problem for a large test set.
Instead, we propose two straightforward approaches that can be viewed as simple variants of the PABLO
strategy.



In our first approach (Approach I), each node 4 is initially assigned to its own set S;. The edges (i, ) in
the graph are considered in descending weight order. If edge (7,j) is the next to be considered and i € S;g
and j € Sjo (with 0 = ¢ and j0 = j initially), Sjo is merged into S;p to form a larger set, provided the
size of the merged set given by |S;o| + |Sjo| (where |S| denotes the number of edges in the set S) does
not exceed a user-prescribed maximum. When no further merges are possible, the nodes in each set are
numbered consecutively and the corresponding reordered matrix then has a block structure with the I-th
block corresponding to the I-th (merged) set.

If a matrix has supervariable structure, then to avoid splitting supervariables, the graph partitioning-
based blocking may be applied to the supervariable structure. In this case, the weighted graph corresponds
to the quotient graph (of the block structure) where the edge weights are the Frobenius norms of the
supervariable blocks.

A potential weakness of Approach I is that it does not take into account the values of the weights of the
merged edges. In our second approach (Approach IT) when two sets S;o and Sj are merged with ¢ € S;p and
j € Sjo, the edge weights are unchanged unless both nodes i and j are adjacent to the same neighbor. In this
case, the new edge is given a weight equal to the sum of the weights of the edges it replaces. This corresponds
to heavy edge collapsing that is widely used in graph partitioning (see, for example, [18]). For efficiency, a
priority queue is used to select the next edge; the priorities are updated as the algorithm progresses.

We note that graph partitioning approaches are most effective when partitions (or blocks) are large. For
small partitions, the number of edges between partitions (and outside the diagonal blocks) remains large,
and no algorithm is able to substantially reduce this number. However, graph partitioning approaches can
be more effective than other approaches for anisotropic problems, as mentioned above, even if block sizes
are small.

3 Numerical experiments

In our numerical experiments, we use matrices from the University of Florida Sparse Matrix (UFL) Collection
[9]. In each test, the matrix is first scaled on the left and right by a diagonal matrix whose j-th diagonal
entry is the 2-norm of column j of A [17]. We use IC(k) to denote an incomplete Cholesky factorization of
level k; IC(0) is used unless indicated otherwise. Results are shown for single solves with the lower triangular
factor from the incomplete factorization, as well as for repeated solves with the same factorization within
a PCG solve. For the former, the components of the right-hand side are chosen from a uniform random
distribution with mean zero. For the latter, the right-hand side b is such that the exact solution of the linear
system Ax = b is the vector of all ones. PCG is considered to have converged when the relative residual
norm has decreased below 1076,
We define the cost estimate of the PCG iterations to be

cost estimate = njters X [N02(A) + 2 X Ngweeps X (nmnz(L) + nnz(D))] /nnz(A), (3.1)

where njters denotes the number of PCG iterations, ngweeps is the number of Jacobi sweeps per triangular
solve, and nnz(A), nnz(L), and nnz(D) are the numbers of entries in A, its incomplete factor L, and the
(block) diagonal matrix D, respectively. For IC(0) without blocking, the cost estimate simplifies essentially
to

cost estimate = niters X [1 + Nsweeps]

which shows how rapidly njiers must decrease as ngweeps increases in order for the cost estimate to also
decrease. The cost estimate is based on the assumption that sparse matrix-vector multiplication is memory
bandwidth bound and that the amount of data transfered governs the execution time. The cost estimate is
the number of words read in units of the number of words in the sparse matrix A, which we call “matvec
loads.”



