
Technical Report
DL-TR-01-001

May 2001

Numerical Simulation of Low Reynolds Number Slip Flow
Past a Confined Microsphere

R. W. Barber and D. R. Emerson

Centre for Microfluidics,
Department of Computational Science and Engineering,

CLRC Daresbury Laboratory,
Daresbury,
Warrington,
WA4 4AD.

Abstract

One of the major difficulties in simulating gas transport through micron-sized devices
is caused by the fact that the continuum flow hypothesis implemented in the Navier-
Stokes equations begins to break down when the dimensions of the flow domain are
comparable to the mean free path of the molecules.  Under such conditions the fluid
can no longer be regarded as being in thermodynamic equilibrium and a variety of
non-continuum or rarefaction effects are likely to be exhibited.  Velocity profiles,
boundary wall shear stresses, mass flow rates and hydrodynamic drag forces are all
affected by the non-continuum regime and consequently microfluidic devices which
are simply scaled down versions of macro-scale systems may not always function as
intended.

This study investigates the important problem of low Reynolds number rarefied
gas flow past a confined microsphere within a circular pipe.  The geometry of a
confined sphere is utilised in conventional spinning-rotor vacuum gauges where the
drag on an electro-magnetically suspended rotating sphere can be used to measure a
number of important physical properties of a rarefied gas including pressure, viscosity
or molecular weight.  Similar principles have been envisaged for the measurement of
flow rates and pressures in microfluidic devices.

In the present investigation, the problem has been restricted to the estimation of
the drag forces on a stationary (non-rotating) sphere.  Numerical simulations are
carried out over a range of Knudsen numbers covering the continuum and slip flow
regimes (0 0.1).Kn≤ ≤   In addition, blockage effects are studied by varying the ratio
between the diameter of the pipe and the diameter of the sphere, / .H D   The results
indicate that blockage effects are extremely important in the continuum flow regime
and cause an amplification in the drag force on the sphere.  However, blockage
phenomena are found to be less significant as the Knudsen number is increased.  At
the upper limit of the slip flow regime ( 0.1Kn ; ), blockage amplification is shown to
be reduced by almost 50% for a pipe-sphere geometry of / 2.H D =
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1   Introduction

In recent years, rapid progress in micro-fabrication and assembly techniques has led
to the development of extremely small-scale machines commonly referred to as
MEMS - Micro-Electro-Mechanical Systems [1].  MEMS are generally defined as
electro-mechanical devices having a characteristic length scale between 1 mm and
1 m.µ   Actuators employing electrostatic, magnetic, pneumatic or thermal control
techniques have recently been constructed down to 100 mµ in size [2] whilst motors
and gear wheels have also been demonstrated at similar scales [3].  In addition,
miniaturised sensors are already commercially available for the measurement of
parameters such as temperature, pressure, angular velocity and acceleration.

An increasing number of MEMS applications involve the manipulation of one
or more fluids [4,5].  Examples include miniaturised heat-exchanges to cool
integrated circuits [6], micro-reactors to generate small quantities of dangerous or
expensive chemicals [7], “lab-on-a-chip” bio-chemical sensors which perform
complex biological assays on sub-nanolitre samples [8], DNA sequencing systems
which carry out parallel assays to provide high throughput screening [9] and hand-
held gas chromatography systems for the detection of trace concentrations of air-
borne pollutants [10].  In addition, the availability of inexpensive arrays of
microsensors and microactuators on a robust silicon wafer could eventually lead to the
possible use of MEMS devices for flow control and drag reduction on submarines and
ships [11].  A common link between all these examples is the requirement to move
fluid through or over the device in a controlled manner.  However, one of the
emerging issues in MEMS research is the realisation that the fluid mechanics at such
small scales is not necessarily the same as that experienced in the macroscopic world.

Surface effects will obviously dominate the flow regime in microfluidic
systems.  For example, the surface-to-volume ratio for a device with a characteristic
length of 1 m is 1 m-1 whilst the surface-to-volume ratio for a MEMS device having a
characteristic length of 1 mµ will increase to 106 m-1.  This million-fold increase in the
surface area relative to the volume will dramatically affect the transfer of mass,
momentum and energy through the device.  Inertial forces will be small whilst surface
friction and viscous effects will dominate the fluid motion.  The small length scales of
micro-devices may also invalidate the continuum flow hypothesis employed in
conventional fluid mechanics.  As a consequence, microfluidic systems which are
simply scaled down versions of macro-scale devices may not always function as
intended.

Experiments conducted by Pfahler et al. [12], Harley et al. [13] and Arkilic et
al. [14-17] on the flow of gases and liquids in silicon micro-machined channels
indicate that conventional analyses are unable to predict flow rates in micron-sized
devices with any degree of accuracy.  Pfahler et al. [12] found that the observed
pressure drop along a microchannel was lower than expected, signifying the
breakdown of the continuum flow hypothesis.  In the case of liquids they postulated
that the viscosity at very small scales might be lower than the conventional viscosity
coefficient employed in macroscopic analyses.

Until recently, non-continuum gas flows were only encountered in specialised
low-density applications such as high-altitude aircraft or high-vacuum equipment.
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However, the small lengths scales commonly encountered in microfluidic devices
imply that rarefaction effects will influence the flow characteristics at atmospheric
pressure.  As a consequence, the continuum hypothesis of the Navier-Stokes
equations cannot be justified and more elaborate analysis techniques are required to
predict gas transport within miniaturised devices.

For an ideal gas modelled as rigid spheres, the mean free path of the molecules,
L, can be related to the temperature, T, and pressure, p, via the following equation
[18]:

22 c

k T

p
=

π σ
L (1)

where
23
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Boltzmann’s constant 1.380662 10 J / K,

temperature (K),

pressure (N/m ) and

collision diameter of the molecules (m).c

k

T

p

−= = ×
=
=

σ =

The continuum flow hypothesis is valid provided the mean free path of the molecules
is smaller than the characteristic dimensions of the flow domain.  If this condition is
violated, the fluid will no longer be under local thermodynamic equilibrium and the
linear relationship between the shear stress and rate of shear strain (Newton’s law of
viscosity) cannot be applied.  Velocity profiles, boundary wall shear stresses, mass
flow rates and pressure differences will all be influenced by non-continuum effects.
In addition, the conventional no-slip boundary condition imposed at a solid-fluid
interface will begin to break down even before the linear stress-strain relationship
becomes invalid (Gad-el-Hak [5]).

The ratio between the mean free path, L, and the characteristic length of the
flow geometry, L, is commonly referred to as the Knudsen number:

Kn
L

= L
(2)

Essentially the value of the Knudsen number, Kn, determines the degree of rarefaction
of the gas and the validity of the continuum hypothesis.  Schaaf & Chambre [19] have
proposed the following classification system for the flow regime based upon the local
Knudsen number:  For 210Kn −≤ , the continuum hypothesis is appropriate and the
Navier-Stokes equations can be employed using conventional no-slip boundary
conditions.  Conversely, for 10Kn ≥ , the continuum approach breaks down
completely and the regime can then be described as being a free molecular flow.
Under such conditions, the mean free path of the molecules is far greater than the
characteristic length scale and consequently molecules reflected from a solid surface
travel, on average, many lengths scales before colliding with other molecules.  It is
thus valid to neglect the effect of the reflected particles on the incident flow stream,
and treat the incident and reflected molecular flows separately (Schaaf &
Chambre [19]).  However, for Knudsen numbers between 210Kn −=  and 10Kn = , the
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fluid can neither be considered an absolutely continuous medium nor a free molecular
flow.  A further sub-classification is therefore necessary to distinguish between the
appropriate method of analysis.  For 2 110 10Kn− −≤ ≤ (commonly referred to as the
slip flow regime), the Navier-Stokes equations can be used provided appropriate slip-
velocity conditions are implemented along the walls.  On the other hand,
for 110 10Kn− ≤ ≤  (transition flow), the continuum assumption of the Navier-Stokes
equations begins to break down and alternative methods of simulation such as particle
based DSMC (Direct Simulation Monte Carlo) approaches must be employed (Bird
[20]).

