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Abstract

This document details the equations needed to implement the calculation of
vibrational frequencies within the density functional formalism of electronic
structure theory. This functionality has been incorporated into the CCP1 DFT
module and the required changes to the application programmers interface are
outlined. Throughout it is assumed that an implementation of Hartree-Fock
vibrational frequencies is available that can be modified to incorporate the den-
sity functional formalism. Employing GAMESS-UK as an example the required
changes to the Hartree-Fock code are outlined.
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Conventions

The occupied molecular orbitals are labeled 4, j, k, [, and m. The virtual molec-
ular orbitals are labeled a, b, ¢, d, and e. Arbitrary molecular orbitals are labeled
p,q,7, 8, and t. Arbitrary atomic orbitals are labeled p, v, A and o. Molecular or-
bitals are denoted by %, and atomic orbitals are denoted by x. The superscripts
a and ( indicate the a-spin and [-spin components of various quantities. The
superscripts a and b indicate nuclear coordinates with respect to which deriva-
tives are taken.



Chapter 1

Introduction

The objective of this project is to implement the calculation of vibrational fre-
quencies within the framework of Density Functional Theory (DFT). These
properties are essential for classifying stationary points on the potential energy
surface as well as determining the vibrational spectrum of a molecule. The
implementation of this property is very similar to the implementation of po-
larisabilities which will be obtained as a side effect at very little cost. In both
cases the underlying formalism depends on having the analytic second deriva-
tives of the DFT energy. For the the polarisabilities these derivatives with
respect to an external electric field are required. For the vibrational frequencies
the more complicated derivatives with respect to the nuclear coordinates are
needed. As the latter derivatives are the more general ones we will focus on
those in this document. The implementation will take place within the frame-
work of the DFT module developed initially within the Collaborative Computa-
tional Project 1 (CCP1) and subsequently extended by the Quantum Chemistry
Group at Daresbury.

As far as the implementation is concerned we follow the approach of Handy,
Tozer, Laming, Murray, and Amos [4] and Johnson and Fisch [5]. According
to Amos it is important that the derivatives of the quadrature are taken into
account as well.

In chapter 2 we will first write down the expressions that define the DFT
energy. To include the derivatives of the quadrature we will rewrite the ap-
propriate integrals as a quadrature. In chapters 3 and 4 we will take the first
and second derivatives of the integral expressions, while the first and second
derivatives of the quadrature are considered in chapter 5. Finally, details of the
implementation are presented in chapter 6.



Chapter 2

DFT energy

The DFT total energy of a molecular system in the Born-Oppenheimer approx-
imation can be written as a sum of three terms. The first two terms are easily
recognised as having a classical origin. They are the kinetic energy and the
Coulomb energy of the electrons. The third term stems from the anti-symmetry
of the wavefunction and has no classical equivalent. This term is called the
exchange-correlation energy. Following Johnson and Fisch [5] we can write the
total energy in general as

E = > PuHu

nv

1
+ 3 > PuPro(uv|ro)

HUAG
+ Euo( P, PP) (2.1)
where
P = ) CaCla (2.2)
ps
Py, = > cl.cl, (2.3)
B
P = pP*4+pP (2.4)

are the 1-electron reduced density matrices. The term F,. is the exchange-
correlation energy. Within the Hartree-Fock approximation this is

1 a pa
Each = _5 Z (P;MJP)\U + P;?UP)?J)(H/\‘OV) (25)

2.4

In DFT the exchange-correlation energy is given by a functional of the form

EJ{ZS - /f(pa;pﬁyryaaf}/aﬁf}/ﬁﬁ)dr (26)



pa = D Poxuxv (2.7)

pv

ps = > PoXuXv (2.8)
uv

Yoaa = vpa'vpa (29)

Yap = Vpa-Vps (2.10)

Y88 = Vpg-Vpg (2.11)

vﬂa = ZPSIJV(XHXV) (2'12)
uv

V,DB = ZP[?VV(X/LXV) (213)
uv

(2.14)

where we have limited the functional form to the so called Generalised Gradient
Approximation (GGA), i.e. the highest order derivative of the density needed
to evaluate the functional is the gradient. More advanced schemes are currently
being explored but only very few programs can actually use them. How effective
these higher order functionals are remains unclear.

Due to the form of the functional f the integration in the above expres-
sion cannot be performed analytically, instead a quadrature is introduced. The
quadrature we use follows the scheme proposed by Becke [2] where the integrand
is partitioned into atomic terms each of which is discretised on an atomic grid
in polar coordinates

EES ~ > waiDa(rai)
Al

'f(pa (TAi)a P (TAi)a Yoo (TAi)a Yo (T'Ai)a Vﬂﬁ(TAi)) (215)

where D4 is the partition associated with atom A. Note that both r4; and
the partition functions D4 are functions of the molecular geometry. However,
because the grid points move along with the atom they are associated with the
weights w4; are independent of the geometry.

Finally the coefficients that appear in the density matrices are essentially
the coefficients of the atomic orbitals in the SCF wavefunctions. The SCF
wavefunctions satisfy the conditions

FoC™ = SC%* (2.16)
FACP = SCPeP (2.17)
(CcHTscx = 1 (2.18)
(CAHTSCP = 1 (2.19)

The Fock-matrices are given by

oF
oP2

nv

el
e,



OF
F5,, = p (2.21)
(5%

More explicitly the Fock-matrices are

OE,.(P*, PP)

F*, = Hu+ ZP)\U(MVP\O') + 5pa (2.22)
Ao 4
3EIC(P“,PB)
FBHV = HMV+ZP)\U(MV|)\O')+8T (223)
Ao nv

Because the Fock-matrices depend on the electron density, while the electron
density depends on the orbital coefficients, and the coefficients are solutions
of an eigenvalue equation involving the Fock-matrices, it is clear that some
iterative solution scheme is required. However, the details of that scheme are
not required here. Only the details of the energy expression and the Fock-
matrices will feature in our discussion of the Hessians.



Chapter 3

DFT gradient

In the previous section we defined the energy in equation (2.1). Here we will
briefly consider the gradient of that energy. Differentiating the energy with
respect to a nuclear coordinate R, we have

a_E — Z(aPNVH + P 8HMV>

OR, ~—~\ 0r, """ 0R,
0P, 1 O(pv|Ao)
+ ,;:a ( 7 Pao(iv|A0) + 5 P Pao R
+ aEﬁvc aEmc(Pa7 PB) aP;(;u Z aEa:c(Pa7PB) anI/
IRy | pe_ps s OPg, OR, o oPp, OR,
= ) P,H,
nz
1 a
+ 5 Z PPy (pv|Xo)
2.X4
+ EQ(P*, PP
opr opPs
FDL y Hv Fﬁ w ol 1
+ ;( wons T 8Ra> (3.1)

where we have introduced a superscript a as a short hand for the differentiation
with respect to R,. The superscript (a) means differentiating all the explicit ge-
ometry dependent factors, i.e. leaving out the terms that involve differentiation
of the orbital coefficients.
The terms involving the Fock-matrices can be simplified using equations (2.16), (2.17)
and the derivative of the orthonormality condition:

05, oce

o0, . . . . o
0 = Z {3]{; SNVCuj +CL oR, Cyj + M‘S;wﬁi (3.2)
nv




OR. S Cyj + C’M-S,Wa—Ra (3.3)

