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Symmetry-breaking Fermi surface deformations from central interactions in two dimensions
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We present a mean-field theory of the Pomeranchuk instability in two dimensions, starting from a generic
central interaction potential described in terms of a few microscopic parameters. For a significant range of
parameters, the instability is found to be pre-empted by a first-order quantum phase transition. We provide the
ground-state phase diagram in terms of our generic parameters.
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I. INTRODUCTION

A central theme in the study of strongly correlated elec-
tron systems is the appearance of novel types of ordering and
phase transitions leading to such unconventionally ordered
states. Phases with liquid crystalline symmetry have emerged
as an intriguing theme. They have been studied and pro-
posed, for example, in the context of quantum Hall
systems,'™® s-wave pairing of polarized fermions,” and in
Hubbard-like models.!®'> One prominent mechanism for
such phases is via Pomeranchuk instabilities, which are dis-
tortion instabilities of the Fermi surface.!® A Pomeranchuk
instability occurs in the angular-momentum channel / when
the corresponding Fermi liquid parameter F; is sufficiently
negative.'® The phase resulting from an /=2 type instability
is a nematic, because the orientation symmetry of the con-
tinuum or the orientation symmetry of the lattice point group
is broken, modulo an inversion symmetry, while translational
symmetry remains unbroken. Pomeranchuk instabilities have
received significant attention recently, both in the
continuum!'7?? and lattice!>?*-?7 contexts.

In this paper we focus on continuum systems, where the
Pomeranchuk instability breaks a continuous symmetry. This
is particularly relevant to ultracold fermionic gases and low-
density two-dimensional (2D) electron systems. The Hamil-
tonian most prominently studied for this case has been of the
quadrupole-quadrupole type explicitly designed in Ref. 17 to
produce an [=2 instability.”'=?* It is therefore important to
study Pomeranchuk instabilities arising from more generic
Hamiltonians. In a previous paper, two of the present authors
studied shape deformations of the Fermi surface of a three-
dimensional system, arising from central interactions.'® In
particular, Ref. 18 finds that a central interaction, if it has a
sharp feature at a finite length scale rozk;I, can cause de-
formations of the Fermi surface. Nonmonotonic “delta-
shell,” and monotonic “hard-core” repulsive potentials were
analyzed, and they were all found to lead to the effect. A
screened Coulomb interaction, on the other hand, was found
not to lead to a Pomeranchuk instability.

In this paper we provide a mean-field treatment of two
dimensions, where much of the current interest lies. In the
interest of providing generic results, we will parametrize our
central interaction V(r) by a small number of parameters,
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namely the values of angular-momentum components of the
potential and its momentum-space derivatives at the Fermi
momentum. These turn out to be the essential parameters for
the description of Fermi surface shape distortion transitions.
A phase diagram in terms of these parameters provides much
more general information than the consideration of particular
forms of V(r).'"® Our framework has the added advantage that
a single description treats not only the transition in the /=2
channel, but in every angular momentum channel /> 1. In
other words, we in fact present a mean-field theory not only
for distortions leading to nematic symmetry, but also to the
others shown in Fig. 1.

One important result of our analysis is that we find the
shape-deformation transitions to be of first order for signifi-
cant regions of parameter space. This implies that in many
realistic cases, where one might get shape deformation insta-
bilities of the Fermi surface, the transition is discontinuous
and does not involve quantum critical behavior.

We introduce the model in Sec. II and the mean-field
treatment in Sec. III. The details of the theory are worked out
in the next three sections. Sec. VII describes the parameter
regimes where we have first-order transitions. In Sec. IX we
provide a comparison with the Hamiltonian of Ref. 17,
which is the dominant Hamiltonian used in the recent litera-
ture for the continuum /=2 Pomeranchuk transition. Finally,
in Sec. VIII we use our mean-field theory to compute the
Landau Fermi liquid parameters in terms of the microscopic
interaction potential. In the final section we lay out our con-
clusions.

