

 1

Benchmarking the Sun Fire X4500

James Thorne
1

May 31, 2007

Abstract

The Sun Fire X4500, AKA “Thumper”, is a fast, high density storage unit. It provides
24 TB of storage in 4U. It does not have any RAID controllers and relies on the software
RAID capabilities of the operating system.
The performance of the X4500, both local and NFS, under Solaris x86 and Scientific Linux
4.4 is examined. The methods of testing are described and the results are discussed. A
problem was encountered when running the tests in Linux and the steps taken to investigate
this problem are explained.
Conclusions are drawn regarding the performance of the two operating systems under test
and the suitability of the machine for use as a disk server within the Tier1.

1 Tier1, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, OX14 0QX

 2

1 Introduction

1.1 History

RAL acquired a Sun Fire X4500 (AKA “thumper”) on loan from Sun Microsystems in order to test
its suitability for use in the Tier1. The machine was designed for the media market to stream large
quantities of video and audio but could be used to stream large amounts of data of any type. The
testing involved not only load testing the machine to establish how high a load the machine can
sustain but also testing the actual disk I/O speeds to measure the performance that can be expected
from the box.

1.2 Hardware

Figure 1. Disks in the X4500

The Sun Fire X4500 file server is a 4U disk server with the following features:

 48 direct-attached hot-pluggable, 3.5-inch 7200RPM SATA II HDDs (Figure 1)

 6 x SATA controllers

 16GB RAM

 2 x Opteron dual core processors

 4 x gigabit Ethernet ports

There is no hardware RAID controller in the X4500; it relies solely on the software RAID
capabilities of the installed operating system.

1.3 Objectives

The main aim of the testing was to determine the X4500's performance in the following areas:

 Local I/O to a software RAID device under Solaris

 3

 Local I/O to a software RAID device under Linux

 NFS I/O to a software RAID device under Solaris

 NFS I/O to a software RAID device under Linux

2 Testing and results

2.1 Setup

Our test configuration consisted of two system disks for the machine, one containing Scientific
Linux 4.4 and one containing Solaris 10 x86. One of these disks was inserted in disk slot 0 at any
one time to ensure that the other is not corrupted by accident. The rest of the disks were then
available for creating software RAID devices using the relevant operating system tools.

The testing was done using IOzone
2
. A custom suite of disk server benchmarks (section 2.2) was

also used to see how the machine performed under high loads.

The tests were run in a number of different configurations in both Linux and Solaris but there were
problems when running the tests in Linux. These are discussed in section 3.

2.1.1 Software RAID

2.1.1.1 Linux

Software RAID in Linux
3
 is accomplished with the mdadm command:

mdadm --create /dev/md0 --level=raid6 --raid-devices=12 device
list

/dev/md0 can then be used as the block device for a file system:

mke2fs -b 4096 -E stride=16 /dev/md0
mkdir /tst
mount -o noatime,nodiratime /dev/md0 /tst
df -h /tst
Filesystem Size Used Avail Use Mounted on
/dev/md0 4.5T 109M 4.5T 1 /tst

The file system /tst is now ready for testing. Note that software RAID devices such as /dev/md0
above cannot be partitioned so one must use LVM or create multiple, smaller RAID devices.

For this testing we used 12 disks in a RAID6 configuration as in the example above.

2.1.1.2 Solaris

The “software RAID” system in Solaris 10 is called ZFS
4
. Rather than sitting between the file

system layer and the raw disks (c.f. Linux software RAID), it is a file system that can span multiple
disks and has features like RAID. ZFS is quick and easy to set up with the zpool command:

zpool create -f tst raidz device list

As well as creating the raid device, it creates the mount point /tst and mounts the new zpool device
at the mount point.

For this testing we used 9 drives to create /tst.

2 http://www.iozone.org
3 http://www.redhat.com/docs/manuals/enterprise/RHEL-4-Manual/sysadmin-guide/s1-raid-approaches.html
4 http://www.sun.com/2004-0914/feature/

 4

2.1.2 NFS client

The client was a single machine with a standard Tier1 worker node installation (Scientific Linux
3.0.8). The X4500 and the client machine were connected via Gigabit Ethernet. /tst on the X4500
was exported and mounted at /tst on the client. The same test scripts were run as if /tst was a local
file system.

