
RAL-TR-2001-004

Performance and tuning of two distributed memory sparse

solvers1

Patrick R. Amestoy2, Iain S. Du�3, Jean-Yves L'Excellent4 and Xiaoye S. Li5

ABSTRACT
We examine the performance of two codes using direct methods to solve large sparse

linear equations on distributed memory computers. The code SuperLU is a right-looking
supernodal code, written in C, while MUMPS is written in Fortran 90 and uses a multifrontal
technique. Both codes use MPI for message-passing.
In this short paper, we consider the in
uence of the MPI bu�er size and send and receive

primitives on both codes and compare the performance of the factorization and solution
phases of both codes on test examples from the PARASOL Project on a CRAY T3E-900.

Keywords: MPI, distributed memory architecture, sparse matrices, matrix factorization,
multifrontal methods, supernodal methods.

AMS(MOS) subject classi�cations: 65F05, 65F50.

1 This work has been partially supported by the France-Berkeley Fund. This report is a preprint of a

paper that has been accepted for presentation at the Tenth SIAM Conference on Parallel Processing for

Scienti�c Computing that will be held in Norfolk, Virginia from March 12th-14th, 2001. A version of

this report will appear on the CD of the Proceedings for that meeting.

Current reports available by anonymous ftp to ftp.numerical.rl.ac.uk in directory

pub/reports. This report is in �le adelRAL01004.ps.gz. Report also available through URL

http://www.numerical.rl.ac.uk/reports/reports.html. Also published as Technical Report TR/PA/00/91

from CERFACS, 42 Ave G. Coriolis, 31057 Toulouse Cedex, France.
2 amestoy@enseeiht.fr, ENSEEIHT-IRIT, 2 rue Camichel, Toulouse, France.
3 I.Du�@rl.ac.uk, Rutherford Appleton Laboratory, and CERFACS, France. The work of this author

was supported in part by the EPSRC Grant GR/M78502.
4 excelle@enseeiht.fr, NAG Ltd, Wilkinson House, Oxford OX2 8DR, England.
5 xiaoye@nersc.gov, NERSC, Lawrence Berkeley National Lab, MS 50F, 1 Cyclotron Rd., Berkeley, CA

94720. The work of this author was supported in part by the National Science Foundation Cooperative

Agreement No. ACI-9619020 and NSF Grant No. ACI-9813362.

Computational Science and Engineering Department
Atlas Centre

Rutherford Appleton Laboratory
Oxon OX11 0QX

December 20, 2000

Contents

1 Introduction 1

2 Algorithmic improvements and tuning 3
2.1 Impact of the MPI internal bu�er size on the performance of our solvers 3
2.2 Using asynchronous immediate receives to improve the performance 4

3 Performance analysis 5

4 Concluding remarks 8

i

1 Introduction

This work was performed in the context of a France-Berkeley funded project between NERSC
located in Berkeley (USA) and CERFACS-ENSEEIHT located in Toulouse (France). We

consider the direct solution of sparse linear equations on distributed memory computers using
two codes, MUMPS (Amestoy, Du�, L'Excellent and Koster 1999, Amestoy, Du� and L'Excellent
2000a) and SuperLU (Li and Demmel 1999) The �rst uses a multifrontal approach with dynamic

pivoting for stability while the second is based on a supernodal technique with static pivoting.
We discuss both the tuning and performance analysis of the two sparse solvers on the 512
processor Cray T3E from NERSC, Lawrence Berkeley National Laboratory.

Both approaches can be described by a computational tree whose nodes represent

computations and whose edges represent transfer of data. In the case of the multifrontal
method, MUMPS, at each node some steps of Gaussian elimination are performed on a dense
frontal matrix and the Schur complement is passed for assembly at the parent node. In the
case of the supernodal code, SuperLU, the distributed memory version uses a right-looking

formulation which, having computed the factorization of a block of columns corresponding to a
node of the tree, then immediately sends the data to update the block columns corresponding to
ancestors in the tree. In both approaches, a pivot order is de�ned by the analysis and symbolic