II. MODEL

We consider the following continuum Hamiltonian, de-
scribing interacting fermions in two dimensions:

FIG. 1. Shape of Fermi surface of 2D continuum system, before
(thinner line) and after (thicker line) a Pomeranchuk instability.
Several possible symmetries (/=2,3,4,5) are shown for the Pomer-
anchuk order.
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Here eﬁ/h=f)2/2m gives the “bare” dispersion relation in
terms of the momentum operator p=(%/i)V, (free fermions
of mass m). V(r) is a central interaction potential. For sim-
plicity we consider spinless fermions. (In any case, when the
interaction is spin independent, the Pomeranchuk instability
will be degenerate in the spin channels.'® On the other hand
for spin-dependent interactions there can be emergent spin-
orbit coupling®® and nontrivial spin configurations in mo-
mentum space.”’) In reciprocal space, the Hamiltonian [Eq.
(1)] takes the form

. 1
H=2 (&- Wi+ 5o 2 VK
k 2Qk,k,,q

— K)o Vg Yok Vi (2)

where i =[d’rQ~"2e® Tyl and V(k)= [d’re ™ V(r). The
area of the sample is ().

There is a large body of literature on behaviors that can
emerge from Hamiltonians of the type given by Eq. (2). For
the attractive case see, for example, the discussions of un-
conventional superconductivity, Bose-Einstein condensation
of “preformed pairs” and “fermion condensation” in Refs.
30-33. Here we are concerned with the emergence of aniso-
tropy of the Fermi surface due to repulsive interactions. As in
the case of anisotropic pairing in superconductors, the key is
the dependence of the interaction strength V(q) on momen-
tum transfer, q. In the case of a contact potential, V(q)
=constant, the only possibilities are isotropic: a conventional
Bardeen-Cooper-Schrieffer (BCS) instability for attractive
interactions or a quantum gas-liquid transition for repulsion.

With more general momentum dependence, the Hamil-
tonian [Eq. (2)] can lead to an anisotropic state through a
Pomeranchuk instability. The relevant order parameter is

(bT(B)y = 2 cos(18) (W,
k

where /=2,3,4, ..., leading to the Fermi surface shape de-
formations represented in Fig. 1. The /=1 instability is for-
bidden in a Galilean-invariant system.'8-34

Pomeranchuk order can be described as particle-hole pair-
ing with center-of-mass momentum q=0 but finite internal
angular momentum quantum number, /> 0. In this sense, it is
the analog of “exotic” superconductivity, where />0 pairing
occurs in the particle-particle channel. Indeed that analog has
been shown recently by one of us to extend quantitatively to
the disorder dependence of a Pomeranchuk transition
temperature.’

It is useful to introduce the partial wave decomposition of
the interaction potential:

[

V(k-k') = 2, Vi(k,k")cos[ (6 — 6)], (3)
=0

where k=k

, etc. The amplitudes V; are

PHYSICAL REVIEW B 78, 035131 (2008)

o

Vik,k")=(1+ 51,0)471'] drrd,(kr)J (k' r)V(r). (4)
0

[Note that V(k,q)=V(q,k)]. We provide below a mean-field
theory that is applicable to any Hamiltonian of the form of
Eq. (2). The theory is quite independent of the details of the
interaction potential V(jr—r’|), but depends only on a few
parameters derived from it. In particular, we will use: (i) the
values of the amplitudes V; on the Fermi surface and (ii) their
derivatives on the Fermi surface. These are the parameters
V" introduced in Eq. (21).

III. MEAN-FIELD THEORY

Our mean-field theory is based on the following ansatz
for the ground state:

1A =TT [O(ey) + O £1) ¢ (1)]]0). ©)
k

Here |0) is the vacuum and (k) creates an electron in a
plane-wave state. The ansatz wave function is a Slater deter-
minant of plane waves. gy is an arbitrary dispersion relation.
Its form dictates which plane-wave states are occupied:

8kE€|k|_ﬂ_AkSO’ (6)

where we have introduced a “mean field” A, which is the
difference between the “bare” dispersion relation €,—u and
the renormalized one.