2.2 Custom benchmark suite

The idea of this suite of programs is to emulate the load on a disk server created by typical physics
applications. There are several programs that are run independently and access the disk in different
ways, including AIM VII

5
 and custom disk I/O tests.

The suite was used to generate a large sustained load.

2.3 IOzone

IOzone is a disk I/O testing suite which performs a variety of read and write tests. IOzone was run
according to the IOzone documentation

6
. Scripts to run IOzone with the desired command-line

options were created and are listed in appendix A.

Several IOzone tests were run using differing numbers of threads but small file sizes to check that
IOzone would run OK:

iozone -i0 -i1 -t1 -s512m -r1k
iozone -i0 -i1 -t1 -s512m -r8k

iozone -i0 -i1 -t1 -s512m -r16k
iozone -i0 -i1 -t1 -s512m -r32k
iozone -i0 -i1 -t2 -s512m -r32k
iozone -i0 -i1 -t4 -s512m -r32k
iozone -i0 -i1 -t8 -s512m -r32k
iozone -i0 -i1 -t16 -s512m -r32k
iozone -i0 -i1 -t32 -s512m -r32k

These tests ran successfully so the scripts in appendix A were used to run IOzone to collect the data
for analysis.

5 http://sourceforge.net/projects/aimbench
6 http://www.iozone.org/docs/IOzone_msword_98.pdf

 5

2.4 Results

2.4.1 Solaris, local I/O

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

1
3

1
0

7
2

2
6

2
1

4
4

5
2

4
2

8
8

1
0

4
8

5
7

6

2
0

9
7

1
5

2

4
1

9
4

3
0

4

8
3

8
8

6
0

8

1
6

7
7

7
2

1
6

3
3

5
5

4
4

3
2

File Size (kB)

k
B

/s
ec

Write Re-write

Read Re-read

Random read Random write

Backward read Record re-write

Stride read Fwrite

Re-fwrite Fread

Re-fread

Figure 2. Solaris local data rates

Figure 2 shows how file size affects local data rates under Solaris. For each file size, data was
written with records sizes from 4 kB to 64 kB. The data rate quoted is the mean of the rates
achieved at each file size.

The best write performance was observed on files of between 4 MB and 512 MB. Within this range,
the write speed remained fairly constant at about 700 MB/s. Above 512 MB, the write speed drops
by to about 300 MkB/s. At the lower end, data rates start at about 400 MB/s for files of 64 kB and
climb gradually to the maximum at a file size of 4 MB. All write tests follow a similar trend.

The read figures follow a similar pattern; rates increase to a maximum of 1.77 GB/s for files of
128 kB, fall again and level out at file sizes of 512 kB to 8 GB. Rates stay high for longer than write
rates, only falling off for file sizes over 8 GB. The read rate between 512 kB and 8 GB is about
1.25 GB/s.

2.4.2 Linux, local I/O

The same tests were attempted on Linux but the time spent investigating the problems described in
section 3 prevented this. The X4500 under Linux was tested using multi-threaded instances of
IOzone to see how disk I/O was affected by the number of threads. A script (thumper-threaded.sh,
appendix A.2) was used to run IOzone. The script keeps track of its state in case of a reboot.

 6

0

50000

100000

150000

200000

250000

300000

350000

1 2 4 8 16 32 64

Number of threads

D
a

ta
 r

a
te

 (
k

B
/s

)

write

rewrite

read

re-read

Figure 3. Linux local data rates

Figure 3 shows the results of the multi-threaded IOzone testing in Linux; 1 to 64 threads were
running concurrently, each accessing a 32 GB file. The figures quoted are the measured per-thread
rate.

As would be expected, the per-thread performance drops with increasing number of threads, both in
read and write tests. With a single thread, the read and write rates are about 300 MB/sec and
100 MB/sec respectively. These figures halve for two threads and then start to flatten out. At 64
threads, the per-thread read rate is 33 MB/sec and the write rate is 12 MB/sec.

2.4.3 Solaris, NFS

Figure 4 shows the test results for IOzone via NFS to the X4500 running Solaris. Write rates start at
about 8 MB/sec for files of 64 kB and increase to 45 MB/sec for files of 1 MB and remain fairly
constant for all larger file sizes up to 8 GB.

Read rates show a very different pattern and are probably artificially high for lower file sizes due to
the caches involved in NFS. Once the file size reaches 256 MB, the read rates fall dramatically,
probably due to exceeding an NFS cache, either on the client or the server. For file sizes greater
than 256 MB, the read rate drops to between 100 and 240 MB/sec.

