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Abstract

This document details the equations needed to implement the calculation of
vibrational frequencies within the density functional formalism of electronic
structure theory. This functionality has been incorporated into the CCP1 DFT
module and the required changes to the application programmers interface are
outlined. Throughout it is assumed that an implementation of Hartree-Fock
vibrational frequencies is available that can be modified to incorporate the den-
sity functional formalism. Employing GAMESS-UK as an example the required
changes to the Hartree-Fock code are outlined.
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Conventions

The occupied molecular orbitals are labeled i, j, k, l, and m. The virtual molec-
ular orbitals are labeled a, b, c, d, and e. Arbitrary molecular orbitals are labeled
p, q, r, s, and t. Arbitrary atomic orbitals are labeled µ, ν, λ and σ. Molecular or-
bitals are denoted by ψ, and atomic orbitals are denoted by χ. The superscripts
α and β indicate the α-spin and β-spin components of various quantities. The
superscripts a and b indicate nuclear coordinates with respect to which deriva-
tives are taken.
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Chapter 1

Introduction

The objective of this project is to implement the calculation of vibrational fre-
quencies within the framework of Density Functional Theory (DFT). These
properties are essential for classifying stationary points on the potential energy
surface as well as determining the vibrational spectrum of a molecule. The
implementation of this property is very similar to the implementation of po-
larisabilities which will be obtained as a side effect at very little cost. In both
cases the underlying formalism depends on having the analytic second deriva-
tives of the DFT energy. For the the polarisabilities these derivatives with
respect to an external electric field are required. For the vibrational frequencies
the more complicated derivatives with respect to the nuclear coordinates are
needed. As the latter derivatives are the more general ones we will focus on
those in this document. The implementation will take place within the frame-
work of the DFT module developed initially within the Collaborative Computa-
tional Project 1 (CCP1) and subsequently extended by the Quantum Chemistry
Group at Daresbury.

As far as the implementation is concerned we follow the approach of Handy,
Tozer, Laming, Murray, and Amos [4] and Johnson and Fisch [5]. According
to Amos it is important that the derivatives of the quadrature are taken into
account as well.

In chapter 2 we will first write down the expressions that define the DFT
energy. To include the derivatives of the quadrature we will rewrite the ap-
propriate integrals as a quadrature. In chapters 3 and 4 we will take the first
and second derivatives of the integral expressions, while the first and second
derivatives of the quadrature are considered in chapter 5. Finally, details of the
implementation are presented in chapter 6.
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Chapter 2

DFT energy

The DFT total energy of a molecular system in the Born-Oppenheimer approx-
imation can be written as a sum of three terms. The first two terms are easily
recognised as having a classical origin. They are the kinetic energy and the
Coulomb energy of the electrons. The third term stems from the anti-symmetry
of the wavefunction and has no classical equivalent. This term is called the
exchange-correlation energy. Following Johnson and Fisch [5] we can write the
total energy in general as

E =
∑
µν

PµνHµν

+
1
2

∑
µνλσ

PµνPλσ(µν|λσ)

+ Exc(Pα, P β) (2.1)

where

Pαµν =
∑
iα

CαµiαC
α
νiα (2.2)

P βµν =
∑
iβ

Cβ
µiβ
Cβ
νiβ

(2.3)

P = Pα + P β (2.4)

are the 1-electron reduced density matrices. The term Exc is the exchange-
correlation energy. Within the Hartree-Fock approximation this is

EHFxc = −1
2

∑
µνλσ

(PαµνP
α
λσ + P βµνP

β
λσ)(µλ|σν) (2.5)

In DFT the exchange-correlation energy is given by a functional of the form

EKSxc =
∫
f(ρα, ρβ , γαα, γαβ , γββ)dr (2.6)
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ρα =
∑
µν

Pαµνχµχν (2.7)

ρβ =
∑
µν

P βµνχµχν (2.8)

γαα = ∇ρα · ∇ρα (2.9)
γαβ = ∇ρα · ∇ρβ (2.10)
γββ = ∇ρβ · ∇ρβ (2.11)

∇ρα =
∑
µν

Pαµν∇(χµχν) (2.12)

∇ρβ =
∑
µν

P βµν∇(χµχν) (2.13)

(2.14)

where we have limited the functional form to the so called Generalised Gradient
Approximation (GGA), i.e. the highest order derivative of the density needed
to evaluate the functional is the gradient. More advanced schemes are currently
being explored but only very few programs can actually use them. How effective
these higher order functionals are remains unclear.

Due to the form of the functional f the integration in the above expres-
sion cannot be performed analytically, instead a quadrature is introduced. The
quadrature we use follows the scheme proposed by Becke [2] where the integrand
is partitioned into atomic terms each of which is discretised on an atomic grid
in polar coordinates

EKSxc ≈
∑
Ai

wAiDA(rAi)

·f(ρα(rAi), ρβ(rAi), γαα(rAi), γαβ(rAi), γββ(rAi)) (2.15)

where DA is the partition associated with atom A. Note that both rAi and
the partition functions DA are functions of the molecular geometry. However,
because the grid points move along with the atom they are associated with the
weights wAi are independent of the geometry.

Finally the coefficients that appear in the density matrices are essentially
the coefficients of the atomic orbitals in the SCF wavefunctions. The SCF
wavefunctions satisfy the conditions

FαCα = SCαεα (2.16)
F βCβ = SCβεβ (2.17)

(Cα)TSCα = 1 (2.18)
(Cβ)TSCβ = 1 (2.19)

The Fock-matrices are given by

Fαµν =
∂E

∂Pαµν
(2.20)
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F βµν =
∂E

∂P βµν
(2.21)

More explicitly the Fock-matrices are

Fαµν = Hµν +
∑
λσ

Pλσ(µν|λσ) +
∂Exc(Pα, P β)

∂Pαµν
(2.22)

F βµν = Hµν +
∑
λσ

Pλσ(µν|λσ) +
∂Exc(Pα, P β)

∂P βµν
(2.23)

Because the Fock-matrices depend on the electron density, while the electron
density depends on the orbital coefficients, and the coefficients are solutions
of an eigenvalue equation involving the Fock-matrices, it is clear that some
iterative solution scheme is required. However, the details of that scheme are
not required here. Only the details of the energy expression and the Fock-
matrices will feature in our discussion of the Hessians.
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Chapter 3

DFT gradient

In the previous section we defined the energy in equation (2.1). Here we will
briefly consider the gradient of that energy. Differentiating the energy with
respect to a nuclear coordinate Ra we have

∂E

∂Ra
=

∑
µν

(
∂Pµν
∂Ra

Hµν + Pµν
∂Hµν

∂Ra

)
+

∑
µνλσ

(
∂Pµν
∂Ra

Pλσ(µν|λσ) +
1
2
PµνPλσ

∂(µν|λσ)
∂Ra

)

+
∂Exc
∂Ra

∣∣∣∣
Pα,Pβ

+
∑
µν

∂Exc(Pα, P β)
∂Pαµν

∂Pαµν
∂Ra

+
∑
µν

∂Exc(Pα, P β)

∂P βµν

∂P βµν
∂Ra

=
∑
µν

PµνH
a
µν

+
1
2

∑
µνλσ

PµνPλσ(µν|λσ)a

+ E(a)
xc (Pα, P β)

+
∑
µν

(
Fαµν

∂Pαµν
∂Ra

+ F βµν
∂P βµν
∂Ra

)
(3.1)

where we have introduced a superscript a as a short hand for the differentiation
with respect to Ra. The superscript (a) means differentiating all the explicit ge-
ometry dependent factors, i.e. leaving out the terms that involve differentiation
of the orbital coefficients.

