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Abstract

The dynamic behaviour of a distribution of charged particles is explored in terms
of a self-permeable continuum model interacting self-consistently with the Maxwell
field in vacuo. The model is developed using intrinsic tensor field theory and exploits
to the full the relativistic structure of Minkowski spacetime. The model predicts
the dynamic formation of domains that separate multi-component currents. To de-
termine the location of such domains one is confronted with a new type of electro-
dynamic problem in which the number of charged current components is indefinite
and the state of a finite bunch of charge may approach a highly mixed configura-
tion reminiscent of turbulence. In this paper a formalism is established to describe
such a multi-component system in terms of a flow map between 4−manifolds. This
map inter-relates a complex Euler description of electrodynamics on spacetime with
a computational Lagrangian scheme on a 4-dimensional body-time manifold, the
domain of the flow map.

1 Introduction

Modern theories regard matter as being composed of interacting particles. A fruitful
way to formulate these interactions is in terms of fields whose sources are related to
the particles themselves [1], [2]. In most classical and quantum descriptions the fields
and sources are sections of bundles over spacetime that fulfil the requirements placed
on them by physical laws compatible with observation. Although the notion of a point
particle is probably no more than a convenient idealisation in classical physics it forms the
conceptual basis of many models of charged sources in electrodynamics [3], [5]. However
the physical laws of electrodynamics sit uneasily in such a framework and require awkward
manoeuvres to eliminate the self-interaction effects attributed to the fields produced by
particles acting on themselves [4]. Models of matter that adopt charged continua as
fundamental concepts can evade these issues [6], [7]. They have the advantage that
notions of continuity and differentiability can then be controlled mathematically in the
field equations that determine the dynamics of such continua. Furthermore by regarding
the motion of charged continua as a subset of spacetime on which a smooth 4-velocity
vector field is defined [8], the notion of a particle history can be recovered by identifying
it with a particular parameterised integral curve of such a vector field. The distribution
of integral curves can be specified by a measure (the proper charge density) obtained in
principle by solving Maxwell’s equations in conjunction with a force law based on the
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vanishing of the divergence of the total stress-energy-momentum tensor of the complete
system.

Although this program leads to a well defined differential system for the electromag-
netic fields, source density and velocity field it is rare that initial conditions exist leading
to a smooth vector field on spacetime. The existence of crossing integral curves after a
finite time means that the premise on which the model is based breaks down. This is a
common occurrence in many fluid models for flow fields. In neutral gas dynamics such
occurrences are identified with the formation of shocks and appeal is made to dissipative
effects to ameliorate singularities that arise as a result. Although energy dissipation can
arise in many dynamic configurations of charged continua appeal to a similar amelioration
is not available for systems controlled solely by electrodynamic forces and a new physical
scenario must be accommodated in the model.

The approach adopted here is to regard a charged continuum subject to purely elec-
trodynamic forces as a self-permeable structure that permits self-penetration. It may
be described as the continuum limit of a collection of dynamically interacting but non-
colliding particles. Alternatively it may be regarded as a multi-component continuum
described by a collection of vector fields on subsets of spacetime that have supports de-
termined by the global dynamics of the entire system. At the interface of such subsets
the measure describing the smooth source proper charge density may degenerate from a
volume charge density to a surface or even line charge density. To determine the location
of and interaction between these lower dimensional sources means that one is confronted
with a new type of electrodynamic problem in which the number of charged current com-
ponents is indefinite and the state of a finite bunch of charge may approach a highly
mixed configuration reminiscent of turbulence.

In this paper a formalism is established to describe such a multi-component system
in terms of a flow map whose properties follow from a generalisation of the single compo-
nent scheme outlined above. This map inter-relates a complex Euler description of elec-
trodynamics on spacetime with a computational Lagrangian scheme on a 4-dimensional
body-time manifold, the domain of the flow map.

2 Fields over maps

To establish notation the reader is reminded about the notion of a section over a map.
Let φ : B →M be a continuous map between manifolds B and M (assumed orientable),
and let πE : E →M be a bundle over M. The notation

f ∈ Γ(φ, E)

means that

f : B → E and πE ◦ f = φ (1)

i.e. the following diagram commutes
E

πE
²²

B

f
>>}}}}}}}} φ // M

(2)

The map f may be referred to as a section of E over φ or an E field over φ. Scalar fields
over B may also be regarded as scalar fields over φ i.e.

