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Starting from a simple classical framework and employing some stochastic concepts, the basic
ingredients of the quantum formalism are recovered. It has been shown that the traditional ax-
iomatic structure of quantum mechanics can be rebuilt, so that the quantum mechanical framework
resembles to a large extent that of the classical statistical mechanics and hydrodynamics. The
main assumption used here is the existence of a random irrotational component in the classical mo-
mentum. Various basic elements of the quantum formalism (calculation of expectation values, the
Heisenberg uncertainty principle, the correspondence principle) are recovered by applying traditional
techniques, borrowed from classical statistical mechanics.
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I. INTRODUCTION

One of the most intriguing achievement of the 20-th
century physics is the foundation of quantum mechanics
and its basic tool the Schrödinger equation. It is one
of the most studied equation in contemporary physics
both from mathematical point of view, as well as from
the perspective of the enormous number of its important
applications. Various links have been proposed between
classical and quantum picture, in order to overcome the
main difficulties due to the difference of formalisms, and
to better understand their interplay and possible connec-
tion.

A formal approach is represented by the Wigner-Weyl
transformation [1, 2], based on the reformulation of quan-
tum mechanics into phase space by means of a continu-
ous map. Although having some drawbacks, such as the
fact that the Wigner distribution function is not strictly
positive, this approach has proved an important tool in
many areas of quantum physics and chemistry. In partic-
ular, the semi-classical limit of quantum mechanics can
be recovered by using the Wigner-Weyl transformation.

While the Wigner-Weyl approach can be considered
as an extension of quantum mechanics in a classical
domain (phase space), the Koopman-von Neumann ap-
proach [3–5] is a reformulation of classical mechanics into
the Hilbert-space language. This quantum-like theory,
although being always classical has the advantage that it
can be directly compared to quantum mechanics, at least
in terms of the underlying formalism.

The two guidelines of development mentioned above
are actually the two sides of the same subject, namely
to find a formal mathematical language capable to han-
dle both classical and quantum mechanics. There exists a

∗Electronic address: s.i.tzenov@dl.ac.uk

third attempt fundamentally different compared to those,
which is known as the Bohm-Fényes-Nelson approach [6–
11]. This approach is centered on the physical footings
and interpretation of quantum mechanics. The basic idea
is that quantum phenomena are conditioned by stochas-
tic effects, which take place in a classical framework, so
that the notion of equations of motion and hence the no-
tion of trajectory (although a random one) remains valid.
The Planck’s constant ~ plays now the role of a measure
of the strength of the stochastic effects. This is an inter-
esting point of view exhibiting a number of remarkable
properties and links to the theory of deformation quan-
tization. Many articles [12–15] are devoted to the study
of the relation between the phase space representation
of quantum states (quasi-distributions) in the deforma-
tion quantization method, and the Bohm distributions in
phase space in the framework of the Bohm-Fényes-Nelson
approach.

Recently, it has been shown [16] that an exact uncer-
tainty principle can be formulated, which provides the
key argument in the transition from the dynamical de-
scription of a classical ensemble to that of a quantum
ensemble. Another interesting derivation of the equa-
tions of nonrelativistic quantum mechanics is based on
the use of the principle of minimum Fisher information
[17].

The point of view pursued in the present paper has
been formulated previously in a different context [18]. Its
cornerstone is the assumption that the particle velocity,
being an infinitesimal quantity (derivative of the position
with respect to time), is random and consists of a mean
part and an irrotational fluctuation. The mean part is the
actual classical velocity (momentum), while the fluctua-
tion represents a measure of the uncertainty with which
it can be determined. Since the fluctuation is irrota-
tional, it does not affect the averaged Hamilton equations
of motion, however it yields an additional second-order
correlation term in a picture, where an ideal particle lo-
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calization is not valid. Moreover, as it will become clear
in the sequel, the strength of the momentum fluctuation
depends functionally on the measure of particle delocal-
ization, namely on the density distribution %(x; t).

The paper is organized as follows. In the next Section
a brief parallel between the Hamiltonian and Liouvillean
description is outlined. In Section III, a mapping of the
classical kinetic balance equations onto a Schrödinger
equation is derived. The second-order correlation ten-
sor of the random, irrotational velocity field is derived
in Section IV. Further, it is shown that the hydrody-
namic equations thus obtained, are in fact the Madelung
equations [19], known to be formally equivalent to the
Schrödinger equation. Section V presents a further elab-
oration aimed to recover some basic rules of the quantum
formalism. Finally, Section VI is devoted to discussion
and conclusions.

II. LIOUVILLEAN DESCRIPTION

To start with, we consider a n-dimensional Hamilto-
nian system, whose dynamics is governed by a smooth
Hamiltonian function H(x,p; t). Here x and p are n-
dimensional vectors. It is well-known that the descrip-
tion of the dynamical system in terms of equations of
motion (Hamilton’s equations) is formally equivalent to
the description in terms of a phase space density specified
by a distribution function f(x,p; t). The latter satisfies
the Liouville equation

∂f

∂t
+ {f,H} = 0, (II.1)

where

{F,G} =
n∑

k=1

(
∂F

∂xk

∂G

∂pk
− ∂G

∂xk

∂F

∂pk

)

= (∇xF ) · (∇pG)− (∇xG) · (∇pF ), (II.2)

is the standard Poisson bracket. This equivalence is how-
ever subtle. Actually, it is a formal mathematical prop-
erty, which is evidently incomplete in a physical sense.
Note for example that, unlike the Hamilton’s equations
of motion

dx
dt

= ∇pH,
dp
dt

= −∇xH, (II.3)

where x = x(t) and p = p(t), in equation (II.1) x and
p are independent variables and they do not depend on
t. Moreover, the Hamilton equations correspond to the
ideal case of a perfectly localized particle

f(x,p; t) = δ[x−X(t)]δ[p−P(t)], (II.4)

where (X(t),P(t)) represents their explicit solution. Ex-
pression (II.4) also satisfies the Liouville equation, how-
ever in addition, it admits a solution of the form (IV.15).