The terms involving the Fock-matrices can be simplified using equations (2.16), (2.17)
and the derivative of the orthonormality condition:

0 =
∑
µν

[
∂Cαµi
∂Ra

SµνC
α
νj + Cαµi

∂Sµν
∂Ra

Cανj + CαµiSµν
∂Cανj
∂Ra

]
(3.2)
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∑
µν

Cαµi
∂Sµν
∂Ra

Cανj = −
∑
µν

[
∂Cαµi
∂Ra

SµνC
α
νj + CαµiSµν

∂Cανj
∂Ra

]
(3.3)

This enables us to write∑
µν

Fαµν
∂Pαµν
∂Ra

=
∑
µνi

Fαµν
∂Cαµi
∂Ra

Cανi +
∑
µνi

FαµνC
α
µi

∂Cανi
∂Ra

(3.4)

=
∑
µνi

Sµν
∂Cαµi
∂Ra

Cανiε
α
i +

∑
µνi

SµνC
α
µi

∂Cανi
∂Ra

εαi (3.5)

= −
∑
µνi

Saµνε
α
i C

α
µiC

α
νi (3.6)

= −
∑
µν

Wα
µνS

a
µν (3.7)

where

Wα
µν =

∑
i

εαi C
α
µiC

α
νi (3.8)

Wµν = Wα
µν +W β

µν (3.9)

With this result the gradient of the energy becomes

∂E

∂Ra
=

∑
µν

PµνH
a
µν

+
1
2

∑
µνλσ

PµνPλσ(µν|λσ)a

+ E(a)
xc (Pα, P β)

−
∑
µν

WµνS
a
µν (3.10)

The most notable aspect of this expression is that for the first derivative of
the energy no derivatives of the orbital coefficients are required. All quantities
needed to evaluate this expression have been coded earlier and thus can be
assumed to be available whenever required.
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Chapter 4

DFT hessian

The expression for the second derivative of the energy can be obtained from
differentiating the gradient expression equation (3.10).

∂2E

∂Rb∂Ra
=

∑
µν

PµνH
ab
µν

+
1
2

∑
µνλσ

PµνPλσ(µν|λσ)ab

+ E(a)(b)(Pα, P β)

−
∑
µν

WµνS
ab
µν

+
∑
µν

(
∂Pµν
∂Rb

[
Ha
µν +

∑
λσ

Pλσ(µν|λσ)a
])

−
∑
µν

∂Wµν

∂Rb
Saµν (4.1)

4.1 The explicit 2nd derivative of the exchange-
correlation energy

The first thing we need is an expression for the explicit second derivatives of
the exchange-correlation energy. This is

E(a)(b)(Pα, P β) =
∑
Ai

wAi
∂2PA(rAi)
∂Ra∂Rb

f

+
∑
Ai

wAi
∂PA(rAi)
∂Ra

f (b)

+
∑
Ai

wAi
∂PA(rAi)
∂Rb

f (a)
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+
∑
Ai

wAiPA(rAi)f (a)(b) (4.2)

where

f (a) =
∑
ζ

∂f

∂ζ
ζ(a) (4.3)

f (a)(b) =
∑
ζη

∂2f

∂ζ∂η
ζ(a)η(b) +

∂f

∂ζ
ζ(a)(b) (4.4)

The discussion of the derivatives of the partition function will be postponed until
chapter 5 and only the second derivative of the functional will be considered here.

The required gradients of ρ and ∇ρ have already been coded. The second
derivatives of these quantities are still needed.

ρ(a)(b)
α =

∑
µν

Pαµν
(
χabµ χν + χaµχ

b
ν + χbµχ

a
ν + χµχ

ab
ν

)
(4.5)

∇ρ(a)(b)
α =

∑
µν

Pαµν
(
∇χabµ χν +∇χaµχbν +∇χbµχaν +∇χµχabν

)
+

∑
µν

Pαµν
(
χabµ ∇χν + χaµ∇χbν + χbµ∇χaν + χµ∇χabν

)
(4.6)

(∇ρα · ∇ρα)(a)(b) = 2∇ρ(a)(b)
α · ∇ρα + 2∇ρ(a)

α · ∇ρ(b)
α (4.7)

The various derivatives of the basis functions are given in appendix B.

4.2 Defining the 1st derivative of the orbital co-
efficients

Beyond this point we need to find an expression for the derivatives of the orbital
coefficients. For this purpose we introduce matrices U that express the gradient
of the orbitals as

∂ψp
∂Rb

=
∑
q

ψqU
b
qp + ψ(b)

p (4.8)

∂
∑
µ χµCµp

∂Rb
=

∑
µq

χµCµqU
b
qp +

∑
µ

χbµCµq (4.9)

∂Cµp
∂Rb

=
∑
q

CµqU
b
qp (4.10)

With this definition we can show by differentiating equation (2.18) that

Uαbpq + S(b)
pq + Uαbqp = 0 (4.11)
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Together with the invariance of the energy for rotations among the occupied
orbitals it follows that

Uαbij = −1
2
S

(b)
ij (4.12)

Uαbab = −1
2
S

(b)
ab (4.13)

4.3 The 1st derivative of the density matrix and
the weighted energy matrix

To evaluate the 2nd derivative expression we still need to know the derivative
of Pµν and Wµν . These expressions are

∂Pαµν
∂Rb

= −1
2

∑
ij

S
(b)
ij

[
CαµjC

α
νi + CαµiC

α
νj

]
+

∑
ia

Uαbai
[
CαµaC

α
νi + CαµiC

α
νa

]
(4.14)

∂Wα
µν

∂Rb
=

∑
i

εαbi C
α
µiC

α
νi −

∑
ji

1
2
εαi S

(b)
ij

[
CαµjC

α
νi + CαµiC

α
νj

]
+

∑
ai

εαi U
αb
ai

[
CαµaC

α
νi + CαµiC

α
νa

]
(4.15)

4.4 The 1st derivative of the orbital energy

First of all the expression for εαbp can be obtained by differentiating the station-
ary condition in the MO-basis:

Fαbpq = Sαbpq ε
α
q + Sαpqε

αb
q (4.16)

εαbq = Fαbqq − Sαbqq εαq (4.17)

Given the Fock matrix in the AO-basis in equation (2.22) the Fock matrix in
the MO-basis is written as

Fαpq =
∑
µν

CαµpC
α
νqHµν

+
∑
µνλσ

CαµpC
α
νqPλσ(µν|λσ)

+
∑
µνλσ

CαµpC
α
νq

∂Exc(Pα, P β)
∂Pαµν

(4.18)

Differentiating this with respect to the coordinates of atom B gives:

∂Fαpq
∂Rb

=
∑
r

UαbrpH
α
rq
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+
∑
r

Uαbrq H
α
pr

+ Hα(b)
pq

+
∑
riα

Uαbrp (rq|iαiα)

+
∑
riα

Uαbrq (pr|iαiα)

+
∑
rαiα

2Uαbrαiα(pq|rαiα)

+
∑
rβiβ

2Uβb
rβiβ

(pq|rβiβ)

+
∑
iα

(pq|iαiα)b

+
∑
r

UαbrpQ
α
rq

+
∑
r

Uαbrq Q
α
pr

+ Qα(b)
pq

+
∑
rα

UαbrαiαG
αα
pqrαiα

+
∑
rβ

UαbrβiβG
αβ
pqrβiβ

(4.19)

where

Qαpq =
∑
µν

CαµpC
α
νq

∂Exc(Pα, P β)
∂Pαµν

(4.20)

Gααpqrs =
∑
µνλσ

CαµpC
α
νq(C

α
λrC

α
σs + CαλsC

α
σr)

∂2Exc(Pα, P β)
∂Pαµν∂P

α
λσ

(4.21)

Gαβpqrs =
∑
µνλσ

CαµpC
α
νq(C

β
λrC

β
σs + CβλsC

β
σr)

∂2Exc(Pα, P β)

∂Pαµν∂P
β
λσ

(4.22)

∂Fαpq
∂Rb

=
∑
r

Uαbrp

(
Hα

rq +Qαrq +
α∑
i

(rq|iαiα)

)

+
∑
r

Uαbrq

(
Hα

pr +Qαpr +
α∑
i

(pr|iαiα)

)
+ Hα(b)

pq

+
∑
rαiα

Uαbrαiα
[
2(pq|rαiα) +Gααpqrαiα

]
14



+
∑
rβiβ

Uβb
rβiβ

[
2(pq|rβiβ) +Gαβ

pqrβiβ

]
+

∑
iα

(pq|iαiα)b

+ Qα(b)
pq (4.23)

