
On Usage Control in Data Grids

Federico Stagni {federico.stagni}@fe.infn.it
Istituto Nazionale di Fisica Nucleare sez. di Ferrara,

via Saragat 1 - 44100 Ferrara, Italy

Alvaro E. Arenas, Benjamin Aziz
{A.E.Arenas, B.Aziz}@rl.ac.uk

e-Science centre,
STFC Rutherford Appleton Laboratory,

Oxfordshire, UK

CoreGRID Technical Report
Number TR-0154
June 16, 2008

Institute on Knowledge and Data Management

CoreGRID - Network of Excellence
URL: http://www.coregrid.net

CoreGRID is a Network of Excellence funded by the European Commission under the Sixth Framework Programme

Project no. FP6-004265

On Usage Control in Data Grids

Federico Stagni {federico.stagni}@fe.infn.it
Istituto Nazionale di Fisica Nucleare sez. di Ferrara,

via Saragat 1 - 44100 Ferrara, Italy

Alvaro E. Arenas, Benjamin Aziz
{A.E.Arenas, B.Aziz}@rl.ac.uk

e-Science centre,
STFC Rutherford Appleton Laboratory,

Oxfordshire, UK

CoreGRID TR-0154

June 16, 2008

Abstract

This paper reasons on usage control in Data Grids. First, we present a usage-based Grid authorization architecture
using the functional components of the currents Grids, and consider the advantages of using Semantic Grid techolo-
gies for the specification of UCON subjects and objects. Then, we analyse the formal requirements for an enforcing
mechanism of UCON policies, using the KAOS requirements engineering methodology with a bottom-up approach.
To do it, we provide an abstract specification of an enforcement mechanism. Then, we prove that this specification is
sound and complete showing formally that it can enforce all the policies pertaining to the Sandhu’s UCON authoriza-
tion sub-models. Using the rigorous requirement engineering methodology of KAOS, we derive for each sub-model
the operational requirements, showing that each one can be enforced by the specification previously provided.

1 Introduction
Data Grids [30] are an innovative technology taking advantage of existing computer science concepts in file systems,
database systems and Grid computing. A Data Grid provides services that help users discover, transfer, and manipulate
large datasets stored in distributed repositories and create and manage copies of these datasets. As a minimum, a Data
Grid provides two basic functionalities: a high-performance reliable data transfer mechanism and a scalable replica
discovery and management mechanism.

A Data Grid Management System (DGMS) [17] is a software system used to manage Data Grids through the
use of multiple abstraction mechanisms providing logical namespaces that hide the complexity of distributed data
and heterogeneous resources. DGMS systems allow for data to be shared over several administrative domains in a
seamless manner. However, as in any resource sharing environment, robust and rigorous treatment of data security in
a DGMS is vital. Moreover, since data is being shared over multiple administrative domains over the Grid, continuous
monitoring and control of the data access is required.

This paper studies usage control enforcement, and take DGMS as an application case-study. Usage control tech-
niques extend traditional access control by controlling data access as well as usage [19, 21]. Recently there has been
an fresh interest in applying usage control to Grid systems [15, 31]. Here we have adopted the usage control model
proposed by Park and Sandhu in [19] as UCONabc.

This research work is carried out under the FP6 Network of Excellence CoreGRID funded by the European Commission (Contract IST-2002-
004265).

1

After a review of the existing UCON implementations, we present a usage-based Grid authorization architecture
using the functional components of the currents Grids, as presented by the Open Grid Forum (OGF)1 group on Grid
authorization. We consider the advantages of using Semantic Grid techologies for the specification of UCON subjects
and objects, and how this can improve the usage control granularity. Next, we concentrate on two important aspects in
the design of policy-based management systems: policy refinement and specification of enforcement mechanisms.

We have followed the KAOS requirements-engineering methodology [27] for formalising the requirements of an
enforcing mechanism for UCON policies. When using KAOS, our strategy is to use the methodology with a bottom-up
approach. We first show an abstract specification of an UCONa enforcement mechanism, i.e. the UCON family of
models dealing with authorizations. We encode the specification using the requirement specification language provided
by KAOS. We then apply KAOS to all the UCONa sub-models [32], and derive the KAOS agent and operational
models for each of them. This way, we formally show that the enforcement mechanism is sound and complete, and
capable to enforce all the policies following in the UCONa family of core models.

The rest of the paper is structured as follows. In section 2, we give some background on gloabal namespaces
as managed by a DGMS, on the UCON model and on the KAOS requirements-engineering methodology. Section 3
reviews existing UCON implementations and shows architectures for usage control for traditional and semantic grids.
Section 4 shows an abstract specification of an UCONa enforcement mechanism. In Section 5, we apply the KAOS
goal model to prove that the abstract specification as shown in section 4 is capable to enforce all the UCONa core
models. Finally, section 6 discusses related work, and section 7 concludes the paper and highlights directions for
future work.

2 Background
In this section, we review the global namespace concept the DGMS deals with, the UCON model and the KAOS
requirement engineering methodology.

2.1 Global Namespace
In a Grid environment, the applications and the users should be able to access dispersed Grid Data without knowing
their location. A DGMS provides a naming capability allowing users to refer to specific data resources in a physical
storage system using a high level logical identifier.

The OGF provides implementation guidelines and standards to implement location independence in the grid. Data
resources has to be recognized by name without any location information. The Open Grid Services Architecture
(OGSA) work on data architecture [2] identifies a scheme with the following three levels of naming:

• Human-Oriented name (HON): based on a naming scheme that is designed to be easily interpreted by humans,
viz. human-readable and human-parsable. The HONs represent the key by which the users find the actual
locations of their files. They are user friendly high-level identifiers. A DGMS could let the users organize them
with a directory structure to simulate a global namespace. A same data resource could be addressed by various
HONs by different users, similarly to the concept of alias.

• Abstract name (AN): a persistent name suitable for machine processing that does not necessarily contain loca-
tion information. ANs are given to each data when it is managed by a DGMS. An AN is a unique identity to
hide the data replication: a same AN can correspond to different replicas.

• Address: specifies the location of a data resource. An address provides an abstraction of the data namespace
living into a storage resource to allow different data access paths. Each replica has its own address and it
specifies implicitly which storage resource needs to be contacted to extract the data. Usually, users are not
directly exposed to addresses, but only to the logical namespace defined by HONs.

To provide the users the illusion of a single file system, a DGMS has to keep track of HONs to AN and Addresses
mappings in a scalable manner. The figure 1 describes the relationship on terms.

In a Data Grid, there is a small number of authoritative points, viz. sources of Data authorizations. A DGMS,
together with the local storage services, is an authoritative point, where usage control policies should be enforced,

1web address: http://www.ogf.org

CoreGRID TR-0154 2

What could
remain hidden

What Grid Users
should deal with

Human-Oriented Names

HON
1

HON
2

HON n

Abstract Names

AN

AN

A1

A
2

nA

Addresses

1

n

Figure 1: Data naming in Grid.

regardless of the local data services the data are actually stored. In a DGMS, the object of the usage control policies
should be the Abstract Names requested by the Grid Users. The policies may be written by VO administrators, or, in
very limited way, by the Grid users themselves.

2.2 The UCON Model
The UCONabc usage control model is a recent framework defined by Park and Sandhu [19, 23] for the specification
of usage control policies. The main novelty of the UCON model lies in the fact that subjects and objects may have
attributes that are mutable thereby facilitating the continuity of the decision making and policy enforcement processes.
Additionally, while decisions in standard access control models are based on policy authorizations only, the UCON
model introduces two other decision factors, namely obligations and conditions. All of these features render the
UCON model attractive for specifying security policies in Data Grids, especially considering the plethora of various
security needs coming from the different Data Grid applications. Next, we describe the elements of the UCON model.

• Subjects and Objects: The subject is the entity that exercises rights, i.e. that executes access operations on
objects. An object, instead, is an entity that is accessed by subjects through access operations. When applying
usage control on DGMS systems, the subjects are the users of the system and objects are the abstract names.

• Rights: Rights are the privileges that subjects can exercise on objects. Traditional access control systems view
rights as static concepts, for instance access matrices, which do not change over time or have a slow rate of
change. Instead, UCON determines the existence of a right dynamically, whenever a subject attempts to access
and exercise a right on some object. Hence, if the same subject accesses the same object several times, the UCON
policy could grant the subject different access rights each time based on changing attributes of the subject and/or
the object. In DGMS, rights are permissions given to users to read from or write to abstract names.

• Attributes: Both subjects and objects have attributes. These attributes can be mutable, i.e. they can change over
time, or immutable, i.e. they are constant over time. An example of a mutable attribute is the number of times
that a subject accesses an object. Whereas an immutable is a subject’s or an object’s identity.

• Predicates: Predicates are logical statements about the subjects’ and objects’ attributes and the requested right.
Predicates can be either authorization, obligation or condition predicates or any combination of these. Autho-
risation predicates express a set rules that determine whether to grant the requested right or not. An example
from DGMS systems is the permission of a user to read an abstract name. The authorization predicate could
exploit both attributes of the subject and of the object. The evaluation of the authorization predicates can be
performed before or during the execution of an action. Obligations are UCON decision factors that are used to
verify whether the subject has satisfied some mandatory requirements before performing an action or whether
the subject continuously satisfies these requirements while performing the action. Obligations usually refer to
future requirements that must be obeyed. Finally, conditions are environmental or system-oriented decision fac-
tors, i.e. dynamic factors that do not depend on subjects or objects. Conditions are evaluated at runtime when

CoreGRID TR-0154 3

the subject attempts to perform the access. A condition can be evaluated before or during an action. In the rest
of the paper, we only consider authorization predicates, also known as the the UCONa family of core models
[32].

As a matter of fact, UCONabc is actually a family of models with several parameters. The presence of Autho-
rizations (A), oBligations (B) and Conditions (C), pre- and on-going decisions, as well as the mutability of attributes
(immutable (0), preUpdate (1), onUpdate (2), postUpdate (3)) are the factors to be considered. The UCONa sub-
models we consider are PreA0, PreA1, PreA3, OnA0, OnA1, OnA2 and OnA3. A PreA0 policy is an pre-authorization
policy with no attributes update, a PreA1 is a pre-authorization with a preUpdate of on or more attributes, and so on.
The PreA2 policy model isn’t considered because it’s not a case likely to be useful in practice.

Figure 2 illustrates the different actions that subjects and systems can perform in the UCON model [32]. These
actions relate to the subject’s attempt to access an object, the system’s decision regarding such attempt and the sub-
ject/object attributes updates performed by the system. These actions relate to the different phases of an object’s
usage.

Figure 2: The UCON actions model [32]

Given that the triple (s,o,r) represents the subject s requesting the right r for accessing the object o, we
consider the following set of actions:

• tryaccess(s,o,r): performed by subject s when performing a new access request (s,o,r).

• permitaccess(s,o,r): performed by the system when granting the access request (s,o,r).

• denyaccess(s,o,r): performed by the system when rejecting the access request (s,o,r).

• revokeaccess(s,o,r): performed by the system when revoking an ongoing access (s o,r).

• endaccess(s,o,r): performed by a subject s when ending an access (s,o,r).

• update(s,o,r): performed by the system to update a subject or an object attribute when performing an
access request (s,o,r).

It should be noted that all the UCON authorization policies are defined for positive permissions. For an access
request, if there is no policy to enable the permission according to the attribute values, then the access is denied by
default. This is sometimes called the closed system assumption, whereby no policy is specified to deny an access in a
system. The same holds for obligation and condition core models.

2.3 The KAOS Methodology
Knowledge acquisition in automated specification (KAOS) is a generic methodology based on capturing, structuring
and precise formulation of system goals [27]. A goal is a prescriptive description of system properties, formulated
in non-operational terms. A system includes not only the software to be developed but also its environment. Goals
are refined and operationalised in a top-down manner as the system is designed, or with a bottom up approach while
re-engineering existing systems. The approach also supports adverse environments, composed of possibly malicious
external agents trying to undermine the system goal rather than to collaborate in the goal fulfillment. As a Grid

CoreGRID TR-0154 4

system is typically composed of a large number of nodes interacting in an open and possibly adverse environment, this
approach fits our needs well.

A KAOS model is composed of a number of sub-models, these include:

• The goal model captures and structures the assumed and required properties of a system by formalising a
property as a top-level goal which is then refined to intermediate subgoals and finally to low-level requirements
representing goals that can be operationalised. Goals may be organized in AND/OR refinement-abstraction
hierarchies, where higher-level goals are generally strategic, coarse-grained and involve multiple agents whereas
lower-level goals are technical, fine-grained and involve fewer agents. In such structures, AND-refinement links
relate a goal to a set of sub-goals possibly conjoined with domain properties or environment assumptions; this
means that satisfying all subgoals in the refinement is a sufficient condition in the domain for satisfying the goal.
OR-refinement links relate a goal to a set of alternative refinements.

• The agent model assigns goals to agents in a realizable way. Agents include software components that exist or
are to be developed, external devices, and humans in the environment. Discovering the responsible agents is the
criterion to stop a goal-refinement process.

