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ABSTRACT The χ(2) interaction between an intense terahertz
(THz) pulse and a weak optical probe is addressed, and a gen-
eral solution obtained for the situation of an undepleted THz
wave. It is shown that the common description of a phase re-
tardation proportional to the THz electric field strength breaks
down in strong-field conditions, unless the THz field is suit-
ably slowly varying. The solution is obtained from a consistent
description of sum- and difference-frequency generation driven
by the THz field, the input optical field, and all optical fields
generated through the interaction itself. For an interaction be-
tween monochromatic THz and optical waves a minimum of
four waves (three optical and one THz) need be considered in
the weak-field limit; higher numbers of waves are needed at
higher fields, with the extent of the required optical spectrum
dependent on field strength, phase matching, and interaction
length.

PACS 42.65.Ky; 42.65.Re; 78.20.Jq

1 Introduction

The electro-optic (EO) effect is widely utilized for
the coherent detection of terahertz (THz) radiation. While
its main application has been in detection for THz time
domain spectroscopy, more recently it has also found ap-
plication in diagnostics of relativistic bunches in particle
accelerators [1–4], and in the measurement of coherent syn-
chrotron radiation (CSR) [5] and coherent transition radia-
tion (CTR) [6, 7] generated by relativistic electron beams. In
the spectroscopy applications, where the THz pulse is pro-
duced through laser interactions (optical rectification or Aus-
ton switch) pulse energies are modest, with pJ pulse energies
typical in oscillator-based systems and � 1 µJ for amplified
laser systems. However, there have been some recent demon-
strations of high THz pulse energy through optical rectifica-
tion, with pulse energies of ∼ 10 µJ reported [8]. Recently,
accelerator sources have been reported [7] with ∼ 100 µJ
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pulse energies in near-single-cycle pulses, with focused field
strengths estimated to be as high as 7 ×107 V m−1.

For the high field strengths now being produced by optical
rectification, and even more so by accelerator sources, it be-
comes necessary to re-examine the applicability of the usual
description of the electro-optic effect as being a simple phase
retardation proportional to field strength. Here, we address the
description of the electro-optic effect in this high-field regime.
The approach of Gallot and Grischkowsky [9] and Jamison et
al. [10] is taken, whereby the EO effect is derived from the
THz–optical sum- and difference-frequency mixing. In those
earlier works the small-signal, or equivalently no pump deple-
tion, approximations were employed. In the strong THz field
situation considered here the approximation of negligible de-
pletion in the optical beam becomes marginal, and is dropped.
This results in an infinite system of coupled wave equations
for describing the high-field problem; an analytic solution for
a completely general optical beam is presented, within the as-
sumption of a THz beam sufficiently intense that the depletion
of the THz wave by the χ(2) interaction is negligible.

2 The system of wave equations

In a given experiment or application the interac-
tion of THz and optical waves is dependent on the propagation
directions and crystal orientation, and on the THz and opti-
cal polarization states. For a specific propagation geometry
such as the collinear 〈110〉 normal incidence geometry used
in standard ZnTe or GaP THz detection, it is possible to find
a principal axes coordinate system in which the THz wave
(of specified polarization) will allow optical waves polarized
along a principal axis direction to interact only with identi-
cally polarized optical waves [10–12]. Choosing such a co-
ordinate frame of reference allows the interaction with gen-
eral optical polarization states to be described simply through
the combination of independent interactions on each princi-
pal axis component. Here, we solve the coupled optical–THz
wave equations for an optical wave polarized along a principal
axis direction, and hence no polarization indices need be given
on the waves. The results can then be considered quite general
as they can be simply applied to arbitrary polarization states
through a simple decomposition of the required wave into the
principal axis frame; this approach is also compatible with the
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Jones matrix formalism for describing additional polarization
optics in a given experiment.

In setting up the system of wave equations, the electric
field spectral envelopes ˜A(ω, z) are defined with respect to
the electric field via ˜E(ω, z) = exp[ik(ω)z]˜A(ω, z). In the
following the THz waves are additionally signified through
a subscript, ˜ATHz(ω, z), while optical waves are implied in the
absence of a subscript.

