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A null space algorithm for mixed finite element approximation
of Darcy’s equation
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ABSTRACT

A null space algorithm is considered to solve the augmented system produced by the mixed
finite element approximation of Darcy’s Law. The method is based on the combination of
an orthogonal factorisation technique for sparse matrices with an iterative Krylov solver.
The computational efficiency of the method relies on a suitable stopping criterion for the
iterative solver. We experimentally investigate its performance on a realistic set of selected
application problems.
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1 INTRODUCTION

The Mixed Finite Element approximation of Darcy’s law produces a finite dimensional problem,
which is defined by an augmented system. In order to solve the latter, we present in this paper
a null space method which combines a direct Householder factorisation solver and a conjugate
gradient iterative one. The properties of this method have been studied in Arioli (20005) where
its backward stability when using finite-precision arithmetic is proved, and where a review of
the bibliography on the topic is also presented.

The efficiency of this kind of approach is strongly affected by the criterion used to stop the
iterative solver. The one adopted in this paper is based on an estimate of the approximation
error in the energy norm of the problem. See Arioli (2000a) for a more detailed theoretical
presentation.

We remark that this method can be applied to any diffusion equation. For the sake of
simplicity, we will focus on Darcy’s Law, which is a significant example among saddle point
problems.

The performancs of the final algorithm is experimentally investigated on a representative
set of problems.

In the presentation of the algorithm, we will denote by E; and Ey the n x m (m < n) matrix

Im
B, = (1)
On—m,m
and the n X (n — m) matrix
0p—
Ey — n—m,m (2)
Infm

2 PROBLEM FORMULATION

Let Q be a simply connected, bounded, polygonal domain in R?, defined by a closed curve T.
I" is usually the union of two parts I'p and I'y, where different Dirichlet and Neumann type
boundary conditions are imposed, that is ' =T'p UT'y.

Darcy’s laws can be formulated as follows:

u(x) = —K(x)gradp(x), x € Q)
divu(x) = f(x), x e

with a set of boundary conditions for both u and p:

p(x) = gn(x), x€lp @

u-n = gn(x), xel'y

using two regular functions gp and gy for Dirichlet and Neumann conditions, and where n
denotes the external normal to I'. In the following, we will assume that gy = 0.



Darcy’s law describes the relationship between the pressure p(x) (the total head) and the
velocity field u(x) (the visible effect) in groundwater flow. In system (3) K(x) is the hydraulic
conductivity tensor and f(x) is a source-sink term.

The former equation in (3) relates the vector field u to the scalar field p via the permeability
tensor K, which accounts for the soil characteristics. The latter equation in (3) relates the
divergence of u to the source-sink term f(x).

Let T4 be a family of triangulations of €2, i.e. each T is a set of disjoint triangles 7 which
cover {2 in such a way that no vertex of any triangle lies in the interior of an edge of another
triangle. Let h = max {diam (7) : 7 € Tp}. We assume that T}, is regular in the sense of Ciarlet
(1978), i.e. triangles do not degenerate as h — 0. Moreover, we assume that no triangle has
one vertex on gp and another vertex on gy, and that each triangle cannot have more than one
edge lying on T'.

The mixed finite element approximation of system (3) with the usual Raviart-Thomas space
(we refer to Brezzi and Fortin (1992) for a detailed analysis), leads to the solution of the following
system of linear equations:

M A U q
= ’ (5)
AT 0 P b

where, denoting by n the number of edges and by m the number of triangles, we have that
M € R™" is a symmetric and positive definite matrix, and that A € R™*™ is a sub matrix of
a totally unimodular matrix with m + 1 columns. Therefore, A is full rank and its entries are
equal to either 1, —1, or 0.

The augmented system (5) is nonsingular because Ker(AT) NKer(M) = 0.

3 NUMERICAL ALGORITHM

In this section, we illustrate the classical null space algorithm, which is described in Gill, Murray
and Wright (1981), for the minimisation of linearly constrained quadratic forms. Let Y € R"*™
and Z € R"*("~™) be two matrices such that

Y'A=1, and Z"A=0,_mm. (6)

The algorithm can be formulated as follows:

Null Space Algorithm:
1. uy=Yb,
2. ZTMZw=2"q— Z"Muy = s, (7)
3. u=wuy+ Zw,
4. p=YTq-Y"Mu.