• The object model is used to identify the concepts of the application domain that are relevant with respect to the
requirements and to provide static constraints on the operational systems that will satisfy the requirements. The
object model consists of objects from the domain and objects introduced to express requirements or constraints
on the operational system.

• The operation model details, at state-transition level, the actions an agent has to perform to reach the goals it is
responsible for.

The KAOS language has a two-layer structure: an outer conceptual modelling layer for declaring concepts (such as
goals, objects, agents, etc) and links between concepts (such as goal refinements, responsibility assignments of goals
to agents, etc.); and an inner formal assertion layer for formally defining concepts.

The rigor of the KAOS methodology stems from the fact that any concepts defined within its sub-models incor-
porate formal definitions using Linear Temporal Logic (LTL) [29] formulae. LTL formalae consist of combinations
of the usual first-order predicate logic operators (∧ ∨ ¬ →↔) along with the following temporal operators about the
predicate P and Q:

• ¤P , which says that P is always true from now on;

• ♦P , which says that P will be true sometime in the future;

• ◦P , which says that P will be true in the next state;

• ¥P , which says that P was always true till now;

• ¨P , which says that P was true at sometime in the past;

• •P , which says that P was true in the previous state;

• PSQ, which says that Q has been true since a time when P was true;

• PUQ, which says that Q will be true until a time when P will be true.

We also write (P ⇒ Q) to mean ¤(P → Q) and (P ⇔ Q) to mean (P ⇒ Q) ∧ (P ⇐ Q).
Picture 3 shows an overview of the KAOS models and their inter-relations. This example has been widely taken

from [12], and shows excerpt of the goal, object, agent and operation models for a meeting scheduling problem.
Within the goal model of picture 3, the top-level goal [ConvenientMeetingHeld] is AND-refined into the subgoals
[PrtcptsCnstrKnown], [ConvenientMeetingPlanned], and [PrtcptsInformed]. The goal [PrtcptsCnstrKnown] has two
alternative, OR-refinements. The goals are further refined until the leaf goals are identified as either assumptions
of the system, or requirements. Then, analyzing the goal model, we can identify the objects of the system, their
relations, and the agents involved. Picture 3 shows that, for the case of the meeting scheduling problem, two objects
are identified and shown in the object model. The leaf goal [PrtcptsCstrRequested] is a requirement of the system and
can be assigned alternatively to the Scheduler software agent or to the Initiator agent. From the agent model and the
goal model, we can identify the operations of the system. Picture 3 shows how the operation model uses domain pre-
and post- conditions of the operation [SendCstrRequest] to capture what any sending of a constraint request is about
in the application domain.

CoreGRID TR-0154 5

Object Model

Goal Model

Agent Model

Operation Model

ConvenientMeetingHeld

PrtcptsCnstrKnwn PrtcpntsInformedConvenientMeetingPlanned

Prtcpnt MeetingIntended

PrtcptsCnstRequested

Resp

 Scheduler

 Init iator

Resp

Inter-model
Consistency Rule

Operat ion
DomPre
DomPost
ReqTrigFor

SendCnstRequest
 CstrRequested(p,m)
CstrRequested(p,m)
[PrtcpntConstrRequested]

Figure 3: Overview of the KAOS models

CoreGRID TR-0154 6

3 Usage Control on Grids
In this section, we first review some reference implementations of usage control for Grids, then we introduce the target
Grid security architecture for our UCON-policy enforcing mechanism, and finally we make some considerations on
the application of usage control in Semantic Grids.

3.1 Reference Implementations of Usage Control for Grids
At our knowledge, the only implementations of usage control for Grids are [15] and [31].

In [15], Martinelli and Mori provide a model on usage control for computational Grids, following the Sandhu’s
UCON model. One of the most interesting peculiarities of their work is the use of a POlicy Language based on
Process Algebra (POLPA) as policy specification language, which is especially suitable to model the usage policy
models of the original UCON model. The security policy describes the order in which the security-relevant actions
can be performed.

The prototype implements an architecture where the main components are a Policy Enforcement Point (PEP) and
a Policy Decision Point (PDP), such as most of the common authorization systems. The PEP is integrated in the GRID
environment middleware, e.g. into the Globus architecture2, and implements the tryaccess(s, o, r) and the
endaccess(s, o, r) actions. The prototyped PEP has been integrated within the application execution environ-
ment to monitor the accesses to the local resources (e.g. files or sockets) performed by the applications executed on
behalf of remote GRID users. The PDP is the component of the architecture that performs the usage decision process.
The PDP gets the security policy from a repository, and it builds its internal data structures for the policy representa-
tion. The PDP is invoked by the PEP every time that the subject attempts to access a resource. It exploits its internal
representation of the policy to determine whether the access should be allowed or not and, consequently, it returns
permitaccess(s, o, r) or denyaccess(s, o, r) to the PEP, that enforces it. The PDP continuously
evaluates a set of given authorizations, conditions and obligations while an access is in progress, and it could invoke
the PEP to terminate it through the revokeaccess(s, o, r) action.

The architecture comprises the managers for attributes, conditions and obligations. The Condition Manager is
invoked by the PDP every time the security policy requires the evaluation of a condition. The Attribute Manager
is in charge of retrieving and updating the value of attributes. The Obligation Manager monitors the execution of
obligations.

In [31], Zhang et al propose an UCON prototype implementation for Grids and collaborative applications, by
following a layered approach with policy, enforcement, and implementation models, called the policy-enforcement-
implementation (PEI) framework. The security architecture leverages a centralized attribute repository in each Virtual
Organization (VO) and a usage monitor in each Resource Provider (RP) for attribute management.

The policies are specified with the eXtensible Access Control Markup Language (XACML) [18]. As recognized
by the same authors, even if XACML is an open-standard format to specify access control policies, it suffers from the
impossibility to exactly encode an abstract UCON policy.

Within the architecture, both PDP and PEP are located on the resource provider side. For an access, the PDP
collects the subject and object attributes, as well as system attributes provided by supporting services in the VO, and
makes the control decision, which is enforced by the PEP. The immutable subject attributes are pushed to the PDP by
the requesting subject. Mutable subject attributes are pulled by the PDP from the VOs centralized attribute repository,
and mutable object attributes are pulled by the PDP from the local RPs usage monitor. The updates of mutable subject
attributes are performed by the PDP, and the updates of mutable object attributes are captured by the local usage
monitor. Any update of subject or object attributes and any change of system conditions triggers the re-evaluation of
the policy by the PDP according to the ongoing usage session and may result in revocation of the ongoing usage or
update of attributes if necessary.

They integrated the enforcement architecture in the context of the Grid Security Infrastructure (GSI) [10]. The
architecture includes three main components within a VO: user platforms, individual resource providers (RPs), and an
attribute repository (AR). AR is a centralized service to store and push mutable subject and system attributes in a VO.
Object attributes are stored in a usage monitor (UM) on each RP side.

Within their work, both Martinelli and Mori and Zhang et al. focused on GRID computational services. We argue
that the adaptation of UCON to Data Grid poses a greater number of issues to be solved. He hope this paper will
highlight a good number of them. Moreover, none of the previous prototype is specifically applied to an actual (Data)

2web address: http://www.globus.org

CoreGRID TR-0154 7

Grid architecture. We think that, in order for usage control to be applied on production Grids, the OGSA work on Grid
authorization should be better evaluatued and considered. The next section closes this gap.

3.2 A Usage-Based Grid Authorization Architecture
The OGF’s OGSA authorization working group 3 provides an information document reviewing the functional com-
ponents of Grid service provider authorisation service middleware [6]. In the OGSA work, great attention is put on
credentials, defined as attribute assertions digitally signed by the issuer (i.e. a security token) so that it can be cryp-
tographically validated. Credentials can be issued by the Credential Issuing Services (CISs) of an Identity Provider
(IdP) or an Attribute Authority (AA) (e.g. the Virtual Organization Membership Service (VOMS) [1]). The credential
can be embedded in an Attribute Certificate extension [8], and/or in a proxy certificate [26], or using a SAML [5]
token. Credentials can then be validated by a Credential Validation Service (CVS), that return the valid attributes of
the subject. Others fuctional components comprise: the Policy Decision Point (PDP), viz. the functional component
responsible for returning an authorisation decision given the users access request and the users valid attributes; the
Policy Enforcement Point (PEP), which enforces the results returned from a policy engine (normally a PDP); and the
Context Handler (CH), responsible for handling the communications between PEPs, CVSs and PDPs. The interactions
between these functional components can be constructed in four different ways, according as the credentials and the
authorization decisions are pulled or pushed. For example, picture 4 shows the case where an access requestor (a
Grid User) pushes his/her credentials to a PEP. Then, after the CH obtained valid attributes from the CVS, a PDP is
interrogated for an authorization decision, which in the end is returned to the PEP.

PEP

PDP

Context
Handler

8. AuthZ
Decision

Access Requestor

VO CIS CVS

UserAuthentication2. Push Credentials

1. Pull Credentials

5. Optional pull
more Credentials

4. AuthenticatedName/ID

6. Valid Credentials

7. AuthZ
Request with

val id attr ibutes

Local
CIS

3. Request
AuthZ

Decision

Figure 4: A Grid authorization architecture where Credentials are pushed

Passing from a Grid authorization architecture to a usage-based Grid authorization architecture doesn’t require
changes the way the fuctional components interact each others. Picture 5 shows a usage-based Grid authorization
architecture with the same functional component interactions of picture 4. There are the following differences:

1. from an UCON point of view, valid attributes released by a CVS are examples of immutable (persistent) at-
tributes (e.g., the VOMS’ role and group membership);

2. A complex UCON PDP should be able to evaluate policies where the predicates are statements about the sub-
jects’ and objects’ attributes. Three sub-components, namely the Reference Monitor, the Predicate Validator
and the Attribute Manager, make up the UCON PDP. They are explained with details in section 4;

3. External components are needed to supply the UCON PDP with the needed information:

• An VO UCON policy repository provides the PDP with the UCON policies to be evaluated;

• A meta-data repository provides the PDP with the optional immutable object attributes;

• An VO’s attributes repository stores the mutable attributes of the subjects;
3web address: http://forge.gridforum.org/sf/projects/ogsa-authz

CoreGRID TR-0154 8

• An RP’s attributes repository stores the mutable attributes of the objects.

Access Requestor

VO CIS

Local
CIS

CVS

PEPUserAuthentication

Context
Handler

2. Push Credentials

1. Pull Credentials

5. Optional pull
more Credentials

3. Request
Usage Decision

4. AuthenticatedName/ID

Reference
Monitor

Predicate
Validator

Attr ibute
Manager

RP Attributes
repository

8. Mutable
Attr ibutes

6. Valid Credentials

UCON
PDP

9. Usage
Decision

7. Immutable
subject

attr ibutes

VO UCON
policy

repository

7. UCON
policy

7. Immutable
object

attr ibutes

Meta-data
repository

VO Attributes
repository

Figure 5: A usage-based Grid authorization architecture where Credentials are pushed

For an access, the PDP collects the immutable subject and object attributes, as well as search for the UCON
policies to be enforced. The policy is selected using the access requestor ID (the UCON subject), and the UCON
object requested. Mutable subject and object attributes are pulled by the PDP from the VO’s centralized attribute
repository, and mutable object attributes are pulled by the PDP from the local RPs usage monitor, which records the
temporal and dynamic properties of the object. The updates of mutable subjects’ and objects’ attributes are performed
by the Attribute Manager sub-component.

When a UCON PDP is used to control the usage permissions of the resources managed by a DGMS, the following
restrictions must be applied:

• An UCON subject is represented by a DGMS user ID, which is the way the access requestor Grid user ID is
recognized by the DGMS;

• An UCON object is represented by the abstract name requested by the DGMS user ID. We remind that the
abstract name is a unique, virtual, data identifier;

• An UCON right always follows in one of the fundamental rights categories, which are view (read) and modify
(write), possibly augmented with creation and deletion;

• An immutable object attribute is a persistent security description of the abstract name. An example can be
represented by the privacy level;

• An RP’s attributes repository stores mutable security attributes of the abstract names.

We remind that, within this paper, we only deal with the UCONa family of core models, so that the usage-based
Grid authorization architecture presented here doesn’t take in consideration obligations and conditions.

3.3 Usage Control in Semantic Grids
In the near future, data on the order of hundreds of petabytes will be spread in multiple storage systems worldwide
dispersed in, potentially, billions of replicated data items. In the scenario of a DGMS managing a global namespace
with billions of entries, the creation, definition and enforcement of usage control policies may represent an issue in

CoreGRID TR-0154 9

terms of management, scalability, and consistency. For example, in current hierarchical file systems, access control is
made specifying the authorizations on everyone of billions of files.