As an example of Schaaf & Chambre’s flow classification system, consider a
microfluidic device transporting air inside a 1 mµ channel at SATP - standard ambient
temperature and pressure (T = 298.15 K and p = 105 N/m2).  The average collision
diameter of the air molecules is approximately 3.66 �10-10 m (Appendix A), giving a
mean free path from eqn. (1) of L = 0.0692 m.µ   A microchannel with a characteristic
height of 1 mµ would have a Knudsen number of 0.0692Kn = (which is within the
slip flow regime) and therefore the Navier-Stokes equations can be used in the
analysis provided slip-velocity boundary conditions are implemented along the solid
walls.  On the other hand, if the pressure in the same microfluidic device were
lowered to 0.1 atmospheres, the Knudsen number would increase to 0.692Kn = (the
transition regime) and the Navier-Stokes equations would no longer be valid.  As an
aside, it should be noted that the mean free path of a gas is inversely proportional to
the square of the molecular collision diameter, cσ , and therefore light gases such as
hydrogen or helium have longer mean free paths and consequently increased Knudsen
numbers compared to air (Gad-el-Hak [5]).

The present study investigates low Reynolds number (laminar) slip flow past a
confined microsphere inside a circular pipe, as illustrated schematically in Figure 1.
The geometry of a sphere inside a circular pipe is commonly utilised in macro-scale
spinning-rotor vacuum gauges as described by Fremerey [21,22] and Reich [23].
Essentially, the rate of damping of an electro-magnetically suspended rotating sphere
can be used to measure a number of important properties of a rarefied gas including
pressure, viscosity and molecular weight.  In the context of MEMS applications, a
microsphere inside a fine-bore capillary tube could be employed as a miniaturised
spinning-rotor device to provide accurate measurement of the flow rate. Alternatively,
a microsphere located axisymmetrically within a circular cone could be used as a
microvalve to control the flow.  Adjusting the position of the sphere along the axis of
the cone allows the blockage ratio to be altered thereby controlling the pressure
difference across the device.  Confined microspheres have also been utilised in
continuous-flow cells to provide efficient turbulent mixing of liquid reagents for
monitoring reactions with micro-second time-scales (Shastry et al. [24]).  Although
this final application occurs in a totally different flow regime, it serves to illustrate the
practical importance of such a simple geometry.

Low Reynolds number rarefied gas flows past a confined microsphere have
been studied numerically by Liu et al. [25] over a wide range of Knudsen numbers
covering the continuum, slip and transitional flow regimes.  Liu et al. also
investigated blockage effects by varying the ratio between the diameter of the pipe
and the diameter of the sphere ( / ).H D   The present investigation aims to provide an
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independent re-assessment of the drag forces experienced by a confined microsphere
in the continuum ( 0Kn → ) and slip flow ( 110Kn −≤ ) regimes.  A preliminary
validation exercise is conducted in the continuum flow regime by comparing the
computed drag force against analytical solutions for low Reynolds number flow past a
confined sphere [26-30].  The numerical model is then used to compute the drag force
components in the slip flow regime.  Wherever possible, the numerical model is
validated against theoretical solutions to confirm the accuracy of the predictions.

2   Governing hydrodynamic equations

The equations governing the flow of a continuous (infinitely divisible) fluid can be
written in tensor notation as follows:
continuity:

( )
0k

k

u

t x

∂ ρ∂ρ + =
∂ ∂

(3)

momentum:
( ) ( )i k i ik

k i k

u u u p

t x x x

∂ ρ ∂ ρ ∂τ∂+ = − +
∂ ∂ ∂ ∂

(4)

where u is the velocity, p is the pressure, ρ is the fluid density and ikτ is the second-
order stress tensor.  For a Newtonian, isotropic fluid, the stress tensor is given by

ji k
ik ik

k i j

uu u

x x x

 ∂ ∂ ∂τ = µ + + λ δ    ∂ ∂ ∂   
(5)

where µ  and λ  are the first and second coefficients of viscosity and ikδ  is the unit
second-order tensor (Kronecker delta).  Implementing Stokes’ continuum hypothesis
[31] allows the first and second coefficients of viscosity to be related via

2
0

3
λ + µ = (6)

although the validity of the above equation has occasionally been called into question
for fluids other than dilute monatomic gases (Gad-el-Hak [32]).  Assuming Stokes’
hypothesis is valid allows the viscous stress tensor to be rewritten in the more familiar
form:

2

3
ji k

ik ik
k i j

uu u

x x x

 ∂ ∂ ∂τ = µ + − µ δ    ∂ ∂ ∂   
(7)

For a two-dimensional axisymmetric flow in a cylindrical co-ordinate system,
the governing Navier-Stokes equations can thus be expressed as
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continuity:
( ) 1 ( )

0
u r v

t x r r

∂ρ ∂ ρ ∂ ρ+ + =
∂ ∂ ∂

(8)

x-momentum:
( ) ( ) 1 ( ) 1

2 1
.

3

u u u r u v u u
r

t x r r x x r r r

u v
p r

x x x r r x

∂ ρ ∂ ρ ∂ ρ ∂ ∂ ∂ ∂   + + − µ − µ =   ∂ ∂ ∂ ∂ ∂ ∂ ∂   

∂ ∂ ∂ ∂ ∂     − + µ∇ + µ + µ     ∂ ∂ ∂ ∂ ∂     
V

(9)

r-momentum:

2

( ) ( ) 1 ( ) 1

2 1 2
.

3

v u v r v v v v
r

t x r r x x r r r

u v v
p r

r x r r r r r

∂ ρ ∂ ρ ∂ ρ ∂ ∂ ∂ ∂   + + − µ − µ =   ∂ ∂ ∂ ∂ ∂ ∂ ∂   

∂ ∂ ∂ ∂ ∂ µ     − + µ∇ + µ + µ −     ∂ ∂ ∂ ∂ ∂     
V

(10)

where u is the velocity component in the x-direction and v is the velocity component
in the r-direction.  The divergence of the velocity field, .∇ V , in cylindrical co-
ordinates is given by

1 ( )
.

u r v

x r r

∂ ∂∇ = +
∂ ∂

V (11)

3   Slip-velocity boundary conditions

In traditional (continuum) flow analyses, a no-slip velocity constraint is enforced
along all solid-fluid interfaces.  The notion behind the no-slip condition arises from
the fact that there should be no discontinuities in the velocity field within the fluid as
this would give rise to infinite velocity gradients and therefore infinite shear stresses
(Gad-el-Hak [5]).  A similar argument can be employed for conditions at the wall and
therefore discontinuities in velocity are also not allowed at the solid-fluid interface.
However, the no-slip constraint is strictly only valid if the fluid adjacent to the surface
is in local thermodynamic equilibrium; a condition which requires a very high
frequency of molecular collisions with the wall.  In practice, the no-slip condition is
found to be appropriate provided the Knudsen number, 210Kn −< .  If the Knudsen
number is increased beyond this value, rarefaction effects start to influence the flow
and the molecular collision frequency per unit area becomes too small to ensure
thermodynamic equilibrium.  Under such conditions, a discontinuity in the tangential
velocity will form at any solid-fluid interface.