ΓΛ0B = Γ(φ, Λ0M) (3)
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where ΛpM is the bundle of exterior p−forms over M and in general ΓE denotes the
space of sections of E .

Let M be (Minkowski) 4−dimensional spacetime with metric tensor g and associated
Hodge map ?. The canonical measure on M is taken as ?1. A general point in M will
be written p ∈M. Denote B = R×B as the four dimensional body-time manifold, where
B is a three dimensional oriented body manifold. A general point in B will be written
P = (τ, P ) ∈ B. Since B = R× B, there exist projection maps

τ : B → R , τ(τ ′, P ) = τ ′ (4)

and

π : B → B , π(τ ′, P ) = P (5)

These give rise to a preferred vector field T ∈ ΓTB which may be written

T = ∂τ (6)

The model under consideration is constructed in terms of two fundamental fields: the
flow field

C : B →M (7)

and the electromagnetic field
F ∈ ΓΛ2M, (8)

each assumed to be continuous with degrees of differentiability as required.

3 Generic and Critical points

In general the flow map C : B → M is assumed neither surjective (onto) nor injective
(one-to-one). As a result, for any point p ∈M, there may exists none, one, many or even
an infinite number of roots P ∈ B which solve the equation C(P ) = p. The set inverse of
C is defined as

C−1(U) =
{
P ∈ B

∣∣C(P ) ∈ U
}

for U ⊂M (9)

Thus
C−1({p}) =

{
P ∈ B

∣∣ C(P ) = p
}

(10)

Let the function

N : M→ {0, 1, 2, . . .} ∪ {∞} ; N(p) = number of elements of C−1({p}) (11)

be the number of roots of C. If the number of roots is finite write

C−1({p}) =
{
P[1], . . . , P[N(p)]

}
(12)

Square bracketed subscripts are used to label the roots and any structure associated with
the root P[i].
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Let p ∈ M and
{
P[1], . . . , P[N(p)]

}
= C−1({p}) with 0 < N(p) < ∞. The point p is

said to be generic if there exist open disjoint neighbourhoods UB
[1], . . . , U

B
[N(p)] ⊂ interior(B)

and UM ⊂M such that P[i] ∈ UB
[i], p ∈ UM,

N(p)⋃
i=1

UB
[i] = C−1(UM) (13)

and such that the maps
C[i] = C|UB

[i]
: UB

[i] → UM (14)

are diffeomorphisms, i.e. C[i] is differentiable and invertible and C−1
[i] is differentiable.

For p ∈ M such that N(p) = 0, p is defined as generic if N is continuous at p.
Recall that for integer valued functions, being continuous at a point is equivalent to being
constant about that point.

It may be shown that a point p ∈ M is generic if and only if it obeys the following
four conditions

• The set
{
P[1], . . . , P[N(p)]

}
= C−1({p}) is finite (15)

• The Jacobian of C at P[i]) 6= 0 (16)

• P[i] 6∈ ∂B (17)

• N : M→ {0, 1, 2, . . .} ∪ {∞} is continuous at p (18)

All points which are not generic are called critical. Denote the set of all critical points
p ∈M by Mcrit and the set of all generic points p ∈M by Mgen. From the definition of
generic points the function N is continuous on Mgen but in general is not continuous on
M. For a given neighbourhood UM, all p′ ∈ UM have the same number of pre-images,
N(p′), so N(UM) = N(p′) can be defined. The point P ∈ B will be called critical if it is
the pre-image of a critical point p ∈M . Thus

P is critical in B if C(P ) is critical in M (19)

yielding the corresponding sets Bcrit and Bgen. The sets Mgen ⊂ M and Bgen ⊂ B are
open sets and Mcrit ⊂M and Bcrit ⊂ B are closed sets.

4 Differential equations for the flow field

The map (7) and the preferred vector field T give rise to the vector valued map

Ċ ∈ Γ(C, TM) ; Ċ(P ) = C?(T |P ) ∈ TC(P )M (20)

This is the push forward, under C?, of the vector TP ∈ TPB to the tangent fibre TC(P )M.