If usage control techniques want to be really useful in a large, pervasive, environment, it should be able to solve
those scalability and governability problems presented by the more traditional access control models, such as Identity
Based Access Control (IBAC) — normally implemented using Access Control Lists (ACLs) — or even the more
flexible Role Based Access Control (RBAC) [9]. In the implementations of these access control models, when an
authorization policy change for a specific user or role, the security manager must implement the adjustment in every
entry involved, potentially all. Moreover, frequent authorization mutations and a big number of user or roles make
worse the possibility of the authorization system being managed in an effective way. What’s needed is a mechanism
for regulating the policy granularity. We think that semantic binding assertions regarding Grid users and resources,
as exposed in a Semantic Grid environment [7], could be used to regulate the usage control granularity. UCON
subjects and objects should be semantic concepts extracted from, for example, those VO ontologies or scientific model
ontologies used in the Semantic Grid.

Since the preliminary Tim Berners-Lee’s vision of the web evolution [4], the Semantic Web is a field that received
great attention. Technologies, specifications, data interchange formats and notations studied and developed for the
Semantic Web have recently attracted the scientific community. Projects like OntoGrid4 proved the interest of the
Grid community in Semantic Web techologies. The challenge is the sharing and deployment of knowledge to be used
for the development of innovative Grid infrastructure, and for Grid applications: the Semantic Grid. As stated in [7],
the Semantic Grid is an extension of the Grid in which rich resource metadata is exposed and handled explicitly, and
shared and managed via Grid protocols. The layering of an explicit semantic infrastructure over the Grid Infrastructure
potentially leads to increased interoperability and greater flexibility.

Within this paper, we are not interested in the techologies, specifications, data interchange formats or notations
used in the Semantic Grid context. Instead, we want to give a preliminary highlight on the advantages deriving from a
semantic-aware usage control service.

In UCON, each subject and object is associated with attributes: subjects’ and objects’ attributes are properties or
capabilities that can be used for the usage decision process. Park and Sandhu state in [19] that subjects and objects are
defined and represented by their respective attributes. This sentence could be source of misunderstanding: the UCON
attributes define only subjects’ and objects’ security properties, and for many of them there is no need to be known
outside the usage control service. For example, consider the following UCON PreA1 policy (written in POLPA):

1 TryAccess(John_Doe, file_xyz, read).
2 PredicateValidation([John_Doe.openedFiles < John_Doe.MAX_openedFiles]).
3 AttributeUpdate(John_Doe.openedFiles, add, 1).
4 PermitAccess(John_Doe, file_xyz, read).
5 EndAccess(John_Doe, file_xyz, read).

Within this policy, the UCON subject is the (Grid) user John_Doe, the UCON object is the (Grid) file file_xyz,
and the UCON (Grid) right requested is simply read. This policy makes use of a couple of John Doe’s attributes in the
predicate at line 2, openedFiles and MAX_openedFiles, and updates openedFiles at line 3. The attribute
openedFiles represents the number of files accessed at the same time by John Doe, while MAX_openedFiles
represents the maximum number of files that can be accessed at the same time by John Doe. These attributes don’t
need to be known outside the usage control service, because they are used to store security properties and don’t de-
scribe semantic characteristics of the user. We argue that no UCON attribute, neither mutable or persistent, could be
considered as a semantic one.

Instead, Semantic Grid technologies can come in play for the definition of the UCON subjects and objects. In
a Semantic Grid, following the terminology introduced in [7], each Grid Entity is associated to a Knowledge Entity
through a Semantic Binding. Knowledge Entities are special types of Grid Entities that represent or could operate
with some form of knowledge. Examples of Knowledge Entities are ontologies, rules, knowledge bases or even free
text descriptions that encapsulate knowledge that can be shared. Semantic Bindings are the entities that come into
existence to represent the association of a Grid Entity with one or more Knowledge Entities.

A semantic-aware usage control service is depicted in figure 6. This service is similar to the one presented in
section 3.2 in picture 5. In a Semantic Grid, the access requestor (i.e. the Grid User) and the data to be accessed (e.g.
the abstract name managed by the DGMS) are represented by a Knowledge Entity. For what concern the DGMS, the
meta-data repository can be used to store the Knowledge Entity of the abstract name. Specific Grid Users keep asking

4web address: http://www.ontogrid.net

CoreGRID TR-0154 10

to access specific Grid Data, but in a semantic-aware usage control service the reaserch for the applicable policies is
done on the multiple fields of the Knowledge Entities of both the Grid user and the resource to be accessed. This way,
two or more policies could be applicable for a single access request, thus generating more than a single usage control
process for what is, instead, a single access request. This can generate some confusion, especially when two or more
UCON OnA policies happens to be in conflict each others. A way to keep track of all the policies involved is then
needed, as well as a policy conflict analysis tool. Instead, since in UCON the closed system assumption is in force, if
no policy is applicable, the access is denied.

Reference
Monitor

Predicate
Validator

Attr ibute
Manager

UCON
PDP

Usage
Decision

Immutable
subject

attr ibutes

Data
Knowledge Entity

User
Knowledge

Entity

Access Requestor

RP Attributes
repository

8. Mutable
Attr ibutes

VO UCON
policy

repository

7. UCON
policy

7. Immutable
object

attr ibutes

Meta-data
repository

VO Attributes
repository

Figure 6: A semantic-aware usage control service

An example of Knowledge Entity representing the Grid Entity Grid User is shown in picture 7(a), while picture
7(b) shows an example of a Knowledge Entity for a Grid Data stored in Data Grid. A semantic-aware DGMS could
associate a data Knowledge Entity like this one to each of the managed abstract names. The graph of picture 7(a)
is liberally inspired from [7], while the graph of picture 7(b) has been liberally derived from the CCLRC scientific
metadata model [25]. These examples are not meant to be complete. We also note that a Grid Data description
normally makes use of application-dependent metadata, thus in a real system a Knowledge Entity of a Grid Data could
be much more complicated than the one shown here.

Each Grid User is simply described through the use of three fields: the Institution he/she is affiliated with, the
Investigation he/she takes part in, and the Job or Role he/she is doing as part of the Institution. Instead, each Grid Data
is described not only by the Type (e.g. file, or stream), but also by the Programme of work, the supported Study, and
by an Investigation. The interested reader should refer to [25] for an complete explanation of these fields. Examples
of valid values for the Institution field could be “INFN” or “STFC”, while values for the Investigation field could be
“measurement”, “simulation” or “experiment”.

Affi l iated with

Takes part in

Work as

Person

Insti tut ion

Job/Role

Investigation

(a) An example for a Grid user Knowledge Entity

Identif ied as

Takes part in

Data

Type

Programme

Investigation

Supports a

Performs an

Study

(b) An example for a data Knowledge Entity

Figure 7: Examples of Knowledge Entities for users and data

A security administrator can control the usage control granularity using the semantic fields shown in pictures 7(a)
and 7(b) for the definition of collective policies, like the following simple PreA0 policy:

1 TryAccess(Institution:STFC, Study:ISIS, read).

CoreGRID TR-0154 11

2 PredicateValidation([]).
3 PermitAccess(Institution:STFC, Study:ISIS, read).
4 EndAccess(Institution:STFC, Study:ISIS, read).

This policy simply states that each User associated with STFC can read those Data pertaining to the ISIS study. The
administrator could also associate UCON attributes to the UCON subject Institution:STFC and to the UCON
object Study:ISIS and ask for the validation of predicates using those attributes.

The possibility to control the policy granularity is of particular interest for those VOs that consider the specification
of a per-user, per-role or per-data policies a useless effort. High Energy Physics VOs usually fall in this category.

4 An Abstract Specification of Enforcement Mechanism for Usage Control
Within this section, we show an abstract specification of an enforcement mechanism for UCONa policies, using the
requirement specification language provided by KAOS. Within this paper we use KAOS with a bottom-up approach:
rather than deriving a specification using the KAOS standard methodology as presented in section 2.3, we first present
a complete specification and then, in the next sections, we will apply the KAOS requirement engineering methodology
to each of the UCONa sub-models to prove that what is presented here is sound and complete. The specification
has been partially abstracted from the usage-based authorization architecture of section 3.2, while the operations are
inferred from the UCON formal representation presented in [32] and in section 2.2. Picture 8 shows a graphical
representation of the UCON PDP components (as KAOS agents) and the operations those components can perform.

 Reference Monitor

 Predicate Validator

 Subject

Object

Right

DenyAccess Perf

In

In

In

Predicate

ValidationResponse

PredicateValidation

Resp

In

Out

Attr ibuteUpdate

Perf

In

In

In

 Attr ibute Manager

Attr ibute

Operation

Value

Out

Out

RevokeAccess

Perf

PermitAccess

Perf

DenyAccess

RevokeAccess

Perf

Perf

In

In

In

In

In

In

In

In

In

In

Figure 8: Abstract specification of an UCONa enforcement mechanism

As you can see from picture 8, we identify three agents:

• the Attribute Manager (AM) update the attributes and return their values;

• the Predicate Validator (PV) takes care of validating the policy predicates;

• the Reference Monitor (RM) is a gateway for all the authorization decisions, of the DGMS, or whatever is the
client.

CoreGRID TR-0154 12

The RM can receive TryAccess and EndAccess invocations, and is responsible to issue the PermitAccess,
DenyAccess or RevokeAccess operations. The PV can be invoked for the validation of the predicates, viz. per-
forming the PredicateValidation operation. The AM can be invoked for the update of the UCON attributes
with the AttributeUpdate operation.

It should be noted that simple Grid users should not be able to deal directly with the enforcement mechanism:
rather, as shown in section 3.2, Grid users should contact just the DGMS, asking for a data represented by a Human
Oriented Name. Then the DGMS shall ask for an authorization response from the enforcement mechanism regarding
the user, as it is recognized by the DGMS, and the abstract name the user has requested to access.

We now provide a written operational software specification of most of the operations shown in picture 8, using
the KAOS operation model. TryAccess and EndAccess are not specified here since they are issued by the users,
which we consider as an agent in the environment and thus not part of the enforcement mechanism. Each operation de-
fines a state-transition in the application domain, defined through domain pre- and post-conditions. The operations can
have input and output fields; for example, a subject, an object and a right are input to the operations PermitAccess,
DenyAccess and RevokeAccess.

Operation: PermitAccess
Performed By: Reference Monitor
Domain Pre-Condition: ¬ RM.permitaccess(s, o, r)
Domain Post-Condition: RM.permitaccess(s, o, r)
Input: subject, object, right

Operation: DenyAccess
Performed By: Reference Monitor
Domain Pre-Condition: ¬ RM.DenyAccess(s, o, r)
Domain Post-Condition: RM.DenyAccess(s, o, r)
Input: subject, object, right
ReqPre- Condition:

PV.validate(¬ p1 ∨ . . .∨ ¬ pn)

Operation: RevokeAccess
Performed By: Reference Monitor
Domain Pre-Condition: ¬ RM.RevokeAccess(s, o, r)
Domain Post-Condition: RM.RevokeAccess(s, o, r)
Input: subject, object, right
ReqPre- Condition:

PV.validate(¬ p1 ∨ . . .∨ ¬ pn)

Operation: PredicateValidation
Performed By: Predicate Validator
Domain Pre-Condition:

¬ PV.validate(p1 ∧ . . .∧ pn)
Domain Post-Condition:

PV.validate(p1 ∧ . . .∧ pn)
Input: Predicate
Output: ValidationResponse

Operation: AttributeUpdate
Performed By: Attribute Manager
Domain Pre-Condition: ¬ AM.update(s, o, r)
Domain Post-Condition: AM.update(s, o, r)
Input: Attribute, Operation, Value
Output: Attribute, Value

When specifying an operation in KAOS, an important distinction is made between (descriptive) domain pre-/post-
conditions and (prescriptive) pre-, post- and trigger conditions required for achieving some goal(s). The required
pre-condition for some goal captures a permission to perform the operation only if the condition is true; by contrast,
the required post-condition defines some additional conditions that any application of the operation must establish
in order to achieve the corresponding goal. The required trigger condition for some goal captures an obligation to
perform the operation if the condition becomes true provided the domain precondition is true.

Most of the operations presented above don’t specify any pre-, post- or trigger conditions, since these are dependent
from the order the single operations are invoked. Such order is encoded in the UCON sub-models. For example, in
the simplest case of a UCON PreA0 model, a PermitAccess operation can be issued by the RM when the output
of the PredicateValidation operation – ValidationResponse – is positive. Instead, in a PreA1 model a PermitAccess
operation can be issued only after the attributes are updated, viz. after the AM performed the AttributeUpdate operation
requested. Moreover, in both of this policies, the PV should contact the AM for updated attribute information. Since a
single policy can be a combination of multiple UCON core models, the sequentiality can be even more complicated.

In the next sections we will demonstrate how the same operations described here, when using prescriptive condi-
tions, are capable to enforce all the UCONa sub-models.

CoreGRID TR-0154 13

5 Using KAOS for a Formal Specification Proof
Within this section, we’ll use KAOS to refine UCON policies, deriving an enforcement mechanism for each UCONa

sub-model. Policy refinement concerns with transforming a high-level and abstract policy specification into a low-
level and concrete one [16]. It includes (1) determining the resources that are needed to satisfy the requirements of a
policy; (2) translating the high-level policies into operational policies that can be enforced; and (3) verifying that the
lower level policies actually meet the requirements specified by the high-level policy.