The mean field Ay is our variational parameter. This field
renormalizes the bare electronic dispersion relation, and
therefore the Fermi surface, which is defined as &,=0. Mini-
mizing the ground-state energy,

E=(AJH|AY =2 (6 - wNy
k

1
5 2 NiNie[V(0) - V(k = k)], (7)
207,
Kk
with respect to the functional form of Ay yields a self-
consistency equation that determines Ay. Proceeding as in
Ref. 18, we find

Ay= =2 [V(k-q) - VIN,, (8)
k

o=

where V= [d’rV(r) and Ny = (i ¢4)=0(-g). Note that Aq
coincides with the one-loop Hartree-Fock approximation to
the Fermionic self-energy 2(q,w) (the frequency depen-
dence dropping out at this level for static interactions). When
the above equation has more than one solution, the one that
minimizes

E=2Nk(8k+%Ak) (9)
k

must be chosen. The above expression results from substitut-
ing Eq. (8) into Eq. (7). The second term inside the brackets
may be interpreted as a double-counting correction to the
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naive mean-field theory which emerges from the variational
calculation.

IV. SMALL FERMI SURFACE DEFORMATIONS

Let us split the mean field Ay into two parts: a rotation-
symmetric part and a symmetry-breaking part. The latter will
have a number of components, corresponding to different
values of the angular momentum quantum number of the
electron-hole pair. Nevertheless near an instability of the iso-
tropic state, or a sufficiently weak first-order transition out of
it, we can assume, save accidental degeneracies, that only
one of these components is finite. We thus write

Aq=No(q) + Afg)cos(l6,), (10)

or, equivalently,

gq=80(q) = Al(q)cos(16,), (11)

where e4(q) =%%¢*/2m—u—Ay(q) is the renormalized dis-
persion relation before the instability sets in and !
=2,3,4, ... determines the symmetry of the instability (see
Fig. 1). We have chosen a particular orientation of the defor-
mation of the Fermi surface without loss of generality.

In the symmetric phase (zero deformation), the Fermi mo-
mentum 74, is defined by

go(k)) =0.

In the symmetry-broken phase, this quantity depends on the
direction of k, given by the angle 6

K9 — kp(0) = kY + Sk (6). (12)
The offset of the Fermi vector is given by
go(kY + Okg) — A (kY + Skr)cos(16) = 0. (13)

All results presented in the remaining of this paper have been
obtained by solving this equation for small deformations of
the Fermi surface, i.e., under the assumption that

| Sk ()] < ki (14)

in all directions 6. In particular we will assume Sky to be
small enough that the symmetric part of the dispersion rela-
tion can be linearized:

go(k+ 8kY) =~ fiw ).k (15)

This is quite distinct from the work of other authors, where
nonlinear terms in the dispersion relation were invoked to
stabilize a quantum critical point.'”3%-38 That is discussed in
detail in Sec. IX. Similarly we will assume that within ok% of
the Fermi vector, the |k|-dependent amplitude of the defor-
mation potential can be approximated by a constant

AR+ Skp) = A(kp) = (16)

Note that we are not writing explicitly the dependence of A
on the angular momentum quantum number, /.

The approximations [Eqgs. (15) and (16)] are valid when
the following conditions hold for n=1,2,3,
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1
(n+1) og.n A gpn-1 o 0
e AV < ()
where A= a”A,(k)/&k”|k=kg and &M= a”eo(k)/&k”|k=kg.

Under these conditions, Eq. (13) yields the deformation of
the Fermi surface as
A
Okp(6) = —cos(16). (18)
hog

Note that Eq. (18) allows us to rewrite the small-deformation
condition [Eq. (14)] in the form

A< ﬁKFvF (19)

Using the decompositions (3) and (10) in the self-
consistency Eq. (8), we can express the self-consistency
equation as

)

1 2 A
mfo d by cos(l&k)fk?r

In general, this is a self-consistency equation determining the
values of A that minimize (and maximize) the energy. The
self-consistency comes in through the dependence of 5k0F( 0)
on A, Eq. (18). Now, the integral Eq. (20) can be reduced to
a polynomial equation in A by invoking condition (13) again
to keep a finite number of terms of the expansion of the
interaction potential around the Fermi surface:

dikkV(k,k%) = A. (20)

Vil k) = V4 V' (k= k) + = V"(k k9% + V’”(k k9)?

