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ABSTRACT

We discuss the benefits of an incremental approach to norm estimation for triangular
matrices. Our investigation covers both dense and sparse matrices. If we use our
incremental norm estimation on explicitly generated entries of the inverse of the
triangular matrix, we can relate our results to incremental condition estimation
(ICE). We show that our algorithm extends more naturally to the sparse case than
ICE. Our scheme can be used to develop a robust pivot selection criterion for QR
factorization or as the basis of a rank-revealing factorization.
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1 Introduction

There are many cases when it is interesting and important to detect the ill-
conditioning of a square matrix A from the triangular factors arising in its LU
or QR factorization. Applications include the calculation of forward error bounds
based on the condition number of A and robust pivot selection criteria.

Another particularly interesting field of applications is provided by rank-revealing
factorizations. During the process of determining a rank-revealing permutation,
several (and, in the extreme case, an exponential number of) leading or trailing
submatrices have to be investigated for their conditioning, see for example the survey
by Chandrasekaran and Ipsen (1994). A condition estimator is used to determine the
conditioning of these matrices. Conceptually, there are two major classes of these
estimators. The first class are static in the sense that they estimate the condition
number of a fixed triangular matrix. These methods are surveyed in Higham (1987).
The second class can be used for dynamic estimation when a triangular matrix is
calculated one column or row at a time. These incremental schemes (often called
incremental condition estimation or ICE) were originally presented in Bischof (1990)
and are particularly attractive for monitoring a factorization as it proceeds. This was
exploited in Pierce and Lewis (1997) where a generalization of the original scheme to
sparse matrices (Bischof, Pierce and Lewis 1990) was incorporated in a multifrontal
QR algorithm to generate a good initial permutation for rank-revealing ‘on-the-fly’.

A completely different rank-revealing strategy is proposed in Meyer and Pierce
(1995). Instead of using condition estimation together with the triangular factors
from a LU factorization (as for example in Chan (1984)), a method based
on an mplicit LU factorization is employed. This so-called Direct Projection
Method (Benzi and Meyer 1995) calculates an upper triangular matrix Z such that
AZ = L is a lower triangular matrix, with Z = U~! where U is the triangular
factor of Crout’s LU factorization. To our knowledge, this the first time information
on the inverse of a triangular factor was used to detect ill-conditioning. All the
previous approaches only used the triangular factors themselves so that the condition
estimators had to estimate the reciprocal of the smallest singular value. On the
contrary, working with the matrix inverse implies the estimation of the largest
singular value, that is the Euclidean matrix norm. This motivated us to think about
the design of an efficient norm estimator which can be applied in that framework.

When we were reformulating the ICE scheme from Bischof (1990) to the task of
norm estimation, we discovered that this scheme has a major shortcoming. Namely
that the scheme allows the use of approximate vectors for only one side; that is,
approximate right singular vectors for lower triangular matrices and approximate
left singular vectors for upper triangular matrices. While this might at first glance
not seem very critical, it has a severe implication on the use of ICE on sparse
matrices. As we will see, ICE fails on sparse matrices because it uses approximate



singular vectors from the wrong side. Therefore, sophisticated modifications have to
be introduced to adapt the scheme to the sparse case (Bischof et al. 1990).

The purpose of this presentation is to show how to address this problem with a
genuine matrix norm estimator. By generalizing the underlying ideas of ICE to the
norm case, we develop an incremental scheme that can be based on approximate
singular vectors from both sides. This scheme is as reliable as ICE for dense
matrix but is directly applicable to sparse matrices. It is particularly interesting
in calculations that involve matrix inverses, for example the Direct Projection
Method (Benzi and Meyer 1995) and the rank-revealing approach of Meyer and
Pierce (1995). In addition, the incremental estimation of the matrix norm, that is
the largest singular value, can be used to complement ICE which gives an estimate
of the smallest singular value. In this way we can obtain an incremental estimation
of the true condition number.