Here, we follow the goal-based approach to policy refinement introduced by Bandara et al in [3], which is based on
KAOS goal-refinement. KAOS is appropriate for this task since it includes a rigurous notation for representing goals
and strategies to refine a goal into a set of subgoals. These subgoals imply the parent goal and are more detailed. Goals
are refined until they can be operationalised — i.e. enforced — and are assigned to agents. Goals can be formalised
using linear temporal logic (LTL) [29], which is the formal language used to define the semantic of UCON [32].
Verifications can then be made on goal refinements to ensure that the system meets the goals and that the goal model
is well-formed.

A goal refinement is correct if it is complete, consistent, and minimal. A set of goals {G1, G2, . . . , Gn} refines a
goal G in the domain D if the following conditions hold:

G1, . . . , Gn, D ⇒ G (completeness)
G1, . . . , Gn, D 6⇒ false (consistency)V

j 6=iGj , D 6⇒ G for each i ∈ [1..n] (minimality)

Within this section, we apply the KAOS goal model to prove that the abstract specification as shown in section 4 is
capable to enforce all the UCONa core models. We start from a general refinement to justify the need for an enforcing
mechanism; considering that:

∀ s:subject, o:object, r:right
permitaccess(s, o, r) ⇒ requireToAccess(s, o, r)

Applying a milestone pattern [27] we refine the previous goal in the following two goals:

∀ s:subject, o:object, r:right
permitaccess(s, o, r) ⇒ policyEnforcing(s, o, r)

∀ s:subject, o:object, r:right
policyEnforcing(s, o, r) ⇒ requireToAccess(s, o, r)

Next, we need to clearly define the meaning of the policyEnforcing(s,o,r) predicate. There are two
different ways to do this. The first one consists in following the methodology proposed by van Lamsweerde in [28],
where the top-level goal consists in a precise definition of the policy. For doing it, we may consider using the formal
policy specifications given by Sandhu in [32]. This way is impractical for many reasons. First of all, many of the
Sandhu’s specifications are very difficult (if not impossible) to refine using the KAOS methodology. Even if a re-
definition of those policies is possible, this would lead us to unexpected results. Consider for example the following
PreA0 policy, as defined in [32]:

∀ s:subject, o:object, r:right
permitaccess(s, o, r) ⇒ ¨ (tryaccess(s, o, r) ∧ (p1 ∧ . . .∧ pn))

This policy can’t be refined further with the KAOS methodology, so we initially considered giving the following
re-definition:

∀ s:subject, o:object, r:right
permitaccess(s, o, r) ⇒ ¨ tryaccess(s, o, r) ∧ ¨ (p1 ∧ . . .∧ pn)

Even if this new definition is easily refinable, it would lead us to unconsistent results. In a PreA0 policy the tryaccess
action should be followed by a predicates validation. Neither the former nor the latter policy encode this information
about sequentiality. The only way we know on how to specify such a constraint in LTL is to encode the policy in the
following formula:

CoreGRID TR-0154 14

∀ s:subject, o:object, r:right
permitaccess(s, o, r) ⇒ ¨ (¨ tryaccess(s, o, r) ∧ (p1 ∧ . . .∧ pn))

which is not further refinable and thus unusable.
The second methodology is the following: for each UCONa sub-model, we define when to enforce the policy

with respect to the permitaccess(s,o,r) action. For example, each policy pertaining to a PreA0 model need
to be enforced only before the access is actually granted. Instead, each policy pertaining to a PreA3 model need to
be enforced not only before the access, but also after the end of it. Moreover, each OnA policy has to be partially
enforced during the access period. The subsequent refinements will specify the sequentiality of the actions needed to
enforce the policy model. Following this methodology we are capable to derive a precise abstract specification of the
service, and to infer a strategy for the policy enforcement.

There are several assumptions made in the policy refinement. First, all predicates and actions are computable.
Then, each UCON policy is referred as a set of logical formulae for a single usage process (s,o,r), and the interac-
tions between concurrent usage processes are not captured. We also assume that before an access request is generated,
the requesting subject and the target object exist in the system. Another assumption is that the time line is bounded
during the life time of a single usage process, viz. the tryaccess is always the first action in a single usage process.

5.1 UCON PreA0

In the UCON PreA0 core model, a usage control decision is determined by authorizations before the usage, and there
is no attribute update before, during, or after this usage. Discretionary access control (DAC) model with access control
list (ACL) can be expressed with a preA0 policy. A subject attribute is its identity, and an object attribute is an access
control list acl of pairs (id, r), where id is a subjects identity, and r is a right with which this subject can access
this object. The predicate to be satified is ((s.id, r) ∈ o.acl).

We require the policy to be enforced in the state before the access is permitted. The top goal is then the following:

Goal [PermitPreA0]
RefinedTo: [Permit], [CheckPredicates], [TryToAccess]
FormalDef: (∀ s:subject, o:object, r:right)

permitaccess(s, o, r) ⇒ • policyEnforcing(s, o, r)

We then apply a first goal refinement as shown in picture 9(a), while the formal sub-goals’ definitions follow. We
can use tools such as the FAUST toolkit [20] to demostrate that the refinement is correct.

PermitPreA0

Permit CheckPredicates TryToAccess

(a) Initial goal refinement of an UCON PreA0

core model

Permit CheckPredicates

Permit Monitor/Control PermitToAccess CP Monitor/Control PredicatesValidation

(b) Completion of the goal refinement of the UCON PreA0 core model

Figure 9: Goal model for an UCON PreA0 core model

This first refinement, as well as many of those that will follow in the text, are examples of refinements following
the milestone pattern.

CoreGRID TR-0154 15

Goal [Permit]
Refines: [PermitPreA0]
RefinedTo: [Permit Monitor/Control],

[PermitToAccess]
FormalDef: (∀ s:subject,

o:object,
r:right)

permitaccess(s, o, r)
⇒ • (p1 ∧ . . .∧ pn)

Goal [CheckPredicates]
Refines: [PermitPreA0]
RefinedTo: [CP Monitor/Control],

[PredicatesValidation]
FormalDef: (∀ s:subject,

o:object,
r:right)

(p1 ∧ . . .∧ pn)
⇒ • tryaccess(s, o, r)

Goal [TryToAccess]
Refines: [PermitPreA0]
FormalDef: (∀ s:subject,

o:object,
r:right)

tryaccess(s, o, r)
⇒ • policyEnforcing(s, o, r)

Even if [TryToAccess] is a final goal (an assumption of the system), neither [Permit] nor [CheckPredicates] are final
goals, so they have to be refined further. In picture 9(b) is shown the completion of the goal refinement, and the formal
definitions of each of the shown sub-goal follows in the text. We apply accuracy and actuation goals to resolve the
lack of monitorability and controllability as suggested in [13]. We identify two requirement goals, [PermitToAccess]
and [PredicatesValidation], and assign two agents, the Reference Monitor and the Predicate Validator to respectively
take care to each of them.

Goal [Permit Monitor/Control]
Refines: [Permit]
FormalDef: (∀ s:subject, o:object, r:right,

RM:Reference Monitor,
PV:Predicate Validator)

permitaccess(s, o, r) ⇔ RM.permitaccess(s, o, r)
(p1 ∧ . . .∧ pn) ⇔ PV.validate(p1 ∧ . . .∧ pn)

Goal [PermitToAccess]
Refines: [Permit]
FormalDef: (∀ s:subject, o:object, r:right,

RM:Reference Monitor,
PV:Predicate Validator)

RM.permitaccess(s, o, r)
⇒ • PV.validate(p1 ∧ . . .∧ pn)
Resp: Reference Monitor

Goal [CP Monitor/Control]
Refines: [CheckPredicates]
FormalDef: (∀ s:subject, o:object, r:right,

PV:Predicate Validator)
(p1 ∧ . . .∧ pn) ⇔ PV.validate(p1 ∧ . . .∧ pn)

Goal [PredicatesValidation]
Refines: [CheckPredicates]
FormalDef: (∀ s:subject, o:object, r:right,

PV:Predicate Validator)
PV.validate(p1 ∧ . . .∧ pn)
⇒ • tryaccess(s, o, r)
Resp: Predicate Validator

We are now capable to derive the KAOS agent and operation models. Picture 10 shows the KAOS operation
model, together with the agent/responsibility model. As the reader can see, we identify a couple of operations:
PermitAccess and PredicateValidation.

PermitToAccess PredicatesValidation

Resp
Resp

 Reference Monitor Predicate Validator Subject

Object

Right

PermitAccess Perf

In

In

In

Predicate

ValidationResponse

PredicateValidation

In

Out

Perf

Figure 10: Excerpt of the operation model for an UCON PreA0 enforcement mechanism

Next follows the KAOS operational specification for the UCON PreA0 enforcement mechanism, derived using
the KAOS operationalization patterns presented in [14]. The semantic of the KAOS operations defines a set of proof
obligations verifying that realising an operation when the required trigger, pre- and post- conditions of a goal are true
implies the goal. In this sense, a proof of the semantic of each operation in relation to the required conditions validates
that enforcement operations implement (i.e. enforce) the corresponding policies.

CoreGRID TR-0154 16

Operation: PermitAccess
Performed By: Reference Monitor
Domain Pre-Condition:

¬ RM.permitaccess(s, o, r)
Domain Post-Condition:

RM.permitaccess(s, o, r)
Input: subject, object, right
ReqPre for [PermitToAccess]:

PV.validate(p1 ∧ . . .∧ pn)

Operation: PredicateValidation
Performed By: Predicate Validator
Domain Pre-Condition:

¬ PV.validate(p1 ∧ . . .∧ pn)
Domain Post-Condition:

PV.validate(p1 ∧ . . .∧ pn)
Input: Predicate
Output: ValidationResponse
ReqPre for [PredicatesValidation]:

tryaccess(s, o, r)

The only difference between these operations and those shown in section 4 is in the specification of the Required
Pre-Condition clause. This clause is required to ensure that the goals assigned to the individual agents are met. They
are dependent from the order of the operations as specified by the model definition. Other UCON models encode a
different sequentiality of the operations. Within the rest of this paper we’ll show the KAOS operational specification
for all the UCONa sub-models. We’ll show that the derived operations always encode the same state-transitions as
specified by those in section 4, but since the sequentiality of the single operations is different a model from each other,
the Required Pre-, Post- and Trigger Conditions will be model-dependents. We can then be able, for each UCON
model, to formally infer a strategy to encode the sequentiality of the operations just looking at the Required Pre-, Post-
and Trigger Conditions specified within the operational specification of each UCONa sub-model. A similar approach
was introduced in [3]. A possibility for the encoding of such strategy directly in the policy is the use of an operational
policy language like POLPA, where the policy itself encode the strategy. When writing UCON policies using other
policy languages, a possibility to encode the strategy is the use of an external scheduler.

5.2 UCON PreA1

In the UCON PreA1 core model, a usage control decision is determined by authorizations before the usage, and one
or more subject or object attributes are updated before this usage. As an example of policy, in a DRM pay-per-use
application, a subject has a numerical valued attribute of credit, and an object has a numerical valued attribute of
value. A read access can be approved when a subjects credit is more than an objects value. Before the access can
start, an update to the subjects credit is performed by the system by subtracting the objects value. This attribute update
is a preUpdate, and the predicate to be satisfied is, for example, (Alice.credit ≥ ebook1.value).

What we’re showing here is very similar to what is shown in section 5.1, and same can be said for all the next
paragraph of section 5. Since the policy enforcing happens only before the access is permitted, the top goal is the
following:

Goal [PermitPreA1]
RefinedTo: [Permit], [Update], [CheckPredicates], [TryToAccess]
FormalDef: (∀ s:subject, o:object, r:right)
permitaccess(s, o, r) ⇒ • policyEnforcing(s, o, r)

We then apply a first goal refinement as shown in picture 11(a), while the formal sub-goals’ definitions follow in
the text.

Goal [Permit]
Refines: [PermitPreA1]
RefinedTo:

[Permit Monitor/Control],
[PermitToAccess]

FormalDef: (∀ s:subject,
o:object,
r:right)

permitaccess(s, o, r)
⇒ • update(s,o,r)

Goal [Update]
Refines: [PermitPreA1]
RefinedTo:

[Update Monitor/Control]
[UpdateTheAttributes]

FormalDef: (∀ s:subject,
o:object,
r:right)

update(s, o, r)
⇒ • (p1 ∧ . . .∧ pn)

Goal [CheckPredicates]
Refines: [PermitPreA1]
RefinedTo:

[CP Monitor/Control],
[PredicatesValidation]

FormalDef: (∀ s:subject,
o:object,
r:right)

(p1 ∧ . . .∧ pn)
⇒ • tryaccess(s, o, r)

Goal [TryToAccess]
Refines: [PermitPreA1]
FormalDef: (∀ s:subject,

o:object,
r:right)

tryaccess(s, o, r)
⇒ • policyEnforcing(s, o, r)

The goals [Update], [Permit] and [CheckPredicates] are not final goals, so they have to be refined further on. In
picture 11(b) is shown the completion of the goal refinement, and the formal definitions of each sub-goals follow in

CoreGRID TR-0154 17

PermitPreA1

Permit CheckPredicates TryToAccessUpdate

(a) Initial goal refinement of an UCON PreA1 core
model

Permit CheckPredicates

Permit Monitor/Control

PermitToAccess

CP Monitor/Control

PredicatesValidation

Update

Update Monitor/Control

UpdateTheAttr ibutes

(b) Completion of the goal refinement of the UCON PreA1 core model

Figure 11: Goal model for an UCON PreA1 core model

the text. We apply accuracy and actuation goals, and identify three requirement goals: [PermitToAccess], [UpdateTh-
eAttributes] and [Predicates Validation]. We assign them three agents: the Reference Monitor the Attribute Manager
and the Predicate Validator.