S o
Songes = -X|
%

n%

This enables us to write

oP2 oC¢, o0
Fa y Hv — Fa y K o Fa y . v 4
%V: H (9Ra %:Z H aRa Cm—i_; H C;u 8Ra (3 )
aCe o0Cc%
_ Jada a v
- ZSHV 3R, Coic +Zsﬂucgiﬁieg (3.5)
% iz
= _Zsﬁuefcﬁi i (3.6)
nvi
= =) wpss, (3.7)
%
where
we, o= Y erCnCs (3.8)
W = Wi +Wp, (3.9)
With this result the gradient of the energy becomes
ok a
OR, - ZP v
nv
1 a
+ 3 > PuPao(uv|Ao)
uvo
+ EW(P, PP
- > WS, (3.10)
1224

The most notable aspect of this expression is that for the first derivative of
the energy no derivatives of the orbital coefficients are required. All quantities
needed to evaluate this expression have been coded earlier and thus can be
assumed to be available whenever required.
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Chapter 4

DFT hessian

The expression for the second derivative of the energy can be obtained from

differentiating the gradient expression equation (3.10).

0’°F
= P, HY
ORyOR, 2 Pty

nv

1 b
+ 3 Z P, Pao (pv|Xo)®

uvAo

+ E@®)(pa ph

- > WwSp
uv

opr,.

+ ( o,

Nz

aVVIU/ a
ORy St

Nz

W—FZPAU uv|Ao)® ])

(4.1)

4.1 The explicit 2nd derivative of the exchange-

correlation energy

The first thing we need is an expression for the explicit second derivatives of

the exchange-correlation energy. This is

02 Pa (7 4i)
(@)(®)(pa pBy — E A(rai
E (P*, PP) WA~ BR.OR, f

8PA (TAZ) (b)
+ E WA — (a5 f
Ai aR

OPA(Tai) 4(a)
+ Z WA — a7 aRb f
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+ ) waiPa(ra;) f@® (4.2)

Ai
where
0= g (4.3
Fam Z—C(“>n(”)+gc(“)(”) (4.4)
2~ 0¢on o

The discussion of the derivatives of the partition function will be postponed until
chapter 5 and only the second derivative of the functional will be considered here.

The required gradients of p and Vp have already been coded. The second
derivatives of these quantities are still needed.

PO Z L (XX + XX+ X + ) (4.5)
VP(G)(b) = Z P«V M XV + VX,U«XV + VXNXV + VX“XZb)

+ Z PS, (XEVxw + XEVXD + X0 VXG4 xu VXEJ4.6)

(Voo - Vpa) WO = 2900 . vp, +2Vp(®) - VpP) (4.7)

The various derivatives of the basis functions are given in appendix B.

4.2 Defining the 1st derivative of the orbital co-
efficients
Beyond this point we need to find an expression for the derivatives of the orbital

coefficients. For this purpose we introduce matrices U that express the gradient
of the orbitals as

oR, Z% p T (4.8)
2>, xuC
# - ZXMOMngﬁLZXZCM (4.9)
n
aC,p )
OBy Z%U (4.10)

With this definition we can show by differentiating equation (2.18) that

ab b ab
Ugb+ SO + U = 0 (4.11)
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Together with the invariance of the energy for rotations among the occupied
orbitals it follows that

1
ab _ (b)
1
v = —555,? (4.13)

4.3 The 1st derivative of the density matrix and
the weighted energy matrix

To evaluate the 2nd derivative expression we still need to know the derivative
of P, and W,,. These expressions are

org, 1 D o
8,R/b - _5 ; SZ(J) [Cﬂj Oui + Ouicyj]
+ > U [Cr O+ O] (4.14)
oW, ab e o Lo o) e e
8—Rl;) - Z K bCM'Cl,i B Z §Ei Si(j) [Cﬂjcui + Cﬁicvj}

% Ji

+ ) U [Cr o+ CCs,] (4.15)

ai

4.4 The 1st derivative of the orbital energy

First of all the expression for egb can be obtained by differentiating the station-
ary condition in the MO-basis:

Fal = Sprex + S%pgea (4.16)
et = Fob—S8obed (4.17)

Given the Fock matrix in the AO-basis in equation (2.22) the Fock matrix in
the MO-basis is written as

Fapq - Zcﬁpcqu#V
%%

+ > 0,00 Pro(uv|Ao)

UvAo

o ve OB e (P, PP)
2.X4 nv

Differentiating this with respect to the coordinates of atom B gives:

aF&P‘I abrra
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where

GCEO’ —

pgrs

GBS - =

pqrs

OF %,
ORy

+ ) USH,

(s

ooy
+ ZU%,b(rq\iaio‘)
+ ZUo‘b (pr|i®

ri

+ 22 b (pg|r®i®)

progo

+ Z QUfffm (pQ|7"ﬁi6)

rBif

+ S (paliviv)

i

+ Z Uﬁ;b arq

T

+ ) USQY
s

+ Qa(b)
+ ) UGt aa
r,a(Y
b B
+ Z Uﬁ@iﬁ G;jqrﬁiﬁ
B

@ @ 8E1C(Pavpﬁ)
Z CHI)C aPﬁty

M;a Cﬁpcl(/lq C)\r os + Cfscgr) apﬁéyapa

ce co(CF Cl + b .cl,
Z pp~vg\~ Ar As ) apﬁyapfn

UvAo

Z Uf;b (Ham + Q%+ Z(rq|i°‘ia)>

T

Z U??ilb (Hapr + Q% + Z(pr”aia))

T

_|_

Ha(b)
b U [2alri®) + Geie]

roqe

_|_
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0?E,.(P, PP)

O?E,.(P~, PY)

(4.19)

(4.20)

(4.21)

(4.22)



+ Z Urﬁﬁ‘ iB [ P‘I‘Tﬂ '8) +qur6 B:|

rBiB
+ ) (pali®i®)”
+ Q0 (4.23)
oF“ ab o
5 = ) UM,

ORy

T

+ D UNF

T

+ Ho
+ ZUTQJ’ZQ (pa|ri®) + G2 asa]
b «

+ ZUTBMB[ pQ|7° )+Gp§rﬁiﬁ:|

rBiB
+ ) (pgli*i®)”

i(‘z
+ Q0 (4.24)

The derivatives of the orbital energies are the diagonal elements of this ex-
pression. Here only the derivatives of the orbital energies of the occupied orbitals
are needed, leading to:

aFajajOé b
I — = 2 Ua‘aFar‘a
8}?b jg: rJ J
+ Ha(.b).
+ ZQU,?;Z 55 |ri%) + GO i
b Y]
+ ZUZB[ “j |”)+G]jmﬁ}
rif
+ Y i)
al(b
+ Q. (4.25)

Using the fact that the orbitals are eigenfunctions of the Fock-matrix and split-
ting summations over all orbitals into sums over occupied and sums over unoc-
cupied orbitals gives

aFajaja

5o
OR, Jjeg
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+

(b)
Hajaj“
+ Z Ugdia [2%5%k*5%) + G9&jaaie]

koo
+ UL [2(5%5%1a%i) + G9%agase]
b e Bzeq . «
+ Z U/fﬁiﬁ |:2(j J |kﬁ7’6) + Gjaﬁjak;ﬁiﬁ}
kBB
+ Ufffiﬁ [2(jaja|aﬁiﬁ) + G?Oﬂj“aﬁiﬁ}
aBib '
+ Y G
icy
+ Q. (4.26)