In Section 2, we first briefly discuss the original condition estimation scheme of
Bischof (1990) and then describe how we calculate the matrix norm of a triangular
matrix in incremental fashion. As we will see, the norm estimation can be based
both on approximate left and right singular vectors, in contrast to ICE. This allows a
direct application of our schemes to sparse matrices and the modifications necessary
for ICE, as developed by Bischof et al. (1990), can be avoided.

Of course, our norm estimation is of particular interest when the inverse of
the triangular factor is available. In Section 3, we develop, as an example, a QR
factorization with inverted triangular factor. This algorithm will later be used for
testing our norm estimator.

The inversion of sparse matrices is additionally associated with the problem of
fill-in. However, in the case of triangular matrices fill-in can be avoided by storing
the inverse in factored form as proposed by Alvarado and Schreiber (1993). We
describe the details of this approach in Section 4.1 and illustrate problems that can
occur when we try to detect ill-conditioning from the factored form.

We show the reliability of our incremental norm estimator in Section 5, by
presenting results obtained from a variety of dense and sparse test cases from
standard matrix collections (Duff, Grimes and Lewis 1989, Higham 1995).

Finally, we give our conclusions in Section 6.

2 Incremental estimators

In this section, we present the details of our incremental norm estimator. The
principal conceptual difference between our scheme and the original incremental
condition estimator (ICE) (Bischof 1990) is that ours uses matrix-vector
multiplications whereas ICE is based on the solution of triangular systems. A more
detailed comparison between the schemes is given in Section 2.5.



2.1 The original incremental condition estimator (ICE)

In order to appreciate the general difficulties of determining the conditioning by
examining the triangular factors, we first present two classical test matrices from

Kahan (1966):

ExXAMPLE 1 Consider T,, € R™*"™ where

L —y —7
="
Sy
0 0 1
with v > 0. The components of the inverse T,;* = (ay;) satisfy the recursion

(0_1j) = (1 +7v)(j), i =7 —2,...,1, hence it is given by

a.—4 b =g
Iy, i<

EXAMPLE 2 Consider K, (c) € R"*" with

1 —c —c
: 2 n—1 0
K,(c) = diag(1,s,s,...,s" )
e T —c
o ... 0 1

where c,s € (0,1) with ¢* + s* = 1. Its inverse is given by K, '(c) = (au;) with

T sMe(T 4 )T i< g

Both matrices are very ill-conditioned which is easy to see from the entries of
the inverses but is not evident from the entries in the matrices themselves. A
Householder QR factorization with column pivoting (Golub and van Loan 1996)
will reveal the ill-conditioning of Example 1 but will not work on Example 2. We
will use both these matrices in our experiments in Section 5.

In Bischof (1990), an elegant approach to condition estimation is presented which
updates an estimate of the smallest singular value of a triangular matrix when it is
augmented by adding another column. We now describe this approach applied to
upper triangular matrices.

Given an upper triangular matrix 7', we can calculate its smallest singular value
by finding a vector d of unit length so that the solution z of z#7" = d* has maximum
norm. That is, we find

Hrn—1
d = arg max [[d=T"|z.
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Once we have solved this problem (at least approximately), it is shown in Bischof
(1990) how to compute a cheap estimate of the smallest singular value for the

augmented matrix
TA [ ] v ] .

The right-hand side d for the augmented system & T = d¥ can be chosen as
d=d(s,c) = ( Scd), (2.1)

where s? + ¢® = 1, and the solution to this augmented system has the form

$:<$> (2.2)

with o = zHv. In other words, 2T = d can be solved for & without any back-
substitution involving T

The parameters (s, ¢) are chosen to maximize the norm of Z. This maximization
problem can be treated analytically, and we refer the reader to the very elegant
demonstration in Bischof (1990).

The low cost of this approach together with the quality of the estimates obtained
have made it an attractive safeguard for the computation of the Q) R factorization,
as was already suggested in Bischof (1990) and later on was successfully employed
in the sparse multifrontal rank revealing QR factorization (Pierce and Lewis 1997).