+ ... (21)

Here V=V,(kY,kY) gives the strength of the couphng on the
Fermi surface and V' = gV(k,k%)/ k| 0

= &Vl(ko, )/ Okl 0 is its slope. Higher derivatives give the

curvature, etc. Substltutmg Eq. (21) into Eq. (20) we obtain
the following equation:

2
= #{ ViKY J d6 cos(16) Sk 6)

0

V+ VKL [P
+ TF J d8 cos(16) Sky(6)*
0
Vr 2 5
+ EY d6cos(10)Skp(0)° + ... (. (22)
0

Substituting the value of &kp(6) given by Eq. (18) and car-
rying out the 1ntegrat10n with respect to 6, we obtain, to a

given order in Jkp/ kF—A/ hka /» a polynomial equation in
A.

V. INSTABILITY EQUATION

The instability equation is found by solving the self-
consistency Eq. (20) at lowest order in our small parameter
expansion, Eq. (21). Using V,(k,k(}) ~ V(K2 ,k?p), the critical
V, required for the instability is found to be
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4ah°
V(K% k%) = 0 E = Ve (23)
F

This is our instability equation. Note that V,(k%,k%) is the
only parameter of the interaction potential entering the insta-
bility equation (although the /=0 amplitude is also important
as it renormalizes the Fermi velocity v(}). For V,(kY ,k(})
< Ve the symmetric Fermi surface is a (local) energy mini-
mum. For V,(k%, k%) >V, it is a maximum.

Writing VZ(kOF,kg) and vOF explicitly in the above equation,
we find it in the form

K2 *
—= f drrV(n[J(kpr)* = J,(kpr)*] (24)
m 0

for [=1,2,3, .... Note that the above equation lacks any

solutions with /=1, as was found in D=3,'® due to the Gal-
ilean invariance of the system.>*

As discussed in Ref. 18 for the three-dimensional case,
Eq. (23) is a microscopic version of the Pomeranchuk insta-
bility condition,'® and Eq. (23) reduces to the Pomeranchuk
condition if we use our mean-field theory to compute the
Landau Fermi liquid parameters in terms of the microscopic
interaction V(k—k'|) (see Sec. VIII).

VI. ORDERED STATE

We now discuss the evolution of the amplitude of the
deformation, A, in the ordered ground state realized when
V. (kp,kp) >V 4. To describe the ordered state, we will need
to go beyond the lowest order in &kz/k% in Eq. (21). To
derive the instability Eq. (23), we only used the first param-
eter in the expansion of the /™ component of the interaction
potential, Eq. (21): V,(k,k%) =~ V. Let us now also keep the
first derivative

Vil k) = V4 V' (k= kb). (25)

When substituted in the self-consistency equation in the form
of Eq. (20), we get, after integrating with respect to k, Eq.
(22). Substituting Eq. (18) and carrying out the integrals we
get

0 ’
K. 1%

A=V oA+ 3
4mhop 167h Y

A3, (26)

This equation admits two solutions: the trivial one, A=0,
minimizes the ground-state energy when V<V_;. On the
other hand when V>V the above solution is a maximum.
If V' <0, the minima are at

A R ( 4Vcrit)1/2< V- Vcrit>1/2 (27)
ﬁUOFkg S V’kg Vcrit .

The amplitude on the Fermi surface of the deformation po-
tential thus grows in second-order fashion, with critical ex-
ponent =1/2, as expected for this mean-field theory and de-
picted in Fig. 2(a). If V' >0, on the other hand, we obtain the
unphysical result that the Fermi surface deformation de-
creases as the instability point is approached from below [see
Fig. 2(b)]. This is an indication that linearizing the interac-
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FIG. 2. (Color online) Values of the amplitude on the Fermi
surface of the deformation potential, A, that minimize the free en-
ergy (solid lines), plotted as functions of the coupling strength in
units of its “critical” value, V/V.y. (a) V'kp/Vey=-1 and
VORI V=0 for all n=2,3, ... [Eq. 27)] (b) V'kp/ V=1,
V) Vegie==2+1/50, V3ky/ V=—1, and V% V=0 for n
=4 [Eq. (30)]. The dashed line in panel (b) indicates an additional
stationary point, but it is a maximum, not a minimum. The region
where the transition takes place has been blown out in the inset. The
dotted lines indicate the critical coupling of Eq. (23) [panels (a) and
(b)] and the lower bound in Eq. (32) [panel (b)]. The structure of the
free energy in the different parameter regions has been sketched for
illustration.

tion in Eq. (21) is no longer adequate to describe a transition
which potentially is becoming first order. To address this we
g0 beyond the assumption of Eq. (25) in the next section.

