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Abstract is valid only in the limit of small wake field.
We reconsider the equations of motion of wake field
coupled bunches in the light of recent developmamts FORMALISM

Dellay. D|fferent'|al Equations. _In the case of unifio Equations of Motion
resistive wall in a storage ring, we demonstrate an i . o
alternative way to characterize the growth mod&ar  The equation of motion for each bunch is given by:
each multibunch Fourier mode, an infinite numbetirog

domain modes can arise from an exact solution ef th (1) + ex, (t) =— Nr,C
equation of motion. The growth rate as it is comho m £7m W,
defined corresponds to only one of them. The doqt

of each Fourier mode can therefore evolve with tima W (2T Xp (= 20) +.}
way that is not a simple exponential. This is sulethat
has been observed in simulations of wake field tEmlip

{Wl (_C T) X1 (t - T) (1)

form=0, 1, ... M=1. The notation is as follows:

bunches. Xa(t) transverse displacement of tmé& bunch
wp betatron frequency
INTRODUCTION Wy(2) wake function
Charged particles in a storage ring generate wiakdsf 7 time from one bunch to the next

as a result of impedance of the beam pipe. Thissgise N number of particles in each bunch

to coupling between bunches, and is an importamtcso o classical electron radius

of instability. In this paper, we study the effaftthis  C speed of light

coupling on the transverse displacement of the hemc  To  Period of revolution

The wake fields can potentially cause this displeestto ¥ energy of each particle in units of its rest mass

grow exponentially, resulting in decoherence andnibe

loss. For simplicity, we only consider the caseerenthe The mode is defined by the Fourier transform

impedance arises from a uniform, cylindrical beapep M1 2y

with resistive wall, though our approach is equaifyfid iﬂ t) = me(t)e_'T (2)

in the case where additional sources of wake fiéd m=0

example, higher-order modes in RF cavities) aregie
Beam instabilities driven by resistive-wall wakelfis

have been widely studied. The standard formalisrioi . _ - .
transform the bunch displacements into Fourier mode €d: (1) is multiplied by exp{27m/M). The equations

The equations of motion are then decoupled, and tRE€ then summed and rearranged to give a set of
amplitude of each mode is assumed to follow a Qmppecoupled equations that can be written in the form

The new parameter represents the mode number. In
order to transform to modes, the equation for dagich

exponential. This has allowed an analytic expoes$or . 2w
the growth rate to be obtained [1], and an anafgiimula X, (t) + wiX, (1) = > be M X, (t-nr) (3)
for the bunch trajectory to be derived [2]. Ouudst is n=1

motivated by the ne'e_‘d t_o achieve much more chahgng for £ =0, 1, ...,M-1. Substituting into eq. (3) the

LG damping rings, and to- develop & detafed/SMeNIary soluione'®, we obtain, in the case of

understanding of the dynamics that develops in theGSISUVe wall wake field, the characteristic equrat

transient regime during injection and extraction. -Q%+ wj =
Simulation studies of bunch motion in the preseotc 4)

coupling from wake fields show mode amplitudes that [ 2% 1 2T j2m3u

appear to deviate from simple exponentials [3]. olm bo(e N e +Te N e e N g% +J

analysis, we find that the standard formalism negl¢he 2

existence of other solutions to the equations ofiono

This means that although the growth rate formulzali,

the trajectory formula is incomplete. We derivee th Nr,c 2 [1

correct formula for the trajectory, and also shbwat tthis by = 7, o\ or

where

®)
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In the standard formalism, the approximat@Qr= « is
then made, to obtain:

Q=w by
= 5_
2w, ©6)
i2771u . 1 i2”2ﬂ . 1 i2”3/’ .
x| e N ewﬁr+ e N e|2w57+\/>e N e|3w57+“.
3

from which the growth rate formula can be derivéd [

Delay Differential Equations

conditions. The reason why there is an infinitenber of
constants is because the initial condition is int fan
initial history. If we consider the case when Hagies is
truncated atN = 100, then integrating eq. (1) or (3)
requires not only the initial valuestat 0, but also all the
values in the time intervakN7,0). The form of eq. (8)
also means that the mode amplitude is in generalano
simple exponential.

Bunch Trajectory

In practice, it is difficult to know the initial kiory of
the bunch displacements. In order to make usdexet

The equation of motion (1) is in fact a Delayroots to give a useful solution, we make the folluyv

Differential Equation; equations of this type areet
subject of active research [4]. Here, we use sofitbe

ideas to study eq. (3) more closely. Eq. (4nidact a

transcendental equation with an infinite numberauits.

By rearranging this into:

L2mu

N 2
f(Q,)=0Q-w,+> bhe ¥ & )
n=1

such that the roots are just the zeros of thistioncwe
can then get a snapshot of the distribution of rthats
from a contour of the absolute value of this funwti
Figure 1 shows this contour plot for the case wtien
infinite series is truncated & = 100. The time variable
has been transformed using. t' =t/7.

ral
=)

Figure 1. Contour plot from the characteristic aipn
for mode 500, showing the distribution of rootsoedted
at the centres of the concentric contours.