2.2 Incremental norm estimation by approximate left
singular vectors

Analogously to Section 2.1, we seek a cheap incremental norm estimator when
augmenting an upper triangular matrix. We can design an efficient scheme by
proceeding in a very similar way to the ICE construction.

Computing the matrix norm using a left singular vector means we wish to find
a vector y of unit length such that

y = arg max HyHTHQ
llyll2=1

An incremental norm estimator has then to specify a cheap heuristic for the
computation of ¢ corresponding to the augmented matrix

T:lT ”]. (2.3)
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We will see that we can avoid a matrix-vector product in this computation if we
restrict the search to vectors g of the form

A S
g=1(s,c) = ( cy>’ (2.4)
where s2 + 2 = 1.

Since

A A

16773 = §7TTHg

- e[S ()
= (s,0) l yHTTj(Z ;UngUy y(iv) ] ( s)

_ (S,C)B<i),

. . . . . 9
we can rewrite the objective function as a quadratic form, where B € R**2,

THEOREM 3 The matrix B is s.p.d. sz 1s nonsingular. Hence the mazimization

problem

max_[|g(c, s)" 73 (2.5)
el l2=1

has as solution the eigenvector (s*,c*) of unit length belonging to the largest
etgenvalue of B.

The calculation of ||@HT||2 by a matrix-vector product at every step can be
avoided by using the updating formula

57T 2 = /sy T3 + (s(yv) + e7)? (2.6)

which is a consequence of

z)HT:( syl ) (2.7)

syH v+ cy
If we introduce the quantities
a=yv, &=|y"T];

and
o+ 8, p=26by, v=ay,

=
we find as the solution of (2.5)



for the case a # 0

sY_ v (w2 -2
c) lulz” 2v

(o). t5>Dl
()=

c
< (1) ) otherwise.

Using (2.6), we can completely omit the calculation of QHT and compute 5
directly from §.

for the case a =0

2.3 Incremental norm estimation by approximate right
singular vectors

In the previous section, we showed how to construct incrementally an approximation
of the left singular vector corresponding to the largest singular value. We will now
develop the scheme for the corresponding right singular vector. This might seem
very natural, however we emphasize that it is not possible to extend the original
ICE scheme described in Section 2.1 to right singular vectors. In Section 2.5, we
look more closely at this problem of extending ICE.

For an upper triangular matrix 7', the issue is now to find a vector z of unit
length so that

z = arg max ||Tz||a.
ll=[]2=1

With the augmented matrix T defined as in (2.3), our approximate right singular
vector is assumed to be of the form

2 =25(s,c) = < oz ) , (2.8)
where s? 4+ ¢* = 1, exactly as in (2.4).
We state again the objective function as a quadratic form viz.

HTHT,  HTHy,

Sz S
720 = 0| e g | ()

_ (s,c)c<i>,

and see, by the same arguments as in Section 2.2, that the solution (s*,¢*) can be
calculated analytically.



By exploiting the recurrence
Ts = < shz +cv ) , (2.9)
cy

we see that, as in Section 2.2, we can avoid a matrix-vector product at each stage.

If we define
B=viTz, e=|Tz|s &*=vv+~%

we have

for the case 8 # 0
(s) U u_(62—52+\/e4—|—4ﬁ’2—26252+/{4)

¢)  ullz’ 26

and for the case # =0

(é) ife > |y,
()=

c
< (1) ) otherwise.

We point out that our algorithm works only with the vector 7'z, the approximate
right singular vector z is neither needed nor computed. However, it might become
useful to know z. In this case, we suggest multiplying 7'z by T# and normalizing the
result. This strategy of performing one step of power iteration with an appropriately
chosen vector z was originally used by the LINPACK condition estimator (Cline,
Moler, Stewart and Wilkinson 1979), but we choose z differently.

2.4 Incremental norm estimation for sparse matrices

The incremental condition estimator described in Section 2.1 is intended to be used
with dense matrices. In its original form, ICE cannot be applied to sparse matrices
as we illustrate through Example 4.