∂Fαpq
∂Rb

=
∑
r

Uαbrp F
α
rq

+
∑
r

Uαbrq F
α
pr

+ Hα(b)
pq

+
∑
rαiα

Uαbrαiα
[
2(pq|rαiα) +Gααpqrαiα

]
+

∑
rβiβ

Uβb
rβiβ

[
2(pq|rβiβ) +Gαβ

pqrβiβ

]
+

∑
iα

(pq|iαiα)b

+ Qα(b)
pq (4.24)

The derivatives of the orbital energies are the diagonal elements of this ex-
pression. Here only the derivatives of the orbital energies of the occupied orbitals
are needed, leading to:

∂Fαjαjα

∂Rb
= 2

∑
r

UαbrjαF
α
rjα

+ Hα(b)
jαjα

+
∑
riα

2Uαbriα
[
2(jαjα|riα) +Gααjαjαriα

]
+

∑
riβ

Uβb
riβ

[
2(jαjα|riβ) +Gαβ

jαjαriβ

]
+

∑
iα

(jαjα|iαiα)b

+ Qα
(b)
jαjα (4.25)

Using the fact that the orbitals are eigenfunctions of the Fock-matrix and split-
ting summations over all orbitals into sums over occupied and sums over unoc-
cupied orbitals gives

∂Fαjαjα

∂Rb
= −Sα(b)

jαjα
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+ Hα(b)
jαjα

+
∑
kαiα

Uαbkαiα
[
2(jαjα|kαiα) +Gααjαjαkαiα

]
+

∑
aαiα

Uαbaαiα
[
2(jαjα|aαiα) +Gααjαjαaαiα

]
+

∑
kβiβ

Uβb
kβiβ

[
2(jαjα|kβiβ) +Gαβ

jαjαkβiβ

]
+

∑
aβiβ

Uβb
aβiβ

[
2(jαjα|aβiβ) +Gαβ

jαjαaβiβ

]
+

∑
iα

(jαjα|iαiα)b

+ Qα
(b)
jαjα (4.26)

Using equation (4.12) leads to

∂Fαjαjα

∂Rb
= −Sα(b)

jαjαε
α
jα

+ Hα(b)
jαjα

−
∑
kαiα

Sαbkαiα

[
(jαjα|kαiα) +

1
2
Gααjαjαkαiα

]
+

∑
aαiα

Uαbaαiα
[
2(jαjα|aαiα) +Gααjαjαaαiα

]
−

∑
kβiβ

Sβb
kβiβ

[
(jαjα|kβiβ) +

1
2
Gαβ
jαjαkβiβ

]
+

∑
aβiβ

Uβb
aβiβ

[
2(jαjα|aβiβ) +Gαβ

jαjαaβiβ

]
+

∑
iα

(jαjα|iαiα)b

+ Qα
(b)
jαjα (4.27)

4.5 The 1st derivatives of the orbital coefficients

The derivatives of the unoccupied-occupied block allow the construction of a
linear system of equations that determines the response of the orbital coefficients
to the perturbation:

∂Fαaαjα

∂Rb
=

∑
r

UαbraαF
α
rjα

+
∑
r

UαbrjαF
α
aαr
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+ Hα(b)
aαjα

+
∑
rαiα

Uαbrαiα
[
2(aαjα|rαiα) +Gααaαjαrαiα

]
+

∑
rβiβ

Uβb
rβiβ

[
2(aαjα|rβiβ) +Gαβ

aαjαrβiβ

]
+

∑
iα

(aαjα|iαiα)b

+ Qα
(b)
aαjα (4.28)

Splitting the sums over all orbitals into sums over occupied and sums over
unoccupied orbitals gives

∂Fαaαjα

∂Rb
=

∑
iα

UαbiαaαF
α
iαjα

+
∑
bα

UαbbαjαF
α
aαbα

+ Hα(b)
aαjα

+
∑
kαiα

Uαbkαiα
[
2(aαjα|kαiα) +Gααaαjαkαiα

]
+

∑
bαiα

Uαbbαiα
[
2(aαjα|bαiα) +Gααaαjαbαiα

]
+

∑
kβiβ

Uβb
kβiβ

[
2(aαjα|kβiβ) +Gαβ

aαjαkβiβ

]
+

∑
bβiβ

Uβb
bβiβ

[
2(aαjα|bβiβ) +Gαβ

aαjαbβiβ

]
+

∑
iα

(aαjα|iαiα)b

+ Qα
(b)
aαjα (4.29)

Using equation (4.12) to eliminate the occupied-occupied blocks of the U -matrix
yields

∂Fαaαjα

∂Rb
=

∑
iα

(−Uαbaαiα − Sα
(b)
aαiα)Fαiαjα

+
∑
bα

UαbbαjαF
α
aαbα

+ Hα(b)
aαjα

−
∑
kαiα

Sα
(b)
kαiα

[
(aαjα|kαiα) +

1
2
Gααaαjαkαiα

]
+

∑
bαiα

Uαbbαiα
[
2(aαjα|bαiα) +Gααaαjαbαiα

]
17



−
∑
kβiβ

Sβ
(b)

kβiβ

[
(aαjα|kβiβ) +

1
2
Gαβ
aαjαkβiβ

]
+

∑
bβiβ

Uβb
bβiβ

[
2(aαjα|bβiβ) +Gαβ

aαjαbβiβ

]
+

∑
iα

(aαjα|iαiα)b

+ Qα
(b)
aαjα (4.30)

Given that the Fock-matrix is diagonal and using the definition (2.22) of the
Fock-matrix together with equation (4.20) yields

∂Fαaαjα

∂Rb
=

∑
bαiα

[(εαbα − εαiα)δiαjαδaαbα + 2(aαjα|bαiα) +Gααaαjαbαiα ]Uαbbαiα

+
∑
bβiβ

Uβb
bβiβ

[
2(aαjα|bβiβ) +Gαβ

aαjαbβiβ

]
−

∑
bαiα

Sα
(b)
bαiαε

α
iαδiαjαδaαbα

−
∑
kαiα

Sα
(b)
kαiα

[
(aαjα|kαiα) +

1
2
Gααaαjαkαiα

]
−

∑
kβiβ

Sβ
(b)

kβiβ

[
(aαjα|kβiβ) +

1
2
Gαβ
aαjαkβiβ

]
+ Fα

(b)
aαjα (4.31)

From the Brillouin condition we have that expression (4.31) should equal 0.
This gives us a system of simultaneous equations for Uaj called the Coupled
Perturbed Hartree Fock (CPHF) equations. Essentially equation (4.31) gives
the residue of the system of simultaneous equations. Traditionally the terms
involving Uaj would be considered the left-hand-side, whereas the other terms
would be considered the right-hand-side.

In practice what we need is the residue for a given approximation to U . The
residue can be used to update U and compute a new residue until convergence
is achieved. For this purpose we need to compute the following in the DFT code

Gα
[b]
aαjα

=
∑
bαiα

GααaαjαbαiαU
αb
bαiα −

∑
kαiα

1
2
GααaαjαkαiαS

α(b)
kαiα

+
∑
bβiβ

Gαβ
aαjαbβiβ

Uβb
bβiβ
−
∑
kβiβ

1
2
Gαβ
aαjαkβiβ

Sβ
(b)

kβiβ (4.32)

=
∑
rαiα

GααaαjαrαiαU
αb
rαiα

+
∑
rβiβ

Gαβ
aαjαrβiβ

Uβb
rβiβ

(4.33)
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Substituting the definitions given in equations (4.21) and (4.22) for the G’s we
have

Gα
[b]
aαjα

=
∑
rαiα

∑
µνλσ

CαµaαC
α
νjα(CαλrαC

α
σiα + CαλiαC

α
σrα)

∂2Exc(Pα, P β)
∂Pαµν∂P

α
λσ

Uαbrαiα

+
∑
rβiβ

∑
µνλσ

CαµaαC
α
νjα(Cβ

λrβ
Cβ
σiβ

+ Cβ
λiβ
Cβ
σrβ

)
∂2Exc(Pα, P β)