To account for non-continuum (rarefaction) effects, the Navier-Stokes equations
are solved in conjunction with the slip-velocity boundary condition first proposed by
Basset [33]:
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t tuτ = β (12)

where ut is the tangential slip-velocity at the wall, tτ  is the tangential shear stress on
the wall and β  is the slip coefficient.  Schaaf & Chambre [19] have shown that the
slip coefficient, ,β  can be related to the mean free path of the molecules as follows:

2
µβ =

− σ 
 σ 

L

(13)

where N is the viscosity of the gas, σ is the tangential momentum accommodation
coefficient (TMAC) and L is the mean free path.  The tangential momentum
accommodation coefficient is introduced into the equation to account for the
reduction in the momentum of molecules colliding with the wall (Schaaf &
Chambre [19]).  For an idealised wall (perfectly smooth at the molecular level), the
angles of incidence and reflection of molecules colliding with the wall are identical
and therefore the molecules conserve their tangential momentum.  This is referred to
as specular reflection and results in perfect slip at the boundary.  Conversely, in the
case of an extremely rough wall, the molecules are reflected at a totally random angle
and lose, on average, their entire tangential momentum:  a situation referred to as
diffusive reflection.  In the case of real walls, some molecules will reflect diffusively
and some will reflect specularly, and therefore the tangential momentum
accommodation coefficient, ,σ is used to define the proportion of molecules reflected
diffusively.  As well as being dependent upon the surface finish of the wall, the value
of σ is influenced by the particular solid and gas involved (Arkilic et al. [34]).

Equations (12) and (13) can be combined and rearranged to give

2
t tu

− σ= τ
σ µ

L
(14)

It is convenient at this stage to recast the mean free path in eqn. (14) in terms of the
non-dimensionalised Knudsen number, Kn.  The choice of the characteristic length
scale used in the definition of the Knudsen number depends crucially upon the flow
geometry under consideration.  In the case of flow past a confined microsphere within
a circular pipe, Liu et al. [25] chose to utilise the diameter of the sphere as the
appropriate length scale.  Thus, the Knudsen number, Kn, is defined as the ratio of the
mean free path of the molecules, L, to the diameter of the sphere, D:

Kn
D

= Ll
(15)

Consequently, eqn. (14) can be recast as

2
t t

Kn D
u

− σ= τ
σ µ

(16)
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The governing hydrodynamic equations were solved using THOR-2D – a two-
dimensional finite-volume Navier-Stokes solver developed by the Computational
Engineering Group at CLRC Daresbury Laboratory (Gu & Emerson [35]).  As the
flows investigated in the study had relatively low Mach numbers, compressibility
effects were ignored and the fluid was considered to be incompressible.  Additional
subroutines were developed to account for the tangential slip-velocity at the walls of
the flow domain (eqn. 16).  Since the governing hydrodynamic equations were solved
using a non-orthogonal boundary-fitted co-ordinate system, the tangential shear stress
at the solid-fluid interface had to be evaluated using a generalised stress tensor
transformation procedure, as described in Appendix B.  Transforming the stress tensor
into a localised co-ordinate reference frame based upon the orientation of the
boundary surface provides the hydrodynamic code with greater flexibility for future
studies.

4   Boundary conditions

The imposed boundary conditions for the confined microsphere geometry are detailed
schematically in Figure 2.  It should be noted that the problem has been non-
dimensionalised and therefore the mean velocity at the entrance to the pipe, ,u  the
density of the fluid, ,ρ  and the diameter of the microsphere, D, are defined as unity.
With reference to Figure 2, the boundary conditions are specified as follows:

(a)  Inflow boundary:
The velocity distribution at the pipe entrance can be specified in one of two ways:
either the velocity can be assumed uniform across the entrance or alternatively a fully-
developed parabolic slip-velocity profile can be prescribed to simulate an infinitely
long pipe upstream of the computational domain.  In the case of a uniform velocity
distribution,  the boundary conditions are simply defined as

1 and 0 at , 0 r
2

H
u v x l= = = − ≤ ≤ (17)

where H is the diameter of the pipe and l is the longitudinal distance between the
inflow boundary and the centre of the sphere.

Alternatively, a fully-developed slip-velocity profile can readily be obtained
from the axial-direction Navier-Stokes equation (as detailed by Barber & Emerson
[36]).  It can be shown that the theoretical velocity profile across the pipe is given by

2

2

2
1 4

( ) 2
2

1 8

p

p

r
Kn

R
u r u

Kn

 − σ− + σ =
− σ + σ 

(18)

where u is the mean velocity, R is the radius of the pipe and Knp is the Knudsen
number based upon the pipe diameter, i.e.
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pKn
H

= Ll
(19)

Comparison of the Knudsen number definitions presented in eqns. (15) & (19) reveals

or
/

p
p

Kn D Kn
Kn

Kn H H D
= = (20)

Employing the fact that / 2R H= and using the result shown in eqn. (20) enables the
velocity distribution across the pipe to be recast in terms of the localised Knudsen
number on the sphere, Kn, and the blockage ratio, /H D :

2

2

4 2
1 4

/
( ) 2

2
1 8

/

r Kn

H H D
u r u

Kn

H D

 − σ− + σ =
− σ + σ 

(21)

As an aside, in the limit of 0Kn →  (i.e. the continuum flow solution), eqn. (21)
reverts to the familiar no-slip (NS) velocity profile given by Hagen-Poiseuille pipe
theory (see Schlichting [37]) :

2

NS 2

4
( ) 2 1

r
u r u

H

 
= − 

 
(22)

The slip-velocity inflow boundary condition can thus be formally defined as

2

2

4 2
1 4

/
( ) 2 and ( ) 0 at , 0 r

22
1 8

/

r Kn

H H D H
u r u v r x l

Kn

H D

 − σ− + σ = = = − ≤ ≤
− σ + σ 

(23)

Comparison of the drag experienced by the sphere for the uniform and fully-
developed entrance velocity profiles can be used to assess whether a particular
hydrodynamic mesh has sufficient length to ensure the flow around the sphere is
independent of the imposed upstream boundary condition.

(b)  Pipe wall boundary:
The tangential slip-velocity along the wall of the pipe is evaluated using eqn. (16) as
detailed in Section 3.  In addition, there must be zero normal flow across the wall.  By
definition, the pipe is aligned with the x-direction, and therefore the boundary
conditions are specified as follows:

2
and 0 at ,

2t

Kn D H
u v r l x l

− σ= τ = = − ≤ ≤
σ µ

(24)

where 2l is the total length of the flow domain and tτ is the tangential shear stress on
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the wall, evaluated using the stress tensor transformation procedure described in
Appendix B.

(c)  Centreline boundary:
The flow must be symmetrical about the centreline of the pipe.  Hence,

0 and 0 at 0 ,
l x au

v r
a x lr

− ≤ ≤ −∂ = = =  ≥ ≥∂ 
(25)

where a is the radius of the microsphere.

(d)  Outflow boundary:
The flow will approach fully-developed conditions at the downstream boundary and
consequently the longitudinal gradients of the velocity components should tend to
zero, i.e.

0 and 0 at , 0
2

u v H
x l r

x x

∂ ∂= = = ≤ ≤
∂ ∂

(26)

(e)  Microsphere wall boundary:
The tangential slip-velocity along the wall of the microsphere is evaluated using eqn.
(16) as detailed in Section 3.  In addition, there must be zero normal flow across the
surface.  Hence, the boundary conditions can be expressed as

2 2 22
and 0 att t n

Kn D
u u x r a

− σ= τ = + =
σ µ

(27)

where ut is the tangential slip-velocity and un is the normal velocity component on the
surface of the sphere.  The localised velocity vector ( , )t nu u is then transformed into
the global velocity vector ( , )u v by appropriate trigonometric mapping employing the
orientation of the unit tangential base vector of the surface.