The latter implies that for a given value of x, the clas-
sical momentum p is uniquely determined according to
the expression [see equation (IV.34)]

p = ∇xS(x; t). (II.5)

In addition, the function S(x; t) satisfies the Hamilton-
Jacobi equation and represents a family of classical tra-
jectories. Evidently, the density distribution %(x; t) is a
new element in general. It can be regarded as a gen-
eralization of the delta-distribution in the Hamiltonian
description, and subsequently as a measure of particle
delocalization.

Let us define the characteristic function

G(x, s; t) =
∫

dpf(x,p; t) exp
(
i

λ
s · p

)
, (II.6)

with a Fourier inverse

f(x,p; t) =
1

(2πλ)n

∫
dsG(x, s; t) exp

(
− i

λ
s · p

)
,

(II.7)
where the variable s is chosen such that to have the same
dimension as the coordinate x, and λ is a formal param-
eter with dimension of action. It is introduced in order
to make the argument under the exponent dimensionless.
In fact, equation (II.6) [or equivalently (II.7)] represents
the definition of the Wigner-Weyl transformation [2]. For
the time being, we avoid any reference to the latter, apart
from formal similarity and coincidence. In Section V, we
will establish a firm link between the characteristic func-
tional and the Wigner-Weyl representation.

Before we proceed further, let us point out a couple
of important features of the characteristic function. It is
known that in the limit s → 0, the characteristic function
yields the moments of the distribution function f(x,p; t)
after a proper marginalization with respect to the conju-
gate momentum variable p is performed. For example,

lim
s→0

G(x, s; t) =
%(x; t)
mN

, (II.8)

where m is the particle mass, and

N = lim
N,V→∞

N

V
, (II.9)

is the particle number density in the thermodynamic
limit. Here N is the total number of particles in the
system and V is the volume occupied by the system. Fur-
ther, we have

λ

i
lim
s→0

∇sG(x, s; t) =
1
N
%(x; t)v(x; t), (II.10)

and so on.
It is therefore very instructive to derive an equation

for the characteristic function and try to manipulate it
in a suitable manner.
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III. ANALYSIS OF THE LIOUVILLE
EQUATION AND MAPPING ONTO A

SCHRÖDINGER EQUATION

In this Section, we will work out in detail the simplest
case, where

H(x,p; t) =
p2

2m
+ U(x; t). (III.1)

For each term in the Liouville equation (II.1), we have
subsequently

∂f

∂t
=

1
(2πλ)n

∫
ds
∂G
∂t

exp
(
− i

λ
s · p

)
, (III.2)

p
m
· ∇xf =

−iλ
m(2πλ)n

∫
ds∇s · ∇xG exp

(
− i

λ
s · p

)
,

(III.3)

∇xU · ∇pf =
−i

λ(2πλ)n

∫
ds(s · ∇xU)G exp

(
− i

λ
s · p

)
.

(III.4)
Combining all the terms, the sought-for equation can be
written the in form

∂G
∂t

− iλ

m
∇s · ∇xG +

i

λ
(s · ∇xU)G = 0. (III.5)

We would like now to diagonalize the differential opera-
tor, encountered in the second term of equation (III.5).
This is achieved by a simple linear change of variables

x1 = x +
s
2
, x2 = x− s

2
. (III.6)

Taking into account the identities

∇x = ∇1 +∇2, ∇s =
1
2
(∇1 −∇2), (III.7)

where ∇1,2 denotes the differential operator taken with
respect to the variables x1,2 respectively, we note that
equation (III.5) can be rewritten as

∂G
∂t

− iλ

2m
(
∇2

1 −∇2
2

)
G +

i

λ
(s · ∇xU)G = 0. (III.8)

The last equation suggests the ansatz

G(x1,x2; t) = Ψ1(x1; t)Ψ2(x2; t). (III.9)

In addition, the yet unknown complex valued functions
Ψk (k = 1, 2) can be represented in the form

Ψk(xk; t) = Rk(xk; t) exp
[
i

λ
Sk(xk; t)

]
, k = 1, 2.

(III.10)
Since G(x, s = 0; t) must be real, it follows immediately
that

S(x; t) = S1(x; t) = −S2(x; t). (III.11)

Therefore, the characteristic function can be written ac-
cording to the relation

G(x, s; t) = F (x, s; t) exp
[
i

λ
G(x, s; t)

]
, (III.12)

where

F (x, s; t) = R1

(
x +

s
2
; t

)
R2

(
x− s

2
; t

)
, (III.13)

G(x, s; t) = S
(
x +

s
2
; t

)
− S

(
x− s

2
; t

)
. (III.14)

From equation (III.14) it becomes clear that the phase
G(x, s; t) is an odd function of the variable s. Let us
now substitute the characteristic function represented by
(III.12) into equation (III.5) and separate the real and
imaginary part. We obtain

m
∂F

∂t
+∇x · (F∇sG) + (∇sF ) · (∇xG) = 0, (III.15)

F
∂G

∂t
+
F

m
(∇sG) · (∇xG) = −F s · ∇xU +

λ2

m
∇s · ∇xF.