Using equation (4.12) leads to

aFajaja

_ al®) o
6Rb — _S jo‘j'leja

a(d)

~ Y sph [@ J kaza>+acjsjaka,.a]

kg
+ ) US [2(5°5%a%i) + G9agaso]
a“i™
1
b ‘o - .
_ Z Slf/fiﬁ {(]a]akﬁzﬁ) + §G?O‘Bj“k/’i5:|
kBB
b o - .
+ Z Ufﬁiﬁ {2(]a3a|aﬁlﬁ) + G?rvﬁjﬂaﬁiﬁ]
aBiB

+ ) e

jo

®)
+ Q%dja (4.27)

4.5 The 1st derivatives of the orbital coefficients

The derivatives of the unoccupied-occupied block allow the construction of a
linear system of equations that determines the response of the orbital coefficients
to the perturbation:

aFaaaja b
— = UXoaFa
aRb ; ra J

+ > USRF® 4oy
T
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+

+

Ha(ba)_a
Z Uﬂ’?l"‘ [ ( aja|,],,ai ) Gggj r"‘z‘*]

roge

b . .3
SO UZ 2005 ) + GO

rBiB

Z(aaja|l-aia)b

i

a(b)
Q% hajo (4.28)

Splitting the sums over all orbitals into sums over occupied and sums over
unoccupied orbitals gives

OF® o jo

ORy

_|_

_|_

ZUZ%ZQ

ZUogbjaFaaabﬂ

por

1Y)

Z U Qg aaja|ka a) + G “k‘)‘z“}

kg

S Ugth (20072 %%) + G

b

b
Z Ulf/’iﬁ [ (a®j*k77) + Gaﬁgﬂkﬁm]

kBB

b
Z Uf,,i[, [ (a®jb7i7) + Gaﬁjabﬁm}

bBiB

Z(aajaﬁaia)b

jo

a(d)
Q as jo (4.29)

Using equation (4.12) to eliminate the occupied-occupied blocks of the U-matrix

yields

OF o o

ORy

S (~Ub = 80 ) F o

qo
lfab Fe
oo a“be

Ha<b>

Z Sak”z“ [ |kué (X) +5 G JYkxe
kg
Z U age aa]a|ba a) + Ga"‘ ub"‘z"‘]

bege
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b
Z Sgé[i)iﬁ

K58
+ S UR, [2ace )
bB4B
+ Z(aaja|iaia)b
1;0(
+ Q0.

kwf%%%+%G

af
a®jokBis

}

|

af
+ G o japsin

(4.30)

Given that the Fock-matrix is diagonal and using the definition (2.22) of the

Fock-matrix together with equation (4.20) yields

FUBYE) + GoSapaa ] Uitlia

|
|

aF;T?:ja - ;[(6&1 — €50 )0 jobgape + 2(a”

+ Y U, {Q(ao‘ja‘bﬁiﬂ) +G3§j%ﬁi4
bBiB

N Zsal(ai)iaefafsiajafgaaba
bojo

DI [(a“j“lk“i“) + %Ggsjaw
koo

N Z Sﬁl(cbﬁ)iﬁ [(aajakﬁiﬁ) + %Gsfjakm

+ ijZEQja

(4.31)

From the Brillouin condition we have that expression (4.31) should equal 0.
This gives us a system of simultaneous equations for U,; called the Coupled
Perturbed Hartree Fock (CPHF) equations. Essentially equation (4.31) gives
the residue of the system of simultaneous equations. Traditionally the terms
involving U,; would be considered the left-hand-side, whereas the other terms

would be considered the right-hand-side.
In practice what we need is the residue for a gi

ven approximation to U. The

residue can be used to update U and compute a new residue until convergence
is achieved. For this purpose we need to compute the following in the DFT code

[b]
Gl
1
b b
= Z Gg‘gjo‘bai"‘U%ia - Z §Gggjakaia5a§€2ia
b koo
1 (b)
¢ Bb ¢
+ Z Ggfj“bﬁiﬁUbﬁiﬁ - Z §G:§jakﬁwsﬁk"iﬁ (4.32)
bBis kBB
b
- Z Ggaajaral'anaia
roge
b
+ Z Gggja'fﬁiﬁ Urﬁﬂiﬁ (433)
rBiB
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Substituting the definitions given in equations (4.21) and (4.22) for the G’s we
have
o [b]
G gaja
a a a et a @ 62E1C(PQ’P,B) ab
= Z Z Cﬂaa C’yja (C}\TQ oic + CAiaCJTQ)WUrQia
reY pyo e g

0?E,.(P*, PP)

U (4.34)
o 6] rBiP
oP2,0P)

T D0 Y Chae O (CRaClia + CRaCl )
rBif pvio
Using the definition of U we have
lb]
G jaja
O*Eye(P*, PP
— Z OaaaCS‘a acc( ’ ) /{x:
B J oP2,0Pg,

pnro
o a 82Ezc(Pa7Pﬂ) Bb
2N Qv o
a a alb
= Y oo.cg.cel (4.36)
nuv
where
P = 3 (C5 Ol + C850 C2 ) U (4.37)
Pff; = Z(Cfr[’ Cfiﬁ + Cf\iﬁ Cfrﬂ)Uflfiﬁ (438)
rB4B
2 [}
oot = 3 TEI I gy
v GPWGPM
0?E,.(P*, P?
- Z(—)Pfj (4.39)

[e% B
Ao apuuap)\a

Using the definition for the matrix elements we have that

Gl = /(E [—82f XuX
m = 9C0pa He
9% f 92 f
2 . (0]
+ { 5C3’Yaavpa+5C3’Yaﬁvpﬁ} V(XMXV)]C
of of b
2yl 4 2L g,y 4.4
+ { a%ana + a%ﬁwﬁ} V(Xuxwv))dr (4.40)

where ¢ loops over po, pg, Yaa:, Yag @nd vgg. The various quantities ¢ ] are
given by

Pl = N P (4.41)

%
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pg] = Z yXuXV (4.42)

Vol = ZPC”’V XuXv) (4.43)
Vol = Zpﬁbv XXo) (4.44)
W, = 2Vpa Vol (4.45)
W= Vel Vs + V- Vol (4.46)
Wg’gg = 2Vpg- Vp[b] (4.47)

This concludes the material we need for the “left-hand-side”.