Within the slowly varying envelope approximation, the in-
teraction of optical and THz waves via the χ(2) nonlinearity
can be written, in SI units, as [9, 10, 13]
[

∂

∂z
+βopt

]

˜A(ω, z)

= iµ0ε0ω
2

2k(ω)
exp[ik(ω)z]

× [

χ(2)(ω; Ω,ω−Ω) exp[−ikTHz(Ω)z − ik(ω−Ω)z]
× ˜ATHz(Ω, z)˜A(ω−Ω, z)

+χ(2)(ω; −Ω,ω+Ω) exp[ikTHz(Ω)z − ik(ω+Ω)z]
× ˜A∗

THz(Ω, z)˜A(ω+Ω, z)
]

, (1)

where the frequencies ω,Ω, and ω−Ω are all > 0, and we
take the propagation wavenumbers k, kTHz to be real. The
absorption coefficient for the optical frequencies is given
by βopt. Both sum- and difference-frequency mixing contribu-
tions are explicitly included, through the terms with ˜A(ω−Ω)

and ˜A(ω+Ω), respectively. The simultaneous inclusion of
sum- and difference-frequency mixing is required for consis-
tency, as neither can be assumed to be dominant ab initio.
Furthermore, both of these mixing processes are required to
describe the usual electro-optic effect [9, 10]. Equation (1) is
extended to describe a continuum of THz frequencies, with
the assumption that the THz wave is sufficiently strong as to
be undepleted by the χ(2) interaction;
[

∂

∂z
+βopt(ω)

]

˜A(ω, z)

= iω

2cη
×

∞
∫

−∞
dΩχ(2)(ω; Ω,ω−Ω)

× exp[i∆k(Ω,ω)z −βTHz(Ω)z]˜ATHz(Ω)˜A(ω−Ω, z) .

(2)

In (2), the linear propagation losses of the THz wave are
retained through an explicit z dependence of the THz ampli-
tude, with ˜ATHz(Ω, z) → exp[−βTHz(Ω)z]˜ATHz(Ω), where
βTHz(Ω) is the THz absorption coefficient. The optical phase
refractive index η = ck/ω has also been introduced in (2).
Both sum- and difference-frequency mixing have also been
accounted for through the integration of Ω over both positive
and negative frequencies, and the definition of the (real) phase
mismatch as

∆k(Ω,ω) =
{

∆k+(Ω,ω) , Ω > 0
∆k−(Ω,ω) , Ω < 0

(3)

with

∆k+ = ∆k(Ω > 0, ω) ≡ k(ω)− k(ω−Ω)− kTHz(Ω)

≈ Ω/vopt
g −Ω/vTHz

ϕ , (4)

∆k− = ∆k(Ω < 0, ω) ≡ k(ω)− k(ω+|Ω|)+ kTHz(|Ω|)
≈ −Ω/vopt

g +Ω/vTHz
ϕ = −∆k+ . (5)

In (4) and (5), v
opt
g and vTHz

ϕ are the optical group velocity
and THz phase velocity, respectively. In the following it is
not necessary to use the approximations for ∆k± in terms
of the optical group velocity, although it does lead to a sim-
pler description and will often be valid for THz interactions.
The approximate phase-matching symmetry ∆k+ = −∆k−
will rarely, if ever, be valid for much higher frequencies, such
as frequency mixing of optical and mid-infrared waves. That
this symmetry may be valid for THz frequencies, or even that
both ∆k+ and ∆k− need be considered, is what differenti-
ates the THz high-field interaction from three-wave descrip-
tions of sum-frequency or difference-frequency mixing. For
notational compactness, the THz absorption can be included
within the phase-mismatching term, through the definition of
a complex phase mismatch ∆˜k = ∆k + iβTHz.

Equations (1) and (2) describe a coupling between the
optical wave at frequency ω and the pair of sidebands at
ω±Ω. To provide a description for an intense THz interac-
tion no assumptions are made on the relative intensities of
the sidebands, and allowance for the sidebands themselves to
evolve through the χ(2) interaction with the THz wave is pro-
vided. This leads to consideration of a system of equations
for A(ω, z) over a (possibly continuous) spectral distribu-
tion ω. To address this system of wave equations spanning the
sideband frequency region of arbitrary extent, the THz spec-
trum is discretized into a set of many uniformly distributed
THz waves with frequencies

Ω ∈ {...,−2δ,−δ, 0, δ, 2δ, ..., nδ, ...} , (6)

where δ is the spacing of THz frequencies (and which may
tend to zero). Any particular THz frequency is denoted by
Ωn ≡ nδ, where n may be positive or negative. As the span of
the optical spectrum is coupled through this discretized THz
field, the optical frequency in similarly discretized, with the
same frequency spacing, and denoted by ω → ωm . We there-
fore have a system of equations for {A(ωm, z)}:
[