 7

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

1
3

1
0

7
2

2
6

2
1

4
4

5
2

4
2

8
8

1
0

4
8

5
7

6

2
0

9
7

1
5

2

4
1

9
4

3
0

4

8
3

8
8

6
0

8

File Size (kB)

k
B

/s
ec

Write Re-write

Read Re-read

Random read Random write

Backward read Record re-write

Stride read Fwrite

Re-fwrite Fread

Re-fread

Figure 4. Solaris NFS data rates

2.4.4 Linux, NFS

Figure 5 shows the results of the Linux NFS tests. Per-thread read rates fluctuate around 40 MB/sec
and write rates start at about 12 MB/sec for one thread and drop to 3 MB/sec per thread for 32
threads.

0

10000

20000

30000

40000

50000

60000

70000

1 2 4 8 16 32

Number of threads

D
a

ta
 r

a
te

 (
k

B
/s

)

NFS write

NFS rewrite

NFS read

NFS re-read

Figure 5. Linux NFS data rates

 8

2.5 Comparisons

Time spent on investigating the problems under Linux and the fact that the tests run on Solaris did
not produce results on Linux (the machine rebooted before completing them) meant that the tests
run on the two operating systems differed. Comparison of Linux and Solaris is more difficult as a
result but some comparisons can be drawn.2.5.1 Local I/O

The data rates for a single thread accessing a 32 GB file can be compared (Table 1). This suggests
that for 32 GB files the X4500 is 46% faster on reads and 255% faster on writes, despite the I/O
being split across nine rather than twelve disks.

Table 1

 Read (MB/sec) Write (MB/sec)

Linux 309 105

Solaris 452 373

2.5.2 NFS

It is possible to compare the single thread, 8 GB file figure (Table 2). Again, the X4500 seems to
perform better under Solaris with NFS reads being 132% faster than Linux and NFS writes being
233% faster. The Linux figures may not be wholly representative, however. They may be skewed
by the client waiting for the server to reboot due to the problems described in section 3. Differences
in the way that the two operating systems handle NFS caches may also have affected the results.

Table 2

 Read (MB/sec) Write (MB/sec)

Linux 46 12

Solaris 107 40

Some NFS tests were run on both Linux and Solaris from the same NFS client. These measured the
mean read and write rates for a number of file sizes up to 256 MB. Due to the small size of the
files, the read figures were broadly similar due to caches on the client (figure 6) and so do not agree
with table 2 which is for 8 GB files. It is worth noting that Solaris drops below Linux above files of
8 MB. The reason for this was not determined.

The write figures are more useful as they are not affected by caches (figure 7). Here Solaris clearly
performs better than Linux with figures broadly similar to table 2.

 9

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

1
3

1
0

7
2

2
6

2
1

4
4

File size (kB)

M
ea

n
 R

ea
d

 R
a

te
 (

k
B

/s
)

Solaris, ZFS

Linux, S/W RAID + ext3

Figure 6. Mean NFS read performance

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

6
5
5
3
6

1
3
1
0
7
2

2
6
2
1
4
4

File size (kB)

M
ea

n
 W

ri
te

 R
a
te

 (
k

B
/s

) Solaris, ZFS

Linux, S/W RAID + ext3

Figure 7. Mean NFS write performance

3 Problems

3.1 Spontaneous rebooting

There was a major problem when testing the X4500 under Linux. Early on, during load testing with
the custom disk server test suite, the machine rebooted with no log messages in /var/log/messages.

 10

These tests should have been easily accomplished by the X4500. During the POST, the message
displayed was:

Hyper Transport sync flood error occurred at last boot

Looking at the logs on the Integrated Lights Out Manager (ILOM) with ipmitool shows this
problem logged just after system boot:

ipmitool -H IP address -U root -P password -I lanplus sel list
a801 | 01/16/2007 | 14:16:01 | System Firmware Progress | System \
boot initiated | Asserted
a901 | 01/16/2007 | 14:38:43 | OEM #0x12 | | Asserted
aa01 | OEM record e0 | 00000000040f0f0700000000f2
ab01 | OEM record e0 | 010000000480c0800308000000
ac01 | 01/16/2007 | 14:39:45 | System Firmware Progress | \
Motherboard initialization | Asserted
ad01 | 01/16/2007 | 14:39:45 | System Event | \
Undetermined system hardware failure | Asserted
ae01 | OEM record e0 | 00000000040f0f0700000000f2
af01 | OEM record e0 | 00000100040f0f0700000000f2

This happened only once during testing.