factorization stages. In the case of MUMPS, the modulus of the prospective pivot is compared
to the largest modulus of an entry in the row and it is only accepted if this is greater than a
threshold value, typically a value between 0.001 and 0.1 (our default value is 0.01). Note that,
even though MUMPS can choose pivots from o� the diagonal, the largest entry in the column

might not be available for pivoting at this stage because all entries in its row may not be fully
summed. If a prospective pivot fails the test and cannot be used within the partial factorization
at a node, all that happens is that it is kept in the Schur complement and is passed to the parent
node. Eventually all of the columns will be available for pivoting, at the root if not before, so

that a pivot can be chosen from that column. Thus the numerical factorization can respect the
threshold criterion but at a cost of increasing the size of the frontal matrices and potentially
causing more work and �ll-in than were forecast. For the SuperLU approach, a static pivoting

strategy is used and we keep to the pivotal sequence chosen in the analysis. The magnitude of
the potential pivot is tested against a threshold of �1=2jjAjj, where � is the machine precision
and jjAjj is the 1-norm of A. If it is less than this value it is immediately set to this value (with

the same sign) and the modi�ed entry is used as pivot. This corresponds to a half-precision

perturbation to the original matrix. The result is that the factor is not exact and iterative
re�nement may then be needed. Note that, after iterative re�nement, we obtain an accurate
solution in all the cases that we tested. If problems were still to occur then extended precision
BLAS could be used.

For both solvers it can be very bene�cial (in di�erent ways) to precede the ordering by
performing an unsymmetric permutation to place large entries on the diagonal and then scaling
the matrix so that the diagonals are all of modulus one and the o�-diagonals have modulus

less than or equal to one. We use the MC64 (Du� and Koster 1999) code of HSL (HSL 2000) to
perform this preordering and scaling (Amestoy, Du�, L'Excellent and Li 2000b).

Both approaches use Level 3 BLAS to perform the elimination operations. However, in MUMPS

the frontal matrices are always square. It is shown in Amestoy and Puglisi (2000) how one can

detect and exploit sparsity within the frontal matrices but the present implementation takes no
advantage of this sparsity and all the counts measured assume the frontal matrix is dense. In

1

SuperLU, advantage is taken of sparsity in the blocks and usually the dense matrix blocks are
smaller than those used in MUMPS. In addition, SuperLU uses a more sophisticated data structure
to keep track of the irregularity in sparsity.

The parallelism within MUMPS is at two levels. The �rst uses the structure of the assembly
tree, exploiting the fact that nodes which are not ancestors or descendents are independent.
The initial parallelism from this source (tree parallelism) is the number of leaf nodes but this

reduces to one at the root. The second level is in the subdivision of the elimination operations
through blocking of the frontal matrix. This blocking, giving rise to node parallelism, is either
one-dimensional or two-dimensional (at the root node only). During the analysis phase each
tree node is statically assigned a processor a priori. The subassignment of blocks of the frontal

matrix is then done dynamically during factorization. SuperLU also uses two levels of parallelism
although more advantage is taken of the node parallelism through blocking of the supernodes.
Because the pivotal order is fully determined at the analysis phase, the assignment of blocks to
processors can be done statically a priori before the factorization commences. A 2D block-cyclic

layout is used and the execution can be pipelined since the sequence is predetermined.

Real Unsymmetric Assembled (rua)
Matrix name Order No. of entries StrSym(�) Origin
bbmat 38744 1771722 0.54 Rutherford-Boeing (CFD)
ecl32 51993 380415 0.93 EECS Department of UC Berkeley
invextr1 30412 1793881 0.97 PARASOL (Poly
ow S.A.)
mixtank 29957 1995041 1.00 PARASOL (Poly
ow S.A.)
twotone 120750 1224224 0.28 Rutherford-Boeing (circuit sim)
Real Symmetric Assembled (rsa)
Matrix name Order No. of entries Origin
cranksg2 63838 7106348 PARASOL (MSC.Software)

Table 1.1: Test matrices. (�) StrSym is the number of nonzeros matched by

nonzeros in symmetric locations divided by the total number of entries (that
is, a symmetric matrix has value 1.0).