(III.16)
In what follows, we will analyze equations (III.15) and

(III.16) in zero and first order with respect to the s-
variable. The zero-order reads as

∂F (0)

∂t
+

1
m
∇x ·

(
F (0)∇xS

)
= 0, (III.17)

R2∇xR1 −R1∇xR2 = 0, (III.18)

where F (0)(x; t) = R1(x; t)R2(x; t). Equation (III.18)
simply implies that R1 and R2 must be equal up to a
multiplicative constant that can be normalized. Thus,
without loss of generality, we can write

R(x; t) = R1(x; t) = R2(x; t). (III.19)

Therefore, the amplitude F (x, s; t) is an even function of
the s-variable

F (x, s; t) = R
(
x +

s
2
; t

)
R

(
x− s

2
; t

)
, (III.20)

In first order, we obtain

∇x

(
∂S
∂t

)
+∇x

(∇xS)2

2m
= −∇xU +

λ2

2m
∇x

(
∇2

xR
R

)
,

(III.21)
which integrated once yields

∂S
∂t

+
(∇xS)2

2m
= −U +

λ2

2m
∇2

xR
R

. (III.22)

The final step is to introduce the complex wave function
ψ(x; t) according to the de Broglie ansatz

ψ(x; t) = R(x; t) exp
[
i

λ
S(x; t)

]
. (III.23)
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Combination of equations (III.17) and (III.22) yields the
following result

iλ
∂ψ

∂t
= − λ2

2m
∇2

xψ + Uψ. (III.24)

By identification of λ with the Planck’s constant ~, equa-
tion (III.24) transforms into the Schrödinger equation.
In addition, equations (III.17) and (III.22) coincide with
the system of equations, describing the properties of the
Madelung fluid [19].

The above considerations can be repeated for the case
of nonrelativistic motion of a spinless particle in electro-
magnetic field, governed by the Hamiltonian

H(x,p; t) =
1

2m
[p− eA(x; t)]2 + eU(x; t). (III.25)

It is worthwhile to mention that the approach based on
the characteristic function yields the Schrödinger equa-
tion up to first order in the variable s. In this sense it can
be considered as an infinitesimal mapping of the classical
kinetic balance equations onto the Schrödinger equation
as pointed out previously [20, 21]. However, a drawback
of this method is evident since ansatz (III.9) restricts a
possible class of states, while some classical distributions
are not described with it.

IV. IRROTATIONAL MOMENTUM
FLUCTUATIONS

Our basic assumption concerns the equitability of po-
sition and momentum, which are obviously not on the
same footing. We assume position to be a fundamen-
tal variable, while momentum being proportional to the
infinitesimal variation of position respective to an in-
finitesimal variation of time cannot be determined ex-
actly. The physical argument for such assumption is the
following. If an object is perfectly localized, there is no
reason for the impossibility to determine its velocity ac-
curately. If however, a probability assignment in config-
uration space strongly violating particle localization is at
hand, there must be some uncertainty in the specification
of the infinitesimal variation of the particle ”position” in
the course of time.

Following [18] instead of (III.1), we consider a dynam-
ical system described by the Hamiltonian

H(x,p; t) =
1

2m
[p + A(x; t)]2 + U(x; t), (IV.1)

where A(x; t) is yet unspecified fluctuating part of the
classical momentum with vanishing mean value

〈A(x; t)〉 = 0. (IV.2)

Defining the new variable

P = p + A, (IV.3)

we can write the Hamilton equations of motion as follows

dx
dt

=
P
m
,

dP
dt

=
∂A
∂t

−∇xU −
P
m
×∇x×A. (IV.4)

Suppose now that A is irrotational, that is

∇x ×A = 0, (IV.5)

which also implies

A = −∇xΦ. (IV.6)

With these observations, it follows that the Hamilton
equations (IV.4) can be obtained from a new Hamilto-
nian

H(x,P; t) =
P2

2m
+ U(x; t) +

∂Φ(x; t)
∂t

, (IV.7)

Next, we perform a polynomial marginalization if the
distribution function f(x,P; t). This is done by initially
multiplying the stochastic Liouville equation

∂f

∂t
+

P
m
· ∇xf + F · ∇Pf = 0 (IV.8)

by various powers P k1
1 P k2

2 . . . P kn
n and then formally inte-

grating over the momentum variable. Here, the random
force F is given by the expression

F =
∂A
∂t

−∇xU. (IV.9)

The equations for the first two moments can be written
as

∂%

∂t
+∇x · (%V) = 0, (IV.10)

∂(%Vn)
∂t

+
∂Πkn

∂xk
=
%Fn

m
, (IV.11)

where

%(x; t) = mN
∫

dPf(x,P; t), (IV.12)

%(x; t)V(x; t) = N
∫

dPPf(x,P; t), (IV.13)

Πkl(x; t) =
N
m

∫
dPPkPlf(x,P; t). (IV.14)

It is a simple matter to verify that the Liouville equation
(IV.8) possesses an exact solution of the form

f(x,P; t) =
%(x; t)
mN

δ[P−mV(x; t)], (IV.15)

which is also known as the classical Bohm distribution,
usually interpreted as the classical limit of quantum pure
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states [15]. Substitution of the classical Bohm distribu-
tion into equation (IV.14) yields the expression

Πkl = %VkVl, (IV.16)

for the stress tensor Πkl. Hence the system (IV.10)
and (IV.11) represents an exact closure of hydrodynamic
equations, fully equivalent to the Liouville equation.