3.1 Examples

Figure 3.1 presents results for the matrix Hook_1498. The matrix is preordered using RCM. The left figure
shows the residual norm history for a solve with the lower triangular IC(0) factor using the Jacobi method.
The residual norm is relative to the norm of the right-hand side vector. Zero sweeps corresponds to using
the initial guess (2.3). The middle figure reports the number of PCG iterations required for convergence
when 0 to 6 Jacobi sweeps are used to solve with the IC(0) factors. At 6 or more sweeps, the PCG iterations
converge in 804 iterations, the same number as if exact triangular solves are used, corresponding to the
conventional approach. The right figure plots the cost estimate. The convex shape of this curve shows that
the optimum number of Jacobi sweeps for this problem is approximately 3. With this number of sweeps,
the residual norm for a triangular solve is reduced by about 1.5 orders of magnitude (left figure). Once the
PCG iteration count stops decreasing, the cost estimate must increase with an increasing number of Jacobi
sweeps.

100 2000 6000
1800 5500
€ g
S 401 @ 1600 9
= S £ 5000
> © 4{_“.
% ;'_E 1400 £
3 o 24500
[ -2
210 © 1200 g
% g 4000
o 1000 —
[%2]
o
o
1072 800 3500
0 2 4 6 0 2 4 6 0 2 4 6
Jacobi sweeps for one triangular solve Jacobi sweeps Jacobi sweeps

Figure 3.1: For Hook_1498, the effects of increasing the number of Jacobi sweeps.

Figure 3.2 shows the corresponding results for the matrix Geo_1438 (again, preordered using RCM). The
behavior here is very different from that observed for the previous matrix. In particular, the cost estimate
curve (right figure) is not convex but increases starting from zero Jacobi sweeps. There is no initial decrease
in the cost estimate because the number of PCG iterations does not decrease fast enough with increasing
numbers of Jacobi sweeps (middle figure). This is related to the slower convergence of the relative residual
norm when Jacobi sweeps are applied to the triangular factors (left figure): the reduction after 3 sweeps is
significantly less than an order of magnitude.

The behaviors illustrated by the above two matrices are common, but other behaviors are also possible.
For example, the cost estimate can initially increase and then decrease below its initial value, before increasing
again. Note that the cost estimate pessimistically assumes no cache effects, and actual timing curves may
differ in shape depending on the hardware and the quality of the software implementation.
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Figure 3.2: For Geo_1438, the effects of increasing the number of Jacobi sweeps.



In the previous two examples, the number of Jacobi sweeps needed to give PCG convergence that is
essentially the same as that using exact triangular solves is small (6 and 12 sweeps, respectively). Moreover,
for any number of sweeps, PCG eventually converged. For other problems, with a given fixed number of
Jacobi sweeps, the relative residual norm may diverge and a large number of sweeps may be needed to give
convergence. This is the case for the test matrix besstk24. Although this example is relatively small (of order
3562), it is challenging to solve: the matrix has large off-diagonal entries even after scaling, both diagonal
preconditioning and symmetric Gauss-Seidel preconditioning fail to give convergence within a number of
steps equal to the dimension of the matrix, and the level 0 incomplete Cholesky factorization breaks down
(that is, a zero or negative pivot is encountered during the factorization). However, the level 1 incomplete
Cholesky factorization exists and provides a good preconditioner, giving convergence in 56 PCG iterations.
Thus we use IC(1) preconditioning for this matrix.

Figure 3.3 (left) shows the relative residual norm for solving with the lower triangular Cholesky factor of
besstk24 using the Jacobi method. As the iteration matrix for this factor is highly non-normal, we observe
a large divergence in the residual norm before convergence sets in. Using fewer than 160 Jacobi sweeps
with IC(1) does not serve as a useful preconditioner. Figure 3.3 (right) shows the relative residual norm if
block Jacobi is used with the same incomplete factor, using supervariable blocking with amalgamation and
block sizes of 6, 12, and 24. (Note that bcesstk24 has a supervariable structure with block size of 6.) Here,
there is still an initial divergence in the relative residual norm for a small number of Jacobi sweeps, but it is
much smaller. The relative residual can be reduced by 1.5 orders of magnitude in approximately 20 sweeps,
depending on the block size.