The matrices Y and Z can be computed using either an orthogonal factorisation or a Gaussian
factorisation of the matrix A. In Amestoy, Duff and Puglisi (1996), it is shown that, by a sparse



version of the Householder algorithm, the matrix A can be factored as follows:

R
A=H (8)
0

where R is an m X m sparse, non singular, upper triangular matrix and H is an n xn orthonormal
matrix. The matrix H can be stored implicitly as the set of sparse vectors that generate the
elementary Householder transformations, see Amestoy et al. (1996) for details on the sparsity
of R and on the sparse storage of H. With respect to the previous choice, we have

Y=HE,RT and Z=HE,. (9)

The matrix Z is an orthonormal basis of the kernel of A”. Tt is very important to observe that
we never need to explicitly compute either Y or Z. Indeed the Householder factorisation gives
the possibility of using its sparse result for implicitly computing all the matrix-vector products
required by the algorithm. We can perform the product of the projected Hessian matrix Z7 M Z
by a vector and the product of Y or Y7 by a vector in the following ways:

ZTMZw = ET(HT (M (H(BEw)))),
YTy = R Y(ET (HTy)), (10)
Yz = H(E; (R Tz)).

This approach has the advantage of performing backward and forward substitutions for
triangular matrices, and of using the sparse Householder elementary matrices to perform matrix-
vector products.

In Step 2 of the Null Space algorithm, we also need to solve a system involving ZT M Z, the
projected Hessian matrix. We have two alternative ways to proceed. If n — m is small (the
number of constraints is very close to the number of unknowns), or the projected Hessian matrix
is still sparse, we can explicitly compute ZT M Z, and then solve the system ZT M Z w = s using
the Cholesky factorisation. Otherwise, when the product Z7 M Z cannot be performed directly
because both the complexity would be too high — O(n®) — or the resulting matrix would be
fairly dense, despite the sparsity of M. we can solve the linear system ZTMZw = s using a
conjugate gradient algorithm, and implicitly computing the matrix by vector products.

4 STOPPING CRITERION

If we use the conjugate gradient method, it is quite natural to have a stopping criterion which
takes advantage of the minimisation property of this method. At each step j the conjugate
gradient minimises the energy norm of the error dw = w — w% on a Krylov space. The space
R™ ™ with the norm

=

Y llzramz = (yTZTMZy)

induces on its dual space the dual norm

(11)

1

11 llgmays = (87 (2" Mz) 1) (12)
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A stopping criterion such as
if H ZTMZ’U](J) — § H(ZTMZ)*I S 'f]H S ||(ZTMZ)71 then STOP, (13)
will guarantee that the computed solution w') satisfies the perturbed linear system

ZTMZ w9 = s+ f, (14)

[ fllzrmzy-r < nllsllzrazy-1-

The choice of n will depend on the properties of the problem that we want to solve, and, in the
practical cases n >> €, where € is the rounding unit. Therefore, it is appropriate to analyse
the influence of the perturbations on the error between the exact solutions u and p and the
computed u* and p* neglecting the part depending on e. Using the results of Arioli (20005),
Arioli and Baldini (1999), we can prove that

VAN

u — u* U — U
I 15 < 1l ol[ar (15)

[|p=p*llarar-14 < mVC||u —uo||m

where ( is the spectral radius of ZT M ZE,M 1 E,.

Furthermore, we need to add some tool within the conjugate gradient algorithm for esti-
mating the values in (13). The estimate ¢; of || ZTMZw() — s l(zrmz)-1 can be computed
using a Gauss quadrature rule as proposed in Golub and Meurant (1997) and tested in (Arioli
2000a, Meurant 1997). At step j of the conjugate gradient, £; estimates the true value of the
error at step j — d, where d is an a priori selected integer value.

Finally, we must estimate || s [|(;7577)-1. Taking into account that

Isllzrmz-1 = llullzrmz,

we could replace || s |[(z7a77)-1 With || w9 || ;777 at the step j of the conjugate gradient if the
current estimate §; is less than or equal to 7||s||2. Therefore, we can only use (13) after an
additional check:

if & <nlls|l2 then
if & <nl|w9||zryz  then STOP (16)
endif .