We now take into account the fact that the momentum
P and hence the current velocity V consists of a classical
mean part v (corresponding to p) and a fluctuation Ṽ
(corresponding to A). Averaging equations (IV.10) and
(IV.11), we obtain

∂%

∂t
+∇x · (%v) = 0, (IV.17)

∂vn

∂t
+ vk

∂vn

∂xk
= − 1

m

∂U

∂xn
− 1
%

∂

∂xk
(%Ckn), (IV.18)

where

Ckn =
〈
ṼkṼn

〉
. (IV.19)

Recall that it was initially assumed that the momen-
tum fluctuations are irrotational. This also implies irro-
tationality of the second term on the right-hand-side of
equation (IV.18). It can be written in the form

∂Z
∂xn

=
∂Ckn

∂xk
+ Ckn

∂R

∂xk
, (IV.20)

where

R = ln %. (IV.21)

Taking curl of both sides of equation (IV.20), we obtain

εlmn
∂

∂xm

(
∂Ckn

∂xk
+ Ckn

∂R

∂xk

)
= 0, (IV.22)

where as usual, εlmn denotes the fully antisymmetric
third-rank unit tensor. Multiplication by εlqp and sum-
mation on l in the last identity, yields a second order
linear partial differential equation for the unknown cor-
relation tensor Ckn

(
∂

∂xk
+
∂R

∂xk

)(
∂Ckn

∂xm
− ∂Ckm

∂xn

)
+ Ckn

∂2R

∂xk∂xm
− Ckm

∂2R

∂xk∂xn
= 0. (IV.23)

Note that the left-hand-side of equation (IV.23) is an-
tisymmetric with respect to the indices m and n. This
restricts considerably the number of its solutions. On the
other hand, equation (IV.23) is a linear equation with re-
spect to Ckn, so that its general solution can be written
as a linear combination of particular solutions. Since the
correlation tensor is symmetric, it can be represented in
diagonal form. To find a particular solution, suppose
that equation (IV.23) is written in a reference frame in
which the correlation tensor is diagonal. Then, all el-
ements must be equal, which is the only possibility for
this particular solution [represented by the second term
in equation (IV.24)]. Another solution can be represented
in the form of a Hessian matrix of a generic function. A
simple and straightforward verification shows that these
two particular solutions exhaust all possibilities, and Ckn

can be written as follows

Ckn = α
∂2Γ

∂xk∂xn
+ βδknF , (IV.24)

where α and β are constant coefficients, and the scalar
functions F(x; t) and Γ(x; t) are some functions of x and
t that remain to be determined. Direct substitution of
the solution (IV.24) into equation (IV.23) shows that F
is an arbitrary function of R

F(x; t) = F (R), (IV.25)

while Γ is equal to R up to a multiplicative constant,
which (without loss of generality) can be set equal to
unity

Γ(x; t) = R(x; t). (IV.26)

Hence, equation (IV.20) can be rewritten as follows

∇xZ = α∇x

[
∇2

xR+
1
2
(∇xR)2

]
+∇xF + F∇xR

= 2α∇x

(
∇2

x
√
%

√
%

)
+∇xF + F∇xR. (IV.27)

We would like now to show that the arbitrary con-
stant α must be negative (α < 0). In analogy to the
definitions (IV.12)–(IV.14), we can introduce the kinetic
energy density according to the relation

E(x; t) =
N
2m

∫
dPP2f(x,P; t) =

%V2

2
. (IV.28)

Averaging equation (IV.28), we obtain

〈E(x; t)〉 =
%v2

2
+
%

2
TrC, (IV.29)
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where TrC denotes the trace of the correlation tensor
(IV.19). The second term on the right-hand-side of equa-
tion (IV.29) represents the density of the internal energy,
which is due to the fluctuating part of the current veloc-
ity. The total internal energy is given by the expression

E =
1
2

∫
dx%TrC =

n

2

∫
dx%F(R)− α

2

∫
dx

(∇x%)
2

%
,

(IV.30)
where integration by parts and taking into account of
vanishing integrals has been performed in the second
term on the right-hand-side. Since the total internal
energy must be positive for any choice of the arbitrary
function F (including F = 0), the free parameter α must
be negative. Remarkably enough, the second term on the
right-hand-side of equation (IV.30) is proportional to the
Fisher information [22]

I =
∫

dx
(∇x%)

2

%
. (IV.31)

The above equation (IV.31) represents a direct link be-
tween quantum mechanics and Fisher information theory.
It is remarkable that in the simplest case, where F = 0,
the Fisher information measure I has a very transparent
meaning as being simply a measure of the internal energy
of the quantum system.

First of all, we would like to explore the simplest case,
where F = 0. Identifying the parameter α as

α = − ~2

4m2
, (IV.32)

equation (IV.18) can be written accordingly

∂v
∂t

+ v · ∇xv = −∇xU

m
+

~2

2m2
∇x

(
∇2

x
√
%

√
%

)
. (IV.33)

If we further define

v =
1
m
∇xS, (IV.34)

the de Broglie ansatz (III.23) with

λ = ~, R =
√
%, (IV.35)

yields immediately the Schrödinger equation

i~
∂ψ

∂t
= − ~2

2m
∇2

xψ + Uψ. (IV.36)

Another simple but nontrivial example is the case
where F = b/m = const. As a result, we obtain the
Schrödinger equation with logarithmic nonlinearity [23]

i~
∂ψ

∂t
= − ~2

2m
∇2

xψ +
(
U + b ln |ψ|2

)
ψ. (IV.37)

Note that the constant b can be positive, as well as nega-
tive. From the requirement of the positivity of the inter-
nal energy, it is easy to obtain the upper bound for the
case b < 0

|b| < ~2

4nm2N
I. (IV.38)

Concluding this Section, it is worthwhile to reiterate
that the Schrödinger equation has been derived by the
sole use of purely classical stochastic arguments. In addi-
tion, it should be pointed out that the linear Schrödinger
equation is not the unique possibility.