The “right-hand-side” includes Q"‘SL) jo, and involves the Kohn-Sham matrix
elements. Taking the explicit derivative of the matrix element contributions will
introduce the gradients of the quadrature somewhere. So we need to take a closer
look at what that involves:

a(d) _ o/ a $C( ’ )
Qe = § frae Cllja — g e - (4.48)

Z © nCa Q) (4.49)

where

8E(b)(P°‘ Pﬁ)
alb) — ZEwer” »7 ) 4.50
Q) or (4.50)

Using the expression for the matrix elements leads to

af aPA TAz
Q uy = ZwAl Q j1274

an
: / 25z e

*f >*f (b)
T 5 VP T B eV )l

of o 4 of o )y
+ { 8’7aav a’}/aﬁvpﬁ } V(XMXV)

0

+ 5 ()

0 0
+ gV + 5 Vo) Vi) Jir (1.51)

where (taking into account that the grid points also depend on the atom posi-
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tions)

pa(rai) = Z Z PSVXM(RB’rAi)XV(RC7TAi) (4.52)
BC ¢ up
vV E Ve

0 Rp,ra:)xv(Ro,7a;

A = Y 3 ey Ao rad) - 5
BC e up
vV E Vo

(4.54)

Depending on which coordinates correspond to that of atom with respect to

which we take the derivatives we obtain

Oxu(Rp,7ai)

different expressions

Pa v R ) 1) B = D
; Z N2 ORp X ( C 7’A)
M€ pDp
| ZASH Z6]
0 v R ) %
S Y Pon(Rara) iR, C=D
= ORp
HEUB
P (ra) = v EVD oo (4
> X A (g (e o) +
B,C
HEUB 7 A=D
| SR Z6]
Xu(RB,7TDi) _BXV(E))};C;D”)
0, A=B=
0, A=C =
A similar result is obtained for the gradients of the density
Voalra) = > Y. PoV(xu(Re rai)xu(Re,rai))  (4.56)
B peus
vV E Vo
OV (xu(RB,mai)xv(Rc, 74i))
VoD (ra) = P~ B ! ’ 4.57
wWea) = ¥ X e (457)
Y M EUB
vV EvVe
(4.58)

where the gradient operator works on the coordinates of grid points only. Writ-
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ing out we have

= OVxu(Rp,rai
Z Z Ppy (WXV(RC,TAO +
c
M€ pup | .
vV E Vo
%WVXV(RCJAU)
" Oxv(Rp,rai
Z Z P (VXM(RB,TAi)%;A) 4
B
HE B | -
Ve 17»)
\OVxu(Rp,rai)
Vp,(xd) (rai) = X;;(VRB(;:Az) | dRp ) (4.59)
Z Z P)l?u (X,LT[?’T&XV(RC,TDZ') n
BC e pp
vV Evo )
v ’ _D
%?MVXV(RCaTDi)
Oxv(Rc,rpi
Vxu(RB,"Di) %DD)
XN(RB,TDZ‘)%W)
0 A=B=D
" A=C=D

This concludes the derivation of the ingredients needed to construct the linear
system of equations for the unoccupied-occupied block of the U-matrix.
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Chapter 5

Derivatives and quadratures

5.1 The exchange-correlation energy

The exchange-correlation energy in DFT is defined as

EZC

I
~
—
2
&

5
S~—"

Y

3

(5.1)

(5.2)

2
g
®
~
>
E
2
w

where we have introduced a quadrature because the function f cannot be in-
tegrated analytically. Furthermore, the vector R specifies the locations of the
nuclei and r specifies a point in space. To complete the definition we write the
density p as

p(Rr) = S 6r(Rr)6i(R,1) (5.3)
i
¢i(R,r) = Zcinj(Rj»T) (5.4)
J
which gives the density in terms of the AO-basis as
p(R,1) = Z ciiciX (R, m)xn (R, 7) (5.5)
ijk

5.2 The exchange-correlation energy gradient

In this document we will consider calculating the gradient (and hessian) of the
exchange-correlation energy with respect to nuclear displacements. Also we will
take a closer look at the consequences for the gradient expression of introducing
a quadrature to evaluate the energy. Essentially the quadrature leads to two
views to calculating the gradient.
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The first view is to take the integral expression for the exchange-correlation
energy (5.1) and differentiate it

VA, = / Vaf(p(R, r))dr (5.6)

where V 4 denotes the fact that we are taking the gradient with respect to
nuclear displacements of atom A. Just as we cannot integrate f(p(R,r)) ana-
lytically, we also cannot integrate V 4 f(p(R, 7)) analytically and we have to rely
on a numerical integration

VAEIC ~ Z WRB; VAf(p(R’ r))|T:TBi (57)
B

Essentially this approach is equivalent to applying the Hellman-Feynman theo-
rem. Writing this expression out in more detail we have

f(p)
VaE,, = wp; ———>
A E B ap

Bi

. M VaR (5.8)

p=p(R,TB:) dr R=R,r=rp;

Note that here the contributions from V 47 are zero because the quadrature was
introduced only after differentiation.

The second approach starts with the fact that the energy expression we are
actually using involves a quadrature, i.e.

Emc ~ Z 'lUAzf(p(R, rAi)) (59)
Ai

and therefore the gradient of the energy is the gradient of that expression, which
yields

VAExC ~ ZVAwBif(p(RJB,»)) (510)
Bi

Writing this expression out in more detail leads to the equation

VaEwe =~ Y f(p(R,75:))Vaws;
Bi
d
S s 3?’)(/)) pg; r) VAR
Bi P lp=p(Rr5:) R=R,r=rp;
0 op(R,
+ ZwBi o1(e) Op(R.1) Var (5.11)
Bi 9p p=p(R.,rBi) or R=R,r=rp;

In this case we find that we actually have contributions from the gradients of
the quadrature weights and the grid points.

Both equations (5.8) and (5.11) yield identical results in the limit of an
exact quadrature, but for every other quadrature the results will be different.
To illustrate the severity of the difference, we computed the density of a lithium
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Table 5.1: A comparison of the analytically computed DFT gradients of LiF
(based on the Hellmann-Feynman approach and the full gradient approach) and
the numerical gradients where all densities were optimised using an accurate grid

Grid Hellman-Feynman gradient Full gradient Numerical gradient
Li (Eg/ap) F (Eg/ap) Li(En/ag) F (Eg/ag) Li(Eg/ag) F (Em/ag)
low -0.0001154 0.0479085  -0.0701652  0.0701652  -0.0721060  0.0721060
medium  -0.0002365 0.0018857  -0.0070063  0.0070063  -0.0069640  0.0069640
high -0.0000843 -0.0003445 0.0004372  -0.0004372 0.0004380  -0.0004380
veryhigh  -0.0001083 0.0002059  -0.0002052  0.0002052  -0.0002060  0.0002060

All calculations were performed using GAMESS-UK. The LiF bond length
was 2.9322936 ag, with the bond length distorted by 40.005 ag and —0.005 ag
for the numerical gradients. The 6-31G* basis set was used with the B3LYP
functional. The density was optimised with the veryhigh accuracy grid. The
low, medium, high and veryhigh grids used are defined in the GAMESS-UK
documentation; in all calculations the Murray, Handy and Laming weighting
scheme was used instead of the default.

fluoride molecule with a high accuracy grid, and then computed the gradients
with various grid sizes once with equation (5.8) and once with equation (5.11).
The results are given in table 5.1. From this table we can learn two things.

First, for heteronuclear molecules the quadrature gradient contributions can
be essential to maintain the translational invariance of the energy. This transla-
tional invariance requires that the gradients along 1 coordinate of all atoms add
up to zero. Clearly this is not the case with the Hellman-Feynman gradients,
but the full gradient is correct in this respect.

Second, including the quadrature gradient terms does not necessarily lead
to more accurate gradients. Assuming that the full gradient results with the
veryhigh grid are the exact values, it is clear that the full gradient results with
the low grid exhibit far greater errors than the Hellman-Feynman gradient with
the low grid.