∂Pαµν∂P
β
λσ

Uβb
rβiβ

(4.34)

Using the definition of U we have

Gα
[b]
aαjα

=
∑
µνλσ

CαµaαC
α
νjα

∂2Exc(Pα, P β)
∂Pαµν∂P

α
λσ

Pαbλσ

+
∑
µνλσ

CαµaαC
α
νjα

∂2Exc(Pα, P β)

∂Pαµν∂P
β
λσ

P βbλσ (4.35)

=
∑
µν

CαµaαC
α
νjαG

α[b]
µν (4.36)

where

Pαbλσ =
∑
rαiα

(CαλrαC
α
σiα + CαλiαC

α
σrα)Uαbrαiα (4.37)

P βbλσ =
∑
rβiβ

(Cβ
λrβ

Cβ
σiβ

+ Cβ
λiβ
Cβ
σrβ

)Uβb
rβiβ

(4.38)

Gα[b]
µν =

∑
λσ

∂2Exc(Pα, P β)
∂Pαµν∂P

α
λσ

Pαbλσ

+
∑
λσ

∂2Exc(Pα, P β)

∂Pαµν∂P
β
λσ

P βbλσ (4.39)

Using the definition for the matrix elements we have that

Gα[b]
µν =

∫
(
∑
ζ

[
∂2f

∂ζ∂ρα
χµχν

+ {2 ∂2f

∂ζ∂γαα
∇ρα +

∂2f

∂ζ∂γαβ
∇ρβ} · ∇(χµχν)]ζ [b]

+ {2 ∂f

∂γαα
∇ρ[b]

α +
∂f

∂γαβ
∇ρ[b]

β } · ∇(χµχν))dr (4.40)

where ζ loops over ρα, ρβ , γαα, γαβ and γββ . The various quantities ζ [b] are
given by

ρ[b]
α =

∑
µν

Pαbµνχµχν (4.41)
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ρ
[b]
β =

∑
µν

P βbµνχµχν (4.42)

∇ρ[b]
α =

∑
µν

Pαbµν∇(χµχν) (4.43)

∇ρ[b]
β =

∑
µν

P βbµν∇(χµχν) (4.44)

γ[b]
αα = 2∇ρα · ∇ρ[b]

α (4.45)

γ
[b]
αβ = ∇ρ[b]

α · ∇ρβ +∇ρα · ∇ρ[b]
β (4.46)

γ
[b]
ββ = 2∇ρβ · ∇ρ[b]

β (4.47)

This concludes the material we need for the “left-hand-side”.
The “right-hand-side” includes Qα(b)

aαjα , and involves the Kohn-Sham matrix
elements. Taking the explicit derivative of the matrix element contributions will
introduce the gradients of the quadrature somewhere. So we need to take a closer
look at what that involves:

Qα
(b)
aαjα =

∑
µν

CαµaαC
α
νjα

∂E
(b)
xc (Pα, P β)
∂Pαµν

(4.48)

=
∑
µν

CαµaαC
α
νjαQ

α(b)
µν (4.49)

where

Qα(b)
µν =

∂E
(b)
xc (Pα, P β)
∂Pαµν

(4.50)

Using the expression for the matrix elements leads to

Qα(b)
µν =

∑
Ai

wAi
∂PA(rAi)
∂Rb

Qαµν

+
∫

(
∑
ζ

[
∂2f

∂ζ∂ρα
χµχν

+ {2 ∂2f

∂ζ∂γαα
∇ρα +

∂2f

∂ζ∂γαβ
∇ρβ} · ∇(χµχν)]ζ(b)

+ {2 ∂f

∂γαα
∇ρ(b)

α +
∂f

∂γαβ
∇ρ(b)

β } · ∇(χµχν)

+
∂f

∂ρα
(χµχν)b)

+ {2 ∂f

∂γαα
∇ρα +

∂f

∂γαβ
∇ρβ} · ∇(χµχν)b)dr (4.51)

where (taking into account that the grid points also depend on the atom posi-
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tions)

ρα(rAi) =
∑
B,C

∑
µ ∈ µB
ν ∈ νC

Pαµνχµ(RB , rAi)χν(RC , rAi) (4.52)

ρ(d)
α (rAi) =

∑
B,C

∑
µ ∈ µB
ν ∈ νC

Pαµν
∂ (χµ(RB , rAi)χν(RC , rAi))

∂RD
(4.53)

(4.54)

Depending on which coordinates correspond to that of atom with respect to
which we take the derivatives we obtain different expressions

ρ(d)
α (rAi) =



∑
C

∑
µ ∈ µD
ν ∈ νC

Pαµν
∂χµ(RD, rAi)

∂RD
χν(RC , rAi), B = D

∑
B

∑
µ ∈ µB
ν ∈ νD

Pαµνχµ(RB , rAi)
∂χν(RD, rAi)

∂RD
, C = D

∑
B,C

∑
µ ∈ µB
ν ∈ νC

Pαµν

(
∂χµ(RB ,rDi)

∂RD
χν(RC , rDi) +

χµ(RB , rDi)
∂χν(RC ,rDi)

∂RD

) , A = D

0, A = B = D
0, A = C = D

(4.55)

A similar result is obtained for the gradients of the density

∇ρα(rAi) =
∑
B,C

∑
µ ∈ µB
ν ∈ νC

Pαµν∇ (χµ(RB , rAi)χν(RC , rAi)) (4.56)

∇ρ(d)
α (rAi) =

∑
B,C

∑
µ ∈ µB
ν ∈ νC

Pαµν
∂∇ (χµ(RB , rAi)χν(RC , rAi))

∂RD
(4.57)

(4.58)

where the gradient operator works on the coordinates of grid points only. Writ-
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ing out we have

∇ρ(d)
α (rAi) =



∑
C

∑
µ ∈ µD
ν ∈ νC

Pαµν

(
∂∇χµ(RD,rAi)

∂RD
χν(RC , rAi) +

∂χµ(RD,rAi)
∂RD

∇χν(RC , rAi)
) , B = D

∑
B

∑
µ ∈ µB
ν ∈ νD

Pαµν

(
∇χµ(RB , rAi)

∂χν(RD,rAi)
∂RD

+

χµ(RB , rAi)
∂∇χν(RD,rAi)

∂RD

) , C = D

∑
B,C

∑
µ ∈ µB
ν ∈ νC

Pαµν

(
∂∇χµ(RB ,rDi)

∂RD
χν(RC , rDi) +

∂χµ(RB ,rDi)
∂RD

∇χν(RC , rDi)
∇χµ(RB , rDi)

∂χν(RC ,rDi)
∂RD

χµ(RB , rDi)
∂∇χν(RC ,rDi)

∂RD

)
, A = D

0, A = B = D
0, A = C = D

(4.59)

This concludes the derivation of the ingredients needed to construct the linear
system of equations for the unoccupied-occupied block of the U -matrix.
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Chapter 5

Derivatives and quadratures

5.1 The exchange-correlation energy

The exchange-correlation energy in DFT is defined as

Exc =
∫
f(ρ(R, r))dr (5.1)

≈
∑
Bi

wBif(ρ(R, rBi)) (5.2)

where we have introduced a quadrature because the function f cannot be in-
tegrated analytically. Furthermore, the vector R specifies the locations of the
nuclei and r specifies a point in space. To complete the definition we write the
density ρ as

ρ(R, r) =
∑
i

φ∗i (R, r)φi(R, r) (5.3)

φi(R, r) =
∑
j

cijχj(Rj , r) (5.4)

which gives the density in terms of the AO-basis as

ρ(R, r) =
∑
ijk

c∗ijcikχ
∗
j (Rj , r)χk(Rk, r) (5.5)

5.2 The exchange-correlation energy gradient

In this document we will consider calculating the gradient (and hessian) of the
exchange-correlation energy with respect to nuclear displacements. Also we will
take a closer look at the consequences for the gradient expression of introducing
a quadrature to evaluate the energy. Essentially the quadrature leads to two
views to calculating the gradient.
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The first view is to take the integral expression for the exchange-correlation
energy (5.1) and differentiate it

∇AExc =
∫
∇Af(ρ(R, r))dr (5.6)

where ∇A denotes the fact that we are taking the gradient with respect to
nuclear displacements of atom A. Just as we cannot integrate f(ρ(R, r)) ana-
lytically, we also cannot integrate ∇Af(ρ(R, r)) analytically and we have to rely
on a numerical integration

∇AExc ≈
∑
Bi

wBi ∇Af(ρ(R, r))|r=rBi (5.7)

Essentially this approach is equivalent to applying the Hellman-Feynman theo-
rem. Writing this expression out in more detail we have

∇AExc ≈
∑
Bi

wBi
∂f(ρ)
∂ρ

∣∣∣∣
ρ=ρ(R,rBi)

· dρ(R, r)
dR

∣∣∣∣
R=R,r=rBi

∇AR (5.8)

Note that here the contributions from ∇Ar are zero because the quadrature was
introduced only after differentiation.