VIIL. FIRST-ORDER QUANTUM PHASE TRANSITION

Within our linearized theory we have shown that if V'
>0, unphysical solutions occur. These solutions are sugges-
tive of the isotropic state being a local minimum with the
true ground state separated from it by a first-order transition,
where the Fermi surface jumps to one of lower symmetry.
Linearization of V,(k,k(}) around k=k%, Eq. (25), is therefore
not realistic for change that is no longer infinitesimal near
the transition. We therefore carry out the expansion (21) to
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the third, rather than first, order. It is useful to introduce the
following, dimensionless parameters describing the interac-
tion potential and the resulting deformation of the band
structure:

V(n)kon
W= —=L (28)
Vcril
A
N=——. (29)
ﬁvgk%

In terms of these, the self-consistency equation takes the
form

1 , U// 5 v//l 5 B
(v 1))\+4<v + 2))\ +48)\ =0. (30)
Taking v”~v"” =0 and solving for \ recovers Eq. (27) as
A=*+2(=1/v")"*(v-1)"2. However, Eq. (30) has valid solu-
tions for v’ >0, too. All the solutions are straightforward to
obtain analytically. Two examples are plotted in Fig. 2.
We note that there are two types of behavior. For

v'o+0v"2<0 (31)

(which reduces to v’ <0 in the limit of small v”), there is a
second-order transition as we found above. However, when
the above condition is not met, there is a range of values of
V for which the free energy has a triple-well structure. The
instability is then pre-empted by a weakly first-order quan-
tum phase transition—a small “jump” in the shape of the
Fermi surface. The value of the coupling strength at which
this happens, Vjymp, < Ve, is bounded by

30" +0"2)* V.
1+ (“4’,’,, - Vimp . (32)
v Vcrit

The corresponding phase diagram is shown in Fig. 3. The
exact location of the jump depends on additional parameters
characterizing the fermion-fermion interaction [Specifically,
it depends on the off-diagonal second and third derivatives of
V/(k,q) with respect to k and gq.]

The above is only valid for v <0. If v" >0, higher-order
terms describing the dependence of V(k,g) on k and ¢ even
further away from the Fermi surface become important. In
that case the transition is no longer even weakly first order
and the precise behavior of the model depends on more spe-
cific details. Naturally as the whole solution relies on the
assumption that Sky(6) is small, the range in which it is
reliable is restricted to values of the parameters for which the
jump is small.

It is important to stress that the above arguments rely on
the approximation of Eq. (18). In the present case, however,
the approximation made in that equation requires not only
that |A'|<uvp, but indeed that Eq. (17) holds for n=1,2,3.
Equivalently we have neglected the additional renormaliza-
tion of the Fermi velocity and higher-order derivatives of the
dispersion relation resulting from the symmetry-breaking
part of the Fermi surface deformation, compared to the sym-
metric contribution.
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FIG. 3. (Color online) Phase diagram for small symmetry-
breaking deformations of the Fermi surface with a given value of
the angular momentum quantum number /. In the symmetric state,
the Fermi surface is circular. In the broken-symmetry state, it has
one of the configurations of Fig. 1. In the shaded region one of the
two states is stable, and the other metastable, so the transition takes
place through a first-order jump. The parameter V" k;/ Vit
=-1/20, which controls the width of this region [Eq. (32)].

VIII. LANDAU PARAMETERS

Variation of Eq. (7) gives the change of the ground-state
energy associated with an arbitrary redistribution of the fer-

mions in momentum space, Ny — Ny + oNy:
1

— k,k') SN Ny . 33

20 2 f(k,K') SNy SN (33)

5E = E 8k5Nk +
k Kk’

This coincides with the usual expression from Landau Fermi
liquid theory.* The effective interaction between quasiparti-
cles is given by f(k,k')=V-V(k-k’) in terms of the micro-
scopic parameters. The Landau Fermi liquid parameters can
be defined from this function in the usual way:

1 oc
fkK')=——> F,cos[l(6— 6)] for k=k' =k2,
=0

p(0) 12
(34)

where p(0)=1/27hvY is the density of states at the Fermi
energy. Thus

Fi=p(0)(8,0V-V). (35)

In terms of these Landau parameters, the Pomeranchuk in-
stability Eq. (23) of Sec. V takes the usual form, F;<<-2. The
microscopic parameters V', V", etc. introduced in Sec. VI are
related to derivatives of f(k,k’) at the Fermi energy and can
thus be regarded as generalizations of the Landau param-
eters.