The conclusion is that the question as to whether the quadrature gradient
terms should be included is a consistency matter. In cases such as dynamics,
where it is essential that the energy and the gradient are consistent, using the
full gradient expression is compulsory. In simple searches for local minima of the
energy (e.g. steepest descent), the Hellman-Feynman gradient may be sufficient.
Moreover, if one decides to use the full gradient expression, then one should be
aware that this makes sense only if the grid with which the density is optimised
is identical to the grid used to evaluate the gradient, otherwise consistency
between the energy and the gradient will be lost.

5.3 Definition of the quadrature

In the case where we use a quadrature we follow Becke’s scheme [2] where the
total grid is constructed from atomic grids merged together through a weighting
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scheme (see appendix A). There are two ways to approach this quadrature that
lead to equivalent results but different gradient expressions. The view adopted
by B.G. Johnson et al. [6] is essentially that one chooses a quadrature point
r; = r in space independent of the location of the atoms and then assigns it to
an atom to define its atomic weight w} = w’(Rpg,r). The atomic weight in this
case is a function of the location of the atom. The approach adopted by J. Tozer
is that each quadrature point is defined relative to some atom r; = Rg+r. The
atomic weight in this case is w} = w’(r) and is independent of location of the
atom.

The approach adopted by Tozer is probably the most consistent and can
be used to derive both gradient and hessian equations. The approach adopted
by Johnson on the face of it involves much more complicated terms in calcu-
lating the gradient, e.g. dw'(Rp,r)/dRp, although in practice all these terms
can be avoided using the translational invariance of the energy. In that case
the equations become simpler than following Tozer. The problem is that it is
conceptually much more complicated to use Johnson’s approach to calculate
hessians.

5.4 Johnson’s formulation of the weighting scheme
and the gradient of the weights

As indicated above Johnson considers a grid point as being independent of the
molecular geometry. The consequence is that the atomic weight becomes a
function of the location of the atom. The weighting in this formulation becomes

PB(R, T’)

wp(R,7) = w/(RB7r)m (5.12)
Z(R,r) = Y Pc(Rr) (5.13)
C
Pg(R,r) = ] s((Rbrags, B, C, u(R, R, 7)) (5.14)
C+#B
_ |r=Rp|—|r— Rc|
u(Rp, Re,r) = Ry Rl (5.15)

(5.16)

where 7 is the fixed grid point; the cut-off profile function s and the boundary
shifting function v have been defined by Becke [2].

In calculating the gradients of the weights the most complicated term comes
from Vpw'(Rp,r). In practice evaluating this term can be circumvented using
the translational variance of the energy, i.e.

Vpwp(R,r) = =Y Vawp(R,r) (5.17)
A+B
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so the only gradients we need are of the form V wg(R, ), where we have the
weights of grid points relative to atom B differentiated with respect to nuclear
displacements of all other atoms. Writing this expression out gives

Vaws(Rr) = w'(Rpr) [%ﬁ” _ Py(R, r)% (5.18)
where A #£ B. The first term can be written out as
VaPp(R,r) = Va [] s(Rs Rc,7) (5.19)
C#B
= S(ZB;E%VAS(RB,RA,T) (5.20)
The second term becomes
VaiZ(R,r) = VAZPB (R,7) (5.21)

= VAZH (R, Rc,7) (5.22)

B C+#B

P
_ Z MVAS(RA,R(LT‘)
CZA S(RA,Rc,T)

PB(RvT)
E —_ Rp, R 5.23
i B#A S(RB7RA7T) VAS( B A7r) ( )

The cut-off profiles s are functions of v which is in turn a function of the
Bragg-Slater radii of the atoms involved and the elliptical coordinate p

S(RB,Rc,’I’) = S(V(RBraggvﬂ(RB;RCar))) (524)
The gradient of this becomes

ds(v)

VAS(RB,Rc,T) = dy

v=v(Rpragg,(RE5,Rc,r))
v (Rpragg, 1t)

dp p=u(Rp,Rc,m)
VAM(RB,Rc,T) (5.25)
XA — X

Ra,R =
Vap(Ra, Re,r) " Rallfa — Bol

(Ir = Ra| = Ir = Re[)(Xo — Xa)

+ 5.26
|Ra — Rel? (5.26)
o x —XA
VAM(RB7RA7T) - |’I“ — RAHRB — RA|
o Ur—Ral- - RADXe =X o

[Rp — Ral?

which completes the gradient expression.
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5.5 Tozer’s formulation of the weighting scheme
and the gradient of the weights

According to Tozer, the location of the quadrature point is a function of the
location of the atom to which it belongs. The atomic weight in this is case
is dependent only on the relative position of the grid point to the atom and
therefore is independent of the geometry. This view point leads to defining the
weighting scheme as

_ W Pelrs)
wg(R,r5) = w'(r) Z(Rorp) (5.28)
Z(R,rp) = Y Po(R,rp) (5.29)
c
PB(R,’FD) = H S(V(RBragg7B»Ca/U'(RBvRCWTD))) (530)
C+#B
Irp — Rp| —|rp — Rc|
Rp, Re, = 5.31
/’L( B C TD) ‘RB _RC| ( )
ro = Rp+r (5.32)

where w'(r) is the weight in the atomic grid, and r gives the coordinates of the
point assuming the atom is located at the origin.
The gradient of the weights now becomes

VaPs(R,rp VaZ(R,mB
VAU)B(R, TB) = w'(r) |:Z(+’[”Bﬁ) - PB(R7 TB)M (533)
where there is no restriction on A. The first term can be written as
VaPp(Rorp) = Va [] s(Rp,Re,rp) (5.34)
C+#B
P
— Z %VAS(RA,Rc,TA)
C7a s(fta, frc,ra
Pp(R,7B)
4+ —————=Vas(Rp,Ra,r 5.35
s(Rp,Ra,7B) as(Rp, Ra,rp) (5:35)
The second term becomes
VaZ(R,rp) = VAZPB(R7 D) (5.36)
B
= Vay_ ] s(Rs,Re,rp) (5.37)
B C+#B
= Y %VAS(RAMR(%TD)
ey s(fia, Iic,p
Pg(R,7p)
_— Rp. R
+ E;‘ S(RB,RA,T'D)VAS( B, Ra,TD)
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Pp(R,r
+ Y #VAS(RByRCaTA)
B,C#B 8( B CvrA)

The next step is to consider Vas(Rp, Rc,rp) which yields

ds(v)
dv

dv(p)

dp p=p(RB,Rc,TD)
Vau(Rp,Rc,rp)

Vas(Rp,Rc,rp) =

v=(RBragg I)

so the all important ingredient is Vau(Rp, Ro,7p), which yields
XA — XD

Irp — Ral|Ra — Rc

(I'p = Ral = |rp — Re|)(Xc — Xa)

Vapu(Ra,Re,rp) =

- |Ra — Rc?
l‘D—XA
R, R
VAM( B A,TD) |70D_RAHRB_RA‘
4 Urp =Bl —|rp - Ra|)(X5 — X4)
|Rp — Ral?
-TD_XB
Vau(Rp, R
A/~L( B CaTA) |7‘D_RBHRB_RC|
-TD_XC

|rp — Rcl||Rp — Rl

(5.38)

(5.39)

(5.40)

(5.41)

(5.42)

(5.43)

5.6 The exchange-correlation energy hessian

In this case we will consider the case including the derivatives of the weights

only. So we assume that the energy is given by

E.. = ZwAif(p(RarAi))
i

(5.44)

and therefore the hessian of the energy is the hessian of that expression which

yields

VaVBE. =~ Y VaVpweif(p(R,re:))
B

writing this expression out in more detail leads to the equation

VaVpE.e ~ Y [VaVpwailf(p(R,rei))
Ci
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+ Y [Vawed|[Vaf(p(R,rei)]

Ci

+ Z[VBwCi] [Vaf(p(R,rci))]
Ci

£ Y welVaVsf(p(B.ren)] (5.46)
Ci

Obviously the first derivatives of the weights have already been derived, so that
only the second derivatives are of interest.

