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Abstract

By recognising that stress-energy-momentum tensors are funda-
mentally related to gravitation in spacetime it is argued that the classi-
cal electromagnetic properties of a simple polarisable medium may be
parameterised in terms of a constitutive tensor whose properties can in
principle be determined by experiments in non-inertial (accelerating)
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frames and in the presence of weak but variable gravitational fields.
After establishing some geometric notation, discussion is given to ba-
sic concepts of stress, energy and momentum in the vacuum where
the useful notion of a drive form is introduced in order to associate
the conservation of currents involving the flux of energy, momentum
and angular momentum with spacetime isometries. The definition
of the stress-energy-momentum tensor is discussed with particular
reference to its symmetry based on its role as a source of relativis-
tic gravitation. General constitutive properties of material continua

are formulated in terms of spacetime tensors including those that de-
scribe magneto-electric phenomena in moving media. This leads to a
formulation of a self-adjoint constitutive tensor describing, in general,
inhomogeneous, anisotropic, magneto-electric bulk matter in arbitrary
motion. The question of an invariant characterisation of intrinsically
magneto-electric media is explored. An action principle is established
to generate the phenomenological Maxwell system and the use of vari-
ational derivatives to calculate stress-energy-momentum tensors is
discussed in some detail. The relation of this result to tensors pro-
posed by Abraham and others is discussed in the concluding section
where the relevance of the whole approach to experiments on matter
in non-inertial environments with variable gravitational and electro-
magnetic fields is stressed.

MSC codes: 83D05, 83C40, 83C35
Keywords: Stress-energy-momentum tensor, constitutive relations, vari-
ational, electromagnetic, polarisable, magneto-electric, gravitation,
Maxwell’s equations.
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1 Introduction

The laws of quantum-electrodynamics have been devised to describe the elec-
tromagnetic interactions with matter according to the tenets of relativistic
quantum field theory. However Maxwell’s classical equations remain manda-
tory for the description of a vast amount of natural phenomena. This ver-
satility is in part due to the supplementary constitutive relations that are
necessary to accommodate the wide range of materials that respond to elec-
tromagnetic fields. Although in principle such relations can be derived from
the underlying quantum description of matter, in many practical situations
one must rely on experimental guidance to ascertain the classical response of
materials to such fields.

Once the unifying power of a spacetime formulation of physical phenom-
ena became apparent with Einstein’s relativistic world view, the natural
mathematical tool for describing constitutive responses became the total
stress-energy-momentum tensor for all matter and fields. Early suggestions
by Minkowski [1] and Abraham [2] for the structure of its electromagnetic
component in simple media initiated a long debate involving both theoretical
and experimental contributions that continues to the current time (see e.g.
[3]), [4], [5], [6], [7], [8], [10], [24], [25]). Although it is widely recognised that
this controversy is an argument about definitions [11] and that the relative
merits of alternative definitions are undecidable without a complete (experi-
mentally verifiable) covariant description of relativistic continuum mechanics
for matter and fields, it remains important to clarify the many conflicting
arguments that have appeared over the years and to offer new insights that
may help in modelling the electromagnetic properties of moving media in the
absence of a viable or complete description of field-particle interactions at a
more fundamental level.

Some way towards this goal is offered by (covariant) averaging meth-
ods [20], [19]. These however yield non-symmetric stress-energy-momentum
tensors for electromagnetic fields in simple media. If the total stress-energy-
momentum is to remain symmetric this implies that other asymmetric con-
tributions must compensate and no guidance is offered to account for such
material induced asymmetries. The need for a symmetric total stress-energy-
momentum tensor is often attributed to conservation of total angular mo-
mentum despite the fact that such global conservation laws may not exist in
arbitrary gravitational fields. Although the magnitude of gravitational in-
teractions may be totally insignificant compared with the scale of those due
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to electromagnetism, gravity does have relevance in establishing the general
framework (via the geometry of spacetime) for classical field theory and in
particular this framework [14], [12] offers the most cogent means to define
the total stress-energy-momentum tensor as the source of relativistic grav-
itation. This in turn may be related to a variational formulation [18] of the
fully coupled field system of equations that underpin the classical description
of interacting matter in terms of tensor (and spinor) fields on spacetime.

In this article stress-energy-momentum tensors are defined as variational
derivatives and it is argued that the classical properties of a simple polaris-
able medium may be parameterised in terms of a constitutive tensor whose
properties can in principle be determined by experiments in non-inertial (ac-
celerating) frames and in the presence of weak but variable gravitational
fields.

There has been a rapid development in recent years in the construction
of “traps” for confining collective states of matter on scales intermediate be-
tween macro- and micro-dimensions. Cold atoms and nano-structures offer
many new avenues for technological development when coupled to probes by
electromagnetic fields. The constitutive properties of such novel material will
play an important role in this development. Space science is also progressing
rapidly and can provide new laboratory environments with variable gravi-
tation and controlled acceleration in which the properties of such states of
matter may be explored. It will be shown below that the response of elec-
tromagnetically polarisable media to such novel experimental environments
offers a means to describe their electromagnetic constitutive properties and
hence gain insight into the electromagnetic stresses induced by electro-
magnetic fields in such media. Supplemented with additional data based
on their mechanical and elasto-dynamic responses one thereby gains a more
confident picture of the total phenomenological stress-energy-momentum for
media than that based on previous ad-hoc choices.

Throughout this article the formulation will be expressed in terms of
tensor fields on spacetime with an arbitrary metric. Attention will be drawn
to conservation laws when this metric admits particular symmetries. Thus
the results [15] have applicability to simple media in arbitrary gravitational
fields and accommodate both media and observers with arbitrary velocities.
A topical summary of the results and their relevance to current experimental
findings can be found in [16].

After establishing some geometric notation, section 2 relates the electro-
magnetic 1-forms e,b,d,h to the 2-forms F and G that enter into Maxwell’s
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phenomenological covariant field equations in the presence of matter. Sec-
tion 3 discusses stress, energy and momentum in the vacuum and introduces
the useful notion of a drive form that can be used to calculate electromag-
netically induced currents involving the flux of electromagnetic energy, mo-
mentum and angular momentum in Minkowski spacetime. In section 4 the
definition of the stress-energy-momentum tensor is discussed with particular
reference to its symmetry based on its role as a source of relativistic grav-
itation. The constitutive properties of the media considered in this paper
are delineated in section 5 in terms of a constitutive tensor on spacetime.
This includes an account of general magneto-electric continua and leads in
section 6 to a formulation of a self-adjoint constitutive tensor describing,
in general, inhomogeneous, anisotropic, magneto-electric matter in arbitrary
motion. The question of an invariant characterisation of magnto-electric me-
dia is mentioned in section 7. In section 8 an action principle is established
to generate the phenomenological Maxwell system and the use of variational
derivatives to calculate stress-energy-momentum tensors is discussed in sec-
tion 9. The computation of the electromagnetic stress-energy-momentum
tensor, based on the action of section 8, is non-trivial for general media ex-
hibiting anisotropy and magneto-electric properties in arbitrary motion and
is presented in some detail. The relation of this result to tensors proposed
by Abraham and others is discussed in the concluding section where the
relevance of the whole approach to experiments on matter in non-inertial en-
vironments with variable gravitational and electromagnetic fields is stressed.

Notations follow standard conventions with spacetime modelled as a 4-
dimensional, orientable, manifold M with a metric tensor field g of Lorentzian
signature (−, +, +, +). ΓTM denotes the set of vector fields and ΓΛpM
the set of p−form fields on M . The set {e0, e1, e2, e3} denotes a local g-
orthonormal coframe (a linearly independent collection of 1− forms) with
dual frame {X0, X1, X2, X3}. If gab = g(Xa, Xb), the interior contraction
operator iXa

with respect to Xa is written ia with ia = gabiXb
, eb = gace

c and
summation over 0, 1, 2, 3. Metric duals with respect to g are written with a
tilde so that X̃ = g(X,−) ∈ ΓΛ1M for X ∈ ΓTM and α̃ = g−1(α,−) ∈ ΓTM
for α ∈ ΓΛ1M . The Hodge dual map associated with g is denoted ⋆. The
following standard identities will be used repeatedly in subsequent sections
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to simplify expressions.

