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Transport properties of a class of
electromagnetic waves

David C. Christie *

Abstract

We demonstrate that in many cases, known frame-dependent trans-
port equations for a propagating electromagnetic 2-form in an ar-
bitrarily curved spacetime can be replaced by a much simpler set
of frame-independent equations. The frame-dependent equations
can then be more easily recovered from the simpler set presented
here if required. The relationship of such transport equations to
the WKB approximation is also briefly discussed.
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1 Introduction

Ever since the early tests of general relativity, modelling the behaviour
of electromagnetic waves in arbitrary spacetimes has yielded important
information. For example, the effect of massive astronomical bodies on
the phase and propagation direction of light has given rise to the study of
gravitational lensing, which is providing a valuable source of astronomi-
cal data. One can also gain useful insights into a gravitational field from
its effects on the amplitude and polarisation of an electromagnetic wave.
Dehnen [2] managed to derive a set of exact transport equations for the
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amplitude, polarisation and propagation direction of a plane electromag-
netic wave, and was able to use these equations to predict a change in
the polarisation of light passing along the axis of a rotating massive ring,
known as the “Gravitational Faraday-Effect”.

He constructed an electromagnetic 2-form F' from a pair of orthogonal
1-forms, a spacelike b and null k. In co-ordinate free notation, this is
written

F=bnk (1)

A unit timelike observer vector field U was then introduced. In terms
of the electric 1-form E = iy F, the electromagnetic 2-form can then be
written

AL 2
(iyk)

Following the notation in [1], ix signifies an interior derivative with re-

spect to any vector field X. The electric field is decomposed into a unit

polarisation 1-form a (which is therefore orthogonal to U and k) and

amplitude ¢, viz.

E=c¢a (3)

Taking various contractions of the Maxwell equations and reparameter-
ising k eventually leads to a set of exact transport equations. Reworking
his proof in the language of differental forms, it can be shown that his
transport equations can be rewritten:

Vik =0

2ijde + = (=2(rk) i V0 — ok) =0
2h(Via) — h((i;Vx,a)e + Vzk) =0
h ((zw + 5kh(g)) ;3) —0

Here,V x is the covariant derivative with respect to the vector field X,

is the operator given by
0 = *dx (8)

where x is the Hodge map with respect to the spacetime metric g, and
his a (1,1) projection tensor onto a screen plane orthogonal to the wave
vector k and observer field U given by

h=1-(ipk) 2k @k — (ivk) kU — (ivk) U ® k (9)
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where I is the (1,1) identity tensor in spacetime.

When working in component notation, and adopting a preferred observer
field, deriving this set of separated transport equations required a con-
siderable feat of manipulation. However, bringing the powerful modern
tool of exterior differental geometry to bear on the problem reveals con-
siderable potential for simplification of both the analysis and the final
equations. If we assume that we can describe the wave in such a way
that the 1-form k is closed, so that dk = 0, and avoid selecting a pre-
ferred observer frame, the Maxwell equations quickly yield a simpler set
of transport equations, valid in any frame of reference and possibly more
amenable to integration. These will be derived in the next section and
are expressed in terms of new frame-independent quantities. We will then
go on to show that subsituting Dehnen’s quantities into these relations
will result in the recovery of his original equations.

2 Transport Equations

We write the electromagnetic 2-form in a slightly different notation to
Dehnen’s as

F=ekAP (10)

€ is a scalar amplitude, k is a null wave propagation 1-form and P is a
real spacelike unit polarisation 1-form orthogonal to k, so that

k=0 izP=1  §P=0 (11)

In contrast to Dehnen’s approach, we do not assume that the polarisation
1-form is orthogonal to the observer field U. We make the additional
simplifying assumption that k is closed. Thus,

dk =0 (12)

2.1 Transport Equation for k

Let a and b represent a pair of 1-forms with constant scalar product. For
arbitrary vector field Y,

0= Vy(i’db) == iaVyb + igVy(l (13)
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Thus, a 1-form ¢ with constant norm has the property
i(,sVy(,O =0 VY e I'T'M (14)

In torsion-free spacetime with arbitrary dual bases {e*} and {X,}, the
exterior derivative operator can be expressed [1]

d=e"AVy, (15)

For arbitrary vector fields Y and Z and arbitrary 1-form w, (15) leads to
the relation
iyizdw = iyVZu) - izvyu) (16)