Figure 3.4 shows PCG iteration counts and the cost estimate for different numbers of block Jacobi sweeps.
This example demonstrates the effectiveness of block Jacobi compared to scalar Jacobi iterations.
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Figure 3.3: For besstk24, the relative residual norm for a triangular solve with the lower triangular IC(1)
factor, without blocking (left) and with supervariable blocking and amalgamation (right).

3.2 Comprehensive results for Jacobi and block Jacobi iterations

This section presents results for a large number of test problems. We chose all real, SPD matrices from
the UFL Collection that are of order at least 1000 and are not diagonal. (Three matrices from the af _shell
set were removed due to their similarity to af_shell7, which was retained.) This gives a set of 171 matrices.
From this set, we chose two subsets: those that can be solved by PCG with IC(0) preconditioning (using
exact triangular solves) within 3000 iterations and those can can be solved in the same way using IC(1)
preconditioning. This results in a test set of 73 matrices for IC(0) and a set of 86 matrices for IC(1).

Our goal is to find what fraction of these matrices can be solved with PCG when the sparse triangular
solves are replaced by Jacobi and block Jacobi iterations. Based on the results in the previous subsection, we
use the following simple rule: for a solve with a lower triangular incomplete factor (with a random right-hand
side), the iterative (block) Jacobi method can be used to apply the preconditioner if it reduces the residual
norm by two orders of magnitude (0.01) within 30 sweeps. Both scalar and block Jacobi are used. In the



1500 15000

—block size 6 —block size 6
——block size 12 ——block size 12
block size 24

block size 24

1000 10000

3]
o
[S]

5000

PCG iterations

Cost estimate (matvec loads)

0 10 20 30 0 10 20 30
Jacobi sweeps Jacobi sweeps

Figure 3.4: For besstk24, the effect of increasing the number of Jacobi sweeps on PCG iterations (left) and
the cost estimate (right).

latter case, we use supervariable amalgamation with a maximum block size of 12. This block size was chosen
because many PDE systems have 3, 4, or 6 degrees of freedom per node.

Table 3.1 summarizes our findings. In the case of IC(0), 74% of the problems that can be solved by IC(0)-
PCG can also be solved when the triangular solves are replaced by Jacobi iterations. The fraction increases
to 93% when block Jacobi is used. For IC(1), the fractions are somewhat worse: 60% and 81%, respectively.
These results show that for a significant fraction of our test problems, the exact sparse triangular solves can
be replaced by iterative solves, with a likely reduction in execution time on highly parallel hardware.

Table 3.1: Number of problems that can be solved when exact triangular solves in PCG are replaced by
Jacobi and block Jacobi triangular solves.

1C(0) 1C(1)
Total 73 86
Num. solved using Jacobi triangular solves 54 (74%) 52 (60%)

Num. solved using block Jacobi triangular solves 68 (93%) 70 (81%)

For the problems that successfully used Jacobi and block Jacobi, Figures 3.5 and 3.6 show how many
Jacobi and block Jacobi sweeps, respectively, are needed in the PCG solves such that the number of PCG
iterations using iterative triangular solves is the same as the number of PCG iterations using exact triangular
solves. The figures are histograms showing the frequency of the number of sweeps required. For the scalar
Jacobi case, a maximum of 40 Jacobi sweeps are needed, but the majority of problems require fewer than
10 sweeps. For block Jacobi, the number of sweeps required is generally lower, as expected. Note that these
numbers are pessimistic; the optimal number of sweeps in terms of total computational cost may be much
lower, as shown in Figure 3.1 (middle and right), since the best computational time is generally not achieved
by trying to match the number of PCG iterations with exact triangular solves.

For all these results, we note that incomplete Cholesky may not be the best preconditioner among all
preconditioners available; the results only show the potential efficacy of the iterative triangular solves if
incomplete Cholesky were used as the preconditioner.

