
EUROTeV-Report-2008-022

Beam Dynamics using the Stream Processing Code
GPMAD

v0.1

R.B. Appleby∗, D.S. Bailey†, M.D. Salt‡

August 22, 2008

Abstract

GPU-Processed Methodical Accelerator Design (GPMAD) is a high-performance
tool for studying beam dynamics within accelerators, using a parallelized stream
processing approach. It is most suitable for large numbers of particles, with sig-
nificant numerical intensity, providing optical calculations and beam tracking in
second order in the transfer maps. GPMAD makes use of the huge computational
power of modern commodity graphics cards to significantly increase performance
over conventional CPU-based tracking codes. This report discusses the use of
stream processing in accelerator physics, outlining the features and requirements
of GPMAD as well as a guide to its use.

∗Robert.Appleby@manchester.ac.uk The Cockcroft Institute and the University of Manchester, Oxford
Road, Manchester, M13 9PL, UK

†David.Bailey@hep.manchester.ac.uk The University of Manchester, Oxford Road, Manchester, M13
9PL, UK

‡Michael.Salt@hep.manchester.ac.uk, The Cockcroft Institute and the University of Manchester, Ox-
ford Road, Manchester, M13 9PL, UK

1

EUROTeV-Report-2008-022 v0.1

Contents

1 Introduction to Stream Processing 4
1.1 GPU as a Parallel-Execution Processor 4
1.2 Performance . 5
1.3 nVidia Compute-Unified Device Architecture 6
1.4 The Future of Stream Processing . 6

2 Requirements, Obtaining and Installation 7
2.1 Requirements . 7
2.2 Obtaining . 7
2.3 Installation . 8

3 Using GPMAD 8
3.1 Input File Overview . 8

3.1.1 Input particle file . 8
3.1.2 GPMAD Configuration File . 9
3.1.3 Lattice File Structure . 9

3.2 Physical Elements . 10
3.2.1 marker . 10
3.2.2 drift . 10
3.2.3 sbend . 11
3.2.4 rbend . 11
3.2.5 quadrupole . 12
3.2.6 sextupole . 12
3.2.7 kicker . 12
3.2.8 rcol . 13
3.2.9 ecol . 13
3.2.10 line . 13

3.3 Beam and Option Parameters . 14
3.3.1 beam . 14
3.3.2 option . 14

3.4 Running GPMAD . 15
3.5 Output File Overview . 15

3.5.1 OUTPUT OF <XSIF input> . 15
3.5.2 OUTPUTDATA OF <XSIF input> 16
3.5.3 OPTICS OF <XSIF input> . 16
3.5.4 LOSTPARTICLEDATA OF <XSIF input> 17

4 GPMAD and the Second-Order TRANSPORT Maps 17
4.1 Production of GPMAD . 17
4.2 TRANSPORT maps . 18
4.3 R-matrix performance enhancements . 18
4.4 T-term definition different to MAD . 19

2

EUROTeV-Report-2008-022 v0.1

4.5 R-matrix element definitions . 19
4.5.1 drift . 19
4.5.2 sbend/rbend . 19
4.5.3 quadrupole . 20
4.5.4 sextupole . 20

4.6 Second Order T terms . 20
4.7 Zero-order elements . 21

5 Case Study - The DIAMOND BTS Lattice 21
5.1 Introduction to the BTS . 21
5.2 Results . 22

5.2.1 Single Particle Tracking . 22
5.2.2 High Statistic Tracking . 22
5.2.3 Performance Gains . 23

6 Conclusion 24
6.1 Accuracy and Precision . 25
6.2 Performance . 25
6.3 The Future of GPMAD . 26

6.3.1 Symplectic Mapping . 26
6.3.2 Memory-Model Performance Enhancements 26
6.3.3 Object Orientation . 27
6.3.4 Magnetic Elements . 27
6.3.5 Double-Precision Support . 27