The second approach starts with the fact that the energy expression we are
actually using involves a quadrature, i.e.

Exc ≈
∑
Ai

wAif(ρ(R, rAi)) (5.9)

and therefore the gradient of the energy is the gradient of that expression, which
yields

∇AExc ≈
∑
Bi

∇AwBif(ρ(R, rBi)) (5.10)

Writing this expression out in more detail leads to the equation

∇AExc ≈
∑
Bi

f(ρ(R, rBi))∇AwBi

+
∑
Bi

wBi
∂f(ρ)
∂ρ

∣∣∣∣
ρ=ρ(R,rBi)

dρ(R, r)
dR

∣∣∣∣
R=R,r=rBi

∇AR

+
∑
Bi

wBi
∂f(ρ)
∂ρ

∣∣∣∣
ρ=ρ(R,rBi)

∂ρ(R, r)
∂r

∣∣∣∣
R=R,r=rBi

∇Ar (5.11)

In this case we find that we actually have contributions from the gradients of
the quadrature weights and the grid points.

Both equations (5.8) and (5.11) yield identical results in the limit of an
exact quadrature, but for every other quadrature the results will be different.
To illustrate the severity of the difference, we computed the density of a lithium

24



Table 5.1: A comparison of the analytically computed DFT gradients of LiF
(based on the Hellmann-Feynman approach and the full gradient approach) and
the numerical gradients where all densities were optimised using an accurate grid

Grid Hellman-Feynman gradient Full gradient Numerical gradient
Li (EH/a0) F (EH/a0) Li (EH/a0) F (EH/a0) Li (EH/a0) F (EH/a0)

low -0.0001154 0.0479085 -0.0701652 0.0701652 -0.0721060 0.0721060
medium -0.0002365 0.0018857 -0.0070063 0.0070063 -0.0069640 0.0069640
high -0.0000843 -0.0003445 0.0004372 -0.0004372 0.0004380 -0.0004380
veryhigh -0.0001083 0.0002059 -0.0002052 0.0002052 -0.0002060 0.0002060

All calculations were performed using GAMESS-UK. The LiF bond length
was 2.9322936 a0, with the bond length distorted by +0.005 a0 and −0.005 a0

for the numerical gradients. The 6-31G* basis set was used with the B3LYP
functional. The density was optimised with the veryhigh accuracy grid. The
low, medium, high and veryhigh grids used are defined in the GAMESS-UK
documentation; in all calculations the Murray, Handy and Laming weighting
scheme was used instead of the default.

fluoride molecule with a high accuracy grid, and then computed the gradients
with various grid sizes once with equation (5.8) and once with equation (5.11).
The results are given in table 5.1. From this table we can learn two things.

First, for heteronuclear molecules the quadrature gradient contributions can
be essential to maintain the translational invariance of the energy. This transla-
tional invariance requires that the gradients along 1 coordinate of all atoms add
up to zero. Clearly this is not the case with the Hellman-Feynman gradients,
but the full gradient is correct in this respect.

Second, including the quadrature gradient terms does not necessarily lead
to more accurate gradients. Assuming that the full gradient results with the
veryhigh grid are the exact values, it is clear that the full gradient results with
the low grid exhibit far greater errors than the Hellman-Feynman gradient with
the low grid.

The conclusion is that the question as to whether the quadrature gradient
terms should be included is a consistency matter. In cases such as dynamics,
where it is essential that the energy and the gradient are consistent, using the
full gradient expression is compulsory. In simple searches for local minima of the
energy (e.g. steepest descent), the Hellman-Feynman gradient may be sufficient.
Moreover, if one decides to use the full gradient expression, then one should be
aware that this makes sense only if the grid with which the density is optimised
is identical to the grid used to evaluate the gradient, otherwise consistency
between the energy and the gradient will be lost.

5.3 Definition of the quadrature

In the case where we use a quadrature we follow Becke’s scheme [2] where the
total grid is constructed from atomic grids merged together through a weighting
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scheme (see appendix A). There are two ways to approach this quadrature that
lead to equivalent results but different gradient expressions. The view adopted
by B.G. Johnson et al. [6] is essentially that one chooses a quadrature point
ri = r in space independent of the location of the atoms and then assigns it to
an atom to define its atomic weight w′i = w′(RB , r). The atomic weight in this
case is a function of the location of the atom. The approach adopted by J. Tozer
is that each quadrature point is defined relative to some atom ri = RB +r. The
atomic weight in this case is w′i = w′(r) and is independent of location of the
atom.

The approach adopted by Tozer is probably the most consistent and can
be used to derive both gradient and hessian equations. The approach adopted
by Johnson on the face of it involves much more complicated terms in calcu-
lating the gradient, e.g. dw′(RB , r)/dRB , although in practice all these terms
can be avoided using the translational invariance of the energy. In that case
the equations become simpler than following Tozer. The problem is that it is
conceptually much more complicated to use Johnson’s approach to calculate
hessians.

5.4 Johnson’s formulation of the weighting scheme
and the gradient of the weights

As indicated above Johnson considers a grid point as being independent of the
molecular geometry. The consequence is that the atomic weight becomes a
function of the location of the atom. The weighting in this formulation becomes

wB(R, r) = w′(RB , r)
PB(R, r)
Z(R, r)

(5.12)

Z(R, r) =
∑
C

PC(R, r) (5.13)

PB(R, r) =
∏
C 6=B

s(ν(RBragg, B,C, µ(RB , RC , r))) (5.14)

µ(RB , RC , r) =
|r −RB | − |r −RC |
|RB −RC |

(5.15)

(5.16)

where r is the fixed grid point; the cut-off profile function s and the boundary
shifting function ν have been defined by Becke [2].

In calculating the gradients of the weights the most complicated term comes
from ∇Bw′(RB , r). In practice evaluating this term can be circumvented using
the translational variance of the energy, i.e.