The general solution is therefore given by:

~ Siq(@ ~iq(®) t —iq(m
X,=Ae" ™ +Be" W+ Y C et (8)

n=-—co

The root in eq. (5) corresponds to roa} (n fig. 1,
which appears in the first term on the right hautk ©f
this equation. In principle, the unknown constaft{s
and C, can be obtained by fiting with the initial

interpretation of the roots. Roota)(and p) are very
close to +p and—ax respectively. In the limit of zero
wake field, the right hand side of eq. (3) vanishisg. (3)
becomes the equation for a simple harmonic osuillat
which has only two solutions. These would be jhst
first two terms on the right hand side of eq. (8)he
infinite sum in eq. (8) may therefore be attributedthe
presence of the wake field, which has led to the
dependence on initial history. The infinite sunlikely
to behave like a Fourier sum that can be fittedrtotrary
functions on the interval-Nrz,0) [4]. If the wake field is
small, it may be possible to neglect this sum aadpk
only the first two terms. Then for each mode, vam ¢
obtain the constants andB by specifying just the initial
values at = 0:

X,(t) = Ae ™" +B e )
where
A = iQPX, (0) + X, (0) (10)
Y iQb -iQ®
u u
and
5 - iQ@%, (0)+X, (0) (11)
il —-iQ®
Inverting the transform, we get:
1G], i iy | 2
X (1) =MZ At +Be M e M (12)
©=0

for the trajectories in real space.

As it turns out, there is already an accuratentda for
root @), given by eq. (6). A corresponding formula can
be derived in a similar way for roob)(by making the
approximation tha@ = —ay. This gives:

b
Q=-w, + =
2w,
izﬂ . 1 i2”2/1 . 1 i2”3/1 .
x| e N e—la)ﬁr_{_ﬁe N e—|2wﬂr+ﬁe N e—|3a)/37+.“

(13)



RESULTSAND DISCUSSION

The above reasoning leading to the trajectorgnéda in
eg. (12) is heuristic and needs to be validatee d¢&/so
by comparing the analytical result with simulatiokVe
carry out the calculation using the following paeders
for the OCS6 damping ring in the ILC [5]:

Circumference of ring 6695.057 m
Particle energy 5.0 GeV
Horizontal tune 52.397
Number of particles per bunch x 10"
Number of bunches 3649

Beam pipe (aluminium) conductivity X207 st
Beam pipe radius 10 mm

The integration is carried out on eq. (3) using riethod
described in ref. [3]. The objective is to detereni
whether eq. (9) remains accurate when the inifistohy
is neglected, i.e. when it is set to zero over ittierval

[-N7,0). Before the actual comparison is made, however
we must consider the error inherent in the numerica

integration itself. To make an estimate of theoerwe
construct a history using eq. (9) orNz0). If the
numerical integration has no error, the result loé t
integration fort > 0 will agree exactly with that of eq. (9).
Any difference between the numerical integratiod aq.
(9) is therefore the numerical error. Figure Rstrates
the integration result for mode 500.
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Figure 2. Single-mode simulation of mode 500 usin

initial history created from the analytic solution.

We then set the initial history to zero and repibat
integration. To account for the numerical errar,tie

case of mode 500 for example, we compare the ze%]

history result with that in fig. 2 (which gives thesult of
the numerical integration with non-zero initial toig)
instead of eq. (9) directly. The difference betwebe
numerical integration in the two cases we refeasahe
“history-induced error”. We find that the histoinduced
error is fairly small and approaches a constantievait
large turn numbers. In the case of mode 500, dlzdive
error in eq. (9) as a result of neglecting theiahiistory
is about 10 at turn number 500. A similar calculation for
an individual bunch rather than an individual made be
performed using eqg. (12). In the case of bunchbam

100, we find a relative error of about 0.001 ahtmumber
100.

Since the coupling between bunches arise from the
wake field, the strength of the wake field wouldvéaa
direct impact on the size of the history-inducesber We
insert on the right hand side of eq. (3) a muliipdy
factor, which we call the wake field strength, aegeat
the error calculation for different values of tHector.
The result for mode 500 at turn number 500 is shown
fig. 3. The history-induced error is nearly pragamal to
the wake field strength. This provides an estinwateéhe
range of validity of eq. (12).
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Figure 3. History-induced error for mode 500 as a
function of wake field strength.

Finally, it should be mentioned that in this as#d, the
maximum growth rate remains unaffected. The growth
rate in the standard formalism is given by the imagy
part of eq. (5). Although eq. (13) introduces aosel
growth rate for each mode, this equation is simaly
reflection (44 — —W) of eq. (5), and the maximum

growth rate remains the same. What this analysis
achieves, however, is an explanation of some oflserw
puzzling features in the simulations of coupleddiun
motion. This is important if the simulation metiscate to

be applied (as intended) to cases representing more
realistic conditions, including details of the ajati
functions and the fill patterns.
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