∂

∂z
+βopt(ωm)

]

˜A(ωm , z)

= i
ωm

2cη
×

∞
∑

n=−∞
exp[i∆˜k(Ωn, ωm)z]χ(2)(Ωn)

× ˜ATHz(Ωn)˜A(ωm −Ωn, z)δ . (7)

In the notation of (7), it has been assumed that the χ(2)

frequency dependence is dominated by the THz frequency
response, so that we can write χ(2)(ωm; Ωn, ωm ±Ωn) →
χ(2)(Ωn); if necessary this assumption can be dropped in the
following analysis. This system of equations in the optical
field can be written in matrix form as
∂

∂z
A(z) = [BM(z)−βopt]A(z) , (8)
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where A(z) ≡ {˜A(wm, z)}T, the matrix M(z) contains the co-
efficients appearing in the summation of (7), β is a diagonal
matrix of the optical absorption coefficients, and B ≡ i/(2cη).
As an interim step to solving this system of equations, the
phase-matching exponential term is expanded in the Taylor
expansion

exp[i∆˜k(Ωn, ωm)z] = 1 + i∆˜k(Ωn, ωm)z + ...

+[i∆˜k(Ωn, ωm)z]s 1

s! + ... (9)

and the ‘convolution’ matrices, which are independent of z,
are defined as

M(0) = {

M(0)
mn

} ≡
{

ωmχ
(2)
m−n ATHz

m−n

}

δ , (10)

M(1) = {

M(1)
mn

} ≡
{

ωmχ
(2)
m−n ATHz

m−n i∆˜k(m−n),m

}

δ

= {

M(0)
mn [i∆˜k(m−n),m]} , (11)

...

M(s) = {

M(s)
mn

} ≡
{

ωmχ
(2)
m−n ATHz

m−n[i∆˜k(m−n),m]s 1

s!
}

δ

=
{

M(0)
mn [i∆˜k(m−n),m]s 1

s!
}

, (12)

where the following notational shorthand has been intro-
duced:

ATHz
n ≡ ˜ATHz(ωn) ; ATHz

m−n ≡ ˜ATHz(ωm −ωn) ;
Am ≡ ˜A(ωm) ; Am±n ≡ ˜A(ωm ±ωn) ;

∆˜k(m−n),m ≡ ∆˜k(ωm−n, ωm) ;
χ

(2)
m−n ≡ χ(2)(ωm−n) .

Since the THz spectrum and optical spectrum are discretized
on the same spacing, the notational distinction of Ωn and ωn

has been dropped, and both identically denoted as ωn .
With these matrix definitions, and the Taylor expan-

sion (9), the discretized wave equation (8) can be written as

∂

∂z
A = −βopt A+ BM(0) A+ zBM(1) A+ z2 BM(2) A+ ...

+ zs BM(s) A+ ... (13)

The solution to this matrix equation has a simple matrix expo-
nential form

A(z) = exp

[

−zβopt + zBM(0) + z2

2
BM(1) + ...

+ zs+1

s +1
BM(s) + ...

]

A0 , (14)

where A0 = A(z = 0). Having found this solution from the
expansion of the phase-matching exponential term, this ex-
pansion can be contracted with the aid of the relationships be-
tween M(0)

mn and M(s)
mn given in (12). From this contraction, the

matrix exponential solution of (23), with the complete infi-
nite series of the phase-matching contributions, can be written

simply as

A(z) = exp

[

−zβopt + i

2cη
T(z)

]

A0 , (15)

where

T(z) = {Tmn} ≡
{

M(0)
mn

[

exp(i∆˜k(m−n),mz)−1

i∆˜k(m−n),m

]}

=
{

δωmχ
(2)
m−n ATHz

m−n

[

exp(i∆˜k(m−n),mz)−1

i∆˜k(m−n),m

]}

. (16)

Equations (15) and (16) are a solution to the coupled wave
equations for arbitrary optical input. By choice of a suitably
fine sampling of the optical spectrum, the solution for the dis-
cretized systems given by (15) and (16) can be used directly
for simulations of the strong-field electro-optic effect. Such an
approach is used in the example calculations given below.