Φ ∧ Ψ = (−1)pqΨ ∧ Φ for Φ ∈ ΓΛpM, Ψ ∈ ΓΛqM (1)

Φ ∧ ⋆Ψ = Ψ ∧ ⋆Φ for Φ, Ψ ∈ ΓΛpM (2)

iX ⋆ Φ = ⋆(Φ ∧ X̃) for X ∈ ΓTM, Φ ∈ ΓΛpM (3)

⋆ iXΦ = − ⋆ Φ ∧ X̃ for X ∈ ΓTM, Φ ∈ ΓΛpM (4)

⋆ ⋆ Φ = (−1)p+1Φ for Φ ∈ ΓΛpM (5)

iXΦ ∧ Ψ = (−1)p+1Φ ∧ iXΨ for Φ ∈ ΓΛpM, Ψ ∈ ΓΛqM, p + q ≥ 5 (6)

dΦ ∧ Ψ = (−1)p+1Φ ∧ dΨ for Φ ∈ ΓΛpM, Ψ ∈ ΓΛqM, p + q ≥ 4 (7)

2 Electromagnetic Fields

Maxwell’s equations for an electromagnetic field in an arbitrary medium can
be written

dF = 0 and d ⋆ G = j (8)

where F ∈ ΓΛ2M is the Maxwell 2-form, G ∈ ΓΛ2M is the excitation 2-form
and j ∈ ΓΛ3M is the 3-form electric current source 1. In general, the effects
of gravitation and electromagnetism on matter are encoded in this system
in ⋆G and j. This dependence may be non-linear and non-local. To close
this system, “ electromagnetic constitutive relations” relating G and j to F
are necessary. In the following the medium will be considered as containing
polarisable (both electrically and magnetically) matter with G restricted to
a real point-wise linear function of F , thereby ignoring losses and spatial
and temporal material dispersion in all frames. Continua endowed with such
properties will be termed “simple” here. The electric 4-current j will be
assumed to describe (free) electric charge and plays no role in subsequent
discussions.

The electric field e ∈ ΓΛ1M and magnetic induction field b ∈ ΓΛ1M as-
sociated with F are defined with respect to an arbitrary unit future-pointing
timelike 4−velocity vector field U ∈ ΓTM by

e = iUF and cb = iU⋆F (9)

1All tensors in this article have dimensions constructed from the SI dimensions
[M ], [L], [T ], [Q] where [Q] has the unit of the Coulomb in the MKS system. We adopt
[g] = [L2], [G] = [j] = [Q], [F ] = [Q]/ ǫ0 where the permittivity of free space ǫ0 has the
dimensions [Q2 T 2M−1 L−3] and c denotes the speed of light in vacuo
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Since g(U,U) = −1

F = e ∧ Ũ − ⋆ ( cb ∧ Ũ) (10)

The field U may be used to describe an observer frame on spacetime and its
integral curves model idealised observers.

Likewise the displacement field d ∈ ΓΛ1M and the magnetic field h ∈
ΓΛ1M associated with G are defined with respect to U by

d = iUG , and h/ c = iU ⋆ G . (11)

Thus

G = d ∧ Ũ − ⋆ ((h/ c ) ∧ Ũ) (12)

It will be assumed that a material medium has associated with it a future-
pointing timelike unit vector field V which may be identified with the bulk
4−velocity field of the medium in spacetime. Integral curves of V define the
averaged world-lines of identifiable constituents of the medium. A comoving
observer frame with 4−velocity U will have U = V .

3 Electromagnetic Stress, Energy and Mo-

mentum in the Vacuum

The historical development of Newtonian continuum mechanics led to the
notion of a stress tensor in Euclidean 3−space that entered into the balance
laws for momentum and angular momentum. With the advent of relativistic
concepts this was generalised to a stress-energy-momentum tensor in space-
time giving rise to conserved quantities in situations where the metric admits
symmetries.

The basic properties of the electromagnetic stress-energy-momentum ten-
sor in the vacuum2 can be succinctly discussed in terms of a set of “drive”3−forms.
In vacuo the Maxwell field system with a 3−form electric current source j
satisfies

dF = 0 and ǫ0 d ⋆ F = j. (13)

2The notion of a classical vacuum here corresponds to spacetime devoid of all material
(j = 0) although if j has compact support one can refer to “vacuum domains” where
j = 0. All regions can admit non-zero electromagnetic and gravitational fields.
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For any vector field Y on spacetime and any Maxwell solution F to this
system one can introduce a “drive” 3-form associated with Y and F

τEM
Y =

ǫ0

2c
(iY F ∧ ⋆F − iY ⋆ F ∧ F ) (14)

This 3−form can be used to generate different types of conserved quanti-
ties when the vector field Y generates (conformal) isometries on spacetime.3

If K is any (conformal) Killing vector on a domain of spacetime it then follows
simply from the vacuum Maxwell-system above that

d τEM
K = −

1

c
iK F ∧ j (15)

Thus for each (conformal) Killing vector field these equations describe a
“local conservation equation” ( dτK = 0) in a source-free region (j = 0).

For K any unit timelike Killing vector one has from (14)

τEM
K =

1

c2
e ∧ h ∧ K̃ −

1

2c
{ ǫ0 g(ẽ, ẽ) + µ0 g(h̃, h̃)} ⋆ K̃ (16)

where h = µ−1
0 b, b, e are defined with respect to U = K and µ0 ≡ 1

c2 ǫ0
.

The spatial 2−form e ∧ h was identified by Poynting in a source-free region
as proportional to the local field energy transmitted normally across unit
area per second (field energy current or power) and 1

2
{ ǫ0 g(ẽ, ẽ)+µ0 g(h̃, h̃)}

proportional to the local field energy density. More precisely
∫

Σ
τK is the field

energy associated with the spacelike 3-chain Σ and
∫

S2 iKτK is the power flux
across an oriented spacelike 2-chain S2.

If X is a unit spacelike Killing vector generating spacelike translations
along open integral curves then with the split:

τEM
X = µX ∧ Ṽ + GX

where iV GX = 0, the Maxwell stress 2-form µX may be used to identify
mechanical forces produced by a flow of field momentum current or pressure
with momentum density 3-form GX [21].

It is important to stress that different timelike Killing vectors give rise
to physically distinct notions of conserved energy. For completeness the in-
terpretation of “energy” requires further information related to its mode of

3i.e. In terms of the Lie derivative LY , LY g = λ g for some scalar λ. Y is a Killing
field when λ = 0. Angular momentum currents follow in terms Killing vector fields that
generate rotational diffeomorphisms.
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detection. The existence of timelike parallel Killing vector fields (including
those whose integral curves are geodesics) are further conditions that sin-
gle out particular classes that may have priority in establishing appropriate
notions of conserved energy.

In general, in the absence of Killing vectors one loses strictly conserved
currents (closed 3−forms) but a set of four local 3−form currents τEM

c ≡ τEM
Xc

can be defined in any local coframe. In any frame {Xa} with dual coframe
{eb} the 16 functions TEM

ab = iXb
⋆ τEM

a may be used to construct the tensor

TEM = TEM
ab ea ⊗ eb (17)

usually referred as the stress-energy-momentum tensor associated with the
above drive forms 4 .

The relationships between any stress-energy tensor T and the associated
drive forms τa are given by

τa = ⋆(T (Xa,−)) and T = ⋆(τa ∧ eb)e
a ⊗ eb (18)

In terms of the 3−forms τc the symmetry condition Tbc = Tcb is

ec ∧ τb = eb ∧ τc (19)

4 The total stress-energy-momentum tensor

When spacetime contains domains with matter (where j may or may not
be zero) such regions will in general have physical properties distinct from
vacuum domains.

If a coupled system of electromagnetic, gravitational and matter fields
has a total stress-energy-momentum tensor

T Total = TEM + Tm+I (20)

where Tm+I describes matter and its interactions not included in TEM , then
on general grounds, if T Total is symmetric, one has:

∇ · T Total = 0 (21)

4In view of the above comments on the role of particular timelike and spacelike Killing
vectors in constructing conserved energy-power and momentum-force currents a more co-
herent label for T might be the drive tensor
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in terms of a (Koszcul) connection ∇ on spacetime. Different authors parti-
tion the total stress-energy tensor into a sum of partial stress-energy tensors
in different ways. The divergences of certain partial stress-energy tensors are
sometimes called pondermotive forces.

If the connection ∇, induced from a connection on the bundle of linear
frames over spacetime, is both metric compatible and torsion free, with grav-
itational fields satisfying Einstein’s equations, then T Total must give rise to a
symmetric stress-energy tensor T Total

ab = T Total
ba . However any such symmet-

ric tensor can be partitioned into non-symmetric partial tensors in infinitely
many ways. Such a partition is then an expediency without fundamental
significance.