Let v represent an arbitrary closed 1-form of constant norm, and Y rep-
resent an arbitrary vector field. As «y is closed,

0 = iyifyd"}/ = iyVﬁ’}/ — inyy")/

due to (14). Since Y is an arbitrary vector field, we have
Vi =0 (18)

Thus, any closed 1-form of constant norm is parallel transported along
the integral curves of its metric dual. Hence, the closed, null 1-form k
will obey the transport equation

Vik =0 (19)

2.2 Transport Equation for ¢

Equation (15) can be used to show that, for arbitrary 1-forms « and
and arbitrary 0-form f,

S(fand) = f{(d0)8 — (68)a+ Vza = Val} +(igga) - (iHa (20)
Thus, the vacuum Maxwell equations can be written

0=dF = deANkAP—ekNdP (21)
0=0F = e{(0k)P— (0P)k+ Vzk — Vi P} + (izde)k — (i;de)F22)
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Contracting (21) with & and then P gives
0 = (izde)k + (eipizdP)k (23)
Recalling (16), one can write
igde = —e€(ipViP —;V5P)
— —€i5Vak (24)

where the last line is a consequence of (13) and (14). Now, contracting
(22) with P and applying (14) gives

0=e{(6k) +i5Vzk} — (izde) (25)

Combining (24) and (25) gives the transport equation for the amplitude
of the wave:

1
irde = 56(% (26)

2.3 Transport Equation for P

Taking the wedge product of (21) with P and then contracting with k
gives

0=EkANixdP AP (27)
Furthermore, as k is closed, (13) and (14) give the following relations,
where X is an arbitrary vector field.

ixizdP = ixViP —i;VxP (28)
0=iyizgdk = ixVzk—izVxk
— ixVsk+iVxP (29)

Adding together (28) and (29) gives

iXiEd'P = inEP +in75/{I VX e 'TM

= ipdP = V;P+V3k (30)
Now, taking the wedge product of (22) with k& and eliminating i;de using

(25) gives
0=—(isVak)PANk+VskNk—ViPANk (31)
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" 0=iz{PAVskAk} —V;PAEk (32)
Applying (30), (32) can be rewritten
0=is{P AP Ak} —2V;P Ak (33)
The first term in this equation vanishes due to (27), leaving
0=V;PAk (34)

which is equivalent to
ViP = gk (35)
for some arbitrary O-form (3. This can be further simplified with a repa-
rameterisation.! Replacing P with P’ = P + ok for arbitrary O-form o
will not affect (10), (21) or (22). (35) becomes
ViP =ViP+k(o)k=(B+ko)k=0 ifk(oc)=—0

While these transport equations have been derived for a real polarisation
1-form, it is straightforward to obtain the same equations when P is a
complex 1-form that satisfies g(P,P) = 1.

2.4 Summary of Results

A family of solutions to Maxwell’s equations can be written
F=e¢kNP (36)
where
dk = 0; irk =i P = 0; izP=1 (37)
Given initial conditions on F', its evolution can be calculated by integrat-
ing the following simple transport equations:

Vik =0 (38)
irde = %aSk (39)
ViP=0 (40)

!Such reparameterisations are common in these calculations. Dehnen’s formula-
tion allows him to reparameterise his wave vector k to obtain its transport equation.
Similarly, in [5], a reparameterisation of the ’complex amplitude’ 1-form simplifies
its WKB transport equation, allowing decomposition into polarisation and amplitude
parts.
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3 Recovering Dehnen’s Equations

Define a timelike unit vector field U whose integral curves correspond to

observer worldlines (g(U,U) = —1). For our electromagnetic 2-form in
(36), we can define an electric field by
E =iyF = e{(ivk)P — (iu’P)k} (41)
Comparing (2) and (3) with (36) and (41) gives the relations
(ipP)

e = (igk)e; a=7P— k (42)

(ivk)

Dehnen’s polarisation a is therefore a projection of P onto the hyper-
plane orthogonal to the observer field U, ensuring that iya = 0. We can
use these relations to recover Dehnen’s original equations from (38)-(40).
Firstly, note that k is the same as Dehnen’s so that (4) follows imme-
diately from (40). Now, making use of (39) and (42) and noting that
Vik =0 gives

2izde = 2izd ((ivk)e)
= 2igde(ivk) + 2¢ (izd(ivk))
= (igk)edk + 2ek(ipk)
— (iuk)edk + 2¢ (i Vgk + V30 )