∇BwB(R, r) = −
∑
A 6=B

∇AwB(R, r) (5.17)
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so the only gradients we need are of the form ∇AwB(R, r), where we have the
weights of grid points relative to atom B differentiated with respect to nuclear
displacements of all other atoms. Writing this expression out gives

∇AwB(R, r) = w′(RB , r)
[
∇APB(R, r)
Z(R, r)

− PB(R, r)
∇AZ(R, r)
Z2(R, r)

]
(5.18)

where A 6= B. The first term can be written out as

∇APB(R, r) = ∇A
∏
C 6=B

s(RB , RC , r) (5.19)

=
PB(R, r)

s(RB , RA, r)
∇As(RB , RA, r) (5.20)

The second term becomes

∇AZ(R, r) = ∇A
∑
B

PB(R, r) (5.21)

= ∇A
∑
B

∏
C 6=B

s(RB , RC , r) (5.22)

=
∑
C 6=A

PA(R, r)
s(RA, RC , r)

∇As(RA, RC , r)

+
∑
B 6=A

PB(R, r)
s(RB , RA, r)

∇As(RB , RA, r) (5.23)

The cut-off profiles s are functions of ν which is in turn a function of the
Bragg-Slater radii of the atoms involved and the elliptical coordinate µ

s(RB , RC , r) = s(ν(RBragg, µ(RB , RC , r))) (5.24)

The gradient of this becomes

∇As(RB , RC , r) =
ds(ν)
dν

∣∣∣∣
ν=ν(RBragg,µ(RB ,RC ,r))

· dν(RBragg, µ)
dµ

∣∣∣∣
µ=µ(RB ,RC ,r)

· ∇Aµ(RB , RC , r) (5.25)

∇Aµ(RA, RC , r) =
XA − x

|r −RA||RA −RC |

+
(|r −RA| − |r −RC |)(XC −XA)

|RA −RC |3
(5.26)

∇Aµ(RB , RA, r) =
x−XA

|r −RA||RB −RA|

+
(|r −RB | − |r −RA|)(XB −XA)

|RB −RA|3
(5.27)

which completes the gradient expression.
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5.5 Tozer’s formulation of the weighting scheme
and the gradient of the weights

According to Tozer, the location of the quadrature point is a function of the
location of the atom to which it belongs. The atomic weight in this is case
is dependent only on the relative position of the grid point to the atom and
therefore is independent of the geometry. This view point leads to defining the
weighting scheme as

wB(R, rB) = w′(r)
PB(R, rB)
Z(R, rB)

(5.28)

Z(R, rD) =
∑
C

PC(R, rD) (5.29)

PB(R, rD) =
∏
C 6=B

s(ν(RBragg, B,C, µ(RB , RC , rD))) (5.30)

µ(RB , RC , rD) =
|rD −RB | − |rD −RC |

|RB −RC |
(5.31)

rD = RD + r (5.32)

where w′(r) is the weight in the atomic grid, and r gives the coordinates of the
point assuming the atom is located at the origin.

The gradient of the weights now becomes

∇AwB(R, rB) = w′(r)
[
∇APB(R, rB)
Z(R, rB)

− PB(R, rB)
∇AZ(R, rB)
Z2(R, rB)

]
(5.33)

where there is no restriction on A. The first term can be written as

∇APB(R, rB) = ∇A
∏
C 6=B

s(RB , RC , rB) (5.34)

=
∑
C 6=A

PA(R, rA)
s(RA, RC , rA)

∇As(RA, RC , rA)

+
PB(R, rB)

s(RB , RA, rB)
∇As(RB , RA, rB) (5.35)

The second term becomes

∇AZ(R, rD) = ∇A
∑
B

PB(R, rD) (5.36)

= ∇A
∑
B

∏
C 6=B

s(RB , RC , rD) (5.37)

=
∑
C 6=A

PA(R, rD)
s(RA, RC , rD)

∇As(RA, RC , rD)

+
∑
B 6=A

PB(R, rD)
s(RB , RA, rD)

∇As(RB , RA, rD)
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+
∑

B,C 6=B

PB(R, rA)
s(RB , RC , rA)

∇As(RB , RC , rA) (5.38)

The next step is to consider ∇As(RB , RC , rD) which yields

∇As(RB , RC , rD) =
ds(ν)
dν

∣∣∣∣
ν=ν(RBragg,µ)

· dν(µ)
dµ

∣∣∣∣
µ=µ(RB ,RC ,rD)

· ∇Aµ(RB , RC , rD) (5.39)

so the all important ingredient is ∇Aµ(RB , RC , rD), which yields

∇Aµ(RA, RC , rD) =
XA − xD

|rD −RA||RA −RC |

+
(|rD −RA| − |rD −RC |)(XC −XA)

|RA −RC |3
(5.40)

∇Aµ(RB , RA, rD) =
xD −XA

|rD −RA||RB −RA|

+
(|rD −RB | − |rD −RA|)(XB −XA)

|RB −RA|3
(5.41)

∇Aµ(RB , RC , rA) =
xD −XB

|rD −RB ||RB −RC |

− xD −XC

|rD −RC ||RB −RC |
(5.42)

(5.43)

5.6 The exchange-correlation energy hessian

In this case we will consider the case including the derivatives of the weights
only. So we assume that the energy is given by

Exc ≈
∑
Ai

wAif(ρ(R, rAi)) (5.44)

and therefore the hessian of the energy is the hessian of that expression which
yields

∇A∇BExc ≈
∑
Bi

∇A∇BwCif(ρ(R, rCi)) (5.45)

writing this expression out in more detail leads to the equation

∇A∇BExc ≈
∑
Ci

[∇A∇BwCi]f(ρ(R, rCi))

29



+
∑
Ci

[∇AwCi][∇Bf(ρ(R, rCi))]

+
∑
Ci

[∇BwCi][∇Af(ρ(R, rCi))]

+
∑
Ci

wCi[∇A∇Bf(ρ(R, rCi))] (5.46)

Obviously the first derivatives of the weights have already been derived, so that
only the second derivatives are of interest.

5.7 Johnson’s approach applied to the hessian
of the weights

We start from the same formulation of the weights as in section 5.4. In cal-
culating the hessians of the weights the two most complicated terms will be
∇A∇Bw′(RB , r) and ∇B∇Bw′(RB , r). In practice we can use the translational
invariance of the energy. This implies that all derivatives of the energy have to
be translationally invariant as well. Thus we can use

∇A∇BwB(R, r) = −
∑
C 6=B

∇A∇CwB(R, r) (5.47)

∇B∇BwB(R, r) = −
∑
A 6=B

∇A∇BwB(R, r) (5.48)

where the latter equation can be evaluated with help from the first.
Thus the basic building block we need is ∇A∇BwC(R, r) which is

∇A∇BwC(R, r) = w′(RC , r)
[
∇A∇BPC(R, r)

Z(R, r)

−{∇APC}{∇BZ(R, r)}
Z2(R, r)

−{∇BPC}{∇AZ(R, r)}
Z2(R, r)

−PC∇A∇BZ(R, r)
Z2(R, r)

+
2PC∇AZ∇BZ

Z3(R, r)

]
(5.49)

where

∇APC(R, r) = ∇A
∏
D 6=C

s(RC , RD, r) (5.50)

=
PC(R, r)

s(RC , RA, r)
∇As(RC , RA, r) (5.51)
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∇BPC(R, r) =
PC(R, r)

s(RC , RB , r)
∇Bs(RC , RB , r) (5.52)

If A 6= B 6= C 6= A then the 2nd derivative can be written as

∇A∇BPC(R, r) =
PC(R, r)

s(RC , RA, r)s(RC , RB , r)
· {∇As(RC , RA, r)}{∇Bs(RC , RB , r)} (5.53)

however in the case that A = B 6= C we have

∇A∇APC(R, r) =
PC(R, r)

s(RC , RA, r)2
{∇As(RC , RA, r)}2

− PC(R, r)
s(RC , RA, r)2

{∇As(RC , RA, r)}2

+
PC(R, r)

s(RC , RA, r)
∇A∇As(RC , RA, r) (5.54)

=
PC(R, r)

s(RC , RA, r)
∇A∇As(RC , RA, r) (5.55)

Now we need the 2nd derivatives of the cut-off profile

∇A∇As(ν(µ(RC , RD, r))) =
d2s(ν)
dν2

[
dν

µ
∇Aµ(RC , RD, r)

]2

+
ds(ν)
dν

d2ν

µ2
[∇Aµ(RC , RD, r)]

2

+
ds(ν)
dν

dν

µ
∇A∇Aµ(RC , RD, r) (5.56)

The derivatives of µ are

µ(RC , RD, r) = (|r −RC | − |r −RD|) · |RC −RD|−1 (5.57)
dµ(RA, RD, r)

dXA
= −(x−XA) · |r −RA|−1 · |RA −RD|−1

− (XA −XD) · (|r −RA| − |r −RD|)
·|RA −RD|−3 (5.58)

d2µ(RA, RD, r)
dX2

A

= |r −RA|−1 · |RA −RD|−1

+ −(x−XA)2 · |r −RA|−3 · |RA −RD|−1

+ 2(x−XA)(XA −XD) · |r −RA|−1 · |RA −RD|−3

+ −(|r −RA| − |r −RD|) · |RA −RD|−3

+ 3(XA −XD)2 · (|r −RA| − |r −RD|)
·|RA −RD|−5 (5.59)

d2µ(RA, RD, r)
dXAdYA

= −(y − YA)(x−XA) · |r −RA|−3 · |RA −RD|−1
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+ (y − YA)(XA −XD) · |r −RA|−1 · |RA −RD|−3