In theories of gravitation based on non-pseudo-Riemannian geometries
the natural connection may have torsion. For example in an Einstein-Cartan
theory with matter that gives rise to a connection with torsion, the gener-
alised Einstein tensor EinEC , determined by varying the generalised Einstein-
Hilbert action with respect to orthonormal coframes, is non-symmetric and
hence the source tensor TEC defined by

EinEC = TEC (22)

is similarly non-symmetric. However for some forms of gravitational-matter
couplings the variation of the total action with respect to the connection
gives rise to algebraic equations for the connection.5 In principle these can
be solved for the connection which can always be decomposed into a sum
containing the torsion-free metric-compatible (Levi-Civita) connection used
in Einstein’s pseudo-Riemannian description of gravitation. The generalised
Einstein tensor EinEC can then be written Ein + S in terms of the Einstein
tensor Ein and (22) becomes

Ein = TE (23)

where TE ≡ TEC − S is symmetric and divergenceless with respect to the
Levi-Civita divergence. In such cases one may define the total stress-energy
tensor as the source tensor for Einstein’s equations (23). It is then by defi-
nition symmetric. If the natural connection ∇ (determined by a connection
variation of the total action) gives rise to dynamic torsion, determined by a

5For example, locally SL(2, C) covariant couplings of spinor fields to gravitation fall
into this category.
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partial differential system involving all fields, the reduction to a geometrical
formulation in terms of a metric and Levi-Civita connection becomes an im-
practicality. In such a situation the definition of the stress-energy tensor is
best left as TEC . This has two distinct divergences with respect to ∇ since
it is not symmetric.

Such general considerations offer guidance in the construction of phe-
nomenological partial stress-energy tensors based on either coarse-graining
detailed interactions between fields or the introduction of effective degrees of
freedom [13]. Indeed such phenomenological stress-energy tensors are often
of greater value than actions based on “fundamental fields” since they can
often be related more directly to experiment. Thus although in this article
gravitation will be regarded as a background interaction the electromagnetic
properties of a simple medium will be accommodated into certain constitu-
tive tensors that respond to gravitation. We then demand that an action
describing such a medium in the absence of free charges give rise by vari-
ation to Maxwell’s phenomenological equations for a simple medium and a
symmetric stress-energy tensor.

5 The constitutive tensor for simple media

In general G may be a functional of F and properties of the medium6.

G = Z[F, . . .] (24)

Such a functional induces, in general, non-linear and non-local relations be-
tween d,h and e,b. These relations may be explored either empirically or
by coarse graining a suitable macroscopic model. For general linear continua
one may have for some positive integer N and collection of constitutive tensor
fields Z (r) on spacetime the relation

G = ΣN
r=0Z

(r)(∇ rF, . . .) (25)

in terms of some spacetime connection ∇. Additional arguments refer to
variables independent of F and its derivatives. In this article, for the simple
linear media under consideration, we restrict to

G = Z(F )

6e.g. electrostriction and magnetostriction arise from the dependence of Z on the elastic
deformation tensor of the medium [17].
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for some constitutive tensor field Z . In the vacuum G = ǫ0F .
A particularly simple linear isotropic medium may be described by a bulk

4−velocity field V , a relative permittivity scalar field ǫ and a non-vanishing
relative permeability scalar field µ. In this case Z follows from

G

ǫ0

=ǫ iV F ∧ Ṽ − µ−1 ⋆ (iV ⋆F ∧ Ṽ ) (26)

=(ǫ −
1

µ
) iV F ∧ Ṽ +

1

µ
F (27)

In a comoving frame with U = V (27) becomes

d = ǫ0 ǫ e and h = (µ0µ)−1b (28)

For a non-magneto-electric but anisotropic medium, the relative permit-
tivity ǫ and inverse relative permeability µ−1 become spatial tensor fields on
spacetime. Thus ǫ : ΓΛ1M → ΓΛ1M and µ−1 : ΓΛ1M → ΓΛ1M for all
α ∈ ΓΛ1M where

ǫ(Ṽ ) = 0 , iV ǫ(α) = 0 , µ−1(Ṽ ) = 0 and iV µ−1(α) = 0 . (29)

The more general constitutive relation is then given by

G

ǫ0

= ǫ(iV F ) ∧ Ṽ − ⋆(µ−1(iV ⋆F ) ∧ Ṽ ) (30)

which in the comoving frame with U = V becomes

d = ǫ0 ǫ(e) and µ0h = µ−1(b) . (31)

Based on standard thermodynamic arguments the inverse relative permeabil-
ity and relative permittivity tensors are symmetric with respect to the metric
g:

ieαǫ(β) = ieβ
ǫ(α) and ieαµ−1(β) = ieβ

µ−1(α) for α, β ∈ ΓΛ1M (32)

In general, the electromagnetic fields may be related by

d =ζde(e) + ζdb(b)

h =ζhe(e) + ζhb(b)
(33)
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where ζde, ζdb, ζhe, ζhb : ΓΛ1M → ΓΛ1M are spatial tensors satisfying:

ζ (Ṽ ) = iV (ζ (α)) = 0 (34)

and therefore

ζ (πV (α)) = πV (ζ (α)) = ζ (α) (35)

for ζ = ζde, ζdb, ζhe, ζhb and for all α ∈ ΓΛ1M , where πV projects spacetime
1-forms to spatial 1-forms with respect to V , on spacetime

πV : ΓΛ1M → ΓΛ1M , πV = Id4 + Ṽ ⊗ V (36)

From (31), (33) it follows that if ζhe = ζdb = 0 in some frame then ζde = ǫ0 ǫ
and ζhb = (µ0µ)−1 in that frame. For such materials,however, one cannot
assert that ζhe, ζdb remain zero in all frames. Media with constitutive relation
(33) are often referred to as magneto-electric [22]. We prefer to use this term
to describe intrinsic magneto-electric media and will return to this point in
section 7.

The tensor fields ζde, ζdb, ζhe and ζhb are encoded into the tensor Z :
ΓΛ2M → ΓΛ2M such that G = Z(F ). Since

Z(α + β) = Z(α) + Z(β) and Z(λα) = λZ(α) (37)

for all λ ∈ ΓΛ0M and α, β ∈ ΓΛ2M the constitutive relation may be ex-
panded in a local co-frame field {e0, e1, e2, e3} as

1
2
Gabe

a ∧ eb = 1
4
Zcd

abFcde
a ∧ eb (38)

where

Zcd
ab = −Zcd

ba = −Zdc
ab = Zdc

ba (39)

These conditions alone imply that the tensor Z has 36 independent com-
ponents, although additional symmetry conditions given below will reduce
these to 21. From the definition of G in terms of comoving fields and (33),
the relationship between Z and

{
ζde, ζdb, ζhe, ζhb

}
follows as

Z(F ) =ζde(iV F ) ∧ Ṽ + ζdb(iV ⋆F ) ∧ Ṽ

− ⋆(ζhe(iV F ) ∧ Ṽ ) − ⋆(ζhb(iV ⋆ F ) ∧ Ṽ )
(40)

and hence by contraction with V

ζde(ξ) = iV Z(ξ ∧ Ṽ ) , ζdb(ξ) = −iV Z(⋆(ξ ∧ Ṽ )) ,

ζhe(ξ) = iV ⋆ Z(ξ ∧ Ṽ ) , ζhb(ξ) = −iV ⋆ Z(⋆(ξ ∧ Ṽ ))
(41)
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6 Symmetry of the constitutive tensor.