It is also possible to obtain a continuous analytical result
by taking the limit of vanishing frequency spacing δ → 0 fol-
lowing an expansion of the matrix exponential solution. The
lowest-order matrix multiplication gives rise to the optical
field given by

˜A(ω, z) = ˜A0(ω)e−zβopt

+ i

2cη
e−zβoptω

∫

dω′
˜ATHz

eff (ω−ω′)˜A(ω′) , (17)

where the effective THz field is defined as

˜ATHz
eff (ω) ≡ ˜ATHz(ω)χ(2)(ω)

[

exp(i∆˜k(ω,ωopt)z)−1

i∆˜k(ω,ωopt)

]

.

(18)

A corresponding solution in the time domain can be obtained
though Fourier transformation of the frequency-domain re-
sults; the equivalent time-domain result is

A(t, z) = A0(t)e−zβopt + i

2cη
e−zβopt

d

dt

[

ATHz
eff (t)A0(t)

]

. (19)

The first-order solutions given by (17)–(19) are in agreement
with the small-signal, or no-depletion, result of Jamison et
al. [10]. A continuous solution for the higher-order terms can
similarly be obtained. By way of example, from the expan-
sion of (15) the second-order contribution to the optical field
is defined as

A(2)(z) ≡ 1

2!
(

i

2cη

)2

T2 A0.

Explicit expansion of the matrix multiplication leads to

A(2)(ωm, z) ≡ A(2)
m (z) = 1

2!
(

i

2cη

)2
∑

n

Tmn

∑

p

Tn p(A0)p

= 1

2!
(

1

2cη

)2

iωm

∑

n

δATHz
eff,m−n(iωn)

×
∑

p

δATHz
eff,n−p(A0)p , (20)
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where the effective THz field amplitude ATHz
eff,m−n is defined as

in (18). In the limit of δ → 0, we obtain

lim
δ→0

A(2)(ωm, z) = 1

2!
(

1

2cη

)2

iωm

∫

dωn ˜ATHz
eff (ωm −ωn)iωn

×
∫

dωp ˜ATHz
eff (ωn −ωp)˜A0(ωp) . (21)

A simpler form of (21) can be found for the equivalent second-
order solution in the time domain. Fourier transformation,
with recognition of the convolution integrals and the identi-
fication of the transformation of iω with the time-derivative
operation, leads to the time-domain equivalent of (21):

A(2)(t, z) = 1

2!
(

1

2cη

)2 d

dt

[

ATHz
eff (t)

d

dt

[

ATHz
eff (t)A(t)

]

]

.

(22)

Whilst in practice the discretized solution will most likely
be more appropriate for numerical simulation of given experi-
mental conditions, in principle the above approach allows for
the construction of a continuous solution from the continuous
limits of higher-order terms in the expansion of (15).

3 Physical interpretation of solution

To provide a physical interpretation of the solution
given by (15) and (16), it is useful to look at the limit of perfect
phase matching. By taking ∆˜k( j−i),j → 0 in (16), so that T →
M(0)z, a perfect phase-matching solution

A = exp
[

zBM(0)
]

A0 (23)

is obtained. As expected, the same perfect phase-matched so-
lution can be found by setting ∆k̃ = 0 in the initial system of
equations, so that in place of (13) the matrix representation of
the system of equations becomes (∂/∂z)A = BM(0) A.

In this limit of perfect phase matching the series expan-
sion in powers of M(0), or equivalently in THz field strength,
coincides with the series expansion in z:

exp(zBM(0)) = 1 + zBM(0) − 1

2! z2 B2[M(0)]2 + ... (24)

The matrix exponential solution (23) can then be given the
physical interpretation of a cascading of the interaction with
generated sideband frequencies. When phase matching is in-
cluded, the frequency-dependent elements in the matrix T
must be considered to different orders in the distance z; de-
spite this complication the cascading interpretation will re-
main valid.