Our test matrices come from the forthcoming Rutherford-Boeing Sparse Matrix Collection1

(Du�, Grimes and Lewis 1997), the industrial partners of the PARASOL Project2, and the
EECS Department of UC Berkeley3. Since SuperLU cannot exploit symmetry, most of our test
matrices are unsymmetric. The relatively large symmetric matrix cranksg2 and the symmetric
version of MUMPS will be used only in Section 2 to illustrate the impact of the size of the MPI

bu�ers on the performance of MUMPS.
We �rst describe in Section 2 how we have tuned and improved our algorithms. We then

compare in Section 3 the performance of the two solvers on the Cray T3E-900 (512 DEC EV-

5 processors, 256 Mbytes of memory per processor, 900 peak Mega
op rate per processor)
from NERSC on a set of large unsymmetric matrices from real applications. We present some
concluding remarks in Section 4.

1Web page http://www.cse.clrc.ac.uk/Activity/SparseMatrices/
2EU ESPRIT IV LTR Project 20160. Matrices are on Web page http://www.parallab.uib.no/parasol/
3Matrix ecl32 included in the Rutherford-Boeing Collection

2

2 Algorithmic improvements and tuning

Porting a code to a new platform always provides a good opportunity for improving its
performance not only on the target platform but also on previously implemented environments.

For both solvers, the �rst phase in the optimisation on a new platform consists in adjusting a
set of machine dependent parameters to �t the target machine. These parameters are used to
balance the parallel machine's speed of computation and communication, and the algorithm's

degree of parallelism. In the case of MUMPS, the porting of the code to the 512 processor CRAY
T3E-900 gave us the opportunity to study the behaviour of the code on a larger number of
processors than used in our previous work (Amestoy et al. 1999, Amestoy et al. 2000a). From
our set of machine dependent parameters we chose appropriate parameters to address this issue.

Other algorithmic modi�cations were motivated by having more processors available to us than
formerly. The dynamic scheduling approach used in MUMPS was modi�ed (see Amestoy et al.
(2000b)) to better control the dynamic distribution of the tasks to the processors. When porting
SuperLU to an IBM SP2, we found that there is a rather big performance gap between Level 2.5

and Level 3 BLAS. This motivated us to re�ne the numerical kernel to always use Level 3 BLAS.
Depending on the matrices, this Level 3 BLAS kernel improves the uniprocessor factorization
speed by about 20% to 40% on an IBM SP2. A performance gain was also observed on the

Cray T3E. It is clear that the extra operations are well o�set by the bene�t of the more e�cient
Level 3 BLAS routines.

Furthermore, even on the same machine, we found that MPI programming environment
changes (for example the default internal bu�er size) may result in a dramatic performance

di�erence. This enabled us to identify possible enhancements to the SuperLU code to make its
performance more robust. We further discuss this issue in the next two subsections.

2.1 Impact of the MPI internal bu�er size on the performance of our solvers

Currently the message transfer in SuperLU is performed using MPI standard send and receive

operations, mpi send and mpi recv. Very often, an MPI implementor chooses to use two di�erent
protocols depending on the length of the message:

� Short protocol (eager protocol) for small messages.
The sender copies the data into the system bu�er and returns immediately without
waiting for the matching receive. The additional copying usually increases the message

transfer overhead. However, in many asynchronous algorithms the communication may
be overlapped with computation. This is exactly what we observed from the SuperLU

performance.

� Long protocol for large messages.
The sender �rst sends a \request-to-send" message to the receiver, then waits for the
receiver to send back a \ready-to-receive" message. The sender now transmits the message
data directly into the receiver's user space without bu�ering. This protocol requires

handshaking of the sender and receiver, but the message transfer overhead is smaller than
for the short protocol because we do not pay the extra cost of copying.

Whether a message is short or long is determined by the size of the MPI system bu�er. For
example, on the Cray T3E, the user may determine the size of the system bu�er by setting an

environment variable MPI BUFFER MAX. If a message length exceeds this value, the long protocol

3

will be used. On the Cray T3E, the current default value of the MPI internal bu�er is 4 Kbytes
and in an earlier MPI implementation (Release 1.3.0.3) the bu�er size was unlimited.