5.7 Johnson’s approach applied to the hessian
of the weights

We start from the same formulation of the weights as in section 5.4. In cal-
culating the hessians of the weights the two most complicated terms will be
VaVpw' (Rp,r) and VeVpw'(Rp,r). In practice we can use the translational
invariance of the energy. This implies that all derivatives of the energy have to
be translationally invariant as well. Thus we can use

VaVpwp(R,7r) = -— ZVAVCwB(R,T) (5.47)
C#B

VBVBwB(R,T) = - ZVAVBIUB(R,T) (5.48)
A#B

where the latter equation can be evaluated with help from the first.
Thus the basic building block we need is V4V pwe (R, ) which is

VaVpPo(R,r)
Z(R,T)
B {VaPc}{VBZ(R,r)}
Z2(R,r)
. {Vch}{VAZ(R, T)}
Z%(R,r)
P(;VAVBZ(R, ’I“)
 Z%(R,r)
2PcN AZN g7
Z3(R,r)

VaVpwe(R,r) =w'(Ro,r) {

(5.49)

where

VaPo(R,r) = Va [] s(Rc.Rp,r) (5.50)
D#C
PC’(er)

- _o\r) 51
S(Ro Rar) Vas(Re,Ra,r) (5.51)
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Pc(R, 7‘)

Po(R = —— Re, R 5.52
VpPc(R, ) S(Rc,RB,T)VBS( o Rp,7) (5.52)
If A# B # C # A then the 2nd derivative can be written as
PC(Rv T)

VaVpPo(R,7) =

s(R¢,Ra,r)s(Rc, Rp, )
{VAS(Rc,RA,T)}{VBS(RC7RB,T)} (5.53)

however in the case that A = B # C we have
PC(Ra T‘)

P, = T 2
VaVaPo(R,r) S(Ro R )2 {Vas(Rc,Ra,r)}
PC(Rv T) 2
SR R, A )
Pc(R,T)
—_— Re, R 5.54
+ “Ro Ba 1) VaVas(Rc, Ra,r) (5.54)
Pc(R,T)
= ——— > -_VaVas(Re,R 5.55
S(Ro Ra.r) VaVas(Rc, Ra,7) (5.55)
Now we need the 2nd derivatives of the cut-off profile
d?s(v) [dv 2
VaVas(w(u(Re, Rp,r))) = % FVAM(RCaRDar)
ds(v) d*v 2
T 2 [Vap(Re, Rp,r)]
ds(v) dv
+ WIVAVAM(RC,R[LT) (556)
The derivatives of p are
w(Re,Rp,7) = (r—Rc|—|r—Rpl|)-|Rc— Rp|™* (5.57)
du(Ra, Rp,T _ _
M = —(@—Xa)-|lr—Ral™"-|Ra— Rp|™"
dX 4

— (Xa—Xp)-(Ir—Ra|—|r—Rpl)

‘/Ra—Rp|™? (5.58)
d*u(Ra, Rp,7) -1 -1
ax? = |r—Ral”" - |Ra— Rp|
—(z = Xa)?-|r = Ral™®-|Ra — Rp|™!
2(x — XA)(Xa—Xp)-|r—Ra|™-|Ra — Rp|®
—(|r = Ral = |r — Rpl) - |Ra — Rp|~*
3(Xa—Xp)*-(Ir = Ra| — |r — Rp)
‘[Ra — Rp|~® (5.59)

+ + + +

dQ,U'(RAv RDa T)

—(y—-Y — X)) lr— -3 — -1
XAV (y—Ya)(x — Xa) |r—Ra|™-|Ra — Rp|
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du(Re, Ra, )

dXa

d*w(Re, Ra,7)

axz

dQ,LL(RC, RAa T)

dXadYs

5.8 Notes

+ (y—Ya)(Xa—Xp)-|r—Ral™"-|Ra— Rp|™*
+ (x—XA)(Ya—Yp)-|r—Ra|™*-|Ra— Rp|?
+ 3(XA—XD)(YA—YD)-(‘7‘—RA|—|7‘—RD|)
R4 — Rp|™® (5.60)
= (;C—XA)~|T—RA|_1~|R0—RA‘_1
+ (Xo—Xa) - (Ir = Re| —|r — Ral)
|Re — Ral™? (5.61)

= —|r—Ral™"-|Rc — Ra|™

+ (1‘—XA)2-|’I“—RA|_3'|R0—RA|_1

+ 2(x— Xa)(Xo = Xa) - Ir— Ral™" - |Ro — Ra|™®

+ —(Jr=Rc|—|r—Ral)-|Rc — Ra|™®

+ 3(Xc—XA)2'("/‘—Rc|—|7’—RA|)
R — Ra|™? (5.62)
(x—Xa)(y—Ya)-|r—Ra|™®-|Rc — Ral™"

+ (y—Ya)(Xc—Xa) |r—Ra|™" - |Rc — Ra|™®

+ (2= XA)(Yo—Ya)-|r—Ra|™'-|Rc — Ra|™*

+ 3(Xe—Xa) (Yo —Ya) - (Jr—Re|—|r— Ral)

|Rc — Ra|™® (5.63)

The distance between two points is defined as

|Ra — Rp| =
d|Ra — Rp|"
dX 4

d|Rs — Rp|"
dXp

{(Xa—XB)?+(Ya—Yp)*+ (Za - ZB)2}1/2

n{(Xa—Xp)2+ (Ya—V5)2 + (Za — Z5)2} " 2% (X4 — X

)

n|Ra — Rp|" %(Xa — XB) (5.64)
—n|Ra — Rp|""%(Xa — XB) (5.65)
(5.66)
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Chapter 6

Implementation detalils

In this chapter we provide an overview of the issues around the implementation
of the DFT hessian. This overview also indicates the changes made to the code
so that they can be found easily.

6.1 Design considerations

To appreciate the choices made to incorporate the DFT hessians into the existing
code, one needs to understand the structure of the original code. GAMESS-
UK [3] is a general purpose molecular ab-initio electronic structure code that
offers a wide range of functionality. In particular it offers extensive Hartree-Fock
type capabilities, including Restricted and Unrestricted Hartree-Fock models
(RHF, UHF).

The most widely used DFT model, called the Kohn-Sham model, relies on
equations that are only slightly different from the Hartree-Fock models. The
quantities needed for the Kohn-Sham model require a substantial amount of
code to implement them but the Kohn-Sham equations to be solved can be
constructed starting from a Hartree-Fock code with only minor modifications.