3.3 Results with graph partitioning-based blocking

In this section, we test block Jacobi triangular solves with matrices that have been partitioned using the
graph partitioning techniques discussed in Section 2.3. We again use real, non-diagonal, SPD matrices of
order at least 1000 from the UFL Collection. For these tests, however, we use IC(1) preconditioning with
a limit of 800 iterations and we additionally use Manteuffel shifting [20] if the incomplete Cholesky factor
does not exist. Thus the IC(1) factorization of A = QTSASQ + ol is computed, where S is a diagonal



(o2}
o

5 5
(7] 2]
€ IS
Kol D4
o) O
o o
a3t , a3t
© ©
o2+ : o2t
o] Ko}
IS IS
S 1 51

0 : 0

10 20 30 40 10 20 30 40
Jacobi sweeps Jacobi sweeps

Figure 3.5: Number of sweeps for Jacobi triangular solves for IC(0) and IC(1).

Number of problems
Number of problems

5 10 15 20 25 30 5 10 15 20 25 30
Jacobi sweeps Jacobi sweeps

Figure 3.6: Number of sweeps for block Jacobi triangular solves for IC(0) and IC(1), using supervariable
amalgamation and a maximum block size of 12.



scaling matrix, @ is a permutation matrix and « > 0 is chosen as small as possible to avoid (almost) zero
or negative pivots while maintaining stability [19]. The test set comprises 129 matrices. For each problem,
instead of testing every possible number of Jacobi sweeps, we chose the number of Jacobi sweeps (called the
chosen number of sweeps) to be the number of sweeps required to reduce the residual norm in an iterative
solve with the lower triangular incomplete factor by two orders of magnitude (0.01).

For 65 of the 129 problems, the chosen number of sweeps is less than 50 for the scalar Jacobi method. For
the other 64 “harder” problems, we investigate the effect of graph partitioning-based blocking. In Figure 3.7
we report the chosen number of sweeps when Approaches I and II of Section 2.3 are applied to these problems.
Here the maximum block size is 10. For Approach I, 76% of the problems require 15 or fewer sweeps and
only 4 need more than 30 sweeps. For Approach II, the corresponding statistics are 86% and 2 problems.
This clearly illustrates the potential benefits of graph-based blocking.

35 T

I Approach |
[ Approach Il

number of problems
~ . o N @
> o 3 & s
T T T T T
| | |

@
T

[15] (5,10] (10,15] (15,20] (20,30] >30
Jacobi sweeps

Figure 3.7: The chosen number of Jacobi sweeps for Approaches I and II for the 64 harder problems. For
these problems, the chosen number of sweeps is more than 50 when no blocking is used.

In Table 3.2, we present results for PCG solves for a subset of the harder problems. For comparison,
we include results using supervariable amalgamation, Approach I, and Approach II. Note that graph-based
blocking corresponds to reordering the matrix A, and thus the resulting preconditioners are different for
the different blocking strategies. In addition, different shifts o may be needed for the different graph-based
blocking strategies and block sizes. For example, for besstk24, no shift is needed to compute the IC(1)
factorization of A, but if Approach I or Approach II is used with a block size of 10 (respectively, 20), a shift
of 0.0005 (respectively, 0.001) is used to prevent break down of the factorization. Since the factorizations
are different, the cost estimates (3.1) in the tables in this subsection are in units of words.

The results in Table 3.2 show that Approach I and Approach II lead to orderings that often increase
the iteration count compared to the locality preserving ordering used by supervariable amalgamation, but
fewer Jacobi sweeps are needed for each PCG solve. The cost estimates for the different blockings are not
significantly different.

Finally, in Table 3.3 we present some results for Approach IT applied to the quotient graph (that is, the
graph is first compressed using supervariables before Approach II is applied). Here we set the maximum
block size to 30. We see that, in terms of the cost estimate, there is no consistent advantage in using
supervariables and in our experiments we found the number of sweeps was generally smaller if supervariables
were not used. For problems bcsstk10 and msc10848, a larger shift is needed if supervariables are not used
and this leads to an increase in the iteration count.