V. THE QUANTUM PICTURE

First of all, we note that %, which has the meaning
of mass density [see equation (IV.12)] can be rescaled
%→ mN%, such that it becomes normalized∫

dx%(x; t) = 1. (V.1)

This implies that the wave function is normalized as well∫
dx|ψ(x; t)|2 =

∫
dx%(x; t) = 1. (V.2)

From (III.23) and (IV.15) for the expectation value of an
arbitrary function F (x) of position, we obtain

〈F (x)〉 =
∫

dxdPF (x)f(x,P; t) =
∫

dxF (x)|ψ(x; t)|2.

(V.3)
The expectation value of momentum can be found in a
similar manner

〈P〉 =
∫

dxdPPf(x,P; t) = m

∫
dx〈V〉%(x; t)

= −i~
∫

dxψ∗∇xψ. (V.4)

Further, we have (for the case, where F = 0)〈
P2

〉
= m2

∫
dx%(x; t)

(
v2 + TrC

)

= ~2

∫
dx(∇xψ

∗) · (∇xψ). (V.5)

The expectation value for the energy is represented by
the expression (for the case, where F = 0)

〈H〉 =
∫

dx
[

~2

2m
(∇xψ

∗) · (∇xψ) + U(x; t)|ψ|2
]
. (V.6)

Thus, we recover the basic quantum rules to calculate ex-
pectation values of observables, which are not higher than
quadratic in momentum. This implies that not only ex-
pectation values, but also uncertainties for position and
momentum can be calculated so that they correspond to
the standard quantum expression. Similar to the obser-
vations made by M.J.W. Hall and M. Reginatto [16, 17],
we find that the Heisenberg uncertainty principle can be
obtained solely by using classical statistical mechanics
formalism with stochastic ingredients added.



7

Since only the mean value of the current velocity v
and the correlation tensor Cmn have been specified to this
end, it is not immediately clear how one can proceed with
calculation of expectation values of an arbitrary function
of momentum. A possible approach to this problem will
be outlined in the sequel.

The definition (II.6) of the characteristic function can
be generalized into a characteristic functional

〈G(x, s; t)〉 = |ψ(x; t)|2
〈

exp
(
im

~
s ·V

)〉
. (V.7)

On the other hand, from (III.9) we would obtain

〈G(x, s; t)〉 = ψ
(
x +

s
2
; t

)
ψ∗

(
x− s

2
; t

)
, (V.8)

which implies

|ψ(x; t)|2
〈

exp
(
im

~
s ·V

)〉

= ψ
(
x +

s
2
; t

)
ψ∗

(
x− s

2
; t

)
. (V.9)

The last equation represents a strong condition to be im-
posed on the stochastic properties of the random velocity
field. Clearly, higher order correlation functions of the
random velocity field Ṽ must be specified accordingly in
order to satisfy equation (V.9). The consequences are
analyzed in the Appendix. There, it is shown that equa-
tion (V.9) remains valid to second order in the variable
s. In addition, an expression for the third-order correla-
tion function

〈
ṼkṼlṼn

〉
of the random velocity field Ṽ is

derived.
Let us define the Fourier transform of the wave func-

tion according to the well-known relation

ψ(x; t) =
1

(2π~)n/2

∫
dpψ̂(p; t) exp

(
i

~
x · p

)
. (V.10)

In order to cast a parallel with the discussion in Section
II, we integrate equation (V.8) over x. As a result, we

obtain

G(s) =
∫

dx〈G(x, s; t)〉 =
∫

dp
∣∣∣ψ̂(p; t)

∣∣∣2 exp
(
i

~
s · p

)
.

(V.11)
According to expressions (II.8) and (II.10) and their obvi-
ous generalization, the expectation value of an arbitrary
function of momentum F (p) can be written in the form

〈F (p)〉 = F̂ (−i~∇s)G(s)
∣∣∣
s=0

=
∫

dpF (p)
∣∣∣ψ̂(p; t)

∣∣∣2.
(V.12)

In coordinate representation, we have

〈F (p)〉 =
∫

dxψ∗(x; t)F̂ (−i~∇x)ψ(x; t). (V.13)

To see that, it suffices to verify the following identity

〈pn
k 〉 =

∫
dxψ∗(x; t)(−i~∇xk)n

ψ(x; t). (V.14)

From expressions (V.8) and (V.11) it follows that

〈pn
k 〉 =

∫
dx(−i~∇sk)n

ψ∗
(
x− s

2
; t

)
ψ

(
x +

s
2
; t

)∣∣∣∣
s=0

.

(V.15)
Suppose that∫

dx(−i~∇sk)n
ψ∗

(
x− s

2
; t

)
ψ

(
x +

s
2
; t

)∣∣∣∣
s=0

=
∫

dxψ∗
(
x− s

2
; t

)
(−i~∇xk)n

ψ
(
x +

s
2
; t

)∣∣∣∣
s=0

=
∫

dxψ∗(x; t)(−i~∇xk)n
ψ(x; t), (V.16)

holds true. By induction, we have∫
dx(−i~∇sk)n+1

ψ∗
(
x− s

2
; t

)
ψ

(
x +

s
2
; t

)∣∣∣∣
s=0

=
∫

dx(−i~∇sk)
[
ψ∗

(
x− s

2
; t

)
(−i~∇xk)n

ψ
(
x +

s
2
; t

)]∣∣∣∣
s=0

=
1
2

∫
dxi~∇xkψ

∗(x; t)(−i~∇xk)n
ψ(x; t) +

1
2

∫
dxψ∗(x; t)(−i~∇xk)n+1

ψ(x; t) (V.17)

=
∫

dxψ∗(x; t)(−i~∇xk)n+1
ψ(x; t), (V.18)

where integration by parts have been performed in the

first term of equation (V.17) to yield the final expression
(V.18). This completes the proof of equation (V.13).
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A natural generalization is now in order

〈F (x,p)〉 =
∫

dxψ∗(x; t)F̂ (x,−i~∇x)ψ(x; t), (V.19)

where as usual, an appropriate operator ordering must
be specified.