In terms of coordinate maps (xµ, ẋµ) for TM the field Ċ over C is given by

xµ(Ċ(P )) = xµ(C(P )) and ẋµ(Ċ(P )) = T (xµ ◦ C)|P (21)

The field C also gives rise to a collection of curves given by

CP : R→M for P ∈ B , CP (τ) = C(τ, P ) (22)
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The total derivative of CP is given by

ĊP ∈ Γ(CP , TM) , ĊP (τ ′) =
dCP

dτ
(τ ′) = CP ?(∂τ |τ ′) = Ċ(τ ′, P ) (23)

The coordinate τ is chosen so that Ċ is a unit timelike field

g(Ċ, Ċ) = −1 (24)

Furthermore let it be related to the Maxwell 2-form F on M by the equation of motion

∇ĊĊ = ĩĊF (25)

where for any vector field X on M, the 1−form X̃ ≡ g(X,−).
The above yields an ordinary differential system for the curves CP given by

∇ĊP
ĊP = ĩĊP

F (26)

In the coordinates (xµ, ẋµ) on TM this becomes

C̈µ
P (τ) + Γµ

αβ(p)Ċα
P (τ)Ċβ

P (τ) = F µα(p)Ċβ
P (τ)gαβ(p) (27)

where p = C(τ, P ), Cµ
P (τ) = xµ(CP (τ))

Ċµ
P (τ) = ẋµ(CP (τ)) =

dCµ
P (τ)

dτ
, C̈µ

P (τ) =
dĊµ

P (τ)

dτ
=

d2Cµ
P (τ)

dτ 2

and where Γµ
αβ(p) denote the coordinate components of the Levi-Civita connection ∇ at

p.

5 Proper Charge Density and the map ∆

A Lagrangian current 3-form J on B will be identified with a measure (non-vanishing
3−form) J ∈ ΓΛ3B on B

J = π?J ∈ ΓΛ3B (28)

This induces a natural measure on B given by

dτ ∧ J ∈ ΓΛ4B (29)

Note that dJ = dπ?J = π?dJ = 0 and iT J = iT π?J = π?iπ?T J = 0. The measure (29)
enables us to define the map ∆ related to the Jacobian of the flow field C

∆ ∈ ΓΛ0B = Γ(φ, Λ0M) , ∆ dτ ∧ J = C?(?1) (30)

Furthermore since τ is used to define the unit timelike field C?T this can be identified as
the inverse of the partial proper charge density scalar, given by

ρ : B → R ∪ {∞} , ρ =
1

|∆| (31)

It will be shown below that the pull back by C of iĊ ? 1 is the pull back by C of the total
electric current 3−form ?J̃ on M. Regions on B where ∆ = 0 and hence ρ = ∞ may be
identified with loci having a finite surface or line charge density.
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6 Example

Before considering a coupled problem in which the flow field depends on F through
Maxwell’s equations it is of interest to examine an artificial but non-trivial flow field
that exhibits features that may be expected to arise in the coupled situation.

Let B = I × R2 with coordinates (σ, Y, Z), where σ ∈ I ⊂ R is the closed-open
interval I = {σ|0 ≤ σ < 1}. This interval will demonstrate the various types of critical
points that can arise1. Let spacetimeM have Cartesian coordinates (t, x, y, z) with metric
g = −dt⊗ dt + dx⊗ dx + dy ⊗ dy + dz ⊗ dz and choose the measure on B to be

J = K(σ)dσ ∧ dY ∧ dZ (32)

where K(σ) > 0. Define the flow map by

(t, x, y, z) = C(τ, σ, Y, Z) = (t̂(τ, σ), x̂(τ, σ), Y, Z)

where t̂(τ, σ) = sinh τ + σ , x̂(τ, σ) = cosh τ
(33)

The map ∆ then follows from

∆ dτ ∧ π?J = ∆ dτ ∧K(σ)dσ ∧ dY ∧ dZ = C?(?1)

= (cosh τ dτ + dσ) ∧ (sinh τ dτ) ∧ dY ∧ dZ

Hence

∆ = −sinh τ

K(σ)
and ρ =

K(σ)

|sinh τ | (34)

The map C possesses various types of critical points which may be written

Mcrit = Mdegen
crit ∪Mclosed

crit ∪Mopen
crit

The set Mdegen
crit correspond to the points where ∆ = 0 i.e. τ = 0 and hence x = 1:

Mdegen
crit =

{
(t, x, y, z) ∈M

∣∣ x = 1 and 0 ≤ t ≤ 1
}

The set Mclosed
crit is the image of ∂B = {(τ, 0) ∈ B}

Mclosed
crit =

{
(t, x, y, z) ∈M ∣∣x2 − t2 = 1 and x ≥ 1

}

The set Mopen
crit must include the remaining critical points, i.e. those points where N

changes but which are not in Mdegen
crit or Mclosed

crit .