In the design phase of the CCP1 DFT module it was realised that the above
consideration offered the opportunity to separate most of the DFT code from
the main code. The code implementing the Kohn-Sham quantities would be
collected in a relatively independent module. This module would be called from
the Hartree-Fock programs requiring only a small Application Programmers
Interface (API). The resulting interface provide three main capabilities;

e calculating the Kohn-Sham exchange-correlation energy
e calculating the Kohn-Sham matrix elements
e calculating the Kohn-Sham gradient contributions.

The loose coupling between the Hartree-Fock and the DFT code provided the
opportunity to distribute the DFT module to the CCP1 community independent
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from the main code. Other groups can integrate this DFT code with their own
ab-initio programs without too much effort if they wish.

The DFT hessian can be implemented using the same design strategy. The
Hartree-Fock code can be modified to include Kohn-Sham contributions to the
CPHF equations, and the Hessian expression. These terms were made available
to the Hartree-Fock code through two additional API functions. The code to
compute these quantities was integrated into the DFT module to guarantee

e optimal code reuse opportunities during the implementation phase,

e consistency of the quadrature through the energy, gradient and hessian
calculations, and

e optimal interoperability with other main codes that already use the DFT
module

Below the changes involved will be outlined in more detail.

6.2 Additions to the DFT module API

The DFT module API was extended by two functions CD_cphf and CD_hessian.

The function CD_cphf can compute two contributions to the CPHF equations
in the AO-basis. The first contribution consists of QQSQ and Qﬁg)l} as defined
in equation (4.51). These terms contribute to the right-hand-side of the CPHF

equations. The second contribution consists of G“l[i’]u and G° ,[f]y as defined in
equations (4.40) and (4.39). These terms contribute to the right-hand-side of
the CPHF equations. As they again depend on the current guess for the solu-
tion they need to be recomputed at every iteration in the linear system solver.
However, the choice of passing this quantity between the DFT module and the
Hartree-Fock code limits the amount of data being transfered to the minimum.
This way memory limitations are pushed back to larger molecules than would
otherwise be the case. The computation of each of these contributions can be
switched on or off using a boolean argument.

The function CD_hessian computes the DFT contributions to the hessian
expression. These terms are defined in equations (4.2) and beyond.

6.3 Modifications of the main code

To appreciate the changes required to incorporate the DFT contributions into
the second derivatives an overview of the code seems useful. Below an overview
of the Hartree-Fock second derivative code within GAMESS-UK is given. To
illustrate where the DFT API needs to be called these calls have been included:

scf Hartree-Fock program driver
rhfclm Hartree-Fock program
hstar Fock matrix builder
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CD_energy
diis
jacobi
hfgrad
stvder
jkder
dabab
CD_cphf
dgenrl
fockd2
formeg
chfndr
chfcls
rhscl
chfdftrhs
CD_cphf
chfdrv
chfeqv
chfdftau
CD_cphf
dertwo
chfcla
dr2ncO
dr2ovl
dr2ke
dr2pe
dr2dft
CD_hessian
dr2int
dr2den

Kohn-Sham matrix builder
Fock matrix extrapolation
Diagonalisation

l-electron derivative integrals

2-electron derivative integrals

construction of HF density matrix elements

DFT terms added on to derivative Fock matrices
construction of 2-electron derivative integrals
HF terms added on to derivative Fock matrices
adding 2-electron terms onto gradient

Construct the HF terms of CPHF matrix
Construct the CPHF right-hand-sides

Calculate DFT right-hand-side contributions
Solve the CPHF equations
Calculate DFT left-hand-side contributions

assemble wavefunction contribution

2nd derivative of nuclear contribution

2nd derivative of overlap integrals

2nd derivative of kinetic energy integrals

2nd derivative of l-electron potential energy integrals

2nd derivative of DFT contributions
2nd derivative of HF 2-electron integrals
HF density matrix construction

To incorporate the DFT contributions correctly into the Hartree-Fock code
two types of changes are required.

First, the DFT contributions account for terms due to the exchange-correlation
energy replacing the Hartree-Fock exchange terms. Therefore, the Hartree-Fock
exchange contributions must be zeroed or in the case of hybrid models be sup-
pressed. For this purpose the exchange integrals were scaled with a Hartree-Fock
exchange fraction called hf_wght in:

e subroutine fockd2 scaling down the Hartree-Fock exchange integrals
that contribute to Q*®.

e subroutine dabab scaling down the density matrix terms that are asso-
ciated with the Hartree-Fock exchange in the gradient.

e subroutine rhscl scaling down the Hartree-Fock exchange integrals that
contribute to the right-hand-side, i.e. the Hartree-Fock equivalent of the

ki Tajki i

terms in equation (4.31).
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e subroutine chfcls scaling down the exchange integrals that contribute
to the Hartree-Fock exchange equivalent of the ,, G5, Ui terms in the
left-hand-side of the CPHF equations.

e subroutine sgmatm scaling down the Hartree-Fock exchange integrals
that contribute to the gradient of the Fock matrix. I.e. the Hartree-Fock
exchange contribution to F'*;.

e subroutine dabab scaling down the density matrix terms that are asso-
ciated with the Hartree-Fock exchange in E(@(®),

The second category of changes involves computation of the DFT contribu-
tions and their subsequent addition to the remaining HF terms. In the CPHF
equations additional code is needed because the main code works in MO-basis
whereas the DFT module works in AO-basis. This interfacing issue was resolved
by introducing appropriate wrapper subroutines for the DFT module functions.
The changes involved:

e calling function CD_cphf from within subroutine jkder to calculate
Q>® for the right-hand-side.

e introducing the subroutine chfdftrhs to calculate the ),. GgfkiSa,(cl?
terms for the right-hand-side of CPHF equations. This subroutine is called
from within subroutine rhscl.

e introducing the subroutine chfdftau to calculate the ), aspiUp; terms
for the left-hand-side of CPHF equations. This subroutine is called from

within subroutine chfeqv.

e introducing the subroutine dft_dfock to calculate the )_,. asbiUpi con-
tributions to F'“;;. These contributions can be calculated using function
CD_cphf. The subroutine dft_dfock is called from subroutine pfockec.

e introducing the subroutine dr2dft that calls function CD_hessian to
calculate E(®)(®) This subroutine is called from within subroutine dertwo.
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Chapter 7

Conclusion

This report details the equations required to implement vibrational frequen-
cies within the framework of DFT. Also it outlines the changes required to a
Hartree-Fock code to include this functionality. The formalism as presented
here has been implemented in the CCP1 DFT module and incorporated into
the GAMESS-UK electronic structure code. Work on efficiency enhancements
due to various screening techniques and effective parallelisation of the formalism
is currently in progress.
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Appendix A