3

EUROTeV-Report-2008-022 v0.1

1 Introduction to Stream Processing

Charged particle tracking within accelerators can be computationally expensive, and the
desire to understand a machine in simulation as fully as possible requires high-accuracy
particle tracking. Whilst optical studies determine the overall beam behavior, particle
tracking is necessary to determine the beam shape and extent within the beam-pipe,
higher order beam behavior and resonances. Furthermore, high accuracy (low statisti-
cal errors) is particularly important for determining such phenomena as particle loss.
Ideally, such simulations will require many millions a particles to be tracked through
the lattice, often over many turns of a circular machine, and on a single computer these
simulations can be particularly time consuming to perform. In an attempt to reduce
processing time, it becomes necessary to purchase further computational hardware at
great monetary expense. Particle tracking is ideally suited to a parallel architecture
because it involves the same instruction being applied to every particle in simulation.
In the relativistic approximation, there are no intra-beam forces and the motion of each
particle in a beam is determined by the external forces; thus each particle is an inde-
pendent unit which may be processed by parallel techniques.
However, a lot of current computational hardware already possesses a highly parallelized
processor, the Graphics Processing Unit (GPU). Driven by a well-funded, but highly
competitive consumer market, modern commodity graphics processors have evolved into
very powerful computational engines. The demand for rendering on-screen textures at
higher resolution and yet producing higher refresh rates has resulted in a highly paral-
lel processor, with many computational cores. Whilst early GPUs were fixed-purpose
devices, modern GPUs are flexible, multi purpose tools and this flexibility affords ex-
ploitation with the use of recently developed programming techniques. The GPU may
be described as a large array of ’stream processors’, which are the components of the die
that are dedicated to computation. The rest of this section provides an introduction to
stream processing techniques.

1.1 GPU as a Parallel-Execution Processor

The GPU is a highly parallel processor, with the latest examples having up to 256 stream
processors [1]. The stream processors are Single-Instruction, Multiple Data (SIMD) de-
vices which restricts their applications, but allows rapid manipulation of such highly
parallel data. With GPUs specifically engineered for the purpose of rendering images,
this potential was previously unaccesible. However, with the demand from the enter-
tainment market for realistic in-game physics simulation, GPU manufacturers began to
open up the architecture, providing the flexibility required to extract the computational
power of the multiple stream processors for other applications. An organisation known
as General Purpose GPU (GPGPU) [2] utilized this opportunity to apply the GPU to a
much wider field, including finance [3], weather forecasting [4], monte-carlo simulation,
cryptography [5] and scientific problem solving [6]. Such products of this research are
Sh, Cg and Brook [7]. Brook was used to produce the proof of concept for GPMAD
[8]. This made use of shader language techniques to define data streams that may be

4

EUROTeV-Report-2008-022 v0.1

processed by the GPU. 1

1.2 Performance

The performance gap between typical CPU and GPU processors is large, and future
development seeks to widen this gap even further. The unit of Floating-Point Operations
per Second (FLOPS) is used to measure this performance, with a typical dual-core CPU
possessing a peak floating-point performance of approximately 50 Giga-FLOPS [10].
The latest generation of GPUs have peak performance in excess of 500 GFLOPS, with
sustained real-world performance of up to 290 GFLOPS [10]. The key advantages of
GPUs is the performance to price ratio compared to conventional systems, and that the
hardware can be easily replaced should future solutions become available.

Table 1: Typical system performances relative to cost (in 2008)

System GFLOPS Price/£ GFLOPS per £

Intel Core 2 Duo workstation 50 ≈ 600 0.0833
+ nVidia 9800 GX2 768 600 + 370 0.7918
Cray XT4 HECToR 1000000 42500000 0.0235

Table 1 indicates that GPU-based computing solutions offer an attractive performance
to price ratio compared to conventional workstations. Typically, sustained computa-
tional performance achievable in GPUs is half that of the peak performance, still being
more than five times as cost effective as a CPU based solution. This is largely due to
the competitive nature of the commodity hardware market, where both nVidia [11] and
ATi [12] have to remain at the forefront of visual computing performance whilst under-
cutting the prices of each other to attract customers. This situation is to the benefit of
the customers, whether it be for gaming or for computational purposes. Another ad-
vantage of GPU technology is high-speed memory. Currently, the fastest commercially
available conventional memory is DDR3, with speeds of 800 - 1600 MHz. GPU memory
is available up to 2000MHz, with high-bandwidth pipelines. GPUs are also scalable to
a certain extent using twinning techniques such as CrossFire [13] from ATi, or SLi [14]
from nVidia. This practically doubles the computational potential of the workstation.

The uptake in industry has been slow, despite the computational benefits. The first
problem is that this only works for selected problems. These problems must be highly
parallel, and not require huge amounts of memory. A 768 GFLOPS GPU solution will
possess only one gigabyte of video RAM, whereas a CPU-based solution is likely to
contain two gigabytes per processor, which would be thirty gigabytes in a 750 GFLOPS
solution. The other reason is that programming on the GPU architecture is still very
much in its infancy. There is not yet an established standard, which many software
developers would prefer to wait for before adopting new techniques.