Mopen
crit =

{
lim
σ→1

(C(τ, σ, Y, Z))
∣∣ τ, Y, Z ∈ R

}
=

{
(t, x, y, z) ∈M

∣∣ x2 − (t− 1)2 = 1 and x ≥ 1
}

Some of the points in Mopen
crit have pre-images (e.g. given by Bopen

crit below) while others do
not. All critical points in Mcrit are indicated on the right of figure 1.

The generic points Mgen are then the remaining open sets. There are 5 disconnected
components of Mgen shown in figure 1 labelled

Mgen = UM
[0,left] ∪ UM

[0,right] ∪ UM
[1,low] ∪ UM

[1,high] ∪ UM
[2,cent]

1Domains of this type are useful to accommodate fields which would otherwise have singularities in
their domains of definition.
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Bdegen
crit Mdegen

crit

Bclosed
crit Mclosed

crit

Bopen
crit Mopen

crit

(Points not in B.)

Figure 1: Anatomy of B and M with the map C between them. Coordinates Y, Z and
y, z are suppressed.

The number in each case refers to the number of pre-images.

UM
[2,cent] =

{
(t, x, y, z) ∈M

∣∣ x <
√

1 + t2 , x <
√

1 + (t− 1)2 , x > 1 and 0 < t < 1
}

,

UM
[0,left] =

{
(t, x, y, z) ∈M

∣∣ x <
√

1 + t2 , x <
√

1 + (t− 1)2 and (t, x, y, z) 6∈ UM
[2,cent]

}
,

UM
[0,right] =

{
(t, x, y, z) ∈M

∣∣ x >
√

1 + t2 , x >
√

1 + (t− 1)2
}

,

UM
[1,high] =

{
(t, x, y, z) ∈M ∣∣ x <

√
1 + t2 , x >

√
1 + (t− 1)2

}
,

UM
[1,low] =

{
(t, x, y, z) ∈M

∣∣ x >
√

1 + t2 , x <
√

1 + (t− 1)2
}

The critical points on B are given by

Bcrit = Bdegen
crit ∪ Bclosed

crit ∪ Bopen
crit

where
Bdegen

crit =
{
(τ, σ,X, Y ) ∈ B ∣∣ τ = 0

}
,

Bclosed
crit =

{
(τ, σ,X, Y ) ∈ B

∣∣ σ = 0
} ∪ {

(τ, σ,X, Y ) ∈ B
∣∣σ = −2 sinh τ

}
,

Bopen
crit =

{
(τ, σ,X, Y ) ∈ B

∣∣ σ = 1− 2 sinh τ
}

These are shown on the left of figure 1. Thus the generic points of B are given by

Bgen = UB
[1,high] ∪ UB

[1,low] ∪ UB
[2,high] ∪ UB

[2,low]
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where
UB

[1,high] =
{
(τ, σ,X, Y ) ∈ B

∣∣ σ > 1− 2 sinh τ
}

,

UB
[1,low] =

{
(τ, σ,X, Y ) ∈ B

∣∣ σ < −2 sinh τ
}

,

UB
[2,high] =

{
(τ, σ,X, Y ) ∈ B

∣∣ σ < 1− 2 sinh τ and τ > 0
}

,

UB
[2,low] =

{
(τ, σ,X, Y ) ∈ B

∣∣ σ > −2 sinh τ and τ < 0
}

The diffeomorphisms from the components of Bgen to the components of Mgen are given
by

C[1,high] : UB
[1,high] → UM

[1,high] , C[1,low] : UB
[1,low] → UM

[1,low] ,

C[2,high] : UB
[2,high] → UM

[2,cent] , C[2,low] : UB
[2,low] → UM

[2,cent]

(35)

If the Maxwell field generated by sources defined by C is ignored one can readily find
a background electromagnetic field that generates this flow. The C given in (33) obeys
the equations of motion with a prescribed constant electric field in the above frame. This
follows since

Ċ(τ, σ) =
(
cosh τ ∂t + sinh τ ∂x

)∣∣
C(τ,σ)

(36)

so that C generates a normalised timelike velocity field (24) and furthermore setting the
prescribed (external) electromagnetic field to

Fext = dt ∧ dx (37)

confirms that
C̈|C(τ,σ) = (sinh τ ∂t + cosh τ ∂x

)|C(τ,σ) = ˜iĊ(τ,σ)Fext

Thus C is a flow field in the background external electromagnetic field (37).