Nprocs 1 2 4 8 16 32 64 128

N 29 33 36 41 46 51 57 64

unlimited 57.0 62.3 53.3 61.5 62.7 65.7 76.1 80.7
4 Kbytes 57.0 108.2 92.4 102.5 104.2 101.6 119.3 111.0

Table 2.1: SuperLU factorization time (seconds). Cubic grid problems of
dimension N �N �N (11-point discretization of the Laplacian operator).
MPI BUFFER MAX is set to unlimited and to 4Kbytes. (mpi recv is used to

match mpi send.)

We illustrate, in Tables 2.1 and 2.2, the impact of the size of the MPI bu�er on the
performance of our codes. One �rst sees that, in both cases, the size of the MPI bu�er strongly

in
uences the factorization time. Secondly, with the default size of the MPI bu�er (4 Kbytes),
the use of a standard receive (mpi recv) to match a send (mpi send or even mpi isend) does not
lead to a good overlapping of communication with computation.

Size (in Bytes) of the MPI bu�er

0 128 512 1K 4K 64K 512K 2Mega 8Mega

37.7 37.0 37.4 38.3 37.6 32.8 28.3 26.4 26.4

Table 2.2: MUMPS factorization time (seconds). Matrix cranksg2 on 8

processors of the CRAY T3E. (mpi recv is used to match mpi isend. Number
of operations is 4:2�1010.)
.

2.2 Using asynchronous immediate receives to improve the performance

It is somewhat unpleasant that the performance of our codes depend on the MPI system bu�er

size. However, if we can match immediate sends (mpi isend) with immediate receives (mpi irecv)
we can hope to address both issues (that is, independence with respect to MPI bu�er size and
communication overlapping).

In the MUMPS solver, the communications are fully asynchronous and are based on an
immediate send (mpi isend). The receiver normally matches the asynchronous send with a
test for the availability of the message, potentially followed by an e�ective reception of the
message (mpi recv). A problem with this mechanism occurs when messages are much larger

than the MPI internal bu�er size. In this case, independently of the time di�erence between
the issue of the send and the issue of the receive, almost all the data to be exchanged will
start to be sent only when the receive process actually issues a receive instruction and provides
user space for the communication to proceed. This is independent of the type of send used

(mpi send in SuperLU or mpi isend in MUMPS). This can very signi�cantly a�ect the potential
algorithmic overlapping between computation and communication. However, if we can use an
immediate receive (mpi irecv), which can be interpreted as having a separate \spawned" process

implementing the reception, the reception can proceed in parallel with the process that issued

4

the mpi irecv, so that potentially the receive can have completed (that is the complete message
is available in the user space of the process issuing the mpi irecv) at the time when we test for
the availability of the message. Note that by doing so we have also overlapped the copying from

the MPI bu�er to the user space.
Although, in the context of MUMPS, the use of an immediate receive seems quite natural,

we explain in Amestoy et al. (2000b) why it has required more algorithmic developments than

might have been expected. The main issue with using an immediate receive in our asynchronous
algorithmic context is that we cannot tell a priori which message we are receiving. That is,
the mpi irecv request must be sent to receive any type of message from any source. In our
implementation, we have avoided some possible added complications by restricting ourselves to

a single mpi irecv pending request. We show (compare the results in Tables 2.2 and 2.3) that,

Size (in Bytes) of the MPI bu�er
0 128 512 1K 4K 64K 512K 2Mega 8Mega

27.1 27.3 26.5 26.6 26.4 26.2 26.2 26.4 26.2

Table 2.3: MUMPS factorization time (in seconds) of matrix cranksg2 using 8
processors of the CRAY T3E. mpi irecv is used to match mpi isend.

as one might expect, the new code based on immediate receives (mpi irecv) is very much less
sensitive to the size of the internal MPI bu�er than the initial version based on standard receives
(mpi recv).

For the SuperLU solver, we plan to change the communications pattern used so that the code

performance is less dependent on the underlying MPI implementation and is more portable.
Although this idea might not be hard to implement, we need to provide an extra bu�er on the

receiving process to take care of one outstanding message. We still have to experiment with
the new scheme and see how sensitive the performance is to the size of the system bu�er. We

plan to report on this later.