5   Evaluation of the drag on the microsphere

The total drag on the microsphere is composed of three separate components, namely
skin friction drag, normal stress drag and pressure (or form) drag.  Each drag
component has to be determined by numerically integrating the stress distribution
around the circumference of the sphere.  For the purposes of describing the numerical
integration process, a localised spherical polar co-ordinate reference frame ( , , )r θ α  is
established as shown in Figure 3, with the origin at the centre of the sphere and 0θ =
aligned in the direction of the longitudinal axis of the pipe.  The localised r co-
ordinate illustrated in Figure 3 should not, however, be confused with the two-
dimensional cylindrical (x,r) co-ordinate system employed in the governing
hydrodynamic equations.
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5.1  Drag due to skin-friction

The tangential shear stress acting on the surface of the sphere, r
�t , is found using the

generalised stress transformation procedure described in Appendix B.  The drag force
on the sphere can thus be found by resolving the shear stress in the longitudinal x-
direction and integrating around the entire surface of the sphere.  Specifically,

Skin-friction drag sinr r a
dSθ =

= −τ θ⌠⌠

⌡⌡

(28)

where a is the radius of the microsphere and dS denotes an infinitesimal surface
element.  Consider an elemental surface region subtending angles of dθ and dα,
bounded by constantθ =  and constantα = lines.  The surface area of the element can
be shown to be

2 sindS a d d= θ α θ (29)

and hence the drag on the sphere can be evaluated as

2

2 2

0 0

Skin-friction drag sinr r a
a d d

ππ

θ =
= α −τ θ θ

⌠⌠
 ⌡ ⌡

(30)

Integrating with respect to α finally yields

2 2

0

Skin-friction drag 2 sinr r a
a d

π

θ =
= π −τ θ θ

⌠

⌡

(31)

In the hydrodynamic code, the definite integral in eqn. (31) is replaced by numerical
integration using either Simpson’s rule (for equispaced boundary nodes) or the
trapezoidal rule (for unequal spacings of grid nodes).  Further details of the numerical
integration schemes can be found in Press et al. [38].

5.2  Drag due to normal stress

For continuum (no-slip) flows, it can be shown that the normal stress on the surface of
a sphere must be zero in an incompressible Newtonian fluid (Richardson [39]).  More
generally, it can be shown that the normal stress component must vanish along any
rigid no-slip impermeable boundary.  In contrast, the tangential slip-velocity boundary
condition employed in the analysis of rarefied gas flows generates a non-zero normal
stress component and therefore produces an important additional force on the sphere.

Using an analogous integration procedure to that described in the previous
section, yields

2

0

Normal stress drag 2 sin cosrr r a
a d

π

=
= π τ θ θ θ

⌠

⌡

(32)
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where rr r a=τ is the normal stress on the surface of the sphere evaluated using the
generalised stress transformation procedure described in Appendix B.  Once again,
the definite integral in eqn. (32) is replaced by numerical integration around the
boundary grid nodes representing the sphere.

5.3  Drag due to pressure distribution

The drag on the microsphere due to the pressure distribution (or form drag) is found
using a similar integration procedure to that shown in eqn. (32).  Noting that the
pressure force on the surface is directed inwards towards the centre of the sphere
leads to

2

0

Form drag 2 sin cos
r a

a p d

π

=
= π − θ θ θ

⌠

⌡

(33)

The total drag experienced by the microsphere can then be found by summing the
three individual drag components presented in eqns. (31), (32) and (33).

6   Numerical results

The numerical model was used to assess the drag experienced by a confined
microsphere exposed to low Reynolds number rarefied gas flows.  For compatibility
with the numerical simulations presented by Liu et al. [25], the Reynolds number was
defined using the mean velocity in the pipe, ,u  and the radius of the sphere, a, as the
velocity and length scales, i.e.

u a
Re

ρ=
µ

(34)

whilst the Knudsen number was defined using the diameter of the sphere, D, as the
characteristic length scale:

Kn
D

= Ll
(35)

Following Liu et al. [25], the simulations considered extremely low Reynolds
numbers corresponding to the creeping flow conditions originally analysed by
Stokes [40].  The Knudsen number was varied from 0Kn = (continuum flow)
to 0.1Kn = (a frequently adopted upper bound for the slip flow regime).  Moreover,
in the absence of additional information, the tangential momentum accommodation
coefficient, σ , was assumed to have a value of unity in all computations.

Blockage effects were studied by varying the ratio between the diameter of the
pipe and the diameter of the sphere ( /H D ).  The simulations involved a wide range
of blockage ratios from / 2H D =  up to / 40H D = as detailed in Table 1.  Each
computational mesh was constructed using three smaller sub-blocks to account for the
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individual boundary conditions upstream, downstream and around the sphere.  For
each blockage ratio, the locations of the inflow and outflow boundaries were chosen
sufficiently far from the sphere so as not to affect the computed drag force.  The well
known observation that fully-developed flow conditions are established within
approximately 0.6 pipe diameters of the entrance when 0Re ; (Shah & London [41],
Barber & Emerson [36]) was used to provide a preliminary estimate of the required
boundary locations.  Detailed numerical experiments were then conducted using
different mesh lengths to ensure the suitability of the chosen boundary positions.

Table 1 also presents details of the mesh resolutions employed for each
blockage ratio.  Higher numbers of grid cells in the r-direction were deemed
necessary for the larger /H D  ratios due to the increased size of the computational
domains.  To achieve a reasonably fine grid resolution in the vicinity of the
microsphere, an exponential grid stretching was implemented in the axial-direction
both upstream and downstream of the sphere.  The exponential stretching was chosen
so that the grid aspect ratio ( / )x r∆ ∆ did not exceed an upper bound of approximately
25 in any of the hydrodynamic meshes.  The computational domains were created
using GRIDGEN, a commercial grid generation package for structured and
unstructured meshes.  Numerical experimentation using a number of different grid
generation strategies showed that transfinite interpolation yielded the most suitable
co-ordinate structure around the sphere.  A selection of the computational meshes are
presented in Figure 4.

6.1  Continuum flow regime

The first part of the study investigated the drag experienced by the sphere under low
Reynolds number continuum flows ( 0 , 0)Re Kn→ → . Unconfined creeping flow
past a sphere was first analysed by Stokes [40] who demonstrated that in the absence
of inertial forces, the total drag force due to the flow of an unbounded incompressible
Newtonian fluid could be written as

Total drag 6 U a= πµ (36)

where U denotes the uniform velocity distribution infinity far from the sphere.  In
addition, it can be shown that one-third of the total drag can be attributed to the
pressure distribution (form drag) whilst the remaining two-thirds are formed by skin
friction.  Consequently, eqn. (36) can also be written as

Form drag 2 U a= πµ (37)

and

Skin-friction drag 4 U a= πµ (38)

A non-dimensionalised drag coefficient, CD, can then be evaluated by assuming
that the total drag on the sphere is related to the dynamic pressure and the projected
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frontal area, as described by Schlichting [37].  Defining,

2 21
Total drag

2DC U a= ρ π (39)

allows the drag coefficient on the sphere to be written as

2 2 2 21 1
2 2

Total drag 6 12 12
D

U a
C

U a U a U a Re

πµ µ= = = =
′ρ π ρ π ρ

(40)

where the Reynolds number, Re′ , is defined using the velocity of the unbounded fluid:

U a
Re

ρ′ =
µ

(41)

Inspection of eqn. (40) reveals that the drag coefficient for an unconfined sphere can
be rearranged to give

1
12
DC Re′

= (42)

The present study examines the drag force components and blockage effects on
a sphere confined within a circular pipe.  Consequently, the initial step is to select a
suitable method of normalising the computed drag components.  The drag coefficient
for a confined sphere can be defined using an analogous procedure to that shown in
eqn. (40), with the exception that the dynamic pressure is specified in terms of the
mean velocity in the pipe, u :

2 21
2

Total drag
DC

u a
=

ρ π
(43)

In addition, it is possible to calculate non-dimensionalised drag coefficients for the
individual skin-friction and pressure drag components using a similar technique:

(skin-friction) (form drag)2 2 2 21 1
2 2

Skin-friction drag Form drag
andD DC C

u a u a
= =

ρ π ρ π
(44)

The drag coefficients are then normalised with respect to Stokes’ unconfined solution
using the procedure suggested by Liu et al. [25].  Hence, the normalised drag
coefficient for a confined sphere can be written as

( / )
12
DC Re

H D= F (45)

where ( / )H DF denotes a function of the blockage ratio, / .H D   The above equation
has obvious similarities with the unconfined solution developed in eqn. (42), with the
exception that the product of the drag coefficient and the Reynolds number no longer
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collapses to a single coefficient but instead depends upon the blockage ratio of the
flow geometry.  Moreover, it should be noted that the Reynolds number in eqn. (45) is
defined in terms of the cross-sectional average velocity in the pipe, ,u  rather than the
approach velocity of the unbounded fluid as utilised in Stokes’ unconfined solution.