The adjoint of any tensor T : ΓΛpM → ΓΛpM , is the tensor T † : ΓΛpM →
ΓΛpM defined by

α ∧ ⋆T (β) = β ∧ ⋆T †(α) for α, β ∈ ΓΛpM (42)

Clearly T †† = T . If p = 1, (42) gives

ieαT (β) = ieβ
T †(α) for α, β ∈ ΓΛ1M (43)

The symmetry conditions for the relative permittivity and inverse perme-
ability tensors imply that ζde and ζhb are self adjoint. This symmetry is
generalised to magneto-electric media:

ζde† = ζde , ζhb† = ζhb and ζdb† = −ζhe (44)

i.e. Z is assumed self-adjoint

Z = Z† (45)

or, raising indices with the metric

Zabcd = Zcdab (46)

Using sequentially (41), (4), (45), (3), (6), (41), (1), (2), (42) this condition
yields

α ∧ ⋆ζdb(β) = − α ∧ ⋆iV Z(⋆(β ∧ Ṽ )) = α ∧ Ṽ ∧ ⋆Z(⋆(β ∧ Ṽ ))

=⋆(β ∧ Ṽ ) ∧ ⋆Z(α ∧ Ṽ ) = iV ⋆β ∧ ⋆Z(α ∧ Ṽ ) = ⋆β ∧ iV ⋆Z(α ∧ Ṽ )

= ⋆ β ∧ ζhe(α) = −ζhe(α) ∧ ⋆β = −β ∧ ⋆ζhe(α) = −α ∧ ⋆ζhe†(β)

i.e. ζdb = −ζhe†. The remaining equations in (44) follow similarly.
It follows from (39) and (46) that the number of independent components

of Z reduce from 36 to 21.

7 Intrinsic magneto-electric media and the

Post constraint.

A constitutive tensor Z describes a non intrinsic-magneto-electric medium
if there exists a velocity field V for the medium such that ζdb = 0 and
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ζhe = 0. Thus a constitutive tensor Z is intrinsically magneto-electric if
there does not exists a velocity field V such that ζdb = 0 and ζhe = 0. If
Z(F ) is decomposed with respect to an arbitrary frame U 6= V one may
find all tensors ζ non-zero, even for media that are not intrinsically magneto-
electric. For a general constitutive tensor, it is a matter of linear algebra to
decide whether it describes an intrinsically magneto-electric medium or not.

A useful characterisation of magneto-electric media may be given in terms
of invariants constructed from Z and the metric. One such invariant intro-
duced by Post [23], [9], is

χ = iaib ⋆ (Z(ea ∧ eb)) (47)

In terms of spatial tensors with respect the the medium velocity V

χ =iaib ⋆ (Z(ea ∧ eb))

=iaib⋆(ζ
de(iV (ea ∧ eb)) ∧ Ṽ ) + iaib ⋆ (ζdb(iV ⋆(ea ∧ eb)) ∧ Ṽ )

+ iaib(ζ
he(iV (ea ∧ eb)) ∧ Ṽ ) + iaib(ζ

hb(iV ⋆(ea ∧ eb)) ∧ Ṽ )

=iaib ⋆ (ζdb(iV ⋆(ea ∧ eb)) ∧ Ṽ ) + iaib(ζ
he(iV (ea ∧ eb)) ∧ Ṽ )

(48)

since

iaib⋆(ζ
de(iV (ea ∧ eb)) ∧ Ṽ ) = iaib(ζ

hb(iV ⋆(ea ∧ eb)) ∧ Ṽ ) = 0

Using

⋆(ea ∧ eb ∧ Ṽ ) = ⋆(ea ∧ eb ∧ ec)Vc = Vc ⋆ (ea ∧ eb ∧ ec ∧ ed)ed = −εabcdVced

and

⋆(ξ ∧ Ṽ ∧ eb ∧ ea) = ⋆(ea ∧ eb ∧ Ṽ ∧ ξ) = ⋆(ea ∧ eb ∧ ee ∧ ef )V
eξf = −εabefV

eξf

with εabefε
abcd = δd

eδ
c
f − δc

eδ
d
f , the first term on the last line of (48) yields

iais ⋆ (ζdb(iV ⋆(ea ∧ es)) ∧ Ṽ ) = ⋆ (ζdb(⋆(ea ∧ es ∧ Ṽ )) ∧ Ṽ ∧ es ∧ ea)

= − ⋆(ζdb(er) ∧ Ṽ ∧ es ∧ ea)ε
ascrVc

=ifζdb(er)εasefε
ascrV eVc = 2iaζ

db(ea)

while the second term is

iaib(ζ
he(iV (ea ∧ eb)) ∧ Ṽ ) = iaib(ζ

he(vaeb) ∧ Ṽ ) − iaib(ζ
he(vbea) ∧ Ṽ )

= 2iV ib(ζ
he(eb) ∧ Ṽ ) = −2ibζ

he(eb)
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Hence using (44)

χ = 4iaζ
db(ea) = −4iaζ

he(ea) (49)

Thus since V is an arbitrary medium velocity, a sufficient condition for a
medium to be intrinsically magneto-electric is that χ 6= 0.

However some intrinsically magneto-electric media may have χ = 0. For
example, consider the self-adjoint constitutive tensor given, in some local
orthonormal coframe {e0, e1, e2, e3}, by

Z(F ) = F23e
0 ∧ e1 + F13e

0 ∧ e2 − F02e
1 ∧ e3 − F01e

2 ∧ e3

Then with V = X0

ζdb(ξ) = (i1ξ)e
1 − (i2ξ)e

2 and ζhe(ξ) = −(i1ξ)e
1 + (i2ξ)e

2

and χ = 0. However one easily verifies that ζdb 6= 0 with respect to any
arbitrary unit timelike V . Hence Z describes an intrinsically magneto-electric
medium.

A minimal set of invariants whose non-vanishing is a necessary and suffi-
cient condition for a medium to be intrinsically magneto-electric is not known
to the authors.

8 Action for Source Free Electromagnetic Fields

in a Simple Medium

The classical equations describing the total system of matter and fields will
be considered as arising from the extremum of some total action functional
under suitable variations with compact support. This action should be con-
structed from an action density 4-form on spacetime in terms of (pull-backs)
of sections (and their derivatives) of field bundles carrying representations
of local symmetry (gauge) groups and maps between them. Observed local
symmetries in nature arise in such a formalism by ensuring that the action
4−form is a scalar under local changes of section. To maintain these covari-
ances appropriate connections are required to define tensorial (and spino-
rial) covariant derivatives of sections. In addition the action may depend on
tensor-valued functions of these sections. All variational principles require a
specification of what objects in the action are to be varied and these then

14



constitute the dynamical variables of the theory. In the following we con-
centrate on a contribution Λ to the total action arising from the effects of
the electromagnetic field and gravitation in different types of “media”. We
exclude from this Λ the interaction with charged matter and the dynamics
of the gravitational field itself. Included is the effect of the electromagnetic
field on a polarisable and magnetisable medium assumed to be described in
terms of a particular constitutive tensor Z. In particular we explore how
the response of the medium to gravitation as well as the electromagnetic
field can be used to establish the stress-energy-momentum tensor associated
with different choices of constitutive tensor. Thus the action 4-form Λ will
be taken to depend only on the spacetime metric and the class of Maxwell
1-form potentials A with F = dA. The dependence of the tensor field Z on
these variables will be explored in some detail below.

We have insisted that in the absence of free charge the electromagnetic
fields F and G for a simple medium in any spacetime metric must satisfy

dF = 0 and d ⋆ G = 0 (50)

Before generating an electromagnetic stress-energy-momentum tensor from a
particular contribution to the total action it is necessary to verify that these
field equations arise by suitable variation. Consider then the contribution
S[A, g] =

∫
M

Λ where F = dA ,G = Z(F ) with Z = Z† and

c Λ = 1
2
F ∧ ⋆G = 1

2
F ∧ ⋆Z(F ) (51)

If a prime denotes the variation with respect to A, then working modulo d:

c Λ′ =1
2

(
dA′ ∧ ⋆Z(dA) + dA ∧ ⋆Z(dA′)

)

=dA′ ∧ ⋆Z(dA) = A′ ∧ d ⋆ Z(dA) = A′ ∧ d ⋆ G

Hence the source-free Maxwell equations (50) follow by variation with respect
to A from the action (51). Note that the symmetry condition (45) of the
tensor Z is essential in this variation.