3 Performance analysis

In this section, we compare the performance and study the behaviour of the numerical phases
(factorization and solve) of the two solvers.

For the sake of clarity, we will only report results with the best (in terms of factorization
time) sparsity ordering for each approach. Both a minimum degree ordering (AMD) (Amestoy,
Davis and Du� 1996) based on MC47 from HSL (HSL 2000) and a nested dissection (ND) ordering
are considered. (Sometimes we use the ON-MeTiS ordering from MeTiS (Karypis and Kumar

1998), and sometimes the nested dissection/haloamd ordering from SCOTCH (Pellegrini, Roman
and Amestoy 1999) depending on which performs better on each particular problem.) For the
matrix twotone it is very bene�cial to precede the ordering by an unsymmetric permutation
to place large entries on the diagonal. We use the MC64 code of HSL to perform this preordering

and scaling (Du� and Koster 1999). When the best ordering for MUMPS is di�erent from that for
SuperLU, results with both orderings are provided.

We see that MUMPS is usually faster than SuperLU and is signi�cantly so on a small number of

processors. We believe there are two reasons. First, MUMPS handles symmetric and more regular

5

Matrix Ord. Flops Solver Number of processors
�109 1 4 16 64 128 256 512

bbmat AMD 41.5 MUMPS | 45.7 16.5 11.9 11.2 9.1 12.6
34.0 SuperLU | 66.1 22.8 11.2 8.9 9.9 9.1

ND 25.7 MUMPS | 39.4 13.2 9.9 9.2 9.4 11.6
23.5 SuperLU | 137.8 41.2 17.3 12.4 14.3 14.7

ecl32 AMD 64.6 MUMPS | 54.6 23.8 15.6 15.1 16.0 16.5
68.3 SuperLU | 107.4 35.8 14.9 11.1 10.9 8.9

ND 20.9 MUMPS | 24.7 9.7 6.9 7.0 7.0 8.9
20.7 SuperLU | 49.0 16.7 9.9 8.8 9.9 9.5

invextr1 ND 8.1 MUMPS 31.8 13.2 4.5 3.8 4.4 5.4 6.3
5.9 SuperLU 68.2 23.1 9.1 5.7 4.7 6.1 5.8

mixtank ND 13.2 MUMPS 40.8 13.0 5.6 3.9 4.2 4.2 5.4
12.9 SuperLU 88.1 28.8 10.1 5.3 4.5 5.6 5.5

twotone MC64 29.3 MUMPS | 40.3 18.6 14.4 14.3 14.0 14.3
+AMD 8.0 SuperLU | 106.2 32.7 21.0 16.2 21.2 18.5

Table 3.1: Factorization time (in seconds). \|" indicates not enough
memory. Flops corresponds to the number of operations involved during

factorization.

data structures better than SuperLU, because MUMPS uses Level 3 BLAS kernels on bigger blocks
than those used within SuperLU. As a result, the Mega
op rate of MUMPS on one processor is on
average about twice that of the SuperLU factorization. Note that, even on the matrix twotone,
for which SuperLU performs three times fewer operations than MUMPS (see column 3), MUMPS is

over 2.5 times faster than SuperLU on four processors. On a small number of processors, we also
notice that SuperLU does not always fully bene�t from the reduction in the number of operations

due to the use of a nested dissection ordering (see bbmat with SuperLU using 4 processors).
We see that the ordering very signi�cantly in
uences the performance of the codes (see

results with matrices bbmat and ecl32). In particular, MUMPS generally outperforms SuperLU

when nested dissection ordering is used even on a large number of processors. On the other
hand, if we use the minimum degree ordering, SuperLU is generally faster than MUMPS on a large

number of processors. We also see that, on most of our unsymmetric problems, neither solver
provides enough parallelism to bene�t from using more than 128 processors. The only exception
is matrix ecl32 using the AMD ordering (requiring 64 � 109
ops for the factorization), for
which SuperLU continues to decrease the factorization time up to 512 processors. Our lack of

other large unsymmetric systems gives us few data points in this regime but one might expect
that, independently of the ordering, the 2D distribution used in SuperLU should provide better
scalability (and hence eventually better performance) on a large number of processors than the
mixed 1D and 2D distribution used in MUMPS. To further analyse the scalability of our solvers

we have also reported in Amestoy et al. (2000b) results obtained on large three dimensional
regular grid problems.