EXAMPLE 4 Consider the triangular matriz A € R"stnctnp)x(nstnctno) yitp

B 0 Ep
A=| 0 C E¢
0 0 D

After step ng, we obtain from ICE an approzimate left singular vector xg. In
the next step, the first column of the second block column is appended, where v =
a(ng + 1,np + 1) is the only nonzero entry. ICE will now take either & = (zp,0)¥
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or & = (0,1)¥ as an approzimate left singular vector for the augmented triangular
matriz. But once a component in the approximate left singular vector is set to zero,
this choice cannot be undone later in the calculation, independent of the entries in
the right border. Thus, the sparsity of the matriz A can cause the quality of the
estimate to be very poor.

The modifications proposed to ICE in Bischof et al. (1990) to overcome this
problem are as follows: for each block on the diagonal generate a separate
approximate left singular vector, and then merge these subvectors together where
the weights of each subvector are computed using a block version of ICE. This
requires again the computation of the eigenvector belonging to the largest eigenvalue
of a s.p.d. matrix, but this matrix will be of order k& where k is the number of
diagonal blocks rather than of order 2. As this eigenvector (for & > 4) can no
longer be computed analytically, the solution of a secular equation using rational
approximations is used.

The reason for the failure of ICE on sparse matrices is that, while the upper
triangular matrix is augmented column by column, the incremental condition
estimator uses left approximate singular vectors and thus calculates a weighted linear
combination of the rows. This problem will not occur if it was possible to base ICE
on approximate right singular vectors.

What does this imply for the incremental norm estimation? As in the case of
ICE, we expect to encounter similar problems to the incremental norm estimation
for sparse matrices if we use approximate singular vectors from the wrong side.
Fortunately, we can use approximate right singular vectors in the case of columnwise
augmentation of the matrix as we have shown in Section 2.3. This allows us to use
the same simple and elegant scheme for dense matrices in the sparse case also.

2.5 The relationship between incremental norm and
condition estimation

We now present a more detailed investigation of the relationship between the

incremental norm and incremental condition estimators described in the previous

sections. In particular, we show why incremental condition estimation is less flexible

with respect to the use of approximate singular vectors from both sides.
For the following discussion, we use the nomenclature

" " -1
T:lTU],T_lle “1].
¥ v

Let us first look at the incremental condition estimator ICE. The scheme
constructs from a vector d of unit norm the next vector d incrementally as

czzci(s,c)z(scd).



The elegance of the scheme lies in the fact that it is not necessary to solve the
equation 2% T = d¥ if the solution of the previous equation 2T = d is known.
Instead, & can be computed directly from z through the update formula given in
equation (2.2).

The problem is that the analogous update formula for ICE based on approximate
right singular vectors is not practical. An investigation of the equation T: =d

reveals the update formula
2:<5Z+CU). (2.10)

c/v

Note that this formula involves the vector v which is part of the inverse matrix
T. As was shown in Sections 2.2 and 2.3, the incremental norm estimator does
not have the same problem. Estimators based on both left as well as right singular
vectors have update formulae that involve only terms of the original matrix 7" (see
equations (2.7) and (2.9)).

The incremental approach to norm estimation is a direct generalization of the
concepts used in [CE. Indeed it is the case that the application of the incremental
norm estimator, using approximate left singular vectors, to the matrix 71! is
mathematically equivalent to applying the incremental condition estimator ICE to
the matrix T'. This follows by substituting the matrix 7' by its inverse 7! in the
derivation of Section 2.2.

3 Triangular factorizations with inverse factors

In this section, we describe briefly the incorporation of the inversion of a triangular
factor into a QR factorization. This algorithm will be the basis for our numerical
tests which are reported in Section 5. We remark that the explicit computation
of matrix inverses arises for example in signal processing applications (Cybenko
1987, Pan and Plemmons 1989).