= <5k + 2(iUk:)’1i%Vf,;ﬁ> (43)
so that we recover (5). Now, writing
(iP)
= 44
=G “
so that
a="P—Ck (45)
we have

WVia) = h(Vi(P +Ck)
= W(V;P) + Ch(Vik) + E(Q)h(k)
=0 (46)
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as ViP = 0 from (40), V;k = 0 from (38) and h(k) = 0 from the
properties of h. This differs from (6) due to the simplifying assumption
that £ is closed. We can write

0 =izdk = (ia (ea VAN VXak) = Vzk — iavXakZ = Vzk + i%VXaa (47)

Thus,
h (Vak +1;Vx,a) =0 (48)

We can therefore recover (6).
Finally, note that ((14) and (38) imply that

5 Vak = i Vrorh = i Vok = i3V sk (49)
so that (24) and (25) give
0 = 0k + 25V 3k = 0k + 2i5Vak (50)

As h(g) is the projection into the screen plane orthogonal to U and k of
the metric tensor, we have

h(g)(a,a) =1 (51)
so that (50) can be rewritten
{0kh(g) + Vk} (a,a) =0 (52)

As the term in the brace brackets is not antisymmetric, and a is an
arbitrary spacelike “screen plane” vector field, this implies that

h ({6k:h(g) +VE) B) —0 (53)

and we have recovered the final Dehnen transport equation (7).

4 Discussion

We have therefore demonstrated that if we avoid adopting a preferred
reference frame from the outset, a simpler set of transport equations can
be derived for the polarisation, amplitude and wave vector of a plane
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electromagnetic wave if the wave vector satisfies dk = 0. This condition
is often true in physical situations. For example, in the second half of
Dehnen’s paper, he applies his transport equations to an electromagnetic
wave in the axis of a rotating massive cylinder. The wave 1-form he de-
rives is closed. In fact, it is exact (i.e. k = dS for some function S) and
can be obtained by solving, with initial conditions, the partial differen-
tial equation i;odS = 0, which then automatically ensures the transport
equation is satisfied. This can be more straightforward than integrating
the transport equation directly.

The new set of equations derived in Part 2 are easier to integrate from
initial conditions than the original transport equations, and the resulting
values for P, k and e are independent of any frame of reference. The
observer field U can then finally be introduced in the usual way by con-
structing the electromagnetic 2-form from (36) and then taking

E=iyF: B=—igxF (54)

Finally, it is noteworthy that an electromagnetic 2-form similar to (36)
also emerges from a quite different treatment of the behaviour of electro-
magnetic waves in arbitrary metrics, the short-wavelength WKB approx-
imation. This is described in [4, 5], while [3] considers propagation in a
medium. A complex approximate solution to the Maxwell equations can
be written

F=% {eés (A + %B + (9(52)> } (55)
where £ is a small parameter. This represents an electromagnetic wave
that is locally plane and monochromatic over a distance scale significantly
greater than its wavelength, but far smaller than the radius of curvature
of the spacetime. To first order in £, one can write

F=R{ac®dS AP} (56)

where dS is a real null 1-form that is orthogonal to the complex unit
polarisation form P and « is a real amplitude scalar. These quantities
obey the WKB transport equations

VdigdS =0 ijgda = (5dS)Oé ViP =0 (57)

1
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These WKB equations were obtained using an approximation method,
and their validity depends on the wavelength of the light and the prop-
erties of the surrounding space-time. However, we can construct the
electromagnetic 2-form (56) by substituting & = dS and € = e’ in
(36) and allowing P to be complex. Our transport equations (38)-(40),
which did not require any approximation scheme, are then identical to
the WKB equations. Thus, if the wave is exactly described by (56), the
WKB transport equations are exact, rather than approximate, evolution
equations.
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Transportne osobine jedne klase elektromagnetskih
talasa

Pokazano je da se u mnogim slucajevima poznate - zavisne od sistema
referencije - transportne jednacine prostiranja elektromagnetnih 2-formi
mogu zameniti mnogo prostijim skupom jednacina nezavisnih od sistema
referencije. Ako je potrebno, jednacine zaavisne od sistema referencije se
tada mogu lakse ponovo dobiti iz ovde prikazanog sistema. Takodje se
kratko diskutuje relacija takvih transportnih jednacina sa WKB aproks-
macijom.
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