3.2 Kernel panic

On one occasion, there were some errors early in the morning, followed by a kernel panic. There
was the following in /var/log/messages:

Feb 11 04:02:04 csflnx357 kernel: PCI-DMA: Out of IOMMU space for \

131072 bytes at device 0000:06:01.0
Feb 11 04:02:04 csflnx357 kernel: ata25: status=0x50 \
{ DriveReady SeekComplete }
Feb 11 04:02:04 csflnx357 kernel: ata25: error=0x50 \
{ UncorrectableError SectorIdNotFound }
Feb 11 04:02:04 csflnx357 kernel: Info fld=0x505050, \
Current sdy: sense key No Sense

3.3 Investigation

The Error Handling section of the Sun Fire X4500 Server Diagnostic Guide
7
 suggest that the

HyperTransport sync flood error message can be caused by one of several things:

 The CPU detected an un-correctable multiple-bit DIMM error.

 A CRC or link error on one of the HyperTransport links.

 A system or parity error on a PCI bus.

The testing tools do not appear to be the cause as the machine rebooted in this way even when idle.
Also, the fault does not appear when running Solaris which leads to the possibility that the fault is
the way in which Linux is interacting with the hardware or the hardware itself.

Memtest86+ was run on the box for over 24 hours and after several passes had found no faults with
the memory. Other memory testing tools were tried too, including Stream

8
 and Memtester

9
. Neither

of these tools revealed any problems.

The kernel panic suggested that the available IOMMU space may need to be increased or that there
was a problem with /dev/sdy (the system disk). /dev/sdy passed an fsck check. The amount of
IOMMU space available can be changed using kernel options. The IOMMU was disabled in the
machine BIOS and the machine was booted with the kernel parameter iommu=memaper=4 and the
custom disk testing suite was run.

7 http://docs.sun.com/source/819-4363-10/error_handling.html#88475
8 http://www.cs.virginia.edu/stream/
9 http://pyropus.ca/software/memtester/

 11

With this parameter, the machine stayed up for four days with load averages of 600 to 900, with a
peak at 1500. The setting of the IOMMU aperture seemed to have fixed both the panic and the
spontaneous reboots. The machine was rebooted, /tst was recreated and the tests were started again
(section 2). The X4500 rebooted after just over a week. The kernel parameter iommu=memaper=5
was tried. Although the machine stayed up for nearly three weeks using this parameter it rebooted
again.

After the X4500 had been returned, an article was found on a Sun Internet forum
10

 which described
the IOMMU problem on the X4500. It suggests replacing the operating system provided sata_mv
driver with mv_sata

11
 or using the sata_mv included in the latest 2.6 kernel.

A source RPM for the mv_sata driver was provided by Sun during the testing. This was built and
tried but did not seem to work. It is likely that this was due to a subsequent kernel update without
rebuilding the mv_sata driver for the new kernel. With hindsight, it seems insufficient time was
spent researching this driver at the time. If one of these machines were to be tested again then more
time should be spent building and researching this driver.

4 Conclusions

The performance of the X4500 was generally good; however the problems encountered while
running Scientific Linux 4.4 caused difficulties during testing. There is a fix for this which would
allow better testing of the X4500 if the Tier1 was able to obtain one again for further testing.

From the results that were obtained, it appears that Solaris and ZFS are much quicker than Linux
and Software RAID6. The Linux figures may have been adversely affected by repeated background
rebuilds of the software RAID device due to the repeated rebooting of the machine. Using Solaris
rather than Linux would, however, require major changes to the Tier1 fabric and configuration
system, as well as provision of support for the disk server software on Solaris x86. The Tier1 may
not have the resources to do this.

If the problems encountered under Linux are fixed by the different SATA driver then the X4500
would be a candidate for use as a disk server in the Tier1. With 16 GB RAM and powerful CPUs,
the system was very responsive under high load and may be able to perform other tasks, such as
calculating checksums, while serving data.