Moreover, using (16) we can avoid too many additional matrix-vector products, and the addi-
tional floating-point operations needed are negligible in comparison with the total number of
floating point operations performed by the conjugate gradient.

5 NUMERICAL EXPERIMENTS
All our experiments were performed on a SUN workstation using the sparse code M A49 of the

HSL (HSL 2000), described in Amestoy et al. (1996). In ML A49 the Householder factorisation
is implemented using a multifrontal approach for sparse matrices: in the symbolic part, the
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code computes the column ordering of A following the minimum degree reordering of A7 A in
order to minimise the fill-in in the upper triangular matrix R, and then a row ordering making
A ordered by the leading entries.

In our experiments, we compare the exact solution u and p of (5) with the values u* and
p* computed by the null space algorithm where, in step 2, we used the conjugate gradient
method with (16), and we chose w(®) = 0. We assume that the values computed by the HSL
routine M A47 (Duff and Reid 1983) which implements a sparse Gaussian factorisation applied
to (5) are exact. We also report on the performances of the algorithm when a symmetric
scaling is performed on the problem. The entries of the diagonal scaling matrix D are equal to
(VMii)i=1,...n, and the system (5) is scaled as follows:

D! 0 M A D=t 0 Du D™ lq
= . (17)
0 I, AT 0 0 I, P b

5.1 Test Problems

In Figure 1, we illustrate the geometry of the domain and the boundary conditions. We gen-
erated three regular meshes on {2 with an increasing number n of triangles (see Table 1). For
each mesh, we assembled M, A, ¢, and b corresponding to Ky = 1 and to four values of K (see
Figure 1): 1072,107%,1075,1078.

In Table 1, we report on the values n, m (number of degrees of freedom of the problem),
and the values of the number of nonzero entries in M and A. Moreover, in Table 1, we report
on the values of the storage (measured in words) needed for H and R, and on the values of 7.

5.2 Numerical Results

In Table 2 and in Table 3, we summarise the numerical performance of the algorithm for each
test problem and each mesh respectively without and with scaling. In Fig 3, 4, and 5, we plot
the convergence history of ||ZT MZ w9 — s||2/||s||2, and of || f llzrarzy-1 /1l 81l (zrarz)-1 and
its estimate, for each mesh and each value of K respectively. We choose n = h (see the values
of n = h in Table 1) in equ:Mstop as suggested by Arioli (2000a). Arioli (2000a) proved, in the
framework of a classical finite-element approximation, that the energy norm of the difference
between the function corresponding to the computed algebraic solution and the true solution of
the continuous problem is of order h. Our numerical experiments support the same conclusion
for the velocity field in the framework of the mixed finite-element approximation. We denote
by Niter the iteration on which (16), with 7 chosen as in Table 1, stops the conjugate gradient.
We point out that the error estimate is relative to the errors at the step Nje —d. Nevertheless,
because the conjugate gradient energy norm convergence is monotone, we can safely use the
final values of w(Viter)| Tn Table 2, we report the errors of the final step, the values chosen for
the parameter d used in computing the estimate £;, and the errors between u and u*, p and p*.
For the sake of simplicity, we used the same value of d within each mesh. We point out that
for the biggest values of K, we obtained similar results using smaller values of d.

The condition number k(Z'MZ) = || ZT M Z|| ||(Z* M Z)~}|| of the projected Hessian ma-
trix is uniformly bounded by a values which depends on K but not on h (Brezzi and Fortin
1992). Therefore, for decreasing values of h, the convergence of the conjugate gradient, mea-
sured in error energy norm, will depends only on K. In our test problems, the convergence



has a staircase behaviour where the length, the depth, and the steepness of the steps increases
when K7 decreases. The choice of d depends on the length and the steepness of these steps and
moderately on h. If we choose a smaller value for d then we can have phenomena similar to
the one of Fig 5 relative to K; = 1078. When scaling is performed, the convergence is faster
and without steps because the condition number of the scaled projected hessian matrix depends
neither on K nor on h (see Table 3).