In the initial series of tests, a fully developed no-slip velocity profile (eqn. 22)
was prescribed at the inflow boundary to simulate a long pipe upstream of the
computational domain. Table 2 presents the normalised drag coefficients
for / 2,H D = the most confined blockage ratio considered. The simulations
employed a range of Reynolds numbers between 0.5Re = and 0.01Re = to provide
data throughout the low Reynolds number flow regime.  It can be seen that the
normalised drag coefficients are almost identical, indicating that the product of the
drag coefficient, ,DC and the Reynolds number, Re, remains invariant in the Stokes’
limit ( 0).Re →   A second study employing a less confined blockage ratio of

/ 10H D =  confirms that the normalised drag coefficient is again independent of the
Reynolds number (Table 3).  Consequently, at Stokes’ limit, the drag is solely
dependent upon the blockage ratio, / .H D   As an aside, Table 2 also indicates that the
ratio between the pressure drag and the total drag deviates from the theoretical value
of one-third as predicted by Stokes’ unconfined solution.  For a blockage ratio
of / 2,H D = the drag due to the pressure distribution accounts for approximately
52% of the total force, demonstrating that the sphere is being exposed to strong
blockage effects.  However, for the less confined study presented in Table 3
( / 10)H D = , the form drag accounts for approximately 34% of the total force and is
therefore very close to the theoretical ratio of one-third.

Normalised drag results for a range of blockage ratios from / 2H D = up
to / 40H D = are presented in Table 4 for a Reynolds number, 0.125Re =  (as adopted
by Liu et al. [25]).  The results are also illustrated graphically in Figure 5 as a plot of
normalised total drag coefficient against blockage ratio.  Figure 5 indicates that
blockage effects are strongly felt for / 10H D < with a very large increase in the drag
coefficient being observed for / 5.H D <   The computed drag results presented by Liu
et al. [25] for / 5H D ≤ are superimposed on Figure 5 for comparison purposes.  The
excellent agreement between the two numerical schemes appears to confirm the
validity of the present analysis.

In the limit of / ,H D → ∞ the normalised drag should converge asymptotically
to the value predicted by Stokes’ solution.  Substituting eqn. (36) for the drag on an
unconfined sphere into eqn. (43) defining the drag coefficient yields

2 21
2

6 12
12D

U a U U
C

u a u a u Re u

πµ µ= = =
ρ π ρ

(46)

and therefore the normalised drag coefficient tends to

12
DC Re U

u
= (47)

Moreover, as the blockage ratio is increased, the average velocity striking the sphere
and contributing to the drag will approach the maximum (centreline) velocity in the
pipe, 2 .u   Consequently, in the limit of /H D → ∞ , the fluid velocity impinging on
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the sphere, U, converges to twice the mean velocity in the pipe, i.e.

2 as /U u H D→ → ∞ (48)

The normalised drag coefficient will therefore tend to a value of 2 for large blockage
ratios, i.e.

2 as /
12
DC Re

H D→ → ∞ (49)

Figure 5 clearly demonstrates that the computed drag coefficients agree with the
theoretical asymptote derived in eqn. (49).

A further validation of the numerical scheme can be achieved by comparing the
computed results against the analytical drag formulae presented by Wakiya [26,27],
Bohlin [28] and Haberman & Sayre [29].  Wakiya [26] employed Faxen’s [42]
method of reflections to calculate the drag force on a sphere centrally located in a
circular pipe.  Two separate flow conditions were considered in the analysis; namely,
a sphere moving with constant velocity along the axis of the pipe (analogous to
Faxen’s drag correction for sedimentation) and secondly, a stationary sphere
subjected to Poiseuille pipe flow. By necessity, Wakiya’s analytical solution is only
valid in the limit, 0,Re → and also has to assume that the ratio between the radius of
the sphere, a, and the radius of the pipe, 0 ,r is “small” since the analysis only
considers the first two reflections (Happel & Brenner [30]).  Wakiya was able to show
that the drag force on a confined moving sphere can be approximated as

3 5

3 5
0 0 0

6
Total drag

1 2.104 2.09 0.95

U a

a a a

r r r

πµ
=

 
− + − 

 

(50)

whereas the force experienced by a stationary sphere in a Poiseuille flow can be
expressed as

2

2
0

3 5

3 5
0 0 0

2
1

3
Total drag 6

1 2.104 2.09 1.11

a

r
U a

a a a

r r r

 
− 

 = πµ
 

− + − 
 

(51)

where U is the velocity of the moving sphere in eqn. (50) or the maximum fluid
velocity at the centre of the pipe in eqn. (51).  Using the fact that

0

a D

r H
= (52)

and noting that the maximum velocity in the pipe is twice the mean velocity, the
normalised drag coefficient on a stationary confined sphere can be derived as
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2

2

53

53

22 1
3

12
1 2.104 2.09 1.11

D

D

HC Re

D D D

H H H

 
− 

 =
 

− + − 
 

(53)

Higher order schemes have been proposed by Bohlin [28] and Haberman &
Sayre [29] to increase the range of application to larger values of 0/a r although the
solutions are still only valid in the Stokes’ limit, 0.Re →   As reported in Happel &
Brenner [30], the most accurate solution currently available appears to be the
analytical technique proposed by Haberman & Sayre who investigated axisymmetric
flow past a confined sphere using an algebraic stream function method.  In the case of
a moving sphere, Haberman & Sayre [29] demonstrate that the drag force is given by

5

5
0

3 5 6

3 5 6
0 0 0 0

1 0.75857

Total drag 6

1 2.1050 2.0865 1.7068 0.72603

a

r
U a

a a a a

r r r r

 
− 

 = πµ
 − + − + 
 

(54)

whilst for the Poiseuille flow case, they show that

2 5

2 5
0 0

3 5 6

3 5 6
0 0 0 0

2
1 0.20217

3
Total drag 6

1 2.1050 2.0865 1.7068 0.72603

a a

r r
U a

a a a a

r r r r

 
− − 

 = πµ
 − + − + 
 

(55)

Converting eqn. (55) into the normalised drag coefficient and replacing 0/a r
by /D H yields:

2 5

2 5

3 5 6

3 5 6

2
2 1 0.20217

3

12
1 2.1050 2.0865 1.7068 0.72603

D

D D

H HC Re

D D D D

H H H H

 − − 
 =

 − + − + 
 

(56)

The analytical solution of Haberman & Sayre (eqn. 56) is included on Figure 5 for
comparison purposes.  The excellent agreement between the numerical predictions
and the analytical solution over the entire range of blockage ratios indicates that the
computational scheme provides an accurate representation of the flow past a confined
sphere and demonstrates the accuracy of the numerical drag computations.  As an
aside, the analytical solution presented by Wakiya (eqn. 53) yields almost identical
results for / 2.H D ≥

To ensure that the computed drag coefficients presented in Table 4 are
independent of the imposed inflow boundary condition, the numerical simulations
were repeated using a uniform velocity profile at the inlet (Table 5).  The computed
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drag coefficients were found to agree closely with the results obtained using the fully-
developed velocity profile, demonstrating that the hydrodynamic meshes detailed in
Table 1 are sufficiently long to ensure that the flow around the sphere is not affected
by the upstream boundary.  However, as an aside, it should be noted that applying a
uniform velocity boundary condition too close to the sphere drastically reduces the
computed drag force.  This can be explained by the fact that the approaching flow will
have insufficient time to settle to a fully-developed profile before reaching the sphere,
creating a lower than normal velocity at the centre of the pipe.  To demonstrate this
effect, Table 6 presents the results of a series of tests employing a range of
deliberately shortened hydrodynamic meshes.  In order to enhance the drag reduction
effects, the simulations were conducted using the widest blockage ratio, / 40.H D =
Table 6 demonstrates that the computed normalised drag coefficients are reduced as
the length available for flow development is decreased.  For the shortened
hydrodynamic meshes, it can also be seen that the normalised drag coefficient,
( /12),DC Re falls below the theoretical asymptote of 2 as predicted in eqn. (49),
indicating that a careless choice of upstream boundary location may result in
misleading estimates of drag coefficient.