+ (x−XA)(YA − YD) · |r −RA|−1 · |RA −RD|−3

+ 3(XA −XD)(YA − YD) · (|r −RA| − |r −RD|)
·|RA −RD|−5 (5.60)

dµ(RC , RA, r)
dXA

= (x−XA) · |r −RA|−1 · |RC −RA|−1

+ (XC −XA) · (|r −RC | − |r −RA|)
·|RC −RA|−3 (5.61)

d2µ(RC , RA, r)
dX2

A

= −|r −RA|−1 · |RC −RA|−1

+ (x−XA)2 · |r −RA|−3 · |RC −RA|−1

+ 2(x−XA)(XC −XA) · |r −RA|−1 · |RC −RA|−3

+ −(|r −RC | − |r −RA|) · |RC −RA|−3

+ 3(XC −XA)2 · (|r −RC | − |r −RA|)
·|RC −RA|−5 (5.62)

d2µ(RC , RA, r)
dXAdYA

= (x−XA)(y − YA) · |r −RA|−3 · |RC −RA|−1

+ (y − YA)(XC −XA) · |r −RA|−1 · |RC −RA|−3

+ (x−XA)(YC − YA) · |r −RA|−1 · |RC −RA|−3

+ 3(XC −XA)(YC − YA) · (|r −RC | − |r −RA|)
·|RC −RA|−5 (5.63)

5.8 Notes

The distance between two points is defined as

|RA −RB | =
{

(XA −XB)2 + (YA − YB)2 + (ZA − ZB)2
}1/2

d|RA −RB |n

dXA
= n

{
(XA −XB)2 + (YA − YB)2 + (ZA − ZB)2

}(n−2)/2
(XA −XB)

= n|RA −RB |n−2(XA −XB) (5.64)
d|RA −RB |n

dXB
= −n|RA −RB |n−2(XA −XB) (5.65)

(5.66)
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Chapter 6

Implementation details

In this chapter we provide an overview of the issues around the implementation
of the DFT hessian. This overview also indicates the changes made to the code
so that they can be found easily.

6.1 Design considerations

To appreciate the choices made to incorporate the DFT hessians into the existing
code, one needs to understand the structure of the original code. GAMESS-
UK [3] is a general purpose molecular ab-initio electronic structure code that
offers a wide range of functionality. In particular it offers extensive Hartree-Fock
type capabilities, including Restricted and Unrestricted Hartree-Fock models
(RHF, UHF).

The most widely used DFT model, called the Kohn-Sham model, relies on
equations that are only slightly different from the Hartree-Fock models. The
quantities needed for the Kohn-Sham model require a substantial amount of
code to implement them but the Kohn-Sham equations to be solved can be
constructed starting from a Hartree-Fock code with only minor modifications.

In the design phase of the CCP1 DFT module it was realised that the above
consideration offered the opportunity to separate most of the DFT code from
the main code. The code implementing the Kohn-Sham quantities would be
collected in a relatively independent module. This module would be called from
the Hartree-Fock programs requiring only a small Application Programmers
Interface (API). The resulting interface provide three main capabilities;

• calculating the Kohn-Sham exchange-correlation energy

• calculating the Kohn-Sham matrix elements

• calculating the Kohn-Sham gradient contributions.

The loose coupling between the Hartree-Fock and the DFT code provided the
opportunity to distribute the DFT module to the CCP1 community independent
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from the main code. Other groups can integrate this DFT code with their own
ab-initio programs without too much effort if they wish.

The DFT hessian can be implemented using the same design strategy. The
Hartree-Fock code can be modified to include Kohn-Sham contributions to the
CPHF equations, and the Hessian expression. These terms were made available
to the Hartree-Fock code through two additional API functions. The code to
compute these quantities was integrated into the DFT module to guarantee

• optimal code reuse opportunities during the implementation phase,

• consistency of the quadrature through the energy, gradient and hessian
calculations, and

• optimal interoperability with other main codes that already use the DFT
module

Below the changes involved will be outlined in more detail.

6.2 Additions to the DFT module API

The DFT module API was extended by two functions CD cphf and CD hessian.
The function CD cphf can compute two contributions to the CPHF equations

in the AO-basis. The first contribution consists of Qα(b)
µν and Qβ

(b)
µν as defined

in equation (4.51). These terms contribute to the right-hand-side of the CPHF
equations. The second contribution consists of Gα[b]

µν and Gβ
[b]
µν as defined in

equations (4.40) and (4.39). These terms contribute to the right-hand-side of
the CPHF equations. As they again depend on the current guess for the solu-
tion they need to be recomputed at every iteration in the linear system solver.
However, the choice of passing this quantity between the DFT module and the
Hartree-Fock code limits the amount of data being transfered to the minimum.
This way memory limitations are pushed back to larger molecules than would
otherwise be the case. The computation of each of these contributions can be
switched on or off using a boolean argument.

The function CD hessian computes the DFT contributions to the hessian
expression. These terms are defined in equations (4.2) and beyond.

6.3 Modifications of the main code

To appreciate the changes required to incorporate the DFT contributions into
the second derivatives an overview of the code seems useful. Below an overview
of the Hartree-Fock second derivative code within GAMESS-UK is given. To
illustrate where the DFT API needs to be called these calls have been included:

scf Hartree-Fock program driver
rhfclm Hartree-Fock program
hstar Fock matrix builder
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CD_energy Kohn-Sham matrix builder
diis Fock matrix extrapolation
jacobi Diagonalisation

hfgrad
stvder 1-electron derivative integrals
jkder 2-electron derivative integrals
dabab construction of HF density matrix elements
CD_cphf DFT terms added on to derivative Fock matrices
dgenrl construction of 2-electron derivative integrals
fockd2 HF terms added on to derivative Fock matrices
formeg adding 2-electron terms onto gradient

chfndr
chfcls Construct the HF terms of CPHF matrix
rhscl Construct the CPHF right-hand-sides
chfdftrhs
CD_cphf Calculate DFT right-hand-side contributions

chfdrv
chfeqv Solve the CPHF equations
chfdftau
CD_cphf Calculate DFT left-hand-side contributions

dertwo
chfcla assemble wavefunction contribution
dr2nc0 2nd derivative of nuclear contribution
dr2ovl 2nd derivative of overlap integrals
dr2ke 2nd derivative of kinetic energy integrals
dr2pe 2nd derivative of 1-electron potential energy integrals
dr2dft
CD_hessian 2nd derivative of DFT contributions

dr2int 2nd derivative of HF 2-electron integrals
dr2den HF density matrix construction

To incorporate the DFT contributions correctly into the Hartree-Fock code
two types of changes are required.

First, the DFT contributions account for terms due to the exchange-correlation
energy replacing the Hartree-Fock exchange terms. Therefore, the Hartree-Fock
exchange contributions must be zeroed or in the case of hybrid models be sup-
pressed. For this purpose the exchange integrals were scaled with a Hartree-Fock
exchange fraction called hf wght in:

• subroutine fockd2 scaling down the Hartree-Fock exchange integrals
that contribute to Qα(b).

• subroutine dabab scaling down the density matrix terms that are asso-
ciated with the Hartree-Fock exchange in the gradient.

• subroutine rhscl scaling down the Hartree-Fock exchange integrals that
contribute to the right-hand-side, i.e. the Hartree-Fock equivalent of the∑
kiG

αα
ajkiS

α(b)
ki terms in equation (4.31).
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• subroutine chfcls scaling down the exchange integrals that contribute
to the Hartree-Fock exchange equivalent of the

∑
biG

αα
ajbiU

α
bi terms in the

left-hand-side of the CPHF equations.