9 Variational derivatives and stress-energy-

momentum tensors

To effect the metric variations of the above action functional let t → gt be
a curve in the space of Lorentzian signatured metrics, with g0 ≡ gt|t=0. The
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“tangent” to the the curve t → gt at the point t = 0 is written ġ:

gt = g0 + tġ + O(t2) (52)

For a general object K which may be a tensor or a map which depends on
the metric g, write similarly t → Kt as the one parameter set of objects
encoding the dependence of K on gt, K0 = Kt|t=0 and K̇ = d

dt
Kt|t=0, so

Kt = K0 + tK̇ + O(t2) (53)

Kt will be referred to as the metric induced lift of K.
One may represent the local variation gt in different ways. One way is to

vary the components of gt with respect to a fixed local co-frame {ea
0}, i.e.

gt = (gt)abe
a
0 ⊗ eb

0 where (gt)ab = gt

(
(X0)a, (X0)b

)
(54)

One can set the fixed frame to be orthonormal with respect to the unvaried
metric so that (g0)ab = ηab = diag(−1, +1, +1, +1). The derivative ġ is
therefore given by

ġ = ġabe
a
0 ⊗ eb

0 (55)

Alternatively one may vary the co-frame: i.e. choose a one parameter set of
coframes t → ea

t for a = 0, .., 3 such that ea
t |t=0 = ea

0 and

gt = ηabe
a
t ⊗ eb

t (56)

The derivative of t → ea
t at t = 0 follows from

ea
t = ea

0 + t ėa + O(t2) (57)

The derivative ġ may also therefore be written

ġ = ηab

(
ėa ⊗ eb

0 + ea
0 ⊗ ėb

)
(58)

The drive 3-forms τa associated with any action 4-form Λ are defined by the
variation of Λ with respect to the orthonormal coframe as

Λ̇ = ėa ∧ τa (59)
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If the variation of Λ with respect to the ortho-normal coframe is induced
entirely from the metric g (and the metric compatible torsion-free Levi-Civita
connection) then

τa = 2iXb

(
δΛ

δgbc

)
ηac (60)

This follows immediately by equating (55) and (58):

ġabe
a
0 ⊗ eb

0 = ηab

(
ėa ⊗ eb

0 + ea
0 ⊗ ėb

)

so

ġab = ηcd

(
ėc(Xa)δ

d
b + δc

aė
d(Xb)

)
= ėa(Xb) + ėb(Xa) = ibėa + iaėb

since one may drop the 0 subscript here without ambiguity: Xa = (X0)a.
Then

Λ̇ =ėa ∧ τa =
δΛ

δgab

ġab =
δΛ

δgab

(ėa(Xb) + ėb(Xa)) = 2
δΛ

δgab

ėa(Xb)

=2ėa ∧ ib

(
δΛ

δgab

)

By (18) the tensor associated to the τa is given by

T = −2 ⋆

(
δΛ

δgab

)
ea ⊗ eb (61)

and is manifestly symmetric.
In the following it is necessary to make explicit the metric dependence

of various elements that enter in the action 4−form Λ and in particular to
pass between vector fields and forms using the varied metric gt. Thus the
notations gt : ΓTM → ΓΛ1M , X 7→ gt(X) and g−1

t : ΓΛ1M → ΓTM ,
α 7→ g−1

t (α) for the metric dual of vectors and 1-forms with respect to the
metric gt are used. For vectors or 1-forms which already have a subscript
0 or t we continue to use the tilde notation without ambiguity so that, for
example, the gt metric dual of the vector Xt can be written X̃t ≡ gt(Xt).

Following (53) one has the maps ⋆0, ⋆t and ⋆̇ and from the Leibnitz rule
(evaluated at t = 0)

(⋆α)̇ = ⋆̇α + ⋆α̇ (62)
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for all αt ∈ ΓΛpM . It follows simply (see appendix) that

⋆̇α = ėa ∧ ia ⋆ α − ⋆(ėa ∧ iaα) for αt ∈ ΓΛpM (63)

Taking the derivative of Φ ∧ ⋆tΨ = Ψ ∧ ⋆tΦ with respect to t gives

Φ ∧ ⋆̇Ψ = Ψ ∧ ⋆̇Φ for Φ, Ψ ∈ ΓΛpM (64)

Thus with the metric induced lift of the constitutive tensor Z:

Zt = Z0 + t Ż + O(t2) (65)

one writes:

(⋆Zt(F ))̇ = ⋆̇Z(F ) + ⋆Ż(F ) (66)

Since there is a one parameter set of Hodge duals, we need to distinguish
†t and †0. Furthermore (42) becomes

α ∧ ⋆tT (β) = β ∧ ⋆tT
†t(α) (67)

for all α, β ∈ ΓΛpM and (43) becomes

ig−1

t
αT (β) = ig−1

t
βT †t(α) (68)

for all α, β ∈ ΓΛ1M .

10 Computation of the stress-energy-momentum

tensor

In this section the variation of the above action (51 )is explored for a partic-
ular choice of the metric dependence for Zt, corresponding to a perturbative
response of the medium to gravitation.

For a general lift the action 4−form (51) is written

c Λt = 1
2
F ∧ ⋆tZt(F ) (69)

hence

c Λ̇ = 1
2

(
F ∧ ⋆̇Z(F ) + F ∧ ⋆Ż(F )

)
(70)
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From (63)

F ∧ ⋆̇Z(F ) =F ∧ ⋆̇G = F ∧ ėa ∧ ia ⋆ G − F ∧ ⋆(ėa ∧ iaG)

=ėa ∧ F ∧ ia ⋆ G − ėa ∧ iaG ∧ ⋆F

=ėa ∧
(
F ∧ ia ⋆ G − iaG ∧ ⋆F

) (71)

and

F ∧ ⋆Ż(F ) = 2F ∧ ⋆
δZ

δgab

(F )ibė
a = 2ėa ∧ ib

(
F ∧ ⋆

δZ

δgab

(F )

)

Therefore the drive forms are given by:

c τa = 1
2
F ∧ ia ⋆ G − 1

2
iaG ∧ ⋆F + ib

(
F ∧ ⋆

δZ

δgab

(F )

)
(72)

For a physical medium with bulk motion that can sustain elastic stresses
associated with its atomic constituents one expects that the history of such
bulk motion should have some influence on the constitutive properties via
some associated 4-velocity field7. To include the possible dependence of the
stress-energy-momentum tensor on such bulk motion of the medium one re-
quires Z to depend on this motion in some manner. In (33) Z is specified
in terms of electromagnetic fields measured in the comoving frame V of the
medium. It is therefore natural to prescribe a lift of this expression involving
the lifts of V0 and

{
ζde
0 , ζdb

0 , ζhe
0 , ζhb

0

}
. The natural lift of the medium velocity

V0 is

Vt =
V0√

−gt(V0, V0)
(73)

The metric dual of Vt is given by Ṽt = gt(Vt) and the projection πV (36) is
lifted to

πt = Id4 + Ṽt ⊗ Vt (74)

The decomposition (41) of Z0 and Zt with respect to the medium veloc-
ities V0 and Vt is given by

{
ζde
0 , ζdb

0 , ζhe
0 , ζhb

0

}
and

{
ζde
t , ζdb

t , ζhe
t , ζhb

t

}
respec-

tively, following the notation (53).
The lifted tensors ζde

t , ζdb
t , ζhe

t and ζhb
t will be now chosen to satisfy three

properties:

7Relativistic strings and membranes with dynamics that arise from re-parameterisation
independent actions are an exception since, without “constituents”, no preferred
parametrisation of their histories should be identified.
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• For all t in the neighbourhood of t = 0

ζt|t=0 = ζ0 for ζt = ζde
t , ζdb

t , ζhe
t , ζhb

t (75)

• For all t in the neighbourhood of t = 0 they map the vector space that
is gt−orthogonal to Ṽt to itself. This is achieved by lifting (34):

ζt(Ṽt) = 0 and iVt
ζt(α) = 0 (76)

for ζt = ζde
t , ζdb

t , ζhe
t , ζhb

t and all α ∈ ΓΛ1M . The corresponding lift of
(35) is

ζt(πt(α)) = πt(ζt(α)) = ζt(α) (77)

• For all t in the neighbourhood of t = 0 they retain the adjoint conditions
(44).