To demonstrate the cascading interpretation a monochro-
matic THz wave with frequency Ω = Ωr is considered. The
matrix M will then have two off-diagonal rows of non-zero
elements; i.e. Mmn = 0 unless n = m ± r. In Fig. 1 the struc-
ture of the matrix M(0) and its higher powers is shown for such
a monochromatic wave. The solid diagonal line in each matrix
schematic signifies the non-zero elements; as a visual guide
the locations of the non-zero elements in the next lowest order
term are shown as dotted lines. Under the matrix schematics is

an energy level diagram schematic for the physical processes
represented by the matrix terms. The interactions shown are,
from left to right, the linear propagation; the generation of
sidebands on the input optical wave; the generation of side-
bands of the sidebands, which we term the second-order side-
bands; and the generation of third-order sidebands. At each
step in the cascading the sidebands are generated with a π/2
phase shift. It is through this phase shift that the second-order
sidebands that overlap the original input field are π-phase
shifted with respect to that field, and give rise to depletion of
the input optical field. In comparison to the result presented
here, in the weak-signal approximation the expansion of (24),
or more generally of (15), is truncated to first order in the THz
field strength, with the effect that only the first two processes
shown in Fig. 1 will occur.

To give an approximate estimate of the significance of
the higher-order terms, the following numerical example is
taken as indicative of realistic high-field experimental condi-
tions: χ(2)

eff = rZnTe
41 ε2 ≈ 320 ×10−12 m V−1 [12, 14], ω ≈ 2π ×

375 THz, η = 3, ATHz = 106 V m−1 THz−1, and a propaga-
tion distance of z = 1 mm. We therefore have max{zBM(0)} ≈
0.42. Hence, the higher-order terms are indeed significant
for THz field strengths that are now being accessed in accel-
erator laboratories. The relative magnitude of the cascaded
χ(2) effect can also be compared to the expected magni-
tude of the quadratic electro-optic effect, which is driven
by the polarization P(3) ∼ χ(3)(ETHz)2 Eopt. In the absence
of reductions to the effective polarization through particu-
lar geometrical configurations, the magnitudes of the side-
bands generated by the second-order cascaded χ(2) and
the first-order χ(3) interactions will scale approximately as
[(ωopt/2cη)ETHzχ(2)z]2 Eopt and (ωopt/2cη)(ETHz)2 Eoptχ(3)z,
respectively. It follows that for the above parameters, and
χ(3)[m2/V2] ∼ 10−8χ(2)[m/V] [15], the ratio of contributions

FIGURE 1 A summary of the physical processes associated with the indi-
vidual terms in the matrix exponential Taylor expansion for a monochromatic
THz wave. At the top is shown the matrix exponential expansion terms; the
structure of the matrix for a monochromatic THz field is shown in the mid-
dle row. The lower row shows the particular frequencies generated by each
successive interaction term; the levels shown as solid lines represent the final
optical states, while the dotted levels are representing the connection to states
obtained in the next lower order interaction
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in the ωopt ±2ωTHz sideband will be dominated by χ(3) only
when z � 50 µm; for the field strengths considered above, and
in the following examples, the χ(3) interaction will then only
be expected to dominate when the sidebands themselves are
relatively insignificant.

It is noted that for a dc ‘THz’ field the matrix M0 (or T)
will be diagonal, and the sideband interpretation collapses. In
that case the solution no longer provides coupling between
the input optical frequencies. Each spectral component will
have a solution of the form ˜A = ˜A0 exp(iαEdcz) which de-
scribes a phase retardation proportional to the field strength,
and which holds regardless of the field magnitude. For a finite-
frequency THz field such an identification between phase
retardation and field strength cannot be expected to hold in
general for all field strengths.

4 Example calculations

The solutions given by (15) and (16) have been
evaluated for two example situations, the interaction of
an intense quasi-monochromatic THz pulse with a quasi-
monochromatic optical pulse, and the interaction of a unipo-
lar picosecond duration THz pulse with a broad bandwidth
chirped optical pulse. The former serves to demonstrate the
cascading of sidebands, and the influence of phase match-
ing in suppressing the cascading to higher-order sidebands.
The latter example represents the experimental conditions
encountered for single-shot electro-optic characterization of
relativistic electron beams, through the electro-optic detec-
tion of their THz-pulse-like Coulomb field profile [1, 2, 4], or
of the emitted coherent synchrotron [5] or transition radia-
tion [6, 7].