• subroutine sgmatm scaling down the Hartree-Fock exchange integrals
that contribute to the gradient of the Fock matrix. I.e. the Hartree-Fock
exchange contribution to Fαjj .

• subroutine dabab scaling down the density matrix terms that are asso-
ciated with the Hartree-Fock exchange in E(a)(b).

The second category of changes involves computation of the DFT contribu-
tions and their subsequent addition to the remaining HF terms. In the CPHF
equations additional code is needed because the main code works in MO-basis
whereas the DFT module works in AO-basis. This interfacing issue was resolved
by introducing appropriate wrapper subroutines for the DFT module functions.
The changes involved:

• calling function CD cphf from within subroutine jkder to calculate
Qα(b) for the right-hand-side.

• introducing the subroutine chfdftrhs to calculate the
∑
kiG

αα
ajkiS

α(b)
ki

terms for the right-hand-side of CPHF equations. This subroutine is called
from within subroutine rhscl.

• introducing the subroutine chfdftau to calculate the
∑
biG

αα
ajbiU

α
bi terms

for the left-hand-side of CPHF equations. This subroutine is called from
within subroutine chfeqv.

• introducing the subroutine dft dfock to calculate the
∑
biG

αα
ajbiU

α
bi con-

tributions to Fαjj . These contributions can be calculated using function
CD cphf. The subroutine dft dfock is called from subroutine pfockc.

• introducing the subroutine dr2dft that calls function CD hessian to
calculate E(a)(b). This subroutine is called from within subroutine dertwo.
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Chapter 7

Conclusion

This report details the equations required to implement vibrational frequen-
cies within the framework of DFT. Also it outlines the changes required to a
Hartree-Fock code to include this functionality. The formalism as presented
here has been implemented in the CCP1 DFT module and incorporated into
the GAMESS-UK electronic structure code. Work on efficiency enhancements
due to various screening techniques and effective parallelisation of the formalism
is currently in progress.
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Appendix A

Becke weights

In the Becke weighting scheme the function s is defined as

s(ν) =
1
2

[1− f(f(f(ν)))] (A.1)

f(ν) =
3
2
ν − 1

2
ν3 (A.2)

ν(µ) = µ+ a
(
1− µ2

)
(A.3)

For the 1st derivative one obtains
∂f(ν)
∂ν

=
3
2
− 3

2
ν2 (A.4)

∂ν(µ)
∂µ

= 1− 2aµ (A.5)

∂s(ν(µ))
∂µ

= −1
2
∂f(f(f(ν(µ))))
∂f(f(ν(µ)))

· ∂f(f(ν(µ)))
∂f(ν(µ))

· ∂f(ν(µ))
∂ν(µ)

· ∂ν(µ))
∂µ

(A.6)

For the 2nd derivative one obtains

∂2f(ν)
∂ν2

= −3ν (A.7)

∂2ν(µ)
∂µ2

= −2a (A.8)

∂2s(ν(µ))
∂µ2

= −1
2
∂2f(f(f(ν)))
∂f(f(ν))2

·
[
∂f(f(ν))
∂f(ν)

· ∂f(ν)
∂ν

· ∂ν(µ))
∂µ

]2

+ −1
2
∂f(f(f(ν)))
∂f(f(ν))

· ∂
2f(f(ν))
∂f(ν)2

·
[
∂f(ν)
∂ν

· ∂ν(µ))
∂µ

]2

+ −1
2
∂f(f(f(ν)))
∂f(f(ν))

· ∂f(f(ν))
∂f(ν)

· ∂
2f(ν)
∂ν2

·
[
∂ν(µ))
∂µ

]2

+ −1
2
∂f(f(f(ν)))
∂f(f(ν))

· ∂f(f(ν))
∂f(ν)

· ∂f(ν)
∂ν

· ∂
2ν(µ))
∂µ2

(A.9)
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Appendix B

DFT utils

B.1 Functional quantities

The full list of quantities needed from the density functionals is

f = f(ρα, ρβ , γαα, γαβ , γββ) (B.1)
∂f

∂ρα
(B.2)

∂f

∂ρβ
(B.3)

∂f

∂γαα
(B.4)

∂f

∂γαβ
(B.5)

∂f

∂γββ
(B.6)

∂2f

∂ρα∂ρα
(B.7)

∂2f

∂ρβ∂ρα
(B.8)

∂2f

∂γαα∂ρα
(B.9)

∂2f

∂γαβ∂ρα
(B.10)

∂2f

∂γββ∂ρα
(B.11)

∂2f

∂ρβ∂ρβ
(B.12)

39



∂2f

∂γαα∂ρβ
(B.13)

∂2f

∂γαβ∂ρβ
(B.14)

∂2f

∂γββ∂ρβ
(B.15)

∂2f

∂γαα∂γαα
(B.16)

∂2f

∂γαβ∂γαα
(B.17)

∂2f

∂γββ∂γαα
(B.18)

∂2f

∂γαβ∂γαβ
(B.19)

∂2f

∂γββ∂γαβ
(B.20)

∂2f

∂γββ∂γββ
(B.21)

(B.22)

B.2 Derivatives of basis functions

For the second derivative code we need the second derivatives of the gradient of
the density. This implies that we need third derivatives of the basis functions.
A basis function is constructed from three factors of the form

χx = xp exp(−αx2) (B.23)

To construct 3rd derivatives we all derivatives upto 3rd order, i.e.

∂χx
∂x

= (pxp−1 − 2αxp+1) exp(−αx2) (B.24)

∂2χx
∂x2

= (p[p− 1]xp−2 − 2α[2p+ 1]xp + 4α2xp+2) exp(−αx2) (B.25)

∂3χx
∂x3

= (p[p− 1][p− 2]xp−3 − 6αp2xp−1) exp(−αx2)

+ (12α2[p+ 1]xp+1 − 8α3xp+3) exp(−αx2) (B.26)

The derivative of a basis function with respect to a nuclear coordinate differs
depending on whether we need to include the derivative quadrature or not.

The basis functions are defined as

χµ(RA, r) = (rx −RAx )p(ry −RAy )q(rz −RAz )r
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· exp(−α[(rx −RAx )2 + (ry −RAy )2 + (rz −RAz )2]) (B.27)

differentiating this basis function with respect to RCx gives

∂χµ(RA, r)
∂RCx

= 0 (B.28)

if A 6= C and

∂χµ(RA, r)
∂RCx

= [−p(rx −RAx )p−1(ry −RAy )q(rz −RAz )r

+ 2α(rx −RAx )p+1(ry −RAy )q(rz −RAz )r]

· exp(−α[(rx −RAx )2 + (ry −RAy )2 + (rz −RAz )2])(B.29)

otherwise.
However, if the grid point is associated with an atom then we have

χµ(RA, rB) = (RBx + rx −RAx )p(RBy + ry −RAy )q(RBz + rz −RAz )r

· exp(−α[(RBx + rx −RAx )2 + (RBy + ry −RAy )2

+(RBz + rz −RAz )2]) (B.30)

differentiating this function with respect to RCx gives

∂χµ(RA, rB)
∂RCx

= 0 (B.31)

if C 6= A and C 6= B or if C = A = B. However if C = A 6= B then

∂χµ(RA, rB)
∂RCx

= [−p(RBx + rx −RAx )p−1(RBy + ry −RAy )q(RBz + rz −RAz )r

+ 2α(RBx + rx −RAx )p+1(RBy + ry −RAy )q(RBz + rz −RAz )r]

· exp(−α[(RBx + rx −RAx )2 + (RBy + ry −RAy )2

+(RBz + rz −RAz )2]) (B.32)

on the other hand if C = B 6= A then

∂χµ(RA, rB)
∂RCx

= [p(RBx + rx −RAx )p−1(RBy + ry −RAy )q(RBz + rz −RAz )r

− 2α(RBx + rx −RAx )p+1(RBy + ry −RAy )q(RBz + rz −RAz )r]

· exp(−α[(RBx + rx −RAx )2 + (RBy + ry −RAy )2

+(RBz + rz −RAz )2]) (B.33)
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