Table 3.2: The effect of different blocking strategies on the number of Jacobi sweeps, the number of PCG
iterations and the cost estimate. bsize denotes the block size. The figures in parentheses are the number of
PCG iterations if exact solves are used with the corresponding blocking. A dash (~) denotes that PCG was

not run.

Problem | bsize Supervariable amalgamation Approach 1 Approach II
sweeps iterations cost estimate | sweeps iterations cost estimate | sweeps iterations cost estimate
cfdl 10 | 300 - (251) - 30 239 (238) 3.38x1010 | 11 275 (266) 1.57x1010
20 | 200 —(251) - |50 284 (235) 6.68x1010 | 8 266 (266) 1.12x1010
30 | 200 - (251) - |50 262 (239) 6.26x1010 | 7 282 (278) 1.04x1010
ex13 10 | 61 16 (15) 1.03x108 | 35 29 (29) 1.81x108 | 10 27 (27) 4.67x107
20 | 25 16 (15) 4.31x107 28 (29) 5.03x107 | 6 26 (26) 2.57x107
30 | 21 15 (15) 3.41x107 28 (28) 4.45%x107 | 6 21 (21) 2.05x107
shipsec8 10 | 40 120 (120) 5.19x10%0 | 10 202 (202) 3.84x10%0 | 11 153 (153) 3.17x1010
20 | 30 118 (120) 3.85x1010 | 9 205 (205) 3.63x10%0 | 9 165 (165) 2.87x1010
30 | 30 119 (120) 3.88x101° | 9 197 (197) 3.54x1010 | 8 131 (131) 2.04x1010
besstk24 10 | 45 28 (26) 2.84x10% | 13 55 (55) 2.63x10% | 20 49 (49) 3.47x108
20 | 41 27 (26) 2.50x108 | 9 93 (93) 3.22x108 | 9 61 (64) 2.04x108
30 | 32 27 (26) 1.96x108 | 10 70 (70) 2.70x10% | 9 64 (63) 2.14x108

Table 3.3: Results with and without the exploitation of supervariables in Approach II. The block size is 30.
« denotes the global shift used in the construction of the incomplete factorization and supmax is the size of
the largest supervariable.

Problem supmazx Not using supervariables Using supervariables
« sweeps iterations cost estimate « sweeps iterations cost estimate
besstk10 3 3.2 x 1072 5 47 1.03x107 | 2.5 x 10~* 6 21 4.46x106
gyro_m 3 0.0 6 41 3.21x10% | 0.0 9 46 5.14x108
nasa2146 4 0.0 4 9 1.37x107 | 0.0 8 15 1.45%107
slrmg4m1 6 0.0 7 81 4.04x10% | 0.0 9 75 3.13x107
msc10848 21 1.0 x 1073 8 35 1.28x109 | 1.56 x 10~% 25 31 2.46x10°
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4 Concluding remarks

The main goal of this paper was to understand the applicability of Jacobi and block Jacobi iterations for
solving the sparse triangular systems arising from incomplete Cholesky preconditioning. For a diverse set
of SPD test problems using IC(0) and IC(1) PCG, Jacobi iterations were shown to be effective for a large
majority of the problems; by using blocks and block Jacobi, robustness was enhanced. Although it is outside
the scope of this study to perform and measure timings for parallel computations, previous studies [3, 7]
suggest that Jacobi iterations can be much faster than level-scheduled triangular solves on highly parallel
computers.

This paper did not address how to choose the optimum number of Jacobi sweeps to use in the PCG
solver. A fixed number of sweeps is desirable, as the preconditioner is then a fixed operator and a “flexible”
solver is not needed. However, in practice, the number of sweeps could be adjusted dynamically and the
iterations restarted based on the convergence of PCG. If a flexible solver is used, e.g, FGMRES [23] in the
nonsymmetric case, then a different number of Jacobi sweeps based on the residual norm reduction for each
approximate triangular solve could be used.
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