In Fig. 2 the interaction of a monochromatic THz pulse
with a monochromatic optical pulse is shown. The THz pulse
is taken to be a 14 ps FWHM duration pulse, with a central fre-
quency of 1.5 THz and a peak field strength of 5 ×105 V m−1.
The optical spectrum following the electro-optic interaction
with the THz pulse was calculated using (15) and (16), for
two different interaction lengths of 1 mm and 3 mm. In the
evaluation of the matrix exponential solution the THz spectral
range considered was 0–50 THz, while the optical spectral
range evaluated was 375±50 THz. The discretized frequency
spacing was δ = 0.0242 THz, corresponding to a matrix T
with dimensions 4134×4134. With this matrix, the numerical
solution of (15) was evaluated using algorithms in the Ex-
pokit package [16], run from within Matlab. In Fig. 2a and c,
perfect phase matching has been assumed by taking ∆˜k = 0,
while in Fig. 2b and d the phase matching has been calculated
using data for ZnTe, a commonly used electro-optic mate-
rial. In the perfect phase-matching calculation the sidebands
extend out to third and sixth orders in the short- and longer-
interaction examples, respectively. Since in the case of perfect
phase matching the interaction scales proportionally to the
product of interaction length and field strength, an identical
spectrum as that shown for the 3-mm interaction could be ob-
tained for the 1-mm interaction with a three-fold increase in
field strength.

In the ZnTe phase-matching calculation, the growth of the
higher-order sidebands during propagation has been inhib-
ited; indeed, for higher THz frequencies where phase mis-

FIGURE 2 Optical spectra following the interaction with a quasi-mono-
chromatic ω = 1.5 THz pulse, with a peak field strength of 5×105 V m−1,
and for interaction lengths of 1 mm and 3 mm; (a) and (c) assume perfect
phase matching, while (b) and (d) include phase matching as expected for
ZnTe material properties. In each plot, the dotted line is the input optical
spectrum

match becomes larger (in ZnTe), the growth of sidebands be-
yond the first order can be completely suppressed. However,
even for these higher frequencies, since the scaling of the in-
teraction with field strength is no longer the same as for propa-
gation distance, it remains possible to obtain higher-order
sidebands with more intense field strengths over a shorter in-
teraction distance.

If the weak-signal approximation was used to describe
the same conditions used for the calculation shown in Fig. 2,
we would obtain incorrect results in that (i) only the first-
order sidebands would appear, (ii) the optical fundamental
would not be depleted, and (iii) the first-order sidebands
would increase in size, as they are driven by the undepleted
fundamental and also because they themselves are not sub-
ject to depletion from the interaction with the second-order
sidebands.

Example calculations for the interaction of a unipolar THz
pulse with a broadband chirped optical pulse are shown in
Figs. 3 and 4. For these calculations, perfect phase matching
was assumed to highlight the effects arising from the cascad-
ing of the χ(2) interaction independently from the pulse distor-
tion that arises from phase mismatch. The THz field was taken
to be a unipolar Gaussian pulse with 2 ps FWHM. The in-
put optical pulse had a Gaussian spectrum with (electric field)
FWHM of 16 THz, centred at 375 THz (λ = 800 nm). The
chirp was described by a exp(iβ(ω−ω0)

2) phase term, corres-
ponding to a time–frequency correlation of ∆t = 2β(ω−ω0).
The magnitude of the chirp was β = 0.05 ps/(rad ps−1).

Figure 3 shows the spectral amplitude and phase retarda-
tion calculated for peak THz field strengths of |ETHz(t)|max =
106 V m−1 and 4 ×106 V m−1, with a 1-mm interaction length
in ZnTe, with the additional assumption of ∆˜k = 0. The cal-
culations are shown for both positive and negative polarities
for the THz field. The retardation of any particular spectral
sideband is determined by the field strength, by the polar-
ity, and by the phase difference between the optical compo-
nents and their sidebands. For a chirped pulse an asymme-
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FIGURE 3 Spectral amplitude and phase change in a chirped optical pulse,
induced by EO interaction with a unipolar THz pulse, 1 ps FWHM, with peak
field strengths of ±106 V m−1 and ±4×106 V m−1, and a 1-mm interaction
length in ZnTe. In (a) and (c) the spectrum of the input optical pulse is shown
as a dashed line, while the spectra obtained after interaction with positive and
negative polarity THz pulses are shown as solid and dotted lines, respectively.
In (b) and (d) the phase changes |ϕ−ϕref| between the input (reference) pulse
and the pulse after interaction with positive and negative polarity pulses are
shown as solid and dotted lines. In (b) an effective temporal scale for the lin-
early chirped pulse is shown, together with the temporal profile of the THz
pulse