7 Equations for the electromagnetic field.

In the coupled situation, where there is no external applied electromagnetic field on M
then F in a domain containing generic points obeys Maxwell’s equations

dF = 0 (38)

and

d ? F = − ? J̃ (39)

with a current vector field J ∈ ΓTMgen. At a generic point p0 ∈Mgen let C[i] : UB
[i] → UM

be the diffeomorphism given in (14). The partial current J[i] associated with C is defined
by

J[i] ∈ ΓTUM , J[i] =
(
ρ ◦ C−1

[i]

)(
Ċ ◦ C−1

[i]

)
(40)

that is for all p ∈ UM,

J[i]|p = ρ(P[i])Ċ(P[i]) where P[i] = C−1
[i] (p) (41)
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The total current J associated with C at all generic points is defined to be the sum of
the partial currents

J |UM =

N(UM)∑
i=1

J[i] ∈ ΓTUM (42)

The field F is then given at generic points by the Maxwell system above. Continuity
conditions of F must be used to define F at critical points.

For an equivalent definition of the partial current, let p ∈ Mgen, P[i] = C−1
[i] (p) and

observe that from (30)

∆(P[i]) (dτ ∧ J )|P[i]
= C?

P[i]
(?1)

where C?
P : Λq

C(P )M→ Λq
PB is the pointwise pull back. Contracting with iT |P[i]

gives

∆(P[i])J |P[i]
= iT |P[i]

C?
P[i]

(?1) = C?
P[i]

(iC[i]?(T |P[i]
) ? 1) = C?

P[i]
(iĊ(P[i])

? 1)

= C?
P[i]

(?˜̇C(P[i])) = C?
P[i]

(
? ˜̇C(P[i])ρ(P[i])

∣∣∆(P[i])
∣∣
)

= C?
P[i]

(?J̃[i]|p)
∣∣∆(P[i])

∣∣

Since C[i] is a diffeomorphism, so that (C?
[i])

−1 = (C−1
[i] )?, one has the equivalent form

?J̃[i]|p = sign(∆(P[i])) C−1 ?
P[i]

(J |P[i]
) (43)

Since (43) is true for all p ∈ UM write (43) in terms of the pull back C−1 ?
[i] : ΓΛ3UB

[i] →
ΓΛ3UM

?J̃[i]|UM = sign(∆|UB
[i]

) C−1 ?
[i] (J ) (44)

From (44) it follows that the source of F is closed:

d ? J̃[i]|UM = sign(∆|UB
[i]

) dC−1 ?
[i] (J ) = sign(∆|UB

[i]
) C−1 ?

[i] (dJ ) = 0

hence at generic points
d ? J̃ = 0 (45)

There is also an integral relation which inter-relates (39), (42) and (44). Integral
formulae offer a practical method to implement numerical discretisations of the above
dynamical equations.

If φ : B → M is a diffeomorphism, S ⊂ M a hypersurface of dimension s and
ω ∈ ΓΛsM, then the theory of integration gives

∫

S

ω = κ

∫

φ−1S

φ?ω (46)

where κ = 1 if φ−1 preserves the orientation of S and κ = −1 otherwise.
Given a 3−dimensional spatial hypersurface S ⊂ M such that the set S ∩Mcrit has

measure zero let UB
[i] be one of the open sets in (13). Then from (46) and (44) the partial

electric charge

Q[i][S ∩ UM] =

∫

S∩UM
?J̃[i] = κ

∫

C−1
[i]

(S∩UM)

C?
[i](?J̃[i]) = sign(∆|UB

[i]
)κ

∫

C−1
[i]

(S)∩UB
[i]

J |UB
[i]
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Since Q[i][S ∩ UM] cannot change sign under evolution one must choose

κ = sign(∆|UB
[i]

)

and so
Q[i][S ∩ UM] =

∫

C−1
[i]

(S)∩UB
[i]

J |UB
[i]

=

∫

C−1
[i]

(S)∩UB
[i]

J

Summing over all partial currents gives the total charge on S ∩ UM

∫

S∩UM
?J̃ =

N(UM)∑
i=1

∫

S∩UM
?J̃[i] =

N(UM)∑
i=1

Q[i][S ∩ UM] =

N(UM)∑
i=1

∫

C−1
[i]

(S)∩UB
[i]

J

Since the disjoint union

N(UM)⋃
i=1

(
C−1

[i] (S) ∩ UB
[i]

)
= C−1(S ∩ UM)

one has
∫

S∩UM ?J̃ =
∫

C−1(S∩UM)
J . Taking the union of all the UM yields

∫
S∩Mgen

?J̃ =∫
C−1(S∩Mgen)

J and since S ∩Mcrit has measure zero
∫

S
?J̃ =

∫
C−1(S)

J . But from (39)∫
∂S

?F =
∫

S
d ? F = − ∫

S
?J̃ . Hence

∫

∂S

?F = −
∫

C−1(S)

J (47)

This is a global identification of the total electric charge (associated with C) with the
integral of ?F over a regular 3−dimensional spacelike hypersurface S ⊂M.