Goal [Permit Monitor/Control]
Refines: [Permit]
FormalDef: (∀ s:subject, o:object, r:right,

RM:Reference Monitor,
AM:Attribute Manager)

permitaccess(s, o, r) ⇔ RM.permitaccess(s, o, r)
update(s, o, r) ⇔ AM.update(s, o, r)

Goal [PermitToAccess]
Refines: [Permit]
FormalDef: (∀ s:subject, o:object, r:right,

RM:Reference Monitor,
AM:Attribute Manager)

RM.permitaccess(s, o, r)
⇒ • AM.update(s, o, r)
Resp: Reference Monitor

Goal [Update Monitor/Control]
Refines: [Update]
FormalDef: (∀ s:subject, o:object, r:right,

AM:Attribute Manager,
PV:Predicate Validator)

update(s, o, r) ⇔ AM.update(s, o, r)
(p1 ∧ . . .∧ pn) ⇔ PV.validate(p1 ∧ . . .∧ pn)

Goal [UpdateTheAttributes]
Refines: [Update]
FormalDef: (∀ s:subject, o:object, r:right,

AM:AttributeManager,
PV:Predicate Validator)

AM.update(s, o, r)
⇒ • PV.validate(p1 ∧ . . .∧ pn)
Resp: Attribute Manager

Goal [CP Monitor/Control]
Refines: [CheckPredicates]
FormalDef: (∀ s:subject, o:object, r:right,

PV:Predicate Validator)
(p1 ∧ . . .∧ pn) ⇔ PV.validate(p1 ∧ . . .∧ pn)
tryaccess(s, o, r) ⇔ tryaccess(s, o, r)

Goal [Predicates Validation]
Refines: [CheckPredicates]
FormalDef: (∀ s:subject, o:object, r:right,

PV:Predicate Validator)
PV.validate(p1 ∧ . . .∧ pn)
⇒ • tryaccess(s, o, r)
Resp: Predicate Validator

Picture 12 shows the KAOS operation model, together with the agent/responsibility model. We identify three
operations.

Next follows the formal KAOS operational specification of the UCON PreA1 enforcement mechanism.

CoreGRID TR-0154 18

PermitToAccess PredicatesValidation

Resp
Resp

 Reference Monitor Predicate Validator Subject

Object

Right

PermitAccess Perf

In

In

In

Predicate

ValidationResponse

PredicateValidation

In

Out

UpdateTheAttr ibutes

Resp

Attr ibuteUpdate Perf

In

In

In

 Attr ibute Manager

Attr ibute

Operation

Value

Out

Out

Perf

Figure 12: Excerpt of the operation model for an UCON PreA1 enforcement mechanism

Operation: PermitAccess
Performed By: Reference Monitor
Domain Pre-Condition:

¬ RM.permitaccess(s, o, r)
Domain Post-Condition:

RM.permitaccess(s, o, r)
Input: subject, object, right
ReqPre for [PermitToAccess]:

AM.update(s, o, r)

Operation: AttributeUpdate
Performed By: Attribute Manager
Domain Pre-Condition:

¬ AM.update(att)
Domain Post-Condition:

AM.update(att)
Input: Attribute, Operation, Value
Output: Attribute, Value
ReqPre for [UpdateTheAttributes]:

PV.validate(p1 ∧ . . .∧ pn)

Operation: PredicateValidation
Performed By: Predicate Validator
Domain Pre-Condition:

¬ PV.validate(p1 ∧ . . .∧ pn)
Domain Post-Condition:

PV.validate(p1 ∧ . . .∧ pn)
Input: Predicate
Output: ValidationResponse
ReqPre for [Predicates Validation]:

tryaccess(s, o, r)

As in section 5.1, the only difference between these operations and those shown in section 4 is the specification of
the Required Pre-Condition clause.

5.3 UCON PreA3

In the UCON PreA3 core model, a usage control decision is determined by authorizations before the usage, and one or
more subject or object attributes are updated after this usage. An example is: in a DRM membership-based application,
a subject s has attributes expense and group, and a file o has attributes group and cost. A subject can read
any file in his/her own group. The predicate to be satisfied is (s.group = o.group). The expense is updated by
adding the cost of the file after the access: s.expense′ = s.expense + o.cost.

The policy enforcing happens before and after the access is permitted. The top-goal, [PermitPreA3], is easily
refined in the goals [PermitPreA3-pre] and [PermitPreA3-post] as specified below.

Goal [PermitPreA3]
RefinedTo: [PermitPreA3-pre]

[PermitPreA3-post]
FormalDef: (∀ s:subject,

o:object,
r:right)

permitaccess(s, o, r)
⇒ • policyEnforcing(s, o, r) ∧
◦ policyEnforcing(s, o, r)

Goal [PermitPreA3-pre]
RefinedTo: [Permit],

[CheckPredicates],
[TryToAccess]

FormalDef: (∀ s:subject,
o:object,
r:right)

permitaccess(s, o, r)
⇒ • policyEnforcing(s, o, r)

Goal [PermitPreA3-post]
RefinedTo: [End],
[Update],
[PreA3-completed]
FormalDef: (∀ s:subject,

o:object,
r:right)

permitaccess(s, o, r)
⇒ ◦ policyEnforcing(s, o, r)

CoreGRID TR-0154 19

The first part of the goal refinement is shown in picture 13(a). The formal sub-goals’ definitions follow.

PermitPreA3-pre

Permit CheckPredicates TryToAccess Update

PermitPreA3

PermitPreA3-post

End PreA3-completed

(a) Initial goal refinement of an UCON PreA3 core model

Permit CheckPredicates

Permit Monitor/Control

PermitToAccess

CP Monitor/Control

PredicatesValidation

Update

Update Monitor/Control

UpdateAfterEnd

(b) Completion of the goal refinement of the UCON PreA3 core model

Figure 13: Goal model for an UCON PreA3 core model

Goal [Permit]
Refines: [PermitPreA3-pre]
RefinedTo: [Permit Monitor/Control],

[PermitToAccess]
FormalDef: (∀ s:subject,

o:object,
r:right)

permitaccess(s, o, r)
⇒ • (p1 ∧ . . .∧ pn)

Goal [CheckPredicates]
Refines: [PermitPreA3-pre]
RefinedTo: [CP Monitor/Control],

[PredicatesValidation]
FormalDef: (∀ s:subject,

o:object,
r:right)

(p1 ∧ . . .∧ pn)
⇒ • tryaccess(s, o, r)

Goal [TryToAccess]
Refines: [PermitPreA3-pre]
FormalDef: (∀ s:subject,

o:object,
r:right)

tryaccess(s, o, r)
⇒ • policyEnforcing(s, o, r)

Goal [End]
Refines: [PermitPreA3-post]
FormalDef: (∀ s:subject,

o:object,
r:right)

permitaccess(s, o, r)
⇒ ◦ endaccess(s, o, r)

Goal [Update]
Refines: [PermitPreA3-post]
RefinedTo: [Update Monitor/Control],

[UpdateAfterEnd]
FormalDef: (∀ s:subject,

o:object,
r:right)

endaccess(s, o, r)
⇒ ◦ update(s, o, r)

Goal [PreA3-completed]
Refines: [PermitPreA3-post]
FormalDef: (∀ s:subject,

o:object,
r:right)

update(s, o, r)
⇒ ◦ policyEnforcing(s, o, r)

The goals [Permit], [CheckPredicates] and [Update] have to be refined further. In picture 13(b) is shown the
completion of the goal refinement, and the formal definitions of each sub-goals follow in the text. We identify three
requirement goals, [PermitToAccess], [PredicatesValidation] and [UpdateAfterEnd], and assign the already known
agents Reference Monitor, Predicate Validator and Attribute Manager to respectively take care to each of them.

Goal [Permit Monitor/Control]
Refines: [Permit]
FormalDef: (∀ s:subject, o:object, r:right,

RM:Reference Monitor,
PV:Predicate Validator)

permitaccess(s, o, r) ⇔ RM.permitaccess(s, o, r)
(p1 ∧ . . .∧ pn) ⇔ PV.validate(p1 ∧ . . .∧ pn)

Goal [PermitToAccess]
Refines: [Permit]
FormalDef: (∀ s:subject, o:object, r:right,

RM:Reference Monitor,
PV:Predicate Validator)

RM.permitaccess(s, o, r)
⇒ • PV.validate(p1 ∧ . . .∧ pn)
Resp: Reference Monitor

Goal [CP Monitor/Control]
Refines: [CheckPredicates]
FormalDef: (∀ s:subject, o:object, r:right,

PV:Predicate Validator)
(p1 ∧ . . .∧ pn) ⇔ PV.validate(p1 ∧ . . .∧ pn)
tryaccess(s, o, r) ⇔ tryaccess(s, o, r)

Goal [PredicatesValidation]
Refines: [CheckPredicates]
FormalDef: (∀ s:subject, o:object, r:right,

PV:Predicate Validator)
PV.validate(p1 ∧ . . .∧ pn)
⇒ • tryaccess(s, o, r)
Resp: Predicate Validator

CoreGRID TR-0154 20

Goal [Update Monitor/Control]
Refines: [Update]
FormalDef: (∀ s:subject, o:object, r:right,

AM:Attribute Manager)
update(s, o, r) ⇔ AM.update(s, o, r)

Goal [UpdateAfterEnd]
Refines: [Update]
FormalDef: (∀ s:subject, o:object, r:right,

AM:AttributeManager)
endaccess(s, o, r)
⇒ ◦ AM.update(s, o, r)
Resp: Attribute Manager

The picture of the KAOS operation model for this UCON sub-model is not shown, since it’s pretty much the same
as of picture 12. The formal specifications of the three operations are shown next:

Operation: PermitAccess
Performed By: Reference Monitor
Domain Pre-Condition:

¬ RM.permitaccess(s, o, r)
Domain Post-Condition:

RM.permitaccess(s, o, r)
Input: subject, object, right
ReqPre for [PermitToAccess]:

PV.validate(p1 ∧ . . .∧ pn)

Operation: PredicateValidation
Performed By: Predicate Validator
Domain Pre-Condition:

¬ PV.validate(p1 ∧ . . .∧ pn)
Domain Post-Condition:

PV.validate(p1 ∧ . . .∧ pn)
Input: Predicate
Output: ValidationResponse
ReqPre for [PredicatesValidation]:

tryaccess(s, o, r)

Operation: AttributeUpdate
Performed By: Attribute Manager
Domain Pre-Condition:

¬ AM.update(att)
Domain Post-Condition:

AM.update(att)
Input: Attribute, Operation, Value
Output: Attribute, Value
ReqPre for [UpdateAfterEnd]:

endaccess(s, o, r)

As previous sections, the only difference between these operations and those shown in section 4 is the specification
of the Required Pre-Condition clause.

5.4 UCON OnA0

In the UCON OnA0 core model, a usage control decision is determined by authorizations during the usage, and there
is no attribute update before, during, or after this usage. The policy enforcing happens after the access is permitted,
and before it is ended by the user. The access can be revoked when the predicates are not satisfied. An example of a
policy pertaining to a OnA0 core model is the following: in an VO, a user Bob (with role employee) has a temporary
position to conduct a short-term project with a certificate of temp_cert. While Bob is accessing some sensitive
information, his digital certificate (temp_cert) for this project is being checked repeatedly. If his certificate number
is in the Certification Revocation List (CRL) of the VO, his temporary role membership is revoked
and he cannot access the information any more. There are no attribute updates, and the predicate to be satisfied is
simply temp_cert ∈ CRL.

The top goals are following.

Goal [PermitOnA0]
RefinedTo: [PermitOnA0-pre]

[PermitOnA0-post]
FormalDef: (∀ s:subject,

o:object,
r:right)

permitaccess(s, o, r)
⇒ • policyEnforcing(s, o, r) ∧
2 policyEnforcing(s, o, r)

Goal [PermitOnA0-pre]
RefinedTo: [Permit],

[TryToAccess]
FormalDef: (∀ s:subject,

o:object,
r:right)

permitaccess(s, o, r)
⇒ • policyEnforcing(s, o, r)

Goal [PermitOnA0-post]
RefinedTo: [CheckPredicates],

[ContinuosCheck]
FormalDef: (∀ s:subject,

o:object,
r:right)

permitaccess(s, o, r)
⇒ 2 policyEnforcing(s, o, r)

The first and second part of the goal refinements are shown in picture 14(a) and 14(b), while the formal sub-goals’
definitions follow.