3.1 The QR factorization with simultaneous inversion of R

There are several ways to combine a standard QR factorization with a simultaneous
inversion of R. It is important to consider both the performance and the stability
of the inversion algorithm. Both aspects were investigated in Du Croz and Higham
(1992). Of all the methods discussed in that paper, we decided to implement a
method rich in Level 2 BLAS matrix-vector multiplies. Lemma 5 describes the basis
of our inversion algorithm.

LEMMA 5 Assume that R € R and that the first i — 1 columns of Y = R~ have

already been computed. Then, the it" column of Y can be computed from

Y(i i)+ R(i,i) = 1,
Y(1:i—1,4)«R(i,i) = =Y (l:i—1,1:9—1)xR(1:4—1,1).

9



This is a consequence of a columnwise evaluation of Y R = I.

If we combine a QR factorization based on the modified Gram-Schmidt
algorithm (Golub and van Loan 1996) with the simultaneous inversion described
by Lemma 5, we get Algorithm 1.

Algorithm 1 QR factorization with simultaneous inversion.
[n,n] = size(A);
Q = zeros(m,n);
R = zeros(n);
Y = zeros(n);
for i =1:ndo
R(t,7) = norm(A(:, 1), 2);
Q1) = Al i)/ R(i, i)
for j=1i1+1:n do
R(i,j) = Qi)' + A, )
A(,5) = AG,j) - R(, ) * Qi)
end for
Y (i,i) = 1/R(i,19);
if ¢ > 1 then
Y1:i—1,0)=Y(1:i—1,1:i—1)* R(1:i—1,%),
Y(1:i—1,i) ==Y (4,9) «Y(1:3—1,0);
end if
end for

3.2 Stability issues of triangular matrix inversion

The numerical stability properties of general triangular matrix inversion were
investigated in Du Croz and Higham (1992). The inversion in Algorithm 1 is
just Method 2 from Du Croz and Higham (1992) adapted for upper triangular
matrices. An error analysis similar to the one performed there establishes the
following componentwise residual bound for the computed inverse Y':

YR — I| < c,ulY]||R| + O(u?)

where ¢, denotes a constant of order n and u the unit roundoff. The interpretation
of this result is that the residual Y R — I can be bounded componentwise by a small
multiple of the unit roundoff times the size of the entries in Y and R.
This bound illustrates the reliability of our method for matrix inversion, but the
remark on page 18 of Du Croz and Higham (1992) should be recalled:
. we wish to stress that all the analysis here pertains to matrix analysis alone.
It is usually the case that when a computed inverse is used as part of a larger

10



computation the stability properties are less favourable, and this is one reason why
matriz inversion is generally discouraged.

Indeed, the authors give an example illustrating that the solution of Rz = b by the
evaluation R71b need not be backward stable if R~! has first to be computed from

R.

4 Inverses in sparse factored form

4.1 Sparse storage of triangular inverses

The inverse of a sparse matrix A is generally less sparse than A itself and indeed,
if the matrix is irreducible, its inverse is structurally dense, see for example Duff,
Erisman and Reid (1986). As was observed by the pioneers in linear programming
some few decades ago (Bartels and Golub 1969, Forrest and Tomlin 1972), the
inverse of a sparse triangular matrix can be stored with exactly the same storage as
the matrix itself, that is without fill-in. This is described in Lemma 6.

LEMMA 6 Let R € R"*" be an upper triangular matriz. Denote by R; an elementary
matriz, equal to the identity matrix except for row ¢ where it is identical to the i-th
row of R. Then:

I. R=R,R,,—1... Ry

2. Let S; = R7'. Then S; has exactly the same sparsity structure as R; and is,
apart from row i equal to the identity matrixz. Note that S; does not contain
the 1-th row of Y.

Both results can be checked by calculation.

The lemma suggests that we can obtain a no fill-in representation of the inverse
by storing the factors S;,7 = 1,...,n instead of R~1.