We end this Section by emphasizing another remark-
able link between the formalism developed here and the
Wigner-Weyl approach. Using the compatibility condi-
tion in the form of (V.8), we can rewrite equation (II.7)
as

〈f(x,p; t)〉 =
1

(2π~)n

∫
dsψ

(
x +

s
2
; t

)
ψ∗

(
x− s

2
; t

)
exp

(
− i

~
s · p

)
, (V.20)

This implies that |ψ|2〈δ(p−mV)〉 is the Wigner func-
tion. Leaving more speculations aside on the fact that
the latter is a quasi-distribution which is not always pos-
itive, we note that equation (V.20) represents a relation
between the averaged classical Bohm distribution and the
Wigner function.

VI. MOYAL BRACKET

The Moyal bracket is a useful tool when one wishes to
determine a semiclassical limit to wave mechanics. Moyal
[24] elaborated on the theory of Wigner [2] on how to de-
scribe quantum systems in phase space in a way which is
formally analogous to the dynamics of classical distribu-
tions. The Moyal bracket provides a semiclassical limit
to quantum mechanical commutation relations, which is
what is of interest to us, and we consider this in some
detail in the present Section.

First of all, let us introduce the characteristic dynam-
ical variable defined as

C(x,p;k, s) = exp
[
i

~
(k · x + s · p)

]
. (VI.1)

The rule to calculate expectation values according to ex-
pression (V.19) suggests the introduction of the corre-
sponding characteristic operator [25]

Ĉ(x̂, p̂;k, s) = exp
[
i

~
(k · x̂ + s · p̂)

]
, (VI.2)

where x̂ implies x, while p̂ = −i~∇x. Since, we are in-
terested in calculating expectation values of various dy-
namical variables (the characteristic dynamical variable
included), it is natural to define the characteristic func-
tion as

C̃(k, s) = 〈C(x,p;k, s)〉. (VI.3)

According to equation (V.19) and taking into account the
Campbell-Baker-Hausdorff identity,

eÂ+B̂ = eÂeB̂e−
1
2 [Â,B̂], (VI.4)

when the commutator commutes with both Â and B̂
(which is the case for operators proportional to x̂ and
∇̂x), we obtain

C̃(k, s) =
∫

dxψ
(
x +

s
2
; t

)
ψ∗

(
x− s

2
; t

)
exp

(
i

~
k · x

)
.

(VI.5)
Taking into account the inverse Fourier transform of ex-
pression (VI.5) and equation (V.20), it immediately fol-
lows that the characteristic function is a double Fourier
transform of the Wigner function

W (x,p; t) = 〈f(x,p; t)〉

=
1

(2π~)2n

∫
dkdsC̃(k, s) exp

[
− i

~
(k · x + s · p)

]
,

(VI.6)
or

C̃(k, s) =
∫

dxdpW (x,p; t) exp
[
i

~
(k · x + s · p)

]
.

(VI.7)
Equation (VI.7) implies also that the expectation value
of the characteristic dynamical variable (VI.1) is a result
of integration of its product with the Wigner function
over all of phase space.

Further, a generic dynamical variable A(x,p) can be
represented by the Fourier integral

A(x,p) =
1

(2π~)2n

∫
dkdsA(k, s)C(x,p;k, s), (VI.8)

while its corresponding operator in terms of x̂ and p̂ spec-
ified by the characteristic operator (VI.2) can be written
as

Â(x̂, p̂) =
1

(2π~)2n

∫
dkdsA(k, s)Ĉ(x̂, p̂;k, s). (VI.9)

The dynamical variable (VI.8) is usually called a phase
function of the operator (VI.9).

Since the physically measurable, and therefore, feasible
characteristic of a dynamical variable is its expectation
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value, it is important to emphasize that by virtue of the
rule (V.19) to calculate expectation values, the model
employed in Section IV and V directly implies the use of
operator description. We can take the Fourier transform
of the phase function A(x;p), which returns A(k; s), and
substitute it back into equation (VI.9) for the correspond-
ing operator. This results in

Â(x̂, p̂) =
1

(2π~)2n

∫
dxdpdkdsA(x;p)

× exp
{
− i

~
[k · (x− x̂) + s · (p− p̂)]

}
. (VI.10)

Taking into account expression (VI.7) for the expectation
value of the characteristic dynamical variable, we obtain

〈A(x,p)〉 =
〈
Â(x̂, p̂)

〉
=

∫
dxdpA(x,p)W (x,p; t).

(VI.11)
This describes the expectation value of a dynamical
variable (an operator observable in quantum mechani-
cal sense) as being the result of integrating its product

(the product of its corresponding phase function) with
the Wigner function over all of phase space. In this way
the Wigner function acts much like a joint probability
distribution over position and momentum.