Goal [Permit]
Refines: [PermitOnA0-pre]
RefinedTo: [Permit Monitor/Control],

[PermitToAccess]
FormalDef: (∀ s:subject, o:object, r:right)
permitaccess(s, o, r)
⇒ • tryaccess(s, o, r)

Goal [TryToAccess]
Refines: [PermitOnA0-pre]
FormalDef: (∀ s:subject, o:object, r:right)
permitaccess(s, o, r) ⇒ • policyEnforcing(s, o, r)

CoreGRID TR-0154 21

CheckPredicates ContinuosCheck

PermitOnA0

PermitOnA0-pre PermitOnA0-post

TryToAccessPermit

(a) Initial goal refinement of an UCON OnA0 core model

Permit

Permit Monitor/Control

PermitToAccess

CP Monitor/Control

OnValidation

CheckPredicates

(b) Completion of the goal refinement of the UCON OnA0 goal model

Figure 14: Goal and operation model for an UCON OnA0 core model

Goal [CheckPredicates]
Refines: [PermitOnA0]
RefinedTo: [CP Monitor/Control],

[OnValidation]
FormalDef: (∀ s:subject,

o:object,
r:right)

permitaccess(s, o, r)
⇒ 2 (p1 ∧ . . .∧ pn)

Goal [ContinuosCheck]
Refines: [PermitPreA0]
FormalDef: (∀ s:subject,

o:object,
r:right)

(p1 ∧ . . .∧ pn)
⇒ 2 policyEnforcing(s, o, r)

Goal [Permit Monitor/Control]
Refines: [Permit]
FormalDef: (∀ s:subject, o:object, r:right,

RM:Reference Monitor)
permitaccess(s, o, r) ⇔ RM.permitaccess(s, o, r)

Goal [PermitToAccess]
Refines: [Permit]
FormalDef: (∀ s:subject, o:object, r:right,

RM:Reference Monitor)
RM.permitaccess(s, o, r)
⇒ • tryaccess(s, o, r)
Resp: Reference Monitor

Goal [CP Monitor/Control]
Refines: [CheckPredicates]
FormalDef: (∀ s:subject, o:object, r:right,

RM:Reference Monitor,
PV:Predicate Validator)

permitaccess(s, o, r) ⇔ RM.permitaccess(s, o, r)
(p1 ∧ . . .∧ pn) ⇔ PV.validate(p1 ∧ . . .∧ pn)

Goal [OnValidation]
Refines: [CheckPredicates]
FormalDef: (∀ s:subject, o:object, r:right,

RM:Reference Monitor,
PV:Predicate Validator)

RM.permitaccess(s, o, r)
⇒ 2 PV.validate(p1 ∧ . . .∧ pn)
Resp: Predicate Validator

The requirement goals are [PermitToAccess] and [OnValidation]. The agents assigned to them are respectively the
Reference Monitor and the Predicate Validator.

The KAOS operation model is pretty much the same as of picture 10 and therefore it’s not shown here. The KAOS
operational specifications for the UCON OnA0 enforcement mechanism follow in the text.

CoreGRID TR-0154 22

Operation: PermitAccess
Performed By: Reference Monitor
Domain Pre-Condition:

¬ RM.permitaccess(s, o, r)
Domain Post-Condition:

RM.permitaccess(s, o, r)
Input: subject, object, right
ReqPre for [PermitToAccess]:

tryaccess(s, o, r)

Operation: PredicateValidation
Performed By: Predicate Validator
Domain Pre-Condition:

¬ RM.permitaccess(s, o, r)
Domain Post-Condition:

RM.permitaccess(s, o, r)
Input: Predicate
Output: ValidationResponse
ReqPost for [OnValidation]:

PV.validate(p1 ∧ . . .∧ pn)

The only difference between these operations and their equivalent shown in section 4 is the specification of the
Required Pre-Condition and Required Post-Condition clauses.

5.5 UCON OnA1

In the UCON OnA1 core model, a usage control decision is determined by authorizations during the usage, and there
is one or more attribute updates before this usage. An example of policy could be similar to the one of section
5.4, with the further constraint that Bob can’t access more than MAX_files at the same time, with the number
of current accessed file stored in the accessed_files attribute. The predicate to be satisfied is the following:
(accessed_files≤ MAX_files), with the preUpdate s.accessed_files′ = s.accessed_files+1.

The policy enforcing happens before and during the access is permitted. The top goals follow:

Goal [PermitOnA1]
RefinedTo: [PermitOnA1-pre]

[PermitOnA1-post]
FormalDef: (∀ s:subject,

o:object,
r:right)

permitaccess(s, o, r)
⇒ • policyEnforcing(s, o, r) ∧
2 policyEnforcing(s, o, r)

Goal [PermitOnA0-pre]
RefinedTo: [Permit],

[Update],
[TryToAccess]

FormalDef: (∀ s:subject,
o:object,
r:right)

permitaccess(s, o, r)
⇒ • policyEnforcing(s, o, r)

Goal [PermitOnA0-post]
RefinedTo: [CheckPredicates],

[ContinuosCheck]
FormalDef: (∀ s:subject,

o:object,
r:right)

permitaccess(s, o, r)
⇒ 2 policyEnforcing(s, o, r)

The first and second part of the goal refinements are shown in picture 15(a) and 15(b), while the formal sub-goals’
definitions follow.

CheckPredicates ContinuosCheck

PermitOnA1

PermitOnA1-pre PermitOnA1-post

TryToAccessPermit Update

(a) Initial goal refinement of an UCON OnA1 core
model

Update

Update Monitor/Control

UpdateBeforePermit

CP Monitor/Control

OnValidation

CheckPredicatesPermit

Permit Monitor/Control

PermitToAccess

(b) Completion of the goal refinement of the UCON OnA1 goal model

Figure 15: Goal and operation model for an UCON OnA1 core model

CoreGRID TR-0154 23

Goal [Permit]
Refines: [PermitOnA1-pre]
RefinedTo: [Permit Monitor/Control],

[PermitToAccess]
FormalDef: (∀ s:subject,

o:object,
r:right)

permitaccess(s, o, r)
⇒ • update(s, o, r)

Goal [Update]
Refines: [PermitOnA1-pre]
RefinedTo: [Update Monitor/Control],

[UpdateBeforePermit]
FormalDef: (∀ s:subject,

o:object,
r:right)

update(s, o, r)
⇒ • tryaccess(s, o, r)

Goal [TryToAccess]
Refines: [PermitOnA1-pre]
FormalDef: (∀ s:subject,

o:object,
r:right)

tryaccess(s, o, r)
⇒ • policyEnforcing(s, o, r)

Goal [Permit Monitor/Control]
Refines: [Permit]
FormalDef: (∀ s:subject, o:object, r:right,

RM:Reference Monitor,
AM:Attribute Manager)

permitaccess(s, o, r) ⇔ RM.permitaccess(s, o, r)
update(s, o, r) ⇔ AM.update(s, o, r)

Goal [PermitToAccess]
Refines: [Permit]
FormalDef: (∀ s:subject, o:object, r:right,

RM:Reference Monitor,
AM:Attribute Manager)

RM.permitaccess(s, o, r)
⇒ • AM.update(s, o, r)
Resp: Reference Monitor

Goal [Update Monitor/Control]
Refines: [Update]
FormalDef: (∀ s:subject, o:object, r:right,

AM:Attribute Manager)
update(s, o, r) ⇔ AM.update(s, o, r)

Goal [UpdateBeforePermit]
Refines: [Update]
FormalDef: (∀ s:subject, o:object, r:right,

AM:Attribute Manager)
AM.update(s, o, r)
⇒ • tryaccess(s, o, r)
Resp: Attribute Manager

The refinement of the [PermitOnA1-post] goal is the same as the refinement of the [PermitOnA0-post] goal of
section 5.4 and is not shown for brevity.

The requirement goals are [PermitToAccess], [UpdateBeforePermit] and [OnValidation]. The agents assigned to
them are respectively the Reference Monitor, the Attribute Manager and the Predicate Validator.

The KAOS operation model, is the same as of picture 12. The formal specification of the KAOS operational
specification for the UCON OnA1 enforcement mechanism follows.

Operation: PermitAccess
Performed By: Reference Monitor
Domain Pre-Condition:

¬ RM.permitaccess(s, o, r)
Domain Post-Condition:

RM.permitaccess(s, o, r)
Input: subject, object, right
ReqPre for [PermitToAccess]:

AM.update(s, o, r)

Operation: AttributeUpdate
Performed By: Attribute Manager
Domain Pre-Condition:

¬ AM.update(s, o, r)
Domain Post-Condition:

AM.update(s, o, r)
Input: subject, object, right
ReqPre for [UpdateBeforePermit]:

tryaccess(s, o, r)

Operation: PredicateValidation
Performed By: Predicate Validator
Domain Pre-Condition:

¬ RM.permitaccess(s, o, r)
Domain Post-Condition:

RM.permitaccess(s, o, r)
Input: Predicate
Output: ValidationResponse
ReqPost for [OnValidation]:

PV.validate(p1 ∧ . . .∧ pn)

As usual, the only difference between these operations and their equivalents shown in section 4 is the specification
of the Required Pre-Condition and Required Post-Condition clauses.

5.6 UCON OnA2

In the UCON OnA2 core model, a usage control decision is determined by authorizations during the usage, and there
is one or more attribute updates during this usage. The policy enforcing happens before, during and after the access is
permitted. The top goal is:

Goal [PermitOnA2]
RefinedTo: [PermitOnA2-pre], [PermitOnA2-post], [PermitOnA2-on]
FormalDef: (∀ s:subject, o:object, r:right)

CoreGRID TR-0154 24

permitaccess(s, o, r) ⇒ • policyEnforcing(s, o, r) ∧ ◦ policyEnforcing(s, o, r) ∧ 2 policyEnforcing(s, o, r)

Which is easily refined in:
Goal [PermitOnA2-pre]

RefinedTo: [Permit]
[TryToAccess]

FormalDef: (∀ s:subject,
o:object,
r:right)

permitaccess(s, o, r)
⇒ • policyEnforcing(s, o, r)

Goal [PermitOnA2-post]
RefinedTo: [Update]

[OnUpdateCompleted]
FormalDef: (∀ s:subject,

o:object,
r:right)

permitaccess(s, o, r)
⇒ ◦ policyEnforcing(s, o, r)

Goal [PermitOnA2-on]
RefinedTo: [CheckPredicates]

[ContinuousCheck]
FormalDef: (∀ s:subject,

o:object,
r:right)

permitaccess(s, o, r)
⇒ 2 policyEnforcing(s, o, r)

The first and second part of the goal refinements are shown in picture 16(a) and 16(b), while the formal sub-goals’
definitions follow. The refinements of the goals [PermitOnA2-pre] and [PermitOnA2-on] are not shown here, since
are the same as the refinement of respectively [PermitOnA0-pre] and [PermitOnA0-post] of section 5.4.

PermitOnA2

PermitOnA2-pre PermitOnA2-post

TryToAccessPermit

PermitOnA2-on

CheckPredicates ContinuosCheckUpdate OnUpdateCompleted

(a) Initial goal refinement of an UCON OnA2 core model

Update

Update Monitor/Control

UpdateAfterPermit

CP Monitor/Control

OnValidation

CheckPredicatesPermit

Permit Monitor/Control

PermitToAccess

(b) Completion of the goal refinement of the UCON OnA2 goal model

Figure 16: Goal and operation model for an UCON OnA2 core model

Goal [Update]
Refines: [PermitOnA2-post]
RefinedTo: [Update Monitor/Control],

[UpdateAfterPermit]
FormalDef: (∀ s:subject, o:object, r:right)
permitaccess(s, o, r)
⇒ ◦ update(s, o, r)

Goal [OnUpdateCompleted]
Refines: [PermitOnA2-post]
FormalDef: (∀ s:subject, o:object, r:right)
update(s, o, r)
⇒ ◦ policyEnforcing(s, o, r)

Goal [Update Monitor/Control]
Refines: [Update]
FormalDef: (∀ s:subject, o:object, r:right,

RM:Reference Monitor,
AM:Attribute Manager)

permitaccess(s, o, r) ⇔ RM.permitaccess(s, o, r)
update(s, o, r) ⇔ AM.update(s, o, r)

Goal [UpdateBeforePermit]
Refines: [Update]
FormalDef: (∀ s:subject, o:object, r:right,

RM:Reference Monitor,
AM:Attribute Manager)

RM.permitaccess(s, o, r)
⇒ ◦ AM.update(s, o, r)
Resp: Attribute Manager

The requirement goals are [PermitToAccess], [UpdateAfterPermit] and [OnValidation]. The agents assigned to
them are respectively the Reference Monitor, the Attribute Manager and the Predicate Validator.

The KAOS operation model, is the same as of picture 12. The formal specification of the KAOS operational
specification for the UCON OnA2 enforcement mechanism follows.