6.2  Slip flow regime

The second part of the study investigated the drag experienced by the sphere in the
slip flow regime ( 0.1).Kn ≤  As discussed earlier in Section 3, non-continuum flow
effects were incorporated into the hydrodynamic scheme by introducing a tangential
slip-velocity boundary condition along the solid walls of the flow domain.
Specifically, the slip-flow constraint can be implemented as follows:

2
t t

Kn D
u

− σ= τ
σ µ

(57)

where ut is the tangential slip-velocity, tτ  is the shear stress on the wall and σ is the
tangential momentum accommodation coefficient.  As described in Section 5, the
drag due to the normal stress must be included in the slip flow regime and therefore a
third non-dimensionalised drag coefficient has to be introduced using a similar
procedure to that presented in eqn. (44):

(normal stress) 2 21
2

Normal stress drag
DC

u a
=

ρ π
(58)

The total drag coefficient for the sphere is then found by summing the individual drag
coefficients due to skin-friction, normal stress and pressure distribution:

(skin-friction) (normal stress) (form drag)D D D DC C C C= + + (59)

Table 7 presents the normalised drag coefficients for the most confined
blockage ratio, / 2.H D =  The simulations were conducted using a Reynolds number
of 0.125Re = for compatibility with the continuum flow analysis described in
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Section 6.1 whilst the Knudsen number was varied from 0Kn = (continuum flow) up
to 0.1Kn = (the upper limit of the slip flow regime).  A fully-developed slip-velocity
profile (eqn. 23) was prescribed at the inflow boundary to simulate an infinitely long
pipe upstream of the computational domain and the fluid was again assumed to be
incompressible on account of the low Mach numbers found in most microfluidic
devices. Additional numerical simulations accounting for compressibility showed
very little difference in the predicted drag on the sphere, justifying the low Mach
number simplification.

The results in Table 7 indicate that the total drag on the sphere decreases as the
Knudsen number is increased, due to a reduction in skin friction and form drag.
However, it can also be seen that the drag due to the normal stress increases with
Knudsen number, demonstrating the importance of accounting for this term in the slip
flow regime.  Inspection of the computed normalised drag coefficients for the
continuum flow solution reveals a slight inaccuracy in the predictions since the
numerical model fails to predict a normal stress drag component of zero as 0.Kn →
This discrepancy is thought to be caused by inadequacies in the mesh close to the
sphere, but fortunately the error only accounts for a small percentage of the total drag.

Tables 8 & 9 repeat the slip flow computations for blockage ratios of
/ 5H D = and / 40.H D =   The results for the three separate blockage ratios are then

compared in Figure 6 by plotting the normalised total drag coefficient against
Knudsen number.  In all cases, the total drag on the sphere decreases as the Knudsen
number is increased but the effect is more pronounced as the blockage ratio is
reduced.  This indicates that blockage effects are much less important in the slip flow
regime than for continuum flows.

The normalised drag results for / 40H D = provide a useful validation of the
hydrodynamic code since the numerical results should approach the asymptotic limit
of low Reynolds number slip flow past an unconfined sphere.  Barber & Emerson [43]
have previously described an extension of Stokes’ analytical solution for creeping
flow past a sphere which takes into account non-continuum effects.  The analysis
follows the slip flow methodology originally proposed by Basset [33] and provides
expressions for the individual drag force components and total drag experienced by a
microsphere in an unconfined rarefied flow.  Following previous work by
Goldberg [44] and Schaaf & Chambre [19], the Knudsen number was defined by
Barber & Emerson [43] using the radius of the sphere, a, as the characteristic length
scale, i.e.

aKn
a

= Ll
(60)

The total drag force on an unconfined sphere in the slip flow regime can be shown to
be given by

2
1 2

Total drag 6
21 3

a

a

Kn
U a

Kn

− σ + σ= πµ  − σ +  σ

(61)

where U denotes the uniform velocity distribution infinitely far from the sphere and σ
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is the tangential momentum accommodation coefficient.  Comparing the Knudsen
number definitions in eqns. (60) & (15) reveals that

2 or 2a
a

Kn D
Kn Kn

Kn a
= = = (62)

and consequently the total drag can be rewritten in terms of the Knudsen number
based on the diameter of the sphere, Kn:

2
1 4

Total drag 6
21 6

Kn
U a

Kn

− σ + σ= πµ  − σ +  σ

(63)

In addition, the individual drag components on the sphere can be shown to be:

1
Skin-friction drag 4

21 6
U a

Kn

 
 

= πµ  − σ +  σ

(64)

2
4

Normal stress drag 4
21 6

Kn
U a

Kn

− σ 
 σ= πµ  − σ +  σ

(65)

and
2

1 4
Form drag 2

21 6

Kn
U a

Kn

− σ + σ= πµ  − σ +  σ

(66)

Figure 7 illustrates the variation in computed normalised drag components on
the sphere as a function of Knudsen number for a blockage ratio of / 40.H D =   The
analytical solutions presented in eqns. (63-66) are superimposed on Figure 7 for
comparison purposes.  It should be noted than in normalising the analytical results,
the unconfined flow equations have to be multiplied by a factor of 2 to account for the
fact that the fluid velocity impinging on the sphere, U, converges to twice the mean
velocity in the pipe, i.e.

2 as /U u H D→ → ∞ (67)

Thus the normalised total drag coefficient has a theoretical asymptote:
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2
1 4

2 as /
212 1 6

D
KnC Re

H D
Kn

− σ + σ→ → ∞ − σ +  σ

(68)

Analogous equations can also be derived for the theoretical asymptotes of the
individual drag force components.

Figure 7 demonstrates good agreement between the numerical and analytical
solutions over the entire slip flow regime.  Small discrepancies can be seen in the
normal stress drag predictions which in turn affect the total drag.  This can be
confirmed by noting that the numerical model fails to predict a normal stress drag
force of zero in the continuum flow regime ( 0).Kn →   Previous numerical studies by
Beskok & Karniadakis [45] on rarefied gas flows past circular cylinders confirm the
difficulty in obtaining accurate estimates of the normal stress distribution.
Nevertheless the general agreement between the predictions and the unconfined
analytical solution provides an important validation test in the slip flow regime.

In the present study, the error in the normal stress component appears to
decrease as the Knudsen number increases. In addition, the numerical model predicts
slightly larger skin-friction and form drag components compared to the unconfined
analytical solution but this is to be expected since the microsphere should still be
experiencing a slight blockage effect due to the pipe walls.  The agreement between
the numerical and analytical drag components appears to improve as the Knudsen
number is increased which again leads to the conclusion that blockage effects
becomes less important at higher Knudsen numbers.