8 Example Continued

It is of interest to compute from Maxwell’s equations the field F for the flow field pre-
scribed in the example in section 6 above. This of course ignores the back reaction of
the electromagnetic field on the source which is taken into account in the fully coupled
system.

The inverses of the maps (35) are given by

C−1
[1,high](t, x, y, z) = (τ = arccosh(x), σ = t−

√
x2 − 1, Y = y, Z = z) ,

C−1
[1,low](t, x, y, z) = (τ = −arccosh(x), σ = t +

√
x2 − 1, Y = y, Z = z) ,

C−1
[2,high](t, x, y, z) = (τ = arccosh(x), σ = t−

√
x2 − 1, Y = y, Z = z) ,

C−1
[2,low](t, x, y, z) = (τ = −arccosh(x), σ = t +

√
x2 − 1, Y = y, Z = z)

(48)

The partial current J[2,high] ∈ ΓTUM
[2,cent] is given by (41), (48), (34) and (36) as

J[2,high]|(t,x,y,z) = ρ(τ, σ, Y, Z)Ċ(τ, σ, Y, Z)

= ρ(arccosh(x), t−
√

x2 − 1, Y, Z)Ċ(arccosh(x), t−
√

x2 − 1, Y, Z)

=
K(t−√x2 − 1)

sinh(arccosh(x))
(cosh(arccosh(x))∂t + sinh(arccosh(x))∂x)

= K(t−
√

x2 − 1)

(
x√

x2 − 1
∂t + ∂x

)
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and likewise J[2,low] ∈ ΓTUM
[2,cent] is given by J[2,low]|(t,x,y,z) = K(t+

√
x2 − 1)

(
x√

x2−1
∂t − ∂x

)
.

Also J[1,high] ∈ ΓTUM
[1,high] is J[1,high]|(t,x,y,z) = K(t − √

x2 − 1)
(

x√
x2−1

∂t + ∂x

)
and

J[1,low] ∈ ΓTUM
[1,low] is J[1,low]|(t,x,y,z) = K(t +

√
x2 − 1)

(
x√

x2−1
∂t − ∂x

)
.

Summing the partial currents in the five domains of Mgen gives

J |(t,x,y,z) =





K(t−√x2 − 1)
(

x√
x2−1

∂t + ∂x

)
+ K(t +

√
x2 − 1)

(
x√

x2−1
∂t − ∂x

)

if (t, x, y, z) ∈ UM
[2,cent]

K(t−√x2 − 1)
(

x√
x2−1

∂t + ∂x

)
if (t, x, y, z) ∈ UM

[1,high]

K(t +
√

x2 − 1)
(

x√
x2−1

∂t − ∂x

)
if (t, x, y, z) ∈ UM

[1,low]

0 if (t, x, y, z) ∈ UM
[0,left]

0 if (t, x, y, z) ∈ UM
[0,right]

Maxwell’s equations (38) and (39) are solved with

F = E(t, x)dt ∧ dx (49)

where

E(t, x) =





k(t +
√

x2 − 1)− k(t−√x2 − 1) + E−∞ if (t, x, y, z) ∈ UM
[2,cent]

k(t +
√

x2 − 1) + E−∞ if (t, x, y, z) ∈ UM
[1,high]

k(1)− k(t−√x2 − 1) + E−∞ if (t, x, y, z) ∈ UM
[1,low]

E−∞ if (t, x, y, z) ∈ UM
[0,left]

E = k(1) + E−∞ if (t, x, y, z) ∈ UM
[0,right]

with

k(σ) =

∫ σ

0

K(σ)

and E−∞ is a constant.