We now focus on the time spent to obtain the solution. We apply enough steps of iterative

re�nement to ensure that the componentwise relative backward error (Berr) is less than
p
" =

1:48�10�8. Each iterative re�nement involves not only a forward and a backward solve but also
a matrix-vector product with the original matrix. With MUMPS, the user can provide the input
matrix in a very general distributed format (Amestoy et al. 1999). This functionality was used

6

to parallelize the matrix-vector products. With SuperLU, the parallelization of the matrix-vector
product was easier because the input matrix is duplicated on all the processors.

In Table 3.2, we report both the time to perform one step of solution (use factorized matrix

to solve Ax = b and when necessary (Berr greater than
p
") the time to improve the solution

using iterative re�nement (lines with \+ IR"). With SuperLU, one step of iterative re�nement
was always enough to reduce the backward error to

p
". With MUMPS, iterative re�nement was

only required on the matrix invextr1 and the backward error was already so close to
p
" that

on 4 and 8 processors iterative re�nement was not required. We �rst observe that, on a small
number of processors (less than 8), the solve phase is almost two orders of magnitude less costly
than the factorization. On a large number of processors, because our solve phases are relatively

less scalable than the factorization phases, the di�erence drops to one order of magnitude.
The performance reported in Table 3.2 shows that the regularity in the structure of the

matrix factors generated by the factorization phase of MUMPS generally leads to a faster solve
phase than that of SuperLU for up to 256 processors. On 512 processors, the solve phase of

SuperLU is sometimes faster than that of MUMPS. The cost of iterative re�nement can signi�cantly
increase the cost of obtaining a solution. With SuperLU, because of static pivoting, it is more
likely that iterative re�nement will be required to obtain an accurate solution on numerically

di�cult matrices. With MUMPS, the use of partial pivoting during the factorization reduces the
number of matrices for which iterative re�nement is required.

Matrix Order. Solver Number of processors
1 4 16 64 128 256 512

bbmat AMD MUMPS | 0.53 0.31 0.32 0.36 0.40 0.56
SuperLU | 1.77 1.05 0.80 0.70 0.70 0.66
| + (IR) | 3.38 1.60 1.05 0.90 0.89 0.79

ND MUMPS | 0.38 0.26 0.31 0.35 0.37 0.54
SuperLU | 2.12 1.28 0.99 0.82 0.85 0.68
| + (IR) | 4.91 2.41 1.32 1.04 1.04 0.87

ecl32 AMD MUMPS | 0.80 0.40 0.40 0.45 0.52 0.83
SuperLU | 2.09 1.54 1.10 0.98 0.73 0.57

ND MUMPS | 0.53 0.30 0.28 0.43 0.39 0.48
SuperLU | 1.76 1.38 1.05 0.93 0.68 0.53

invextr1 ND MUMPS 0.59 0.31 0.18 0.18 0.25 0.26 0.37
| + (IR) 1.52 0.16 0.31 0.29 0.32 0.39 0.55
SuperLU 1.45 0.77 0.55 0.46 0.36 0.34 0.28
| + (IR) 2.69 1.58 0.90 0.67 0.54 0.52 0.44

mixtank ND MUMPS 0.67 0.27 0.16 0.15 0.19 0.24 0.35
SuperLU 1.47 0.90 0.65 0.49 0.33 0.30 0.24

twotone MC64 MUMPS | 1.03 0.97 0.98 1.03 1.13 1.41
+AMD SuperLU | 3.26 2.52 1.84 1.56 1.38 1.21

| + (IR) | 25.84 12.63 3.64 2.27 1.84 1.55

Table 3.2: Solve time (in seconds). \ | + (IR) " shows the time spent

improving the initial solution using iterative re�nement. \|" indicates not
enough memory.