(ζde
t )†t = ζde

t , (ζhb
t )†t = ζhb

t and (ζdb
t )†t = −ζhe

t (78)

These requirements are all satisfied by setting

iXζt(α) = 1
2

(
iXζ0(πtα) + ig−1

t
α(ζ0)

†0(πtgtX)
)

(79)

for all α ∈ ΓΛ1M and X ∈ ΓTM , i.e.8

iXζde
t (α) =1

2

(
iXζde

0 (πtα) + ig−1

t
αζde

0 (πtgtX)
)

,

iXζhb
t (α) =1

2

(
iXζhb

0 (πtα) + ig−1

t
αζhb

0 (πtgtX)
)

,

iXζdb
t (α) =1

2

(
iXζdb

0 (πtα) − ig−1

t
αζhe

0 (πtgtX)
)

,

iXζhe
t (α) =1

2

(
iXζhe

0 (πtα) − ig−1

t
αζdb

0 (πtgtX)
)

(80)

8For an isotropic, non-magneto-electric medium (27) and (28), the lifts (80) reduces to
the lifts

ζde

t = ǫπt , ζhb

t = µ−1πt , ζdb

t = 0 and ζhe

t = 0

which in a comoving frame yield the relations

dt = ǫ0 ǫ et and ht = (µ0 µ)−1bt

where the scalars ǫ and µ−1 are independent of the ambient metric.
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To verify that (79) obeys (75) note that from (36)

g−1
0 π0g0X = X + g0(X,V0)V0

and hence from (68) and (34)

ig−1

0
α(ζ0)

†0(π0g0X) = ig−1

0
π0g0Xζ0(α) = iXζ0(α)

Thus at t = 0 (79) becomes

iXζt(α)|t=0 =1
2

(
iXζ0(π0α) + ig−1

0
α(ζ0)

†0(π0g0X)
)

= iXζ0(α)

using (35).
To verify that (79) obeys (76) observe that

iXζt(Ṽt) = 1
2

(
iXζ0(πtṼt) + ig−1

t
Ṽt

(ζ0)
†0(πtgtX)

)

Now πtṼt = 0 so the first term vanishes. Also using (68)

ig−1

t
Ṽt

(ζ0)
†0(πtgtX) =iVt

(ζ0)
†0(πtgtX) =

√
−gt(V0, V0) iV0

(ζ0)
†0(πtgtX)

=
√

−gt(V0, V0) ig−1

t
πtgtX

ζ0(Ṽ0) = 0

Hence ζt(Ṽt) = 0. Likewise

iVt
ζt(α) = 1

2

(
iVt

ζ0(πtα) + ig−1

t
α(ζ0)

†0(πtṼt)
)

= 0

Finally to verify that (80) obeys (78) use (68) and (80) twice

ig−1

t
α(ζdb

t )†t(β) =ig−1

t
βζdb

t (α) = 1
2

(
ig−1

t
βζdb

0 (πtα) − ig−1

t
αζhe

0 (πtβ)
)

= − ig−1

t
αζhe

t (β)

In a similar way it follows that (ζde
t )†t = ζde

t and (ζhb
t )†t = ζhb

t . Thus (80)
provide natural conditions for the lifts (75) to (78)9.

9The requirements (75-78) are not meant to be exhaustive. Other lifts ζt could involve
gradients of the spacetime metric corresponding to gravitational tidal effects on the con-
stitutive tensor. For example if R is the curvature scalar associated with the Levi-Civita
connection then the lifts

iXζt(α) = 1

2
(Rt −R0 + 1)

(
iXζ0(πtα) + i

g
−1

t
α
(ζ0)

†0(πtgtX)
)

also satisfy (75-78).
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Inserting the relations (80) into Z(F ), (40), the action 4−form (69) be-
comes

2 c Λt =F ∧ ⋆t(ζ
de
t (iVt

F ) ∧ Ṽt) + F ∧ ⋆t(ζ
db
t (iVt

⋆tF ) ∧ Ṽt)

+ F ∧ ζhe
t (iVt

F ) ∧ Ṽt + F ∧ ζhb
t (iVt

⋆tF ) ∧ Ṽt

(81)

To ease the density of notation in the following, the symbol bt now stands
for cbt and ht stands for ht

c
. The lifts

et = iVt
F , bt = iVt

⋆tF , ẽt = g−1
t (iVt

F ) and b̃t = g−1
t (iVt

⋆tF ) (82)

satisfy

πtet = et and πtbt = bt (83)

Sequentially using (3), (6), (4), (80), (83), (4), (6), (3), the first term on the
right hand side of (81) becomes

F ∧ ⋆t(ζ
de
t (et) ∧ Ṽt) =F ∧ iVt

⋆tζ
de
t (et) = −et ∧ ⋆tζ

de
t (et) = −(⋆t1)ieet

ζde
t (et)

= − 1
2
(⋆t1)

(
ieet

ζde
0 (πtet) + ieet

ζde
0 (πtet)

)
= −(⋆t1)ieet

ζde
0 (et)

= − et ∧ ⋆tζ
de
0 (et) = F ∧ iVt

⋆tζ
de
0 (et) = F ∧ ⋆t(ζ

de
0 (et) ∧ Ṽt)

Similarly sequentially using (3), (6), (4), (80), (83), (4), (6), (3), (2), (5)
the second term on the right hand side of (81) gives

F ∧ ⋆t(ζ
db
t (bt) ∧ Ṽt)

=F ∧ iVt
⋆tζ

db
t (bt) = −et ∧ ⋆tζ

db
t (bt) = −(⋆t1)ieet

ζdb
t (bt)

= − 1
2
(⋆t1)

(
ieet

ζdb
0 (πtbt) − iebt

ζhe
0 (πtet)

)
= −1

2
(⋆t1)

(
ieet

ζdb
0 (bt) − iebt

ζhe
0 (et)

)

= − 1
2
et ∧ ⋆tζ

db
0 (bt) + 1

2
bt ∧ ⋆tζ

he
0 (et) = 1

2
F ∧ iVt

⋆tζ
db
0 (bt) −

1
2
⋆tF ∧ iVt

⋆tζ
he
0 (et)

=1
2
F ∧ ⋆t(ζ

db
0 (bt) ∧ Ṽt) −

1
2
⋆t(ζ

he
0 (et) ∧ Ṽt) ∧ ⋆tF

=1
2
F ∧ ⋆t(ζ

db
0 (bt) ∧ Ṽt) −

1
2
F ∧ ⋆t⋆t(ζ

he
0 (et) ∧ Ṽt)

=1
2
F ∧ ⋆t(ζ

db
0 (bt) ∧ Ṽt) + 1

2
F ∧ ζhe

0 (et) ∧ Ṽt

It is useful to record from this calculation that

−1
2
(⋆t1)

(
ieet

ζdb
0 (bt) − iebt

ζhe
0 (et)

)
= 1

2
F ∧ ⋆t(ζ

db
0 (bt) ∧ Ṽt) + 1

2
F ∧ ζhe

0 (et) ∧ Ṽt

(84)
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Sequentially using (5), (4), (2), (4), (80), (83), (84) the third term on the
right hand side of (81) yields

F ∧ ζhe
t (et) ∧ Ṽt

= − ζhe
t (et) ∧ Ṽt ∧ ⋆t⋆tF = ζhe

t (et) ∧ ⋆tbt = bt ∧ ⋆tζ
he
t (et)

=(⋆t1)iebt
ζhe
t (et) = 1

2
(⋆t1)

(
iebt

ζhe
0 (πtet) − ieet

ζdb
0 (πtbt)

)

=1
2
(⋆t1)

(
iebt

ζhe
0 (et) − ieet

ζdb
0 (bt)

)

=1
2
F ∧ ⋆t(ζ

db
0 (bt) ∧ Ṽt) + 1

2
F ∧ ζhe

0 (et) ∧ Ṽt

Finally on sequential use of (5), (4), (2), (4), (80), (83)

F ∧ ζhb
t (bt) ∧ Ṽt = − ζhb

t (bt) ∧ Ṽt ∧ ⋆t⋆tF = ζhb
t (bt) ∧ ⋆tbt = bt ∧ ⋆tζ

hb
t (bt)

=(⋆t1)iebt
ζhb
t (bt) = 1

2
(⋆t1)

(
iebt

ζhb
0 (πtbt) + iebt

ζhb
0 (πtbt)

)

=(⋆t1)iebt
ζhb
0 (bt)

and so by reversing this sequence of steps

F ∧ ζhb
t (bt) ∧ Ṽt = F ∧ ζhb

0 (bt) ∧ Ṽt

Hence (81) simplifies to

2 c Λt =F ∧ ⋆t(ζ
de
0 (iVt

F ) ∧ Ṽt) + F ∧ ⋆t(ζ
db
0 (iVt

⋆tF ) ∧ Ṽt)

+ F ∧ ζhe
0 (iVt

F ) ∧ Ṽt + F ∧ ζhb
0 (iVt

⋆tF ) ∧ Ṽt

(85)

i.e. the constitutive tensors ζt in the action may be replaced by ζ0 and hence
the metric dependence of Λt is seen to reside solely in ⋆t, Vt and Ṽt.