FIGURE 4 Temporal envelope and its change in a chirped optical pulse, in-
duced by the same EO interactions as for Fig. 3. (a) and (c) show the optical
envelope calculated with and without a THz pulse (blue and green, respec-
tively). Only the calculation for positive polarity of the THz pulse is shown.
In (b) and (d), the THz pulse profile ETHz(t), its time derivative d/dtETHz(t),
and the change in optical envelope ∆Aenv(t) are shown (red, red-dashed, and
blue lines, respectively). These plots are all normalized to allow comparison
of the temporal variation

try in polarity is introduced as the χ(2)-induced retardation
can be either additive or subtractive to the chirp-dependent
phase difference between the probe frequency and the gen-
erated sidebands. An asymmetry also arises in the spectral
amplitude, from the interference between the χ(2)-generated
sidebands and the input chirped pulse. In Fig. 3b the temporal
profile of the THz pulse is also shown, where the ∆t = 2β(ω−
ω0) time–frequency correlation has been used in mapping
the time-domain field into the spectral domain. For the low-

field-strength calculation the phase retardation closely fol-
lows the temporal profile; this agreement is the basis of the
single-shot THz detection technique of spectral decoding [1,
17, 18]. For the high-field phase-retardation calculation of
Fig. 3d the identification with the temporal profile no longer
holds, and it is concluded that the spectral decoding concept
is no longer valid in such high-field conditions. Complicated
spectral modifications can arise from the high-field effects
described here. High-field electro-optic THz measurements
have been recently reported by Shen et al. [7] and spectral
effects that are field-strength dependent were observed; how-
ever, their interpretation of the origin of the spectral features
does not appear to take account of the high-field effects de-
scribed here.

It is noted that in the calculations of Fig. 3 the relatively
long THz pulse duration and the magnitude of the optical
chirp were chosen to avoid observations of other artefacts
known to occur in electro-optic spectral decoding for very
short THz pulses [10, 19]. The effects discussed above are
strictly arising from the deviation of the χ(2) interaction from
the small-signal approximation.

Figure 4 presents the optical temporal profiles corres-
ponding to the spectral calculations shown in Fig. 3. The
optical field in the time domain E(t) was determined di-
rectly from the calculated frequency-domain field, through
Fourier transformation; the temporal envelope A(t) was then
evaluated from the oscillating field E(t) through the abso-
lute value of the analytic time domain field Ea(t) = E(t)+
iH[E(t)], where H[E(t)] is the Hilbert transform of the
field. In the low field strength limit, the change in the op-
tical pulse in the time domain will, according to (19), be
proportional to the time derivative (d/dt)[ATHz

eff (t)A0(t)t].
For a pulse with sufficiently small chirp, it follows that the
phase modulation and amplitude modulation of the input field
A0(t) arise predominantly from the ATHz

eff (t)(d/dt)[A0(t)] and
(d/dt)[ATHz

eff (t)]A0(t) contributions, respectively. In Fig. 4b
the change in the pulse envelope is shown, together with the
time derivative of the THz pulse temporal profile; the change
in envelope amplitude closely corresponds to the time deriva-
tive of the THz pulse, as expected. For the high-field cal-
culation, shown in Fig. 4c and d, the temporal envelope is
markedly simpler than the corresponding spectral informa-
tion; perhaps surprisingly the envelope continues to closely
follow the time derivative of the THz field, although some
asymmetry is introduced in the magnitude of the positive and
negative modulation.

5 Conclusion

The χ(2) interaction of an intense THz pulse with
a weak optical probe has been addressed, and a solution that
generalizes the electro-optic effect to high-field conditions
has been found. The solution has been obtained in a princi-
pal axes coordinate frame, for optical waves polarized along
a principal axis. The solution can therefore be applied to ar-
bitrary polarization states through appropriate combination
of orthogonal principal axis components, together with any
external polarization optics, using Jones matrix formalism.
Together with such a Jones matrix formalism, the solution
presented here can be applied to describing the electro-optic
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detection of THz pulses in the high-field regime, and the up-
conversion of THz radiation to the optical spectral region.
While describing the high-field regime, the results also extend
the description of the low-field regime to situations where
the phase-matched interaction length is sufficiently long that
higher-order sidebands or, equivalently, depletion of the op-
tical fundamental, are not negligible. It is found that the dir-
ect interpretation of the electro-optic effect as giving rise to
a retardation proportional to field strength may break down
for high THz field strengths. However, as expected, for dc
fields this interpretation will remain valid irrespective of field
strength.
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