Expression (V.19) shows that the expectation value of
the product of two dynamical variables [corresponding
operators in the sense of equation (VI.9)] depends on the
order of the multipliers, and in this sense they do not
commute. We now wish to determine the measure of non
commutativity of two arbitrary operators

i~D̂(x̂, p̂) =
[
Â(x̂, p̂), B̂(x̂, p̂)

]
, (VI.12)

which is expected to be proportional to ~.
Note that one could repeat the subsequent treatment

by directly comparing the quantities 〈A(x̂, p̂)B(x̂, p̂)〉
and 〈B(x̂, p̂)A(x̂, p̂)〉 without the use of the operator
framework introduced above. Since by virtue of expres-
sion (VI.11) we would obtain the same result, we prefer
to work within the operator description. We begin by
substituting in the general expression of equation (VI.9)
for each of the operators Â(x̂, p̂), B̂(x̂, p̂) and D̂(x̂, p̂).
This brings us to

i~
∫

dkdsD(k, s)Ĉ(k, s) =
1

(2π~)2n

∫
dk1ds1dk2ds2A(k1, s1)B(k2, s2)

[
Ĉ(k1, s1), Ĉ(k2, s2)

]
, (VI.13)

where for the sake of simplicity the explicit dependence
on the operators x̂ and p̂ has been dropped. Taking into
account the Campbell-Baker-Hausdorff identity (VI.4),
and the fact that the commutator

[k1 · x̂ + s1 · p̂,k2 · x̂ + s2 · p̂] = −i~(k2 · s1 − k1 · s2),
(VI.14)

is a scalar quantity it is straightforward to verify[
Ĉ(k1, s1), Ĉ(k2, s2)

]

= 2iĈ(k1 + k2, s1 + s2) sin
k2 · s1 − k1 · s2

2~
. (VI.15)

We now determine the expectation value on both sides
of equation (VI.13), resulting in characteristic functions
on each side of the resulting equation. Substituting ex-
pression (VI.7) for the characteristic function and using
the representation (VI.8), we obtain

~
∫

dxdpD(x,p)W (x,p; t)

=
2

(2π~)4n

∫
dxdpdk1ds1dk2ds2W (x,p; t)A(k1, s1)

×B(k2, s2) sin
k2 · s1 − k1 · s2

2~
C(k1, s1)C(k2, s2).

(VI.16)
Next, we note that the argument of the sine on the right-
hand-side of equation (VI.16) can be represented as

(k2 · s1 − k1 · s2)C(k1, s1)C(k2, s2)

= ~2(∇x1 · ∇p2 −∇p1 · ∇x2)C(k1, s1)C(k2, s2), (VI.17)

where the subscripts on the differential operators refer to
which function they operate on, i.e. either C(k1, s1) or
C(k2, s2), never both. Bearing in mind that the functions
A(k1, s1) and B(k2, s2) are independent of x and p, we
can take the differential operators outside the integrals
over k1, s1, k2 and s2. As a result, we obtain
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~
∫

dxdpD(x,p)W (x,p; t) = 2
∫

dxdpW (x,p; t)ŝin
~
2
(∇xA · ∇pB −∇pA · ∇xB)A(x,p)B(x,p), (VI.18)

where again the subscripts on the differential operators
refer to the corresponding function they operate on, i.e.
either A(x,p) or B(x,p), never both. Comparing the
non-Wigner function terms inside the integrals immedi-
ately implies

~
2
D(x,p)

= ŝin
~
2
(∇xA · ∇pB −∇pA · ∇xB)A(x,p)B(x,p),

(VI.19)
which is the final result. Considering only the lowest
order term in ~, this reduces to

D(x,p) =
∂A(x,p)

∂x
· ∂B(x,p)

∂p
− ∂A(x,p)

∂p
· ∂B(x,p)

∂x
.

(VI.20)
A common shorthand notation for equation (VI.19) is

i~
2
D(x,p) = {A(x,p), B(x,p)}MB , (VI.21)

where the subscript MB stands for Moyal bracket, as-
sociating this expression with both the Poisson bracket
and the commutator bracket. It describes how ini-
tially commuting usual product of two classical dynam-
ical variables (phase-space functions) transforms into a
non-commutative star-product, whenever one proceeds
with calculation of the expectation value with the classi-
cal Bohm distribution (IV.15).

Let us finally examine how the Poisson bracket

P (x,p) =
∂A(x,p)

∂x
· ∂B(x,p)

∂p
− ∂A(x,p)

∂p
· ∂B(x,p)

∂x
,

(VI.22)
transforms when the expectation value is taken on both
sides of equation (VI.22). In a manner similar to the
described above, one obtains

P (x,p) = (∇xA · ∇pB −∇pA · ∇xB)A(x,p) ∗B(x,p),
(VI.23)

where

A(x,p) ∗B(x,p)

= êxp
[
i~
2

(∇xA · ∇pB −∇pA · ∇xB)
]
A(x,p)B(x,p),

(VI.24)
is the Moyal star product.

It is worthwhile to note that in the limit if ~ → 0
(which actually implies that the random part of the cur-
rent velocity in the hydrodynamic picture of Section IV

vanishes), the Moyal star product transforms into the
usual commuting product of two dynamical variables. In
this limit any two dynamical variables are commutative
[see equation (VI.19)], and the Poisson bracket is unaf-
fected by the rule of taking expectation values. In this
sense, the Moyal star product can be considered as a
quantum non-commutative deformation of the classical
product of two dynamical variables.

VII. DISCUSSION AND CONCLUSIONS

Starting from a simple classical framework and em-
ploying some stochastic concepts, the basic ingredients
characterizing the quantum nature of physical processes
are recovered. It has been shown that the traditional ax-
iomatic structure of quantum mechanics can be rebuilt,
so that the quantum mechanical framework resembles to
a large extent that of the classical statistical mechanics.

The main assumption used in the present paper is the
existence of a random irrotational component in the clas-
sical momentum. The physical grounds for such assump-
tion are that an ideal particle localization is not feasible.
Hence, provided a probability density in configuration
space is prescribed, the infinitesimal variation of the par-
ticle ”position” in the course of time (i.e., the particle ve-
locity) cannot be determined precisely. Therefore, there
is always some uncertainty in the specification of par-
ticle momentum, which should strongly depend on the
degree of particle delocalization in configuration space.
The approach pursued here is by no means an attempt
to build a realistic model of the underlying momentum
fluctuations, however some hints concerning their higher-
order correlation properties are presented. In particular,
the current velocity fluctuations are shown to be related
to the turbulent fluctuations in the standard picture of
Reynolds turbulence. The latter represents an interesting
and promising guideline for further investigations.