The derivative of (85) at t = 0 is given by

c Λ̇ =F ∧ ⋆̇(ζde(iV F ) ∧ Ṽ ) + F ∧ ⋆(ζde(iV̇ F ) ∧ Ṽ ) + F ∧ ⋆(ζde(iV F ) ∧ ˙̃V )

+ F ∧ ⋆̇(ζdb(iV ⋆F ) ∧ Ṽ ) + F ∧ ⋆(ζdb(iV̇ ⋆ F ) ∧ Ṽ ) + F ∧ ⋆(ζdb(iV ⋆̇F ) ∧ Ṽ )

+ F ∧ ⋆(ζdb(iV ⋆F ) ∧ ˙̃V ) + F ∧ ζhe(iV̇ F ) ∧ Ṽ + F ∧ ζhe(iV F ) ∧ ˙̃V

+ F ∧ ζhb(iV̇ ⋆ F ) ∧ Ṽ + F ∧ ζhb(iV ⋆̇F ) ∧ Ṽ + F ∧ ζhb(iV ⋆ F ) ∧ ˙̃V
(86)

where the subscript 0 is omitted on the right hand side.
To determine the drive forms, observe that there are three different types

of term in (86) which contain ⋆̇, V̇ or ˙̃V . Since ˙̃V = (g(V ))̇ = g(V̇ ) + ġ(V ),
terms in ⋆̇, V̇ and ġ(V ) can be collected to give:

2 c Λ̇ = Λ̇⋆̇ + Λ̇V̇ + Λ̇ġ(V ) (87)
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where

2 c Λ̇⋆̇ =F ∧ ⋆̇(ζde(iV F ) ∧ Ṽ ) + F ∧ ⋆̇(ζdb(iV ⋆F ) ∧ Ṽ )

+ F ∧ ⋆(ζdb(iV ⋆̇F ) ∧ Ṽ ) + F ∧ ζhb(iV ⋆̇F ) ∧ Ṽ ,
(88)

2 c Λ̇V̇ =F ∧ ⋆(ζde(iV̇ F ) ∧ Ṽ ) + F ∧ ⋆(ζde(iV F ) ∧ g(V̇ ))

+ F ∧ ⋆(ζdb(iV̇ ⋆ F ) ∧ Ṽ ) + F ∧ ⋆(ζdb(iV ⋆F ) ∧ g(V̇ ))

+ F ∧ ζhe(iV̇ F ) ∧ Ṽ + F ∧ ζhe(iV F ) ∧ g(V̇ )

+ F ∧ ζhb(iV̇ ⋆ F ) ∧ Ṽ + F ∧ ζhb(iV ⋆ F ) ∧ g(V̇ )

(89)

and

2 c Λ̇ġ(V ) =F ∧ ⋆(ζde(iV F ) ∧ ġ(V )) + F ∧ ⋆(ζdb(iV ⋆F ) ∧ ġ(V ))

+ F ∧ ζhe(iV F ) ∧ ġ(V ) + F ∧ ζhb(iV ⋆ F ) ∧ ġ(V )
(90)

The third term on the right hand side of (88) may be expressed as

F ∧ ⋆(ζdb(iV ⋆̇F ) ∧ Ṽ ) =F ∧ iV ⋆ (ζdb(iV ⋆̇F )) = −iV F ∧ ⋆ζdb(iV ⋆̇F )

=iV ⋆̇F ∧ ⋆ζhe(iV F ) = −⋆̇F ∧ iV ⋆ ζhe(iV F )

= − iV ⋆ ζhe(iV F ) ∧ ⋆̇F = −F ∧ ⋆̇ ⋆ (ζhe(iV F ) ∧ Ṽ )

using sequentially (3), (6), (44), (6), (1), (64). The fourth term on the right
hand side of (88) may be expressed as

F ∧ ζhb(iV ⋆̇F ) ∧ Ṽ = − F ∧ Ṽ ∧ ζhb(iV ⋆̇F ) = −F ∧ Ṽ ∧ ⋆ ⋆ ζhb(iV ⋆̇F )

= − ⋆ζhb(iV ⋆̇F ) ∧ ⋆(F ∧ Ṽ ) = iV ⋆F ∧ ⋆ζhb(iV ⋆̇F )

=iV ⋆̇F ∧ ⋆ζhb(iV ⋆F ) = −⋆̇F ∧ iV ⋆ ζhb(iV ⋆F )

= − iV ⋆ ζhb(iV ⋆F ) ∧ ⋆̇F = −F ∧ ⋆̇ ⋆ (ζhb(iV ⋆F ) ∧ Ṽ )

using sequentially (1), (5), (64), (3), (44), (6), (1), (64).
Hence from (71)

2 c Λ̇⋆̇ =F ∧ ⋆̇
(
ζde(iV F ) ∧ Ṽ + ζdb(iV ⋆F ) ∧ Ṽ − ⋆(ζhe(iV F ) ∧ Ṽ ) − ⋆(ζhb(iV ⋆F ) ∧ Ṽ )

)

=F ∧ ⋆̇G

=ėa ∧
(
F ∧ ia ⋆ G − iaG ∧ ⋆F

)

(91)
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To collect terms in Λ̇V̇ observe that by differentiating (73), V̇ = λV where
λ = ėa(V ) Va one has

2 c Λ̇V̇ =2λ
(
F ∧ ⋆(ζde(iV F ) ∧ Ṽ ) + F ∧ ⋆(ζdb(iV ⋆F ) ∧ Ṽ )

+ F ∧ ζhe(iV F ) ∧ Ṽ + F ∧ ζhb(iV ⋆ F ) ∧ Ṽ
)

=2λF ∧ ⋆G = 2iV ėa VaF ∧ ⋆G = 2ėa ∧ VaiV (F ∧ ⋆G)

The first two terms on the right hand side of (90) become

F ∧ ⋆(ζde(iV F ) ∧ ġ(V )) + F ∧ ⋆(ζdb(iV ⋆F ) ∧ ġ(V ))

=F ∧ ⋆(iV G ∧ ġ(V )) = iV G ∧ ġ(V ) ∧ ⋆F = −ġ(V ) ∧ iV G ∧ ⋆F

and the last two terms on the right hand side of (90) become

F ∧ ζhe(iV F ) ∧ ġ(V ) + F ∧ ζhb(iV ⋆ F ) ∧ ġ(V ) = −ġ(V ) ∧ F ∧ iV ⋆ G

so using ġ(V ) = ėa(V ) ea + ėa ea(V ) = 2ėa Va + iV (ėa ∧ ea) one has

2 c Λ̇ġ(V ) = − ġ(V ) ∧ (iV G ∧ ⋆F + F ∧ iV ⋆ G)

= − (2ėa Va + iV (ėa ∧ ea)) ∧ (iV G ∧ ⋆F + F ∧ iV ⋆ G)

= − 2ėa ∧ (iV G ∧ ⋆F + F ∧ iV ⋆ G) + ėa ∧ ea ∧ iV (iV G ∧ ⋆F + F ∧ iV ⋆ G)

=ė ∧
(
− 2(iV G ∧ ⋆F + F ∧ iV ⋆ G) + ea ∧ (iV F ∧ iV ⋆ G − iV G ∧ ⋆F )

)

Adding this to 2Λ̇V̇ gives

2 c Λ̇V̇ + 2 c Λ̇ġ(V ) =ėa ∧
(
2Va(iV F ∧ ⋆G − iV G ∧ ⋆F ) + ėa ∧ ea ∧ (iV F ∧ iV ⋆ G − iV G ∧ ⋆F )

)

=2Vaė
a ∧ (iV F ∧ ⋆G − iV G ∧ ⋆F ) − ėa ∧ ea ∧ iV (iV F ∧ ⋆G − iV G ∧ ⋆F )

Using the relation ⋆G = iV ⋆ G ∧ Ṽ + iV ⋆ iV G and the similar relation for
⋆F , the combination above may be writen

iV F ∧ ⋆G − iV G ∧ ⋆F

=iV F ∧ iV ⋆G ∧ Ṽ + iV F ∧ iV ⋆iV G − iV G ∧ iV ⋆F ∧ Ṽ − iV G ∧ iV ⋆iV F

= ⋆ s − iV (iV F ∧ ⋆iV G − iV G ∧ ⋆iV F ) = ⋆s

where the 1-form

s = ⋆
(
iV F ∧ iV ⋆G ∧ Ṽ + iV ⋆F ∧ iV G ∧ Ṽ

)
(92)
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Hence

2 c Λ̇V̇ + 2 c Λ̇ġ(V ) =ėa ∧
(
2Va⋆s − ea ∧ iV ⋆s

)
(93)

Adding together (91) and (93) gives finally:

2 c Λ̇ = ėa ∧
(
F ∧ ia ⋆ G − iaG ∧ ⋆F + 2Va⋆s − ea ∧ iV ⋆s

)
(94)

Hence the drive forms are given by

c τa =1
2

(
F ∧ ia ⋆ G − iaG ∧ ⋆F

)
+ Va ⋆ s − 1

2
ea ∧ iV ⋆ s (95)

with associated stress-energy-momentum tensor:

T = 1
2

(
iaF ⊗ iaG + iaG ⊗ iaF − ⋆(F ∧ ⋆G)g + Ṽ ⊗ s + s ⊗ Ṽ

)
(96)

The tensor T above coincides in Minkowski spacetime with that attributed
historically to Abraham. It is derived here in a considerably wider context.