IX. QUADRUPOLE-QUADRUPOLE INTERACTIONS

In Ref. 17 Oganesyan, Kivelson, and Fradkin (OKF) in-
troduced an effective Hamiltonian which has been employed
widely to study the /=2 instability on the continuum.?>?3 It
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features an anisotropic, “quadrupole-quadrupole” effective

interaction. By contrast our Hamiltonian, Eq. (1), features a

central interaction potential. In this section we relate the two.
The OKF Hamiltonian is

2y72

h2v
o —M]Mr)

HOKF=fdr¢T(r)[_
+£1—1f drf dr']-"z(r—r’)tr[QT(r)Q(r')]. (36)

This corresponds to postulating directly an anisotropic
density-density interaction with /=2 symmetry, which by
analogy with classical liquid crystals, is assumed to be of
quadrupole-quadrupole form.*’ The “quadrupoles” used here
are the quadrupole moments of the electronic momentum
distribution, !’

Q== wm( 0

The philosophy behind the effective Hamiltonian in Eq. (36)
is that in order to describe the important fluctuations on ap-
proaching the Pomeranchuk instability, in a given channel /,
from the isotropic state it is not important to include fluctua-
tions tending to create either distortions of the Fermi surface
shape with different symmetry or an inhomogeneous state
(backscattering terms). To understand the relationship of
theories based on this approximation to our analysis of the
generic central Hamiltonian of Eq. (2), we will construct a
central Hamiltonian whose form is constrained so that its
leading instability has an effective Hamiltonian of the OKF
form.

In order to compare to the generic Hamiltonian [Eq. (2)],
we first move to reciprocal space

Qn =2 U (k) Oy k) e 17D

kiky

One finds Q)'=-0f*=-(kK*/k%)cos(26) and Q)=
=(k*/k%)sin(26) so that tr[Qk Oy, 1= 2(k2k2/k;4:)0052(01 6’2)
Thus

1 m*
20 k-

2 uls- )

kk'.q

Hokr= E(Ek W it —

X cos[2(Oy_q2 = k'1q/2)]

;
X ‘/’ITHq/Z l'bk’—q/z U—q2Picr +qi2 (37)
where the Fourier transform of the interaction potential is

defined by F,(r—r’) EQ‘Iquiq‘<r‘rl)f2(q), and we have in-
troduced the notation
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B=at (mk@fz(q)k QK cos[2(6yq — ).

(38)

Like our Hamiltonian, Eq. (37) features a pairwise interac-
tion that preserves the total momentum of the pair, q. Note,
however, the complicated dependence on q, k', and k. By
contrast in Eq. (2) the interaction depends only on the trans-
ferred momentum, A(k—k’). The dependence on q, in par-
ticular, means that the OKF interaction is not uniform. How-
ever the actual form of F,(q) is not very important'” and it is
customary'”?® to take F,(q)=F,8,0. With this assumption
Eq. (37) takes the simpler form

1 (277)
H, E(e LAY > kK"
OKF — k— k%¥Yk — 29 k;l: o 2
X cos[2(h = ) 1ty thcthc - (39)

Let us now compare this Hamiltonian to the form considered
here, given by Eq. (2). In our trial ground state, Eq. (5), the
only terms in the triple sum that contribute to the energy
have k=K’ or k=—Kk’. Omitting all other terms from Eq. (2)
it takes the simpler form

H=2, (& - 1)t
k

1
+ 50 2 VK =) = VO . (40)

kk'

Substituting in this expression the partial wave expansion of
the interaction potential, Eq. (3), we obtain a series of differ-
ent interaction terms, labeled by I, which lead to Fermi sur-
face deformations with different symmetries. Near a second-
or weakly first-order Pomeranchuk distortion with /=2, only
the corresponding term need be considered (see above). Ne-
glecting all the others the Hamiltonian takes the form

1
H=2 (&-wihth + 52 Vy(k,k")
k kk’
X cos[2(6 — ) It thcther» (41)

whose interaction part coincides with that in Eq. (39) if we
take

2
- Z—kzk’z. (42)

Thus although the OKF Hamiltonian does not correspond to
a central interaction potential, within our theory it would
give the same results as a hypothetical central interaction,
whose =2 component happens to be given by Eq. (42). Note
that inserting Eq. (42) into Eq. (35) we obtain F,xF,, as
expected.!”