10 http://forum.java.sun.com/thread.jspa?threadID=5105877&tstart=120
11 http://www.keffective.com/mvsata/

 12

A Scripts

A.1 thumper-solaris.sh

#!/bin/sh
thumper-solaris.sh

A script to run iozone on the thumper.

this is where our executable is

cd iozone.solaris/
run iozone. See below for a translation

./iozone -azRQ -f /tst/iozonefile -U /tst -b \
/root/thumper-iozone-local-solaris.xls \
-q 64m -s 32g > /root/thumper-iozone-local-solaris.log
-a = "automatic mode"
-z = Use record sizes below 64k for large files too.
-R = Produce Excel report
-Q = Create offset/latency files
-f = The filename to use for the tests
-U = The filesystem to unmount and mount between each test
-b = The Excel file to write the output to
-q = The maximum record size (64MB here)
-s = The maximum file size (2xRAM = 32 GB here)

The output to STDOUT is tabular data for plotting if necessary.

A.2 thumper-threaded.sh

#!/bin/bash
thumper-threaded.sh

A script to run iozone on the thumper.

Before a new run you might want to delete the state file defined
for
$STATEFILE below.

On the Thumper, this should go in /etc/rc.local so that it starts
on boot
if we have a reboot.

Do you want debugging? 0 = no, 1 = yes
DEBUG=1
Setup $PATH, just in case

PATH=$PATH:/bin
Set up some variables

FILESIZE should ideally be twice the RAM of the machine.
FILESIZE=32g
IOZONEDIR=/root/iozone.thumper/iozone3_281/src/current
TESTDIR=/tst

IOZONE_FILENAME=$TESTDIR/iozonefile
OUTFILE=/root/thumper-iozone-threaded-20070330
STATEFILE=/root/thumper-iozone-threaded-20070330.state
#STATEFILE=/home/ron/thumper-iozone-threaded.state
this is where our executable is

cd $IOZONEDIR
Run iozone. Translation of options.
-a = automatic mode

 13

-R = Produce Excel report

-i0 = run write/rewrite tests
-i1 = run read/re-read tests
-F = The filenames to use for the tests
-U = The filesystem to unmount and mount between each test
-b = The Excel file to write the output to
-t = The number of threads to run
-s = The test file size (2xRAM = 32 GB here)

The output to $LOGFILE is tabular data for plotting if necessary.

This doubles the number of threads with each iteration. The
setting of
$IOFILE is necessary as we're remounting the filesystem between
tests to clear
the caches.
Touching the state file ensures that it exists and avoids errors
from cat.
Decalre $STATE as an integer variable
touch $STATEFILE
declare -i STATE=`cat $STATEFILE`
Loop through the different numbers of threads that we want to run
for THREADS in 1 2 4 8 16 32 64 128; do
 # Check how far we got the last time we were run. We don't
want to run
 # all the tests again. If you do, remove the state file and
re-run
 if [$THREADS -gt $STATE]; then
 # Set $IOFILE to contain a list of filenames for the

threads
 # to use as temp files and remove them.
 IOFILE=""
 for i in `seq 1 $THREADS`; do
 IOFILE="$IOFILE ${IOZONE_FILENAME}${i}"
 rm ${IOZONE_FILENAME}${i}
 done
 # Print out the command if we're running with
debugging
 if [$DEBUG -eq 1]; then

 echo "DEBUG: iozone -R -i0 -i1 -t${THREADS} \
-F $IOFILE-b ${OUTFILE}-${THREADS}.xls -s $FILESIZE 2>&1 \
> ${OUTFILE}-${THREADS}.log"
 echo

 fi
 # Run iozone
 ./iozone -R -i0 -i1 -t${THREADS} -F $IOFILE \
-b ${OUTFILE}-${THREADS}.xls -s $FILESIZE 2>&1 \
> ${OUTFILE}-${THREADS}.log
 # Update the state file
 echo $THREADS > $STATEFILE
 fi
done
END ##

 14

B Preparing for return

Before returning the X4500 to Sun the disks needed to be blanked. Time was limited so it was
decided to blank as many disks as possible in parallel:

for i in a b c d e f g h i j k l m n o p q r s t u v w x z; do
> dd if=/dev/zero of=/dev/sd${i}
> done

However, this method caused the same hypertransport error discussed in section 3.1 and was
abandoned. Instead, the first gigabyte of each data disk was overwritten along with the whole of
both system disks. The machine was collected for return to Sun on Tuesday 10th April 2007.