In terms of comoving fields the drive forms can be written:

c τa =VaiV (e ∧ ⋆d + h ∧ ⋆b) − 1
2
(e ∧ ia ⋆ d + iad ⋆ e)

− 1
2
(h ∧ ia ⋆ b + iab ⋆ h) + 2vae ∧ h ∧ Ṽ + ea ∧ e ∧ h

(97)

and hence

T = − 1
2
(e ⊗ d + d ⊗ e) − 1

2
(h ⊗ b + b ⊗ h)

+ 1
2
(g(ẽ, d̃) + g(h̃, b̃))(g + 2Ṽ ⊗ Ṽ ) + (Ṽ ⊗ S̃ + S̃ ⊗ V )

(98)

where the Poynting 1-form

S̃ = ⋆(Ṽ ∧ e ∧ h)

One may express the expressions above in terms of comoving polarisation
1−forms p and magnetisation 1−forms m, defined in terms of comoving
electromagnetic fields by

d = e + p (99)

h = b − m (100)

Thus
G = F + P (101)
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where
P = p ∧ Ṽ + ⋆ (m ∧ Ṽ ) (102)

Then one finds

τc = τ 1
c + τ 2

c + τ 3
c + τ 4

c

where

2 c τ 1
c =ic ⋆ G ∧ F − icG ∧ ⋆F ,

2 c τ 2
c =Vc

(
p ∧ ⋆F + m ∧ F − (p ∧ b + m ∧ e) ∧ Ṽ

)

2 c τ 3
c = − (icF ) ∧ (m ∧ Ṽ ) − (ic ⋆ F ) ∧ ⋆(m ∧ Ṽ )

2 c τ 4
c = − Vc (p ∧ ⋆F + m ∧ F ) − Vc Ṽ ∧ (p ∧ b + m ∧ e) − ec ∧ (p ∧ b + m ∧ e)

The above are valid for all simple media in arbitrary gravitational fields.
For a simple medium, which may be inhomogeneous, anisotropic and intrin-
sically magneto-electric, at rest in an inertial frame in Minkowski spacetime
with Minkowski coordinates {t, ~x} one has (in Euclidean notation)

Ṽ = −dt , e = ~E · d~x , b = ~B · d~x , h = ~H · d~x , d = ~D · d~x

and

g(ẽ, d̃) = ~E · ~D , g(h̃, b̃) = ~H · ~B

S̃ = −( ~E × ~H) · d~x

The coordinate components of the stress-energy-momentum tensor follow as

T00 = 1
2
( ~E · ~D + ~H · ~B)

Tij = −1
2
(EiDj + EjDi) −

1
2
(HiBj + BjHi) + 1

2
δij( ~E · ~D + ~H · ~B)

T0k = Tk0 = −( ~E × ~H)k

(103)
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11 Conclusions

Natural assumptions made above for the dependence of the constitutive ten-
sor Z on the normalised 4-velocity of a simple medium have led via a non-
trivial variational argument to a contribution to the stress-energy-momentum
tensor (involving phenomenological electromagnetic interactions with bulk
matter) that coincides with that suggested by Abraham under more restricted
circumstances. Although natural, the assumptions based on physical consid-
erations are not, however, necessarily the simplest to make.

If Z is chosen to be independent of the metric and hence Ṽ , with Zt =
Z0 and Ż = 0 so that G = Z0(F ) in all gravitational fields, one obtains
immediately from the above variational calculations (72) the drive forms

c τa = 1
2

(
F ∧ ia ⋆ G − iaG ∧ ⋆F

)
(104)

and the associated stress-energy-momentum tensor

T = 1
2
iaG ⊗ iaF + 1

2
iaF ⊗ iaG − 1

2
⋆ (F ∧ ⋆G)g (105)

showing clearly its independence of the 4-velocity of the medium. It is of
interest to note that such a tensor coincides with that obtained by sym-
metrising the one proposed by Minkowski.

In the absence of a generally accepted relativistic covariant description
of deformable matter interacting with electromagnetic fields, the adoption
of a particular stress-energy-momentum tensor for the electromagnetic field
alone in polarisable (and possible magneto-electric) media must remain a
matter of expediency. However, useful models for the total stress-energy-
momentum tensor for such systems can benefit from the use of sufficiently
general phenomenological descriptions of the electromagnetic properties of
moving media compatible with relativistic covariance. For example a ther-
modynamically inert (pressureless, cold) fluid can be modelled by adding the
electromagnetic stress-energy-momentum tensor (96) to the matter stress-

energy-momentum tensor m0

cǫ0
N Ṽ ⊗ Ṽ where N is a scalar number density

field, m0 some constant with the dimensions of mass and V the unit time-
like 4-velocity field of the fluid. Supplemented with continuity conditions, the
vanishing divergence of such a combination yields the dynamics of the sys-
tem and with prescribed boundary conditions at an interface separating such
media with different properties one may compute bulk forces and torques.

A review has also been given of the symmetry constraints expected of the
total stress-energy-momentum tensor particularly when this is considered to
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be a source of relativistic gravitation. This led to a definition in terms of a
variational derivative and a consideration of the response of the electromag-
netic constitutive properties to gravitational perturbations. It is suggested
that stress-energy-momentum tensors parameterised by a self-adjoint consti-
tutive tensor Z offer a viable means to explore the electromagnetic properties
of a range of inhomogeneous, anisotropic and possibly magneto-electric con-
tinua, at least in regions where dispersion and losses can be ignored to a first
approximation. This formulation suggests a method to determine the prop-
erties of Z by exploring its phenomenological response to electromagnetic
fields in arbitrarily moving reference frames and variable gravitational fields.
It opens up the possibility of performing such experiments in new environ-
ments such as those carried out under terrestrial free-fall or space station
situations or in astrophysical contexts.

Acknowledgements The authors are grateful D. Burton and A. Noble for
helpful discussions and to the EPSRC and Framework 6 (FP6-2003-NEST-A)
for financial support for this research.
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12 Appendix

Using the notation established in the text, this appendix derives the useful
formula (63) relating (⋆Ψ)˙ to ⋆Ψ̇ where Ψ ∈ ΓΛpM . Let I denote a multi-
index constructed from the single indices a, b, c . . . in the range 0, 1, 2, 3 where
the components of the metric tensor g and Ψ in an g-orthonormal basis {ec}
are respectively ηab and ΨI . Thus

Ψ =ΨI eI

and

Ψ̇ =Ψ̇I eI + ΨI (eI)˙ (106)

Since eI is the exterior product of p 1-forms

(eI)˙ = ėc ∧ ic(e
I)

Similarly, since the basis is orthonormal

(⋆eI)˙ = ėc ∧ ic(⋆e
I)

Thus using (106)

Ψ̇Ie
I = Ψ̇ − ėc ∧ icΨ

Applying ⋆ to this gives

Ψ̇I ⋆ eI = ⋆Ψ̇ − ⋆(ėc ∧ icΨ) (107)

But

(⋆Ψ)˙ =(ΨI ⋆ eI)˙

=Ψ̇I ⋆ eI + ΨI(⋆e
I)˙

=Ψ̇I ⋆ eI + ΨI ėc ∧ ic(⋆e
I)

=Ψ̇I ⋆ eI + ėc ∧ ic(⋆Ψ)

Substituting from (107) yields the relation

(⋆Ψ)˙ = ėc ∧ ic(⋆Ψ) − ⋆(ėc ∧ icΨ) + ⋆Ψ̇
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