Normalised drag results for a range of blockage ratios are presented in Table 10
for a Knudsen number of 0.1Kn = (the upper limit of the slip flow regime).  The
results are also illustrated graphically in Figure 8 as a plot of normalised total drag
coefficient against blockage ratio.  Although a general analytical solution for the drag
on a confined sphere in the slip flow regime is not presently available, the numerical
results can be checked to ensure that the normalised drag converges to the correct
limit as / .H D → ∞   Substituting 0.1Kn = into the theoretical asymptote presented
in eqn. (68) and assuming a tangential momentum accommodation coefficient of unity
yields:

1.75 as /
12
DC Re

H D→ → ∞ (69)

Figure 8 confirms that the computed normalised drag coefficients converge to the
theoretical asymptote of 1.75, thereby providing an important final validation test.
The results in Figure 8 also demonstrate that blockage effects are not as important as
the Knudsen number is increased.  At the upper limit of the slip flow regime
( 0.1Kn = ), the normalised total drag coefficient for a blockage ratio of / 2H D =  is
5.22 whereas the corresponding coefficient in the continuum flow regime (Table 4) is
9.93.  This indicates that blockage effects are substantially reduced in the slip flow
regime, leading to smaller drag forces on the sphere.
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7   Conclusions

An investigation of low Reynolds number rarefied gas flow past a confined
microsphere has been conducted using a specially adapted two-dimensional finite-
volume Navier-Stokes solver.  The hydrodynamic model is applicable to both the
continuum and slip flow regimes, and is valid for Knudsen numbers between
0 0.1Kn≤ ≤ .  In the slip flow regime, rarefaction effects are important but the flow
can still be analysed using the Navier-Stokes equations provided appropriate
tangential slip-velocity boundary conditions are implemented along the walls of the
flow domain.

The present study examines the effects of the Reynolds number and Knudsen
number on the drag experienced by a microsphere confined within a circular pipe.  In
addition, blockage effects are studied by varying the ratio between the diameter of the
confining pipe ( )H and the diameter of the sphere ( ).D   Model validation has been
accomplished by comparing the predicted drag force in the continuum regime against
a number of analytical solutions of creeping flow past a confined sphere.  The
numerical model can also be validated in the slip flow regime by checking that the
predicted drag results converge to the theoretical asymptote for an unconfined
sphere ( / ).H D → ∞

At low Reynolds numbers in the continuum flow regime, the results show that
the product of the drag coefficient and the Reynolds number collapses to a single
coefficient dependent upon the blockage ratio, / .H D   The results also indicate that
blockage effects are extremely important for continuum flows with very large
increases in the drag coefficient being observed for / 5.H D <   In the slip flow
regime, the total drag on the sphere decreases as the Knudsen number is increased, as
expected.  More importantly, the results suggest that the drag amplification effect
caused by blockage ratio becomes less significant as rarefaction starts to influence the
flow.  This may have important consequences for the design of microfluidic
components which operate over a wide range of Knudsen numbers.
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Appendix A

Determination of the mean free path of a gas

For an ideal gas modelled as rigid spheres of collision diameter, cσ , the mean distance
travelled by a molecule between successive collisions or mean free path, L, is given
by [18]:

22 c

k T

p
=

π σ
L (1)

where,
23

2

Boltzmann’s constant 1.380662 10 J / K,

temperature (K),

pressure (N/m ) and

collision diameter of the molecules (m).c

k

T

p

−= = ×
=
=

σ =

At standard ambient temperature and pressure (SATP), defined as T 298.15 K= and
5 210 N/mp = , eqn. (1) becomes:
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2

9.265 10

c

−×=
σ

L (2)

For air, the average collision diameter of the molecules is 103.66 10−× m giving a mean
free path of 86.92 10−× m (or 69.2 nm).  The collision diameters of other common
gases are listed below:

Gas cσ (m)

Air 3.66q10-10

Ar 3.58q10-10

CO2 4.53q10-10

H2 2.71q10-10

He 2.15q10-10

Kr 4.08q10-10

N2 3.70q10-10

NH3 4.32q10-10

Ne 2.54q10-10

O2 3.55q10-10

Xe 4.78q10-10

Table A1:  Collision diameters of common gases [18]
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Appendix B

Generalised stress tensor transformation procedure

The governing hydrodynamic equations are solved using THOR-2D, a two-
dimensional finite-volume Navier-Stokes solver developed by the Computational
Engineering Group at CLRC Daresbury Laboratory (Gu & Emerson [35]).  In order to
extend the solver to the slip-flow regime (0 0.1),Kn< ≤ additional subroutines have
been developed to account for the tangential slip-velocity boundary condition at the
walls of the flow domain.  In particular, the slip-velocity constraint requires the
tangential shear stress to be calculated at every grid node along a solid-fluid interface.
Since the governing hydrodynamic equations are solved using a non-orthogonal
boundary-fitted co-ordinate system, the tangential shear stress has to be calculated
using a generalised stress tensor transformation procedure to account for the non-
orthogonality of the grid lines.  Furthermore, the determination of the drag force on
the microsphere requires both the tangential shear stress component and the normal
stress component to be computed around the perimeter.  It is therefore necessary to
transform the axisymmetric ( , )x r co-ordinate stress tensor into a localised co-ordinate
reference frame based upon the orientation of the boundary surface.

Figure B1:  Definition sketch of normal and tangential base vectors

Consider an arbitrary section along the boundary of the sphere as shown in
Figure B1.  Let n  and t  denote the local unit normal and tangential vectors of the
surface as shown above:

1 2 1 2andn n i n j t t i t j= + = + (1)

It can be seen that the coefficients in eqn. (1) are related via

1 2 2 1andt n t n= = − (2)

In the ( , )x r plane, the stress tensor for an incompressible flow is given by

x

r

t

n

t1

t2

-n1

n2

θ
θ

Surface of sphere
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( )
( )

11 12

21 22

2
[ ]

2

u u v
x r x

v u v
x r r

∂ ∂ ∂
∂ ∂ ∂

∂ ∂ ∂
∂ ∂ ∂

 µ µ +τ τ 
τ = =    µ + µτ τ   

(3)

The problem is therefore to transform [ ]τ  into a generalised stress tensor [ ]′τ  related
to the normal and tangential base vectors, n  and t .  Lien [46] has demonstrated that
in the transformed domain, the stress tensor can be expressed as

T[ ] [ ][ ][ ]G G′τ = τ (4)

where the matrix [ ]G  is given by

1 2

1 2

[ ]
t t

G
n n

 
=  

 
(5)

and the superscriptT denotes the transpose of a matrix.  Consequently, the generalised
stress tensor can be evaluated as

11 12 1 2 11 12 1 1

21 22 1 2 21 22 2 2

[ ]
t t t n

n n t n

′ ′τ τ τ τ       ′τ = =       ′ ′τ τ τ τ       
(6)

which yields after multiplication (and simplification using 21 12τ = τ ):

2 2
11 12 1 11 1 2 12 2 22 1 1 11 1 2 2 1 12 2 2 22

2 2
21 22 1 1 11 1 2 2 1 12 2 2 22 1 11 1 2 12 2 22

2 ( )

( ) 2

t t t t t n t n t n t n

t n t n t n t n n n n n

′ ′τ τ  τ + τ + τ τ + + τ + τ 
=   ′ ′τ τ τ + + τ + τ τ + τ + τ   

(7)

Hence, the tangential shear stress on the surface of the sphere is given by

12 1 1 11 1 2 2 1 12 2 2 22( )t n t n t n t n′τ = τ + + τ + τ (8)

whilst the normal stress is given by
2 2

22 1 11 1 2 12 2 222n n n n′τ = τ + τ + τ (9)

The tangential shear stress is then used to evaluate the slip-velocity along the
wall of the microsphere.  Specifically, the tangential slip-velocity tu  is found using
eqn. (16) of  Section 3:

12

2
t

Kn D
u

− σ ′= τ
σ µ

(10)

Substituting for the tangential shear stress from eqn (8) yields

( )1 1 11 1 2 2 1 12 2 2 22

2
( )t

Kn D
u t n t n t n t n

− σ= τ + + τ + τ
σ µ

(11)