In Fig 2, we plot the velocity field uy(x), which is obtained solving (5) by MA47, and
the velocity field u*(x), which is computed by the null space algorithm using (16), for specific
choices of the mesh and permeability. From Table 2, the error between the two fields is ~ 1072
while A = 5.8 1072, We point out that p* is computed with less accuracy (see Table 2).

In Fig 6, we show that the energy norm of the solution at each step converges quite fast to
the energy norm of u.

Finally, we observe that the symmetric scaling (17) normalising to 1 the entries M;;, in-
creases the rate of convergence of the conjugate gradient for 2-D problems. Nevertheless, this
improvement is much less dramatic when the permeability is not isotropic, and when we solve
3-D problems. Moreover, we point out that this null space algorithm can be easily generalised
to solve non-linear problems in which the permeability tensor depends on the solution. Within
this framework, the scaling process imposes a new factorisation at each step of the Newton
algorithm, making the total cost prohibitive.

6 CONCLUSIONS

We can see from the numerical experiments that the null space algorithm based on the House-
holder factorisation gives a projected Hessian matrix asymptotically independent of n and m
and, thus, of the parameter h. This follows from the inf-sup condition (Brezzi and Fortin 1992)
and the choice of the Raviart-Thomas finite-element approximation functions.

Nevertheless, when the physical problem is very ill-conditioned owing to the presence of
very low permeability regions in the domain, the rate of convergence of the conjugate gradient
does not deteriorate dramatically.

The Householder decomposition-based algorithm stores a number of non-zero entries for R
and H, which increases with n and m. In Arioli, Maryska, Rozloznik and Téma (2001), the
authors point out that, for 3-D problems, the computer memory requirement for storing H can
become prohibitive.



Table 1: Parameters of the runs.

n m | nnz(A) | nnz(M) | nnz(R) | stg(H) n
Mesh 1 237 147 416 1119 940 3023 0.16
Mesh 2 || 2309 | 1497 4396 11291 16058 | 47120 | 5.810 2
Mesh 3 || 22919 | 15136 | 45084 | 113735 | 250944 | 649793 | 1.9210 2

Table 2: Stopping iteration and final residual (without Scaling)

Ki=10?%|K =10*|K;=10°%| K; =108

Niter 21 25 29 31
Mesh 1

w2810 | 281072 | 281072 | 3.51072
d=15

"7@”"‘“2“2 51107 | 6.610~3 | 3.41072 22.7

Niter 42 66 80 93
Mesh 2

Lozl | 90104 | 24108 | 5110°% | 1.710°2
d=25

”mp"‘;“z 4010~ | 521073 | 6.5107! 2.08

Niter 59 96 119 143
Mesh 3

”7@%”2 42107* | 1.2107* | 3.1107* | 7.8107%
d =30

”ﬁ’gf’ﬁz‘b 1.8107° 1.410~% | 2.010% 1.66




Table 3: Stopping iteration and final residual (with Scaling)

K =102 | K =10"* | K, =10"% | K; = 1078

Nzte'r 6 0 6 6
Mesh 1

: 7\_uu||2H2 1.1107° 4.0106 2.010°6 1.910°6
d=5

||I|)|;pﬁzu2 441077 1.510~6 1.61076 1.61076

Niter 7 7 7 7
Mesh 2

H Wﬁzuz 1.4107° 54106 45106 45106
d=5

“7&7@”2 2.810°7 1.010°6 1.110°6 1.110°6

Niter 8 8 8 8
Mesh 3

lowls | 45106 | 44106 | 44106 | 44107
d=5

||1|9|—pp"‘*2\\2 1.8107° 1.910°8 1.910°8 1.9108
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Figure 1: Sketch of the test problem
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Figure 2: Velocity fields produced by the direct (top) and iterative (bottom) solvers on Mesh 2
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with K7 = 1078.
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Figure 3: Mesh 1 calculations for different relative permeabilities: “exact” error (solid), esti-

mated error (circles), residual norm (dotted).
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Figure 4: Mesh 2 calculations for different relative permeabilities: “exact” error (solid), esti-
mated error (circles), residual norm (dotted).
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Figure 5: Mesh 3 calculations for different relative permeabilities: “exact” error (solid), esti-
mated error (circles), residual norm (dotted).
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Figure 6: Ratio of the energy norm of the “exact” and the iterative solution for the three
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