CoreGRID TR-0154 25

Operation: PermitAccess
Performed By: Reference Monitor
Domain Pre-Condition:

¬ RM.permitaccess(s, o, r)
Domain Post-Condition:

RM.permitaccess(s, o, r)
Input: subject, object, right
ReqPre for [PermitToAccess]:

AM.update(s, o, r)

Operation: AttributeUpdate
Performed By: Attribute Manager
Domain Pre-Condition:

¬ AM.update(s, o, r)
Domain Post-Condition:

AM.update(s, o, r)
Input: subject, object, right
ReqPre for [UpdateAfterPermit]:

RM.permitaccess(s, o, r)

Operation: PredicateValidation
Performed By: Predicate Validator
Domain Pre-Condition:

¬ RM.permitaccess(s, o, r)
Domain Post-Condition:

RM.permitaccess(s, o, r)
Input: Predicate
Output: ValidationResponse
ReqPost for [OnValidation]:

PV.validate(p1 ∧ . . .∧ pn)

As usual, the only difference between these operations and its equivalent shown in section 4 is the specification of
the Required Pre-Condition and Required Post-Condition clauses.

5.7 UCON OnA3

In the UCON OnA3 core model, a usage control decision is determined by authorizations during the usage, and there
is one or more attribute updates after this usage. The example policy at the beginning of section 5.5 can be completed
with the following postUpdate: s.accessed_files′ = s.accessed_files −1.

The policy enforcing happens before, during and after the access is permitted. The top goal is:

Goal [PermitOnA3]
RefinedTo: [PermitOnA3-pre], [PermitOnA3-on], [PermitOnA3-post]
FormalDef: (∀ s:subject, o:object, r:right)
permitaccess(s, o, r) ⇒ • policyEnforcing(s, o, r) ∧ 2 policyEnforcing(s, o, r) ∧ ♦ policyEnforcing(s, o, r)

Which is easily refined in:

Goal [PermitOnA3-pre]
RefinedTo: [Permit]

[TryToAccess]
FormalDef: (∀ s:subject,

o:object,
r:right)

permitaccess(s, o, r)
⇒ • policyEnforcing(s, o, r)

Goal [PermitOnA3-on]
RefinedTo: [CheckPredicates]

[ContinuousCheck]
FormalDef: (∀ s:subject,

o:object,
r:right)

permitaccess(s, o, r)
⇒ 2 policyEnforcing(s, o, r)

Goal [PermitOnA3-post]
RefinedTo: [EndOrRevoke],

[Update]
[OnUpdateCompleted]

FormalDef: (∀ s:subject,
o:object,
r:right)

permitaccess(s, o, r)
⇒ ♦ policyEnforcing(s, o, r)

The first and second part of the goal refinements are shown in picture 17(a) and 17(b), while the formal sub-goals’
definitions follow. The refinements of the goals [PermitOnA3-pre] and [PermitOnA3-on] are not shown here, since
are the same as the refinement of respectively [PermitOnA0-pre] and [PermitOnA0-post] of section 5.4.

PermitOnA3

PermitOnA3-pre PermitOnA3-post

TryToAccess

Permit

PermitOnA3-on

CheckPredicates

ContinuosCheck Update

PostUpdateCompletedEndOrRevoke

(a) Initial goal refinement of an UCON OnA3 core model

Update

Update Monitor/Control

UpdateAfterEnd

CP Monitor/Control

OnValidation

CheckPredicatesPermit

Permit Monitor/Control

PermitToAccess

(b) Completion of the goal refinement of the UCON OnA3 goal model

Figure 17: Goal and operation model for an UCON OnA3 core model

CoreGRID TR-0154 26

Goal [EndOrRevoke]
Refines: [PermitOnA3-post]
FormalDef: (∀ s:subject,

o:object,
r:right)

permitaccess(s, o, r)
⇒ ♦ endaccess(s, o, r)

Goal [Update]
Refines: [PermitOnA3-post]
RefinedTo: [Update Monitor/Control],

[UpdateAfterEnd]
FormalDef: (∀ s:subject,

o:object,
r:right)

endaccess(s, o, r)
⇒ ♦ update(s, o, r)

Goal [PostUpdateCompleted]
Refines: [PermitOnA3-post]
FormalDef: (∀ s:subject,

o:object,
r:right)

update(s, o, r)
⇒ ♦ policyEnforcing(s, o, r)

Goal [Update Monitor/Control]
Refines: [Update]
FormalDef: (∀ s:subject, o:object, r:right,

AM:Attribute Manager)
update(s, o, r) ⇔ AM.update(s, o, r)

Goal [UpdateAfterEnd]
Refines: [Update]
FormalDef: (∀ s:subject, o:object, r:right,

AM:Attribute Manager)
endaccess(s, o, r)
⇒ ♦ AM.update(s, o, r)
Resp: Attribute Manager

The requirement goals are [PermitToAccess], [OnValidation] and [UpdateAfterEnd]. The agents assigned to them
are respectively the Reference Monitor, the Predicate Validator and the Attribute Manager.

The KAOS operation model, is the same as of picture 12. The formal specification of the KAOS operational
specification for the UCON OnA3 enforcement mechanism follows.

Operation: PermitAccess
Performed By: Reference Monitor
Domain Pre-Condition:

¬ RM.permitaccess(s, o, r)
Domain Post-Condition:

RM.permitaccess(s, o, r)
Input: subject, object, right
ReqPre for [PermitToAccess]:

tryaccess(s, o, r)

Operation: PredicateValidation
Performed By: Predicate Validator
Domain Pre-Condition:

¬ RM.permitaccess(s, o, r)
Domain Post-Condition:

RM.permitaccess(s, o, r)
Input: Predicate
Output: ValidationResponse
ReqPost for [OnValidation]:

PV.validate(p1 ∧ . . .∧ pn)

Operation: AttributeUpdate
Performed By: Attribute Manager
Domain Pre-Condition:

¬ AM.update(s, o, r)
Domain Post-Condition:

AM.update(s, o, r)
Input: subject, object, right
ReqPre for [UpdateAfterEnd]:

endaccess(s, o, r)

As usual, the only difference between these operations and its equivalent shown in section 4 is the specification of
the Required Pre-Condition and Required Post-Condition clauses.

5.8 Denying and Revoking the access
A careful reader should have noted that in the previos sections we didn’t model neither the DenyAccess nor the
RevokeAccess operations. The reason lies in the fact that we refined only positive permissions. Within this section
we show in a simple way the refinements of DenyAccess and RevokeAccess.

5.8.1 Denying the access

In UCON, an access is denied when, after a tryaccess(s,o,r), the predicates are not satisfied. A DenyAccess
operation can be issued only when evaluating a PreA policy. The refinement shown here is valid for all the UCON
PreA models.

The top goal is the following:

Goal [AccessDenied]
RefinedTo: [Deny], [CheckPredicates], [TryToAccess]
FormalDef: (∀ s:subject, o:object, r:right)

denyaccess(s, o, r) ⇒ • policyNotSatisfied(s, o, r)

This goal can be easily refined in the formal sub-goals’ definitions as follow. The first part of the refinement is
shown in picture 18(a).

CoreGRID TR-0154 27

AccessDenied

Deny TryToAccessCheckPredicates

(a) Initial goal refinement for the deny access goal

Deny CheckPredicates

Deny Monitor/Control DenyTheAccess CP Monitor/Control PredicatesInValidation

(b) Completion of the goal refinement for the deny access

Figure 18: Goal model for the access denied

Goal [Deny]
Refines: [AccessDenied]
RefinedTo: [Deny Monitor/Control],

[DenyTheAccess]
FormalDef: (∀ s:subject,

o:object,
r:right)

denyaccess(s, o, r)
⇒ • (¬ p1 ∨ . . .∨ ¬ pn)

Goal [CheckPredicates]
Refines: [AccessDenied]
RefinedTo: [CP Monitor/Control],

[PredicatesInValidation]
FormalDef: (∀ s:subject,

o:object,
r:right)

(¬ p1 ∨ . . .∨ ¬ pn)
⇒ • tryaccess(s, o, r)

Goal [TryToAccess]
Refines: [AccessDenied]
FormalDef: (∀ s:subject,

o:object,
r:right)

tryaccess(s, o, r)
⇒ • policyNotSatisfied(s, o, r)

Even if [TryToAccess] is a final goal (an assumption of the system), neither [Deny] nor [CheckPredicates] are
finals, so they have to be refined further. In picture 18(b) is shown the completion of the goal refinement, and the
formal definitions of each sub-goals follow in the text. We apply accuracy and actuation goals to resolve the lack of
monitorability and controllability. We identify two requirement goals, [DenyTheAccess] and [PredicatesInValidation],
and assign two agents, the Reference Monitor and Predicate Validator to respectively take care to each of them.

Goal [Deny Monitor/Control]
Refines: [Deny]
FormalDef: (∀ s:subject, o:object, r:right,

RM:Reference Monitor,
PV:Predicate Validator)

denyaccess(s, o, r) ⇔ RM.denyaccess(s, o, r)
(¬ p1 ∨ . . .∨ ¬ pn) ⇔ PV.validate(¬ p1 ∨ . . .∨ ¬ pn)

Goal [DenyTheAccess]
Refines: [Deny]
FormalDef: (∀ s:subject, o:object, r:right,

RM:Reference Monitor,
PV:Predicate Validator)

RM.denyaccess(s, o, r)
⇒ • PV.validate(¬ p1 ∨ . . .∨ ¬ pn)
Resp: Reference Monitor

Goal [CP Monitor/Control]
Refines: [CheckPredicates]
FormalDef: (∀ s:subject, o:object, r:right,

PV:Predicate Validator)
(¬ p1 ∨ . . .∨ ¬ pn) ⇔ PV.validate(¬ p1 ∨ . . .∨ ¬ pn)

Goal [PredicatesInValidation]
Refines: [CheckPredicates]
FormalDef: (∀ s:subject, o:object, r:right,

PV:Predicate Validator)
PV.validate(¬ p1 ∨ . . .∨ ¬ pn)
⇒ • tryaccess(s, o, r)
Resp: Predicate Validator

We are now capable to derive the KAOS agent and operation models. Picture 19 the operation model, together
with the agent/responsibility model. We identify a couple of operations.

Next follows the formal specification of the operations.

CoreGRID TR-0154 28

DenyTheAccess PredicatesInValidation

Resp
Resp

 Reference Monitor Predicate Validator Subject

Object

Right

DenyAccess Perf

In

In

In

Predicate

ValidationResponse

PredicateValidation Perf

In

Out

Figure 19: Operation model for an enforcing mechanism to deny an access

Operation: DenyAccess
Performed By: Reference Monitor
Domain Pre-Condition:

¬ RM.denyaccess(s, o, r)
Domain Post-Condition:

RM.denyaccess(s, o, r)
Input: subject, object, right
ReqPre for [DenyTheAccess]:

PV.validate(¬ p1 ∨ . . .∨ ¬ pn)

Operation: PredicateValidation
Performed By: Predicate Validator
Domain Pre-Condition:

¬ PV.validate(¬ p1 ∨ . . .∨ ¬ pn)
Domain Post-Condition:

PV.validate(¬ p1 ∨ . . .∨ ¬ pn)
Input: Predicate
Output: ValidationResponse
ReqPre for [PredicatesInValidation]:

tryaccess(s, o, r)

If we don’t consider the predicates to be (in)validated, there is no difference between the DenyAccess operation
as specified here and the one shown in section 4.

5.8.2 Revoking the access

In UCON, an access is revoked when, during an ongoing access, the predicates are not (more) satisfied. A RevokeAccess
operation can be issued only when evaluating a OnA policy. The refinement shown here is valid for all the OnA models.

The top goal is the following:

Goal [AccessRevoked]
RefinedTo: [Revoke], [CheckPredicates], [PolicyOnceSatisfied]
FormalDef: (∀ s:subject, o:object, r:right)

denyaccess(s, o, r) ⇒ • policyNotMoreSatisfied(s, o, r)

This goal can be easily refined in the formal sub-goals’ definitions as follow. The complete refinement is shown in
picture 20(a).

AccessDenied

Revoke PolicyOnceSatisfiedCheckPredicates

Revoke Monitor/Control RevokeTheAccess

(a) Goal refinement for the revoke access goal

RevokeTheAccess

Resp

 Reference Monitor Subject

Object

Right

RevokeAccess Perf

In

In

In

(b) Operation model for an enforcing mechanism to deny an access

Figure 20: Goal model and operation model for the access revocation

CoreGRID TR-0154 29

Goal [Revoke]
Refines: [AccessRevoked]
RefinedTo: [Revoke Monitor/Control],

[RevokeTheAccess]
FormalDef: (∀ s:subject,

o:object,
r:right)

revokeaccess(s, o, r)
⇒ • (¬ p1 ∨ . . .∨ ¬ pn)

Goal [CheckPredicates]
Refines: [AccessRevoked]
FormalDef: (∀ s:subject,

o:object,
r:right)

(¬ p1 ∨ . . .∨ ¬ pn)
⇒ • On-policySatisfied(s, o, r)

Goal [PolicyOnceSatisfied]
Refines: [AccessDenied]
FormalDef: (∀ s:subject,

o:object,
r:right)

On-policySatisfied(s, o, r)
⇒ • policyNotMoreSatisfied(s, o, r)

The On-policySatisfied(s, o, r) predicate used in the goals [CheckPredicates] and [PolicyOnceSatis-
fied] is a place-holder dependent from the type of UCON OnA model being evaluated. The goals [CheckPredicates]
and [PolicyOnceSatisfied] are final goals (they are assumptions of the system), while [revoke] has to be refined further.
The formal definitions of each sub-goal follows in the text. As usual, we apply accuracy and actuation goals to resolve
the lack of monitorability and controllability. We identify the requirement final goal [RevokeTheAccess], and assign
it the Reference Monitor agent.