9 The Spherically Symmetric Coupled System

In this section the coupled system (24), (25), (38), (39) is explored where (40) and (42)
define the dynamic sources. A spherically symmetric distribution of charge is considered
to simplify the analysis. In spacetime M with standard spherical coordinates (t, r, θ, φ)
and metric g = −dt⊗dt+dr⊗dr+r2dθ⊗dθ+r2(sin θ)2dφ⊗dφ, write the electromagnetic
field

F |(t,r,θ,φ) =
Q(t, r)

r2
dt ∧ dr (50)

for all (t, r, θ, φ) ∈M with r > 0.
Let B = I ×S2 where I ⊆ R+, with coordinates (σ, Θ, Φ). By spherical symmetry the

solution can be described in terms of fields on and maps between 2-dimensional manifold.
These will be shown in bold font.

Let B = R × I, coordinated by (τ, σ), be the projected body-time manifold and
M = R× R+ coordinated by (t, r) be the projected spacetime manifold.

11



Let π : B → I be the projection and J ∈ ΓΛ1I be the choice of measure, so that
dτ ∧J ∈ ΓΛ2B is a measure on B where J = π?J .

On M the induced metric is g = −dt⊗dt+dr⊗dr. This induces the flat Levi-Civita
connection ∇ and Hodge map ? with ?1 = dt ∧ dr.

The projected flow map is

C : B → M ; C(τ, σ) = (t̂(τ, σ), r̂(τ, σ)) (51)

Thus the 4-dimensional spherically symmetrical flow map C is given by

t ◦ C(τ, σ, Θ, Φ) = t̂(τ, σ) , r ◦ C(τ, σ, Θ, Φ) = r̂(τ, σ) ,

θ ◦ C(τ, σ, Θ, Φ) = Θ and φ ◦ C(τ, σ, Θ, Φ) = Φ
(52)

Substituting (50) and (52) into the equations of motion (24) and (25) yields

g(Ċ, Ċ) = −1 (53)

∇Ċ
˜̇C|(τ,σ) =

Q(C(τ, σ))

r̂(τ, σ)2
? ˜̇C(τ, σ) (54)

where

Ċ(τ, σ) = C?(∂τ |(τ,σ)) ∈ Γ(C, TM) (55)

Here (53) is an equation over ΓΛ0B and (54) is an equation over Γ(C, TM). In terms
of the component maps t̂σ(τ) = t̂(τ, σ) and r̂σ(τ) = r̂(τ, σ), (54) gives the ordinary
differential system

¨̂tσ(τ) =
Q(t̂σ(τ), r̂σ(τ))

r̂σ(τ)2
˙̂rσ(τ) and ¨̂rσ(τ) =

Q(t̂σ(τ), r̂σ(τ))

r̂σ(τ)2

˙̂tσ(τ) (56)

where ˙= d/dτ .
Maxwell’s equations yield on M

dQ =

N(p)∑
i=1

C−1 ?
[i] (J ) (57)

For a spherically symmetric charge distribution, the integral representation (47) reduces
to

∫

∂S

Q =

∫

C−1(S)

J (58)

where S ⊂ M is a curve and ∂S are its end points.
For (t, r) ∈ M let S(t, r) = {(t, r′) ∈ M | 0 < r′ < r} then

Q(t, r)−Q(t, 0) =

∫

C−1(S(t,r))

J

S(t, r) represents a spherically symmetric ball of radius r at time t. Since J is closed in
regular domains Q(t, 0) = Q0 must be independent of t and hence

Q(t, r) =

∫

C−1(S(t,r))

J +Q0 (59)

12



If Q0 is non zero one has a point charge fixed at the centre of the ball. For currents that
are smooth in regular domains Q0 = 0. Since (59) involves a field E at time t one must
express (56) as a system of o.d.e’s with evolution parameter t. Since Ċ is required to be
unit future timelike, t̂σ is strictly increasing so set

τ̌σ = (t̂σ)−1 and řσ = r̂σ ◦ τ̌σ (60)

Then, with ′ = d/dt

˙̂tσ(τ̌σ(t)) =
1

τ̌ ′σ(t)
, ¨̂tσ(τ̌σ(t)) = − τ̌ ′′σ (t)

(τ̌ ′σ(t))3
,

˙̂rσ(τ̌σ(t)) =
ř′σ(t)

τ̌ ′σ(t)
and ¨̂rσ(τ̌σ(t)) =

ř′′σ(t)

(τ̌ ′σ(t))2
− ř′σ(t)τ̌ ′′σ (t)

(τ̌ ′σ(t))3

(61)

and substituting (61) into (56) yields ordinary differential equations for τ̌σ(t) and řσ(t).
These equations involve Q so must be solved in conjunction with (59). To express (59)
in terms of τ̌σ(t) and řσ(t) observe that

C−1(S(t, řσ(t))) =
{
(τ, σ′)