Although this is very good from the point of view of sparsity it unfortunately
causes problems for the detection of ill-conditioning. For example, the factored
representation of 7!, where 7T}, is the matrix of Example 1, is given by the tableau

n

1 v ... 7
0 - . .
Do ey
0 ... 0 1

Here, row ¢ of Y holds the non-trivial row of the elementary matrix S;. We see that
the exponential growth of the matrix entries does not show up in the factored form,
that is the ill-conditioning is hidden by this implicit representation of the inverse.
From this example, we conclude that we need to calculate the inverse explicitly

11



to avoid hiding the ill-conditioning. For most matrices, it is not possible to do
this without fill-in, however, in Alvarado and Schreiber (1993), it is shown how the
number of factors in the sparse factored form of the inverse can be reduced while
still avoiding fill-in so long as the matrix satisfies a certain condition. The original
intention of Alvarado and Schreiber (1993) was to enhance parallelism in the solution
of triangular systems, but we use the idea here to help detect ill-conditioning.

In order to explain the method, we introduce the following nomenclature:
For an upper triangular matrix R € R™*", its directed acyclic graph G(R) is the pair
(V,E) where V ={1,...,n} and E = {(4,7)|¢ # j and R(i,7) # 0}. For (i,j) € E, 1
is called a predecessor of 7 and j a successor of :. The transitive closure of a directed
graph G = (V, E) is the graph G' = (V, E') where E' = {(¢,7)|3 path i — j in G}.

THEOREM 7 (Gilbert 1994) Let R be a nonsingular upper triangular matriz. Then

This theorem allows us to extend Lemma 6 by showing that the restriction to
using elementary matrices as factors is not necessary. Instead, we can consider
blocks of rows of R where the corresponding generalized elementary matrix has a
transitively closed directed graph. By generalized elementary matrix, we mean the
matrix which is equal to the identity except for the rows belonging to the block
where it is identical to the corresponding rows of R.

ExXAMPLE 8 Consider the matriz

11 12 13 14 1 11 12 13 14
B 22 23 0 | _ 1 22 23 0
- 33 34 | 33 34 1

44 44 1

From Theorem 7, we see that each of the factors can be inverted without fill-in.

It is desirable to look for a representation of the inverse with the smallest number
of factors possible. The inclusion of this row blocking strategy into Algorithm 1 will
then result in a hybrid algorithm that uses the sparse representation of the inverse
but also reveals possible hidden ill-conditioning of dense submatrices. In particular,
this algorithm can handle the pathological matrices in Examples 1 and 2.

To formalize the objectives, the algorithm should find a partition 0 = e; < €5 <
... < émy1 = n so that

R1'=5...9, (4.1)

where Sy, is the inverse of the generalized elementary matrix corresponding to the
rows e + 1,..., e, of R and the number of factors m is as small as possible.
The following Lemma is now an immediate consequence of Theorem 7.
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LEMMA 9 Assume that the generalized elementary matrixz corresponding to the rows
ex +1,...,5 — 1 of R is invertible without fill-in. Then the augmented generalized
elementary matriz corresponding to the rows e, + 1,...,7 of R s invertible without
fill-in if and only if the Condition 10 is satisfied.

CONDITION 10 FEvery successor s of j s also a successor of all predecessors p >
er +1 of 7.

The following theorem shows the optimality of the partition.

THEOREM 11 (Alvarado and Schreiber 1993) A partitioning with mazimal row
blocking based on Condition 10 leads to a sparse representation of R™' with the
smallest possible number of factors.

It is interesting to see how easily the row blocking can be incorporated into our
inversion algorithm for triangular matrices. The following analogue to Lemma 5
shows how Algorithm 1 has to be modified.

LEMMA 12 Assume that Condition 10 holds for e + 1,...,1 and that the columns
ex +1,...,1—1 of S have already been computed. Then, the i*" column of S}, can

be computed from

Y (i) % R(i,i) = 1,
Yier+1:1—1,9)*« R(i,1) = —Y(er+1:i—1,e+1:i—1)xR(ex+1:7—1,1).

We remark that the stability of the partitioned inverse method in the context
of solving triangular linear systems has been studied in Higham and Pothen (1994).
Generally, the comments given at the end of Section 3.2 also apply here.