Goal [Revoke Monitor/Control]
Refines: [Revoke]
FormalDef: (∀ s:subject, o:object, r:right,

RM:Reference Monitor)
revokeaccess(s, o, r) ⇔ RM.revokeaccess(s, o, r)
(¬ p1 ∨ . . .∨ ¬ pn) ⇔ PV.validate(¬ p1 ∨ . . .∨ ¬ pn)

Goal [RevokeTheAccess]
Refines: [Revoke]
FormalDef: (∀ s:subject, o:object, r:right,

RM:Reference Monitor)
RM.revokeaccess(s, o, r)
⇒ • PV.validate(¬ p1 ∨ . . .∨ ¬ pn)
Resp: Reference Monitor

We are now capable to derive the KAOS agent and operation models. Picture 20(b) shows them, together with the
agent/responsibility model. The formal specification of the operation identified follows.

Operation: RevokeAccess
Performed By: Reference Monitor
Domain Pre-Condition:

¬ RM.revokeaccess(s, o, r)
Domain Post-Condition:

RM.revokeaccess(s, o, r)
Input: subject, object, right
ReqPre for [RevokeTheAccess]:

PV.validate(¬ p1 ∨ . . .∨ ¬ pn)

As expected, If we don’t consider the predicates to be (in)validated, there is no difference between this operation
as specified here and the one shown in section 4.

6 Related Work
The work reported in sections from 4 to 5 is associated to two strands of related work: policy refinement and derivation
of enforcement mechanisms. The use of goal-refinement for refining policies as presented here was introduced by
Bandara et al in [3]. However, their emphasis is on applying abduction techniques in order to determine the sequence
of events needed to achieve a goal given a system architecture that already include enforcing components. Close
to Bandera’s work is the work of [22], which also refines policies by applying requirement engineering and model
checking techniques based on a temporal logic formalisation similar to the one used in this paper. His approach allows
one to find system executions aimed at fulfilling low-level goals that logically entail high-level strategic guidelines.
From system executions, policy information is abstracted and eventually encoded into a set of refined policies specified
in Ponder. Above approaches have been applied to the networking management domain. An alternative approach to
policy refinement is presented by Chadwick et al in [24], based on the existence of a resource hierarchy. Their work
exploits Semantic-Web technology to automate the refinement process. We consider the representation of a resource

CoreGRID TR-0154 30

hierachy as an interesting idea and plan to study as future work the inclusion of resource hierarchy in goal-based
approaches to policy refinement.

In relation to the derivation of enforcement mechanims, Janicke et al present in [11] a framework for the derivation
of enforcement mechanisms that guarantee compliance with the policies. Their work is based on formalising the
policies in Interval Temporal Logic (ITL) and concentrates only on history-based access control policies. Our work is
more operational and we consider it could be linked better to current efforts to implementing usage control for Grids,
such as [31] and [15] we have reviewed in section 3.1.

7 Conclusion and Future Work
This paper has presented a usage-based Data-Grid authorization architecture with strong reference to the OGSA work
on Grid authorization architecture, a usage control architecture for Semantic Data-Grids, and a rigorous approach to
the design of an enforcement mechanism for UCONa usage control policies. We have concentrated on the UCON
model proposed by Park and Sandhu [19] and studied its application for the case of Data Grid Management Systems
(DGMS). Our approach consists in applying the KAOS requirements-engineering methodology [27] to the design
of the enforcement mechanism. The starting point is the definition of an abstract specification of the enforcement
mechanism. Then, we applied KAOS to each of the UCONa sub-models to prove that the specification is correct. The
UCONa policies can be refined into concrete ones — which could be enforced by the resulting system — by applying
KAOS goal refinement. KAOS offers a formal language to represent the goal based on temporal logic, close to the
formal language used to give semantic to UCON models. The refinement method also includes strategies and patterns
to guide the refinement process, and there is tool support aiding the user in this process.

The low-level policies will be assigned to software agents responsible of executing the operations that enforce the
concrete policies. Our resulting architecture consists of three agents: an Attribute Manager, responsible of updating
attributes associated to subjects and objects; a Predicate Validator, responsible of validating policy predicates; and a
Reference Monitor, acting as a gateway for all the usage decisions of the DGMS.

Since different UCON models encode a different sequentiality of the operations, we showed that the derived op-
erations always encode the same state-transitions as specified by those of our specification, but since the sequentiality
of the single operations is different a model from each other, the Required Pre-, Post- and Trigger Conditions are
model-dependents. We can then be able, for each UCON model, to formally infer a strategy to encode the sequential-
ity of the operations just looking at the Required Pre-, Post- and Trigger Conditions specified within the operational
specification of each UCONa sub-model. This technique is very similar to the one used in [3]. A possibility for the
encoding of such strategy directly in the policy is the use the POLPA language.

Our future works will follow two main strands: first of all we’ll use KAOS to formally analyse the requirements
for an enforcement mechanism of a complete UCONabc model, thus including not only Authorizations (UCONa), but
also oBligations (UCONb) and Conditions (UCONc). Then, we’ll work on the definition of an architecture with the
final objective to either propose a prototype, or extensions to the already developed implementations. We’ll review the
already deployed policy languages and analyse their capacity to encode UCON policies, keeping in consideration the
OGSA recommendation on the use of standards. Finally, we’ll keep analysing ways to control the policy granularity
by using Semantic Grid techologies, as well as issues regarding the evaluation of cuncurrent policies. Other usage
control techniques, like Pretschner’s [21], will be analysed to discover potential benefits.

References
[1] Roberto Alfieri, Roberto Cecchini, Vincenzo Ciaschini, Luca dell’Agnello, Ákos Frohner, Károly Lörentey, and

Fabio Spataro. From gridmap-file to voms: managing authorization in a grid environment. Future Generation
Comp. Syst., 21(4):549–558, 2005.

[2] M. Antonioletti, D. Berry, A. Chervenak, P.r Kunszt, A. Luniewski, S. Laws, and M. Morgan. Ogsa data archi-
tecture v0.6.6. Technical report, Open Grid Forum, 2007.

[3] Arosha K. Bandara, Emil C. Lupu, Jonathan Moffett, and Alessandra Russo. A Goal-based Approach to Policy
Refinement. In 5th IEEE Workshop on Policies for Distributed Systems and Networks. IEEE Computer Society,
2004.

CoreGRID TR-0154 31

[4] Tim Berners-Lee. Semantic web road map. http://www.w3.org/DesignIssues/Semantic.html, 1998.

[5] S. Cantor, J. Kemp, R. Philpott, and E. Maler. Oasis security assertion markup language (saml) tc.
http://www.oasis-open.org/committees/tc home.php?wg abbrev=security, 2005.

[6] D. Chadwick. Functional components of grid service provider authorisation service middleware. Technical
report, Open Grid Forum, 2008.

[7] Óscar Corcho, Pinar Alper, Ioannis Kotsiopoulos, Paolo Missier, Sean Bechhofer, and Carole A. Goble. An
overview of s-ogsa: A reference semantic grid architecture. J. Web Sem., 4(2):102–115, 2006.

[8] S. Farrell and R. Housley. An Internet Attribute Certificate Profile for Authorization. RFC 3281 (Proposed
Standard), April 2002.

[9] D. Ferraiolo, R. Sandhu, S. Gavrila, D.R. Kuhn, and R. Chandramouli. Proposed nist standard for role-based
access control. ACM Transactions on Information and System Security (TISSEC), (3):224–274, 2001.

[10] Ian Foster, Carl Kesselman, Gene Tsudik, and Steven Tuecke. A security architecture for computational grids.
In CCS ’98: Proceedings of the 5th ACM conference on Computer and communications security, pages 83–92,
New York, NY, USA, 1998. ACM.

[11] Helge Janicke, Antonio Cau, Francois Siewe, and Hussein Zedan. Deriving Enforcement Mechanisms from Poli-
cies. In Eighth IEEE International Workshop on Policies for Distributed Systems and Networks. IEEE Computer
Society, 2007.

[12] E. Letier. Reasoning about Agents in Goal-Oriented Requirements Engineering. PhD in informatics, Universit
Catholique de Louvain, Universit Catholique de Louvain, Dpt. Ingnierie Informatique, Belgium, 2001.

[13] E. Letier and A. van Lamsweerde. Agent-based tactics for goal-oriented requirements elaboration. 2001.

[14] E. Letier and A. van Lamsweerde. Deriving Operational Software Specifications from System Goals. In FSE’10:
10th ACM S1GSOFT Symp. on the Foundations of Software Engineering, 2002.

[15] Fabio Martinelli and Paolo Mori. A Model for Usage Control in GRID systems. In Grid-STP 2007, International
Conference on Security, Trust and Privacy in Grid Systems. IEEE Computer Society, 2007.

[16] Jonathan D. Moffett and Morris S. Sloman. Policy Hierarchies for Distributed System Management. IEEE JSAC
Special Issue on Network Management, 11(9), 11 1993.

[17] R. Moore, A. Jagatheesan, A. Rajasekar, M. Wan, and W. Schroeder. Data Grid Management Systems. In
Proceedings of the 21stIEEE/NASA Conference on Mass Storage Systems and Technologies, Marylaand, USA,
2004.

[18] OASIS. Oasis extensible access control markup language (xacml) tc. http://www.oasis-
open.org/committees/xacml, 2005.

[19] J. Park and R.S. Sandhu. The UCONabc Usage Control Model. ACM Transactions on Information and System
Security, 7(1):128–174, February 2004.

[20] C. Ponsard, P. Massonet, J. F. Molderez, A. Rifaut, A. van Lamsweerde, and Tran Van Hung. Early Verification
and Validation of Mission Critical Systems. Journal of Formal Methods in System Design, 30(3), 2007.

[21] Alexander Pretschner, Manuel Hilty, and David Basin. Distributed Usage Control. Communications of the ACM,
September 2006.

[22] J. Rubio-Loyola, J. Serrat, M. Charalambides, P. Flegkas, G. Pavlou, and A. Lafuente. Using Linear Temporal
Model Checking for Goal-Oriented Policy Refinement Frameworks. In Sixth IEEE International Workshop on
Policies for Distributed Systems and Networks. IEEE, 2005.

[23] Ravi S. Sandhu and Jaehong Park. Usage Control: A Vision for Next Generation Access Control. In MMM-
ACNS, pages 17–31, 2003.

CoreGRID TR-0154 32

[24] Linying Su, David W. Chadwick, Andrew Basden, and James A. Cunningham. Automated Decomposition of
Access Control Policies. In Sixth IEEE International Workshop on Policies for Distributed Systems and Networks,
pages 3–13. IEEE Computer Society, 2005.

[25] S. Sufi and B. M. Matthews. The cclrc scientific metadata model: a metadata model for the exploitation of
scientific studies and associated data. In Knowledge and Data Management in Grids, 2005.

[26] S. Tuecke, V. Welch, D. Engert, L. Pearlman, and M. Thompson. Internet X.509 Public Key Infrastructure (PKI)
Proxy Certificate Profile. RFC 3820 (Proposed Standard), June 2004.

[27] A. van Lamsweerde. Requirements Engineering in the Year 00: A Research Perspective. In International
Conference on Software Engineering, pages 5–19, 2000.

[28] Axel van Lamsweerde. Elaborating security requirements by construction of intentional anti-models. In ICSE
’04: Proceedings of the 26th International Conference on Software Engineering, pages 148–157, Washington,
DC, USA, 2004. IEEE Computer Society.

[29] Moshe Y. Vardi. Branching vs. linear time: Final showdown. In Tiziana Margaria and Wang Yi, editors, Proceed-
ings of the 7th International Conference On Tools and Algorithms for the Construction and Analysis of Systems
(TACAS 2001), volume 2031 of Lecture Notes in Computer Science, pages 1–22, Genova, Italy, April 2001.
Springer.

[30] Srikumar Venugopal, Rajkumar Buyya, and Kotagiri Ramamohanarao. A Taxonomy of Data Grids for Dis-
tributed Data Sharing, Management, and Processing. ACM Comput. Surv., 38(1):3, 2006.

[31] Xinwen Zhang, Masayuki Nakae, Michael J. Covington, and Ravi Sandhu. Toward a usage-based security
framework for collaborative computing systems. ACM Trans. Inf. Syst. Secur., 11(1):1–36, 2008.

[32] Xinwen Zhang, Francesco Parisi-Presicce, Ravi Sandhu, and Jaehong Park. Formal Model and Policy Specifica-
tion of Usage Control. ACM Transactions on Information and System Security, 8(4):351–387, 2005.

CoreGRID TR-0154 33