∣∣t̂σ′(τ) = t and r̂σ′(τ) < řσ(t)
}

=
{
(τ̌(t), σ′)

∣∣řσ′(t) < řσ(t)
}

and, since π is injective on the set
{
(τ̌(t), σ′)

∣∣řσ′(t) < řσ(t)
}

∫

C−1(S(t,řσ(t)))

J =

∫

{(τ̌(t),σ′)|řσ′ (t)<řσ(t)}
J =

∫

π{(τ̌(t),σ′)|řσ′ (t)<řσ(t)}
π−1?(J )

=

∫

{(σ′)|řσ′ (t)<řσ(t)}
J

Therefore

Q(t, řσ(t)) =

∫

{σ′|řσ′ (t)<řσ(t)}
J +Q0 (62)

Equations (56), (61) and (62) can now be integrated numerically by discretising σ and
t. Discretise I by choosing σ′0 < σ1 < σ′1 < σ2 < σ′2 < · · · < σm < σ′m ∈ I with σ′0 = inf(I)
and σ′m = sup(I). Let

Qi =

∫ σ′i

σ′i−1

J

Furthermore, since Q(t, r) will change with t, the o.d.e system generated from (56) and
(61) will be integrated numerically in a series of time bands given by t0 < t1 < · · · <
tλ < · · · < tmax. This yields the curves τ̌i(t) ≈ τ̌σi

(t) and ři(t) ≈ řσi
(t) for some initial

conditions for τ̌i(t0), τ̌ ′i(t0), ři(t0) and ř′i(t0), where for each tλ and σi, Q(t, ř(t)) for the
time interval tλ < t < tλ+1 is replaced by

Qi(tλ) = Q0 +
∑

{j|řj(tλ)<ři(tλ)}
Qj
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10 Conclusion

A formalism has been established for the description of the motion of electric charge un-
der the influence of both external and self electromagnetic fields. The laws of classical
covariant electrodynamics have been expressed in terms of a flow map between a struc-
tured body-time manifold B and Minkowski spacetime. By assuming that this map is not
necessarily either surjective or injective, distinct domains in spacetime may be associated
with possibly more than one pre-image in the body-time manifold. These pre-images in
turn give rise to a complex of electric currents that determine the structure of the flow
map via Maxwell’s equations. The total proper charge density is a dynamic scalar related
to the Jacobian of the flow map and a Lagrangian measure on a 3−dimensional body
manifold on B.

A simple example of a non-trivial flow map is explicitly constructed corresponding to
the plane symmetric motion of charge in a prescribed constant laboratory electric field. It
is also demonstrated how Maxwell’s equations are treated in the presence of a prescribed
source corresponding to this non-trivial flow map. Finally a fully coupled system is
considered in terms of the evolution of a spherically symmetric ball of charge from rest
with an initially smooth gaussian distribution of charge. The evolution is calculated
numerically by digitising the coupled equations of motion and Maxwell’s equations. The
results of this simulation (figure 2) indicate that the integral curves Cσ cross and that
the initial crossing occurs within the charge distribution. As expected the ball of charge
explodes outward but with some of the inner spheres of charge overlapping the outer ones.
An interesting feature of these solutions is that although F is continuous across regions
in spacetime where ∆ = 0 (and hence ρ = ∞) it is not in general differentiable. This is
a general property of solutions where the sources can change discontinuously during the
evolution of the coupled system.

The techniques established here have immediate application in accelerator science
particularly in devices where charged bunches with large laboratory charge densities in
ultra-relativistic motion are demanded [9]. They extend naturally to multi-component
continua such as plasmas where the phenomena of “wave breaking” in wake-field acceler-
ators and bubble regimes may benefit from an analysis in terms of relativistic flow maps
with properties analogous to those presented in this paper.
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Figure 2: History of a spherically symmetric Gaussian ball of charge evolving from rest.
The discretisation used σi = i/40, i = 1 . . . 40, with Qi = 0.05 exp(−(5σi)

2), Q0 = 0,
tλ = λ/20, λ = 0 . . . 40. τ̌i(t0) = 0, τ̌ ′i(t0) = 1, ři(t0) = σi and ř′i(t0) = 0.
Evidence for the multi-component nature of the evolution is clearly visible as charge
initially closer to the centre overtakes more slowly moving charge in the expanding ball.
The curve furthest left at r = 0.025, is vertical since it corresponds to the innermost
digitised shell inside of which there is no charge.
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