4.2 Incremental norm estimation for sparse factored
inverses

The application of any incremental scheme to a factored representation is a difficult
problem. As can be seen from (2.6) and (2.9), it is always assumed that we have
access to the full column being appended. However, in the factored approach a
column might not be stored explicitly because of fill-in, see Section 4.1. The column
could be generated but the high cost of its computation from the factors might spoil
the effectiveness of the scheme.

Although we cannot give a full solution to this problem, we suggest at least a
partial remedy as follows:

1. It is possible to use

IRl ~ TLIISie- (4.2)
1=1

13



to obtain an estimated upper bound for the condition number of Y = R™L
In our tests, we found that the product on the right-hand side is often a
severe overestimation of ||R™!||2, even if each factor ||:S;||2 is an underestimate.
Although there are circumstances where an overestimate is useful (for example,
if the value is not too large then we are fairly sure the matrix is not ill-
conditioned), the use of (4.2) can be very unreliable.

2. The cost for the computation of an off-diagonal block depends on the number
of factors in the sparse representation, the graph G(R!), and the position of
the block. The example

[ S11 Sz Sis I I
Y = I Sao So3 I
I I I Sas
[ S11 S12522  (S12523 + S13)S33
= Sa2 S23.533
i S33

illustrates this. If R~ is very sparse, the computation of the columns of Y from
its factors becomes affordable. We can use a blocked version of our scheme
to first calculate approximate singular vectors corresponding to the diagonal
blocks and afterwards merge them together to obtain an approximate singular
vector for the whole system.

5 Numerical tests

In this section, we present tests of our incremental schemes with dense and sparse
matrices. We use the algorithm described in Section 3.1 which allows us to use our
norm estimator on both the triangular factor and its inverse.

In Table 5.1, we show the incremental estimates for the QR factorization of
sparse matrices from the Harwell-Boeing collection (Duff et al. 1989). Here, the
second column displays the exact matrix norm of R as calculated by MATLAB,
the third and fourth columns show estimations based on approximate left singular
vectors and on approximate right singular vectors, respectively.

In general, both of our estimators give a good approximation to the norm of
R. Note that, because we compute the norm using an approximate singular vector,
our estimate will always be a lower bound for the norm. However, as indicated
in Section 2.4, the incremental approach for upper triangular matrices based on
approximate left singular vectors can lead to problems for sparse matrices and we
see this in a few of our test cases, most noticeably the case arc130, where the
incremental approach based on right singular vectors gives a much better estimate
than using left singular vectors.
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Name norm(R) est. (left) | est. (right)
arcl30 2.3973e+05 | 1.9160e+02 | 2.3712e+05
bfw398a | 1.0412e+01 | 9.4564e+00 | 8.6924e+00
cavity04 | 7.1227e+01 | 3.5360e4-01 | 6.3994e+4-01
e05r0400 | 4.5921e+01 | 1.7958e+4-01 | 4.1371e+4-01
fidap001 | 1.3019e-01 | 1.1498e-01 | 1.1960e-01

fs_183_1 | 1.1293e+409 | 8.2283e+08 | 1.1293e+09
impcol_b | 8.6395e+00 | 3.1833e+00 | 8.4843e+00
impcol_c | 1.2000e4-02 | 9.7782e+00 | 1.2000e+4-02
Ins__131 | 9.7721e+09 | 9.5468e+09 | 9.1036e+09
nnc261 1.0406e+03 | 5.7603e+02 | 1.0175e+-03
saylrl 4.8325e+08 | 4.1494e+08 | 4.8180e4-08
steam1 2.1712e4-07 | 1.8812e+07 | 2.1712e407
str____0 1.3938e+4-01 | 7.3314e+4-00 | 1.3902e+-01
west0381 | 1.7153e+4-03 | 1.3968e+4-03 | 1.7153e+03

Table 5.1: Results with matrices from the Harwell-Boeing collection.