From this result we note that since F, is negative at the
instability, it follows from Eq. (42) that
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2m)*F,
-2
kg

(and that V"> 0 too). This implies that within our mean-field
theory, based on a linearized dispersion relation, Eq. (15), the
central potential model, which captures the OKF Hamil-
tonian, is in the parameter regime where the Pomeranchuk
instability is actually first order. Indeed to stabilize a quan-
tum critical point for the OKF Hamiltonian, it is essential to
include nonlinear terms of the symmetric dispersion relation,
go(k), as noted in Refs. 17 and 36-38. Conversely, our
complementary approach shows the generic conditions under
which a quantum critical point can be stabilized without in-
voking such nonlinearities of the dispersion relation. This is
achieved instead by properly taking into account ultraviolet
cutoffs implicit in any given central interaction potential,
V(r).

Our results are consistent with other work considering
specific microscopic realizations of Fermi surface instabili-
ties, which also found wide regions where the transition is
first order.>?° We stress that the main lesson one should
extract from this is that the order of the quantum phase tran-
sition is a very delicate issue, depending on fine details of the
effective interaction and the band structure. Indeed the
higher-order terms of the dispersion relation alluded to above
modify the coefficients of A* and N> in Eq. (30) (for a de-
tailed analysis, see Ref. 36). For example, a large enough 5]{?v
term in the expansion of ey(kyx+ k) can change the sign of
the coefficient of N3, and hence the order of the transition.
Thus a full analysis going beyond present calculations would
have to treat nonlinearities in the interaction and the disper-
sion relation on an equal footing.*' Moreover higher-order
effects beyond the scope of mean-field theories may well
upset this balance one way or the other. Such non-mean-field
effects will certainly become important whenever the condi-
tion [Eq. (19)] does not hold —e.g., if the phase transition is
of first order, but not weakly so.

!

0, (43)

X. CONCLUSION

We have provided a mean-field theory for continuum Po-
meranchuk transitions in two dimensions. The theory is ex-
pressed in terms of a few pertinent parameters (V, V',
V", ...) for each angular momentum channel. This makes
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the theory quite general, and applicable for a wide class of
central interactions in which the symmetry breaking is not
put in explicitly by hand.

Our main results are Egs. (31) and (32), which determine
the phase diagram in Fig. 3. They apply to any central inter-
action potential in a two-dimensional continuum, described
in terms of a few dimensionless parameters, defined in Eq.
(28). Depending on the form of the interaction, our theory
may lead either to a first- or second-order quantum phase
transition. Thus our approach is complementary to other
work,!7-30-3% where a quantum critical point was stabilized by
nonlinear terms in the dispersion relation.

A continuum theory is useful for several reasons. One is
the direct relevance to several experimental systems, where a
Pomeranchuk transition might be realized, for example: 2D
electron layers at semiconductor heterojunctions or on liquid
helium; layered helium systems*? (where a new phase inter-
vening between the Fermi liquid and Mott insulator states
has been observed*); or in a cold-atom setting with trapped
fermionic atoms with dipolar repulsion. These are situations
where underlying lattice structures are not expected to play a
role. Theoretically, continuum Pomeranchuk transitions are
fascinating because the resulting broken symmetries are re-
markable. While some effects of the nematic symmetry (bro-
ken O(2)/Z,) have already been explored,!” we believe there
are further implications, for example, effects of nematic half-
vortex excitations in such a medium.** Our framework also
provides a description of transitions in higher-/ channels
[leading to O(2)/Z; symmetry broken states], which presum-
ably leads to a broader class of interesting excitations and
properties. Some of these issues are currently under investi-
gation.
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