Becke weights

In the Becke weighting scheme the function s is defined as

s(v) = 5[1—f(f(f(l/)))] (A1)
flv) = gv—%v?’ (A.2)
v(p) = pta(l—p?) (A.3)
For the 1st derivative one obtains
aftv) 3 3,
o T 22" (A-4)
ov(p)
g = 12 (A.5)
Osw(w) _ _10f(f(f(v(w)) 3f(f(1/(u)))_8f(V(u)).5V(u)),A6)
o 2 of(f(v(w))) of (v(w)) v () o
For the 2nd derivative one obtains
ag; (2”) = -3 (A7)
88”;5) = -2 (A.8)
Ps(v(p) _ 132 fUf@))) {&f(f(V)) fif(V).aV(u))'2
ou? of (f(v))? af(v) ov o |
. 1af< (W) PIS) [5f(V)_8l/(u))'2
2 9f(f(v)) of (v)? ov o |
n 16f( (fw)) of(f(v) *f(v) {31/(#))'2
2 0f(f(v)) of (v) ov? o |
18f( (fw) 9f(f(v)) 9f(v) &v(p)
T o) ot ow o Y
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Appendix B

DFT utils

B.1 Functional quantities

The full list of quantities needed from the density functionals is

f F(Par P8y Yaar Yaps V5) (B.1)
% (B.2)
aa;j; (B.3)
aiic - (B.4)
aii @ (B.5)
% (B.6)
2
a,i gpa (B.7)
2
8; gpa (B.8)
2
3’yfag — (B.9)
ayig — (B.10)
2
aviﬁgpa (B.1)
2
% (B.12)

39



o0 f

T (B.13)
2
% (B.14)
2
87;7;% (B.15)
_or (B.16)
Naaaa
avjjng (B.17)
2
c‘h;% (B.18)
2
% (B.19)
2
0waﬁgvaﬁ (B.20)
2
5723(’{%5 (B.21)
(B.22)

B.2 Derivatives of basis functions

For the second derivative code we need the second derivatives of the gradient of
the density. This implies that we need third derivatives of the basis functions.
A basis function is constructed from three factors of the form

Xz = 2Pexp(—az?) (B.23)

To construct 3rd derivatives we all derivatives upto 3rd order, i.e.

% = (paP~! = 2axP ") exp(—azx?) (B.24)

x

*Xa -2 2 p+2 2

5 = (plp — 1)2P~% — 2a[2p + 1]zP 4 4a®aPT*) exp(—ax®) (B.25)
x

Xa -3 2, p—1 2

55— (plp=1lp = 2]2"7" — 6apz?) exp(—az”)

+  (12a2[p + 1]2P™! — 8a2P™3) exp(—ax?) (B.26)

The derivative of a basis function with respect to a nuclear coordinate differs
depending on whether we need to include the derivative quadrature or not.
The basis functions are defined as

Xu(RAT) = (r = RAP(ry = RII(r. — RAY'
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exp(=af(re — R)* + (ry — Ry))® + (r- = R2)?]) (B.27)

differentiating this basis function with respect to RS gives

3><ua(]§; Doy (B.28)
if A+ C and
%@2’” = [-p(re = BRI (ry — R (- = RE)'
B 2a(ry — Ry)P"(ry — Ry)(r- — R2)']
exp(—al(ry — R)? + (ry — R})? + (r. — RY)?])(B.29)
otherwise.

However, if the grid point is associated with an atom then we have

Xu(RA7P) = (RE+r, — RHP(RE +r, — R))(RZ + 7. — R)"
exp(—a[(RE +re — R})? + (R} +ry — R}
+(RE +r, — RYH?) (B.30)

differentiating this function with respect to RS gives

8XH<RA’TB) _
ORC = 0 (B.31)

ifC+# Aand C # Borif C=A= B. However if C = A # B then

ox (RA7TB) B Avp—1/pB A B A
NaTg = [_p(Rm + 7 _Ra: )p (Ry +ry _Ry )q(Rz +re _Rz )7"
+ 20(RE 47, — ROPYN(R] + 1y — ROURE + 1. — R
exp(—a[(R7 + 1o — RY)® + (RY + 1y — Ry)?

+(RZ + 1. — R$)?) (B.32)
on the other hand if C = B # A then

aX RA,T'B — r
ke = (R~ RAPURE 1y~ RYURY 4 7. R
= 20(RE 41, = RAPVARY 4, ~ BYRE 4 1.~ RAY]
exp(—a[(RE +r, — R})* + (RY +r, — R})®

+(RE +r, — RYH?)) (B.33)

41



Bibliography

1]

Roger D Amos. CADPAC: The Cambridge Analytic Derivatives Package
Issue 6. University Chemical Laboratory Cambridge, University Chemical
Laboratory, Cambridge CB2 1EW, United Kingdom. with contributions
from I. L. Alberts, J. S. Andrews, S. M. Colwell, N. C. Handy, D. Jayatilaka,
P. J. Knowles, R. Kobayashi, K. E. Laidig, G. Laming, A. M. Lee, P. E.
Maslen, C. W. Murray, J. E. Rice, E. D. Simandiras, A. J. Stone ,M.-D. Su
and D. J. Tozer.

A. D. Becke. A multicenter numerical integration scheme for polyatomic
molecules. Journal of Chemical Physics, 88(4):2547-2553, 1988.

Martyn F. Guest, Joop H. van Lenthe, John Kendrick, K. Schoffel, and
P. Sherwood. GAMESS-UK: a package of ab initio programs. Computing for
Science Ltd., Computational Science and Engineering Department, Dares-
bury Laboratory, Warrington Cheshire, WA4 4AD, England, United King-
dom. with contributions from R.D. Amos, R.J. Buenker, M. Dupuis, N.C.
Handy, I.H. Hillier, P.J. Knowles, V. Bonacic-Koutecky, W. von Niessen,
R.J. Harrison, A.P. Rendell, V.R. Saunders, and A.J. Stone.

Nicholas C. Handy, David J. Tozer, Gregory J. Laming, Christopher W.
Murray, and Roger A. Amos. Analytic second derivatives of the potential
energy surface. Israel Journal of Chemistry, 33:331-344, 1993.

Benny G. Johnson and Michael J. Fisch. An implementation of analytic sec-
ond derivatives of the gradient-corrected density functional energy. Journal
of Chemical Physics, 100:7429-7442, 1994.

Benny G. Johnson, Peter M. W. Gill, and John A. Pople. The performance
of a family of density functional methods. Journal of Chemical Physics,
98:5612-5626, 1993.

42



	Abstract
	Contents
	Acknowledgements
	Conventions
	Chapter 1 Introduction
	Chapter 2 DFT energy
	Chapter 3 DFT gradient
	Chapter 4 DFT hessian
	4.1 The explicit 2nd derivative of the exchangecorrelation energy
	4.2 De ning the 1st derivative of the orbital coe  cients
	4.3 The 1st derivative of the density matrix and the weighted energy matrix
	4.4 The 1st derivative of the orbital energy
	4.5 The 1st derivatives of the orbital coe cients

	Chapter 5 Derivatives and quadratures
	5.1 The exchange-correlation energy
	5.2 The exchange-correlation energy gradient
	5.3 De nition of the quadrature
	5.4 Johnson's formulation of the weighting scheme and the gradient of the weights
	5.5 Tozer's formulation of the weighting scheme and the gradient of the weights
	5.6 The exchange-correlation energy hessian
	5.7 Johnson's approach applied to the hessian of the weights
	5.8 Notes

	Chapter 6 Implementation details
	6.1 Design considerations
	6.2 Additions to the DFT module API
	6.3 Modi cations of the main code

	Chapter 7 Conclusion
	Appendix A Becke weights
	Appendix B DFT utils
	B.1 Functional quantities
	B.2 Derivatives of basis functions

	Bibliography