As a result of the investigation performed, various ba-
sic elements of the quantum formalism (calculation of
expectation values, the Heisenberg uncertainty principle,
the correspondence principle) are recovered by applying
traditional techniques, borrowed from classical statistical
mechanics.

Finally, it is worthwhile to mention that the link be-
tween the formalism used in the deformation quantiza-
tion method and the usual techniques of classical statis-
tical mechanics appears quite natural in our approach.
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APPENDIX A: ANALYSIS OF THE
COMPATIBILITY CONDITION (V.9)

To verify the validity of the compatibility condition
(V.9), we expand its both sides in a power series in the
variable s. To third order, we have〈

exp
(
im

~
s ·V

)〉
= 1 +

isk

~
∂kS −

sksn

2~2
∂kS∂nS

−m
2sksn

2~2
Ckn −

im3skslsn

6~3

×(vkvlvn + vkCln + vlCnk + vnCkl +Dkln) + . . . , (A.1)

where

Dkln =
〈
ṼkṼlṼn

〉
, (A.2)

is the yet unknown third order correlation function of the
random velocity field. Similarly, for the right-hand-side
of equation (V.9), we obtain

ψ
(
x +

s
2
; t

)
ψ∗

(
x− s

2
; t

)
= %+

sk

2
(ψ∗∂kψ − ψ∂kψ

∗)

+
sksn

8
(ψ∗∂k∂nψ − ∂kψ

∗∂nψ − ∂nψ
∗∂kψ

∗ + ψ∂k∂nψ
∗)

+
skslsn

48
(ψ∗∂k∂l∂nψ − ψ∂k∂l∂nψ

∗)

+
skslsn

48
[∂kψ∂l∂nψ

∗ − ∂kψ
∗∂l∂nψ + Sym(k, l, n)],

(A.3)
where Sym(k, l, n) denotes four additional terms ob-
tained by cyclic permutation of the indices k, l and n.

Taking into account the explicit expression (IV.24)
for the correlation tensor Ckn with F = 0, and the
amplitude-phase representation (III.23) of the wave func-
tion, it is a simple matter to verify in a straightforward
manner that equation (V.9) is satisfied up to second or-
der in the expansion variable s. To satisfy the third order
however, one needs to specify the third-order correlator
of the random part of the current velocity. We obtain
the following expression

Dkln = − ~2

12m2
(∂l∂nvk + ∂n∂kvl + ∂k∂lvn). (A.4)

No attempt is made neither to interpret, nor to provide
a physical model (which beyond doubt should be nonlo-
cal) of a possible source, underlying the velocity (momen-
tum) fluctuations. However, from expression (A.4), it is
clear that these fluctuations are far from being Gaussian.
A further insight on the relation between the current ve-
locity fluctuations and the standard picture of Reynolds
turbulence is given in Appendix B.
APPENDIX B: TURBULENT FLUCTUATIONS

AND COMPATIBILITY CONDITION (V.9)

To show that the results from Appendix A are consis-
tent with the model presented in Section IV, we rewrite
equations (IV.10) and (IV.11) as

∂%

∂t
+∇x · (%V) = 0, (B.1)

∂V
∂t

+ V · ∇xV =
F
m
, (B.2)

From the assumption that the density % does not fluctu-
ate, it follows that the fluctuating part of the continuity
equation (B.1) reduces to

∇x · Ṽ = −Ṽ · ∇xR. (B.3)

Averaging the equation for momentum balance (B.2)
and taking into account relation (B.3), we readily obtain
equation (IV.18).

Let us further write

∂

∂t
(VnVs) + Vk

∂

∂xk
(VnVs) =

1
m

(FnVs + FsVn). (B.4)

which follows directly from the equation for momentum
balance (B.2). Averaging the last equation (B.4) and
taking into account equation (IV.18), we obtain

∂Cns

∂t
+ vk

∂Cns

∂xk
+Cnk

∂vs

∂xk
+Csk

∂vn

∂xk
+
∂Dnsk

∂xk
+Dnsk

∂R

∂xk

=
1
m

〈
Vs
∂An

∂t
+ Vn

∂As

∂t

〉
. (B.5)

Having already determined the correlation tensor Cns in
the form (IV.24), we can manipulate the first term on
the left-hand-side of equation (B.5) using the continuity
equation (IV.17). We again consider the case, where F =
0. The result is

Csk

(
∂vn

∂xk
− ∂vk

∂xn

)
+ Cnk

(
∂vs

∂xk
− ∂vk

∂xs

)

−α
(

∂3vk

∂xn∂xs∂xk
+

∂2vk

∂xn∂xs

∂R

∂xk

)
+
∂Dnsk

∂xk

+Dnsk
∂R

∂xk
=

1
m

〈
Vs
∂An

∂t
+ Vn

∂As

∂t

〉
. (B.6)

If the current velocity v is irrotational as specified by
(IV.34), the first two terms on the left-hand-side of equa-
tion (B.6) vanish. Assuming also that the current veloc-
ity fluctuation Ṽ is uncorrelated with the random part
of the force F, we readily arrive (after symmetrization)
at the expression (A.4) for the triple correlation tensor
Dnsk.

Using equations (B.2) and (B.4) one can proceed in
calculation of the fourth-order correlator of the current
velocity fluctuation Ṽ. This procedure can be continued
further and all higher order correlators can be found in
principle.
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