A similar technique is implemented at the pipe wall.
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Blockage ratio
/H D

Computational
domain+ Mesh resolution

2.0 10 10a x a− ≤ ≤ 140×25

2.5 10 10a x a− ≤ ≤ 140×35

3.0 10 10a x a− ≤ ≤ 140×35

3.5 10 10a x a− ≤ ≤ 140×35

4.0 10 10a x a− ≤ ≤ 140×50

4.5 10 10a x a− ≤ ≤ 140×50

5.0 10 10a x a− ≤ ≤ 140×60

7.5 15 15a x a− ≤ ≤ 140×80

10.0 15 15a x a− ≤ ≤ 140×100

20.0 25 25a x a− ≤ ≤ 140×100

40.0 50 50a x a− ≤ ≤ 140×100

+ Minimum length of flow domain chosen as 10 10a x a− ≤ ≤
for compatibility with Liu et al. [25]

Table 1:  Computational meshes employed in blockage ratio study
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Normalised drag coefficients, CDRe/12
Re

Skin-friction
drag Pressure drag Total drag

0.500 4.793 5.140 9.933
0.250 4.792 5.139 9.931
0.125 4.792 5.139 9.931
0.050 4.792 5.139 9.931
0.010 4.792 5.139 9.931

Table 2:  Normalised drag coefficients in the continuum flow regime as a function of
Reynolds number for a blockage ratio of / 2H D =

Normalised drag coefficients, CDRe/12
Re

Skin-friction
drag Pressure drag Total drag

0.500 1.680 0.881 2.561
0.250 1.652 0.866 2.518
0.125 1.635 0.856 2.491
0.050 1.629 0.853 2.482
0.010 1.628 0.852 2.480

Table 3:  Normalised drag coefficients in the continuum flow regime as a function of
Reynolds number for a blockage ratio of / 10H D =



30

Normalised drag coefficients, CDRe/12
Blockage ratio

/H D Skin-friction
drag Pressure drag Total drag

2.0 4.792 5.139 9.931
2.5 3.488 2.918 6.406
3.0 2.879 2.094 4.973
3.5 2.529 1.687 4.216
4.0 2.317 1.446 3.763
4.5 2.163 1.294 3.457
5.0 2.051 1.190 3.241
7.5 1.778 0.964 2.742

10.0 1.635 0.856 2.491
20.0 1.478 0.753 2.231
40.0 1.357 0.688 2.045

Table 4:  Normalised drag coefficients in the continuum flow regime as a function of
blockage ratio for a fully-developed entrance velocity profile ( 0.125)Re =

Normalised drag coefficients, CDRe/12
Blockage ratio

/H D Skin-friction
drag Pressure drag Total drag

2.0 4.774 5.120 9.894
2.5 3.480 2.911 6.391
3.0 2.873 2.090 4.963
3.5 2.524 1.684 4.208
4.0 2.314 1.444 3.758
4.5 2.159 1.292 3.451
5.0 2.049 1.189 3.238
7.5 1.773 0.962 2.735

10.0 1.631 0.854 2.485
20.0 1.468 0.746 2.214
40.0 1.354 0.685 2.039

Table 5:  Normalised drag coefficients in the continuum flow regime as a function of
blockage ratio for a uniform entrance velocity profile ( 0.125)Re =
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Normalised drag coefficients, CDRe/12Length of
computational

domain Skin-friction
drag Pressure drag Total drag

50 50a x a− ≤ ≤ 1.354 0.685 2.039

20 20a x a− ≤ ≤ 1.072 0.542 1.614

15 15a x a− ≤ ≤ 0.857 0.433 1.290

10 10a x a− ≤ ≤ 0.747 0.377 1.124

Table 6:  Normalised drag coefficients in the continuum flow regime as a function of
entrance location for a blockage ratio of / 40H D =  ( 0.125)Re =

Normalised drag coefficients, CDRe/12
Kn

Skin-friction
drag

Normal stress
drag Pressure drag Total drag

0 4.792 +(0.076)+ 5.139 10.007
0.02 3.646 0.354 4.240 8.240
0.04 2.921 0.520 3.649 7.090
0.06 2.424 0.628 3.230 6.282
0.08 2.064 0.702 2.916 5.682
0.10 1.792 0.754 2.671 5.217

+ Normal stress drag is theoretically zero for 0Kn →

Table 7:  Normalised drag coefficients as a function of Knudsen number for a
blockage ratio of / 2H D =  ( 0.125)Re =
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Normalised drag coefficients, CDRe/12
Kn

Skin-friction
drag

Normal stress
drag Pressure drag Total drag

0 2.051 +(0.048)+ 1.190 3.289
0.02 1.759 0.182 1.106 3.047
0.04 1.535 0.283 1.038 2.856
0.06 1.358 0.360 0.983 2.701
0.08 1.215 0.420 0.937 2.572
0.10 1.097 0.467 0.898 2.462

+ Normal stress drag is theoretically zero for 0Kn →

Table 8:  Normalised drag coefficients as a function of Knudsen number for a
blockage ratio of / 5H D =  ( 0.125)Re =

Normalised drag coefficients, CDRe/12
Kn

Skin-friction
drag

Normal stress
drag Pressure drag Total drag

0 1.357 +(0.038)+ 0.688 2.083
0.02 1.207 0.130 0.660 1.997
0.04 1.087 0.205 0.638 1.930
0.06 0.988 0.265 0.619 1.872
0.08 0.905 0.316 0.603 1.824
0.10 0.835 0.358 0.590 1.783

+ Normal stress drag is theoretically zero for 0Kn →

Table 9:  Normalised drag coefficients as a function of Knudsen number for a
blockage ratio of / 40H D =  ( 0.125)Re =
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Normalised drag coefficients, CDRe/12
Blockage ratio

/H D Skin-friction
drag

Normal stress
drag Pressure drag Total drag

2.0 1.792 0.754 2.671 5.217
2.5 1.498 0.625 1.765 3.888
3.0 1.341 0.569 1.376 3.286
3.5 1.242 0.537 1.167 2.946
4.0 1.181 0.502 1.042 2.725
4.5 1.134 0.483 0.964 2.581
5.0 1.097 0.467 0.898 2.462
7.5 0.979 0.419 0.753 2.151

10.0 0.953 0.407 0.699 2.059
20.0 0.896 0.383 0.632 1.911
40.0 0.835 0.358 0.590 1.783

Table 10:  Normalised drag coefficients in the slip flow regime as a function of
blockage ratio ( 0.125 , 0.1)Re Kn= =
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Figure 1:  Problem formulation:- a confined sphere inside a circular pipe

Figure 2:  Schematic diagram of boundary conditions for confined microsphere
geometry
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Figure 3:  Localised spherical polar co-ordinate reference frame ( , , )r θ α and shear
stresses around microsphere
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(a)  Blockage ratio / 2H D =

 (b)  Blockage ratio / 3H D =

(c)  Blockage ratio / 4H D =

Figure 4:  Axisymmetric flow domains for a confined sphere in a circular pipe
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(d)  Blockage ratio / 5H D =

(e)  Blockage ratio / 40H D =

Figure 4:  Axisymmetric flow domains for a confined sphere in a circular pipe
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Figure 5: Variation of normalised total drag coefficient in the continuum flow regime
as a function of blockage ratio ( 0.125)Re =

H/D
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Figure 6:  Variation of normalised total drag coefficient in the slip flow regime as a
function of Knudsen number ( 0.125)Re =

Kn
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Figure 7:  Variation of normalised drag coefficients as a function of Knudsen number
for a blockage ratio of / 40H D =  ( 0.125)Re =
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Figure 8:  Variation of normalised total drag coefficient in the slip flow regime as a
function of blockage ratio ( 0.125 , 0.1)Re Kn= =

H/D
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