7

4 Concluding remarks

We have described some algorithmic tuning and performance analysis of two state-of-the
art distributed sparse direct solvers, SuperLU and MUMPS. Tuning that is planned for MUMPS

includes using more global information in the scheduling algorithm and a closer integration
of orderings based on nested dissection; for SuperLU, the plan is to exploit more parallelism
from the dependency graph and to experiment on the use of immediate primitives to overlap

communication and computation.
We started this exercise with the intention of comparing a wider range of sparse codes.

However, we have observed that the task of conducting such a comparison is very complex. We
do feel though that the experience we have gained in this task will be useful in extending the

comparisons in the future. In Amestoy et al. (2000b), we summarize the major characteristics
of the parallel distributed sparse direct codes of which we are aware.

Acknowledgments
We want to thank James Demmel, Jacko Koster, Chiara Puglisi and Rich Vuduc for very helpful
discussions.

References

Amestoy, P. R. and Puglisi, C. (2000), An unsymmetrized multifrontal LU factorization,

Technical Report RT/APO/00/3, ENSEEIHT-IRIT. Also Lawrence Berkeley National
Laboratory Report LBNL-46474.

Amestoy, P. R., Davis, T. A. and Du�, I. S. (1996), `An approximate minimum degree ordering
algorithm', SIAM J. Matrix Analysis and Applications 17(4), 886{905.

Amestoy, P. R., Du�, I. S. and L'Excellent, J.-Y. (2000a), `Multifrontal parallel distributed

symmetric and unsymmetric solvers', Comput. Methods in Appl. Mech. Engrg. 184, 501{
520.

Amestoy, P. R., Du�, I. S., L'Excellent, J.-Y. and Koster, J. (1999), A fully asynchronous
multifrontal solver using distributed dynamic scheduling, Technical Report RAL-TR-1999-

059, Rutherford Appleton Laboratory.

Amestoy, P. R., Du�, I. S., L'Excellent, J.-Y. and Li, X. S. (2000b), Analysis, tuning and
comparison of two general sparse solvers for distributed memory computers, Technical
Report LBNL-45992, NERSC, Lawrence Berkeley National Laboratory. Shortened version

submitted to ACM Trans. Math. Softw.

Du�, I. S. and Koster, J. (1999), On algorithms for permuting large entries to the diagonal of

a sparse matrix, Technical Report RAL-TR-1999-030, Rutherford Appleton Laboratory.
Also appeared as Report TR/PA/99/13, CERFACS, Toulouse, France. To appear in SIAM

Journal on Matrix Analysis and Applications.

Du�, I. S., Grimes, R. G. and Lewis, J. G. (1997), The Rutherford-Boeing Sparse Matrix
Collection, Technical Report RAL-TR-97-031, Rutherford Appleton Laboratory. Also

8

Technical Report ISSTECH-97-017 from Boeing Information & Support Services, Seattle
and Report TR/PA/97/36 from CERFACS, Toulouse.

HSL (2000), `A collection of Fortran codes for large scale scienti�c computation'.

http://www.cse.clrc.ac.uk/Activity/HSL.

Karypis, G. and Kumar, V. (1998), MeTiS { A Software Package for Partitioning Unstructured

Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices

{ Version 4.0, University of Minnesota.

Li, X. S. and Demmel, J. W. (1999), A scalable sparse direct solver using static pivoting,

in `Proceedings of the Ninth SIAM Conference on Parallel Processing for Scienti�c
Computing', San Antonio, Texas.

Pellegrini, F., Roman, J. and Amestoy, P. (1999), Hybridizing nested dissection and halo
approximate minimum degree for e�cient sparse matrix ordering, in `Proceedings of
Irregular'99, San Juan', Lecture Notes in Computer Science 1586, Springer-Verlag,

pp. 986{995.

9

	ABSTRACT
	Contents
	1 Introduction
	2 Algorithmic improvements and tuning
	2.1 Impact of the MPI internal bu er size on the performance of our solvers
	2.2 Using asynchronous immediate receives to improve the performance
	3 Performance analysis
	4 Concluding remarks
	Acknowledgments
	References