In Table 5.2, we show the incremental estimates for the norm of R~! from the QR
factorization of dense matrices from the Matlab Test Matrix Toolbox (Higham 1995).
Specifically, we use the matrices from Example 1, called condez in Higham (1995),
and Example 2, named kahan. Furthermore, we include tests with Hilbert matrices
(hilb). We apply our incremental norm estimator to the inverse of the matrices,
since the ill-conditioning is evident there rather than in matrices themselves. We
note that both of our estimates are always very close to the real norm.

Name Size | norm(inv(R)) | est. (left) | est. (right)
condex(n,3) | 50 | 3.7530e+14 3.7220e+14 | 3.7530e+-14
75 1.2593e+22 1.2489e+22 | 1.2593e+22
100 | 4.2255e+29 4.1906e+4-29 | 4.2255e+29
kahan(n) 50 6.4262e-+07 6.0921e+4-07 | 6.4262e+07
75 | 8.4992e+11 8.0573e+11 | 8.4992e+11
100 | 1.1241e+16 1.0657e+16 | 1.1241e4-16
hilb(n) 50 8.9463e+17 3.7405e+17 | 8.3684e+17
75 1.7687e+418 5.2885e+17 | 1.7139e+18
100 | 1.8250e+18 7.2637e+17 | 1.6266e+18

Table 5.2: Results with matrices from the Matlab Test Matrix Toolbox.

In Tables 5.3 and 5.4, we show the incremental estimates for the QR factorization
of random matrices with uniform and exponentially distributed singular values,
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respectively. For each of the different matrix sizes n, we created 50 random matrices
A = UXVH choosing different random matrices U,V, and singular values either
uniformly distributed as

o =norm(A) /i, 1<i<n,
or exponentially distributed as

oi=a', 1<i<n, o =norm(A),
where the norm of A was chosen in advance. The random orthogonal matrices U
and V were generated using a method of Stewart (1980) which is available under the
name gmult in Higham (1995). The values displayed in the table are the averages

from 50 tests each.

Size

norm(R)

est. (left)

est. (right)

50

1.0000e+01

8.8211e+00

9.2427¢+400

1.0000e+06

8.7931e+4-05

9.2079e+05

1.0000e+12

8.7692e+11

9.1995e+11

75

1.0000e+01

8.8183e+00

9.2273e+00

1.0000e+06

8.8188e+-05

9.2421e+05

1.0000e+12

8.8044e+11

9.2064e+11

100

1.0000e+01

8.8147e+400

9.2158e+00

1.0000e+06

8.7806e+05

9.1797e+05

1.0000e+12

8.7292e+11

9.1696e+11

Table 5.3: Results (averages) with random matrices, o; uniformly distributed

Size

norm(R)

est. (left)

est. (right)

50

1.0000e+01

8.5490e+-00

9.0990e+-00

1.0000e+06

8.5224e+05

9.5870e+05

1.0000e+12

8.8925e+11

9.9151e+11

75

1.0000e+01

8.5177e+00

9.1122e+00

1.0000e+06

8.1961e4-05

9.5153e+05

1.0000e+12

8.3155e+11

9.8192e+11

100

1.0000e+01

8.5445e+-00

9.1128e+-00

1.0000e+06

8.0845e4-05

9.3058e+05

1.0000e+12

8.1969e+11

9.5817e+11

Table 5.4: Results (averages) with random matrices, o; exponentially distributed.
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These tests show that also in the case of dense upper triangular matrices, the
norm estimation based on approximate right singular vectors is more reliable than
that based on approximate left singular vectors, which corresponds to the approach
used in ICE.

6 Conclusions

We have shown how an incremental norm estimator can be developed for a triangular
factor. We have pointed out the suitability of the scheme for both dense and sparse
matrices due to the fact that it can use approximate singular vectors both from the
left and the right side.

In the context of the inversion of triangular matrices, we have related our
approach to the incremental condition estimator, ICE. We also discussed the
applicability of our scheme when a sparse matrix inverse is stored in factored form.

To demonstrate the efficacy of our approach, we have shown results on some
standard test examples including both sparse and dense matrices.
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