1Brook is currently under redevelopment to become Brook+ [9].

5

EUROTeV-Report-2008-022 v0.1

1.3 nVidia Compute-Unified Device Architecture

CUDA [15] from nVidia is currently the world’s only C-language development environ-
ment for GPUs. It is the product of nVidia’s realisation that GPUs could be used for
High-Performance Computing. The architecture is designed to work with any of nVidia’s
GPUs upwards of the GeForce 8400, including mobile solutions and TESLA [16] (TESLA
is NVidia’s dedicated HPC hardware solution). Due to the current dominance of nVidia
in the GPU field, it is likely that CUDA will become an unofficial standard in GPU pro-
gramming. The major restriction is that it will only work with nVidia products, thus
preventing it from being an offical standard. A minor point to note is that GPUs only
support single-precision floating-point arithmetic, which may not be suitable for some
tasks. Typically, these tasks are those with a low pre-defined computational intensity.
Such examples are those where the code is multiply-branched, thus multiple-instruction,
multiple-data (MIMD) data paths emerge. With a large proportion of the GPU die ded-
icated to computation, rather than control, MIMD execution would be very inefficient.
The key limitation with GPUs is the ’kernel overhead’ which arises from an initialisation
delay when the kernel is called and is not insignificant. If the computation density is
low per kernel call, the overhead can mask the performance benefits completely.
At the time of GPMAD’s conception, CUDA support existed for only a selection of
platforms. Windows XP with Microsoft Visual Studio appeared to offer the most direct
route to CUDA programming. GPMAD was compiled using Microsoft Visual Express
C++ 2008 and CUDA version 1.1. Both of which were available free of charge. The
release version does not require Visial Studio to be used, but will require the CUDA
toolkit to be installed. This is available from the nVidia CUDA Zone[15]

1.4 The Future of Stream Processing

nVidia provided CUDA with the assurance that it will be supported by future GPUs,
under the ’Unified Device Architecture’ driver system. CUDA will also support TESLA
from nVidia, which is their High-Performance computing solution. This is available
in three different forms, a single-GPU PCi expansion card, a deskside twin-GPU co-
computer and a quad-GPU scalable rackmount server. Each GPU has been optimised
for computation by removing VGA-specific components, and doubling the amount of
RAM available to each. Being a dedicated solution, this will be considerably more ex-
pensive than commodity GPUs, but it will come with enhanced support, and will still
yield a good GFLOPS/ ratio. Double-precision support has been promised for the near
future.
In addition to CUDA, Brook+ is currently under development from AMD for ATi graph-
ical products. This will re-ignite competition between nVidia and ATi, thus leading to
superior hardware, available at yet lower cost to the consumer. AMD are in the process
of releasing their high-performance computing, FireStream. This will also use Brook+,
and double precision computation has been promised from the offset. Again, by chal-
lenging TESLA from nVidia, this can only serve to improve the GFLOPS/ ratio to the
consumer.

6

EUROTeV-Report-2008-022 v0.1

2 Requirements, Obtaining and Installation

In this section, the requirements, and installation of GPMAD are discussed.

2.1 Requirements

GPMAD has been designed with both GPU and CPU implementation of the computa-
tional steps and, as a result, it should run on most modern machines, and can run in
CPU-only mode for machines with no GPU. To make use of the GPMAD in GPU-mode,
an nVidia CUDA-compatible processor is required. At the present time, the following
processors are supported, as given in Table 2. Quadro is the range of nVidia professional
GPUs, whereas GeForce is the commodity selection primarily used for entertainment
purposes.

Table 2: NVidia Solutions Supported by GPMAD (GPU mode)

GeForce TESLA Quadro

9800 GX2 C870 FX 5600
9800 GTX D870 FX 4600
9600 GT S870 FX 3700

8800 Ultra FX 1700
8800 GTX FX 570
8800 GTS FX370
8800 GT NVS 290
8800GS FX 3600M

8600GTS FX 1600M
8600GT FX 570M
8500GT FX 360M
8400GS Quadro Plex 1000 Model IV

8800M GTX Quadro Plex 1000 Model S4
8800M GTS NVS 320M
8700M GT NVS 140M
8600M GT NVS 135M
8600M GS NVS 130M
8400M GT
8400M GS
8400M G

2.2 Obtaining

GPMAD is intended for use on a variety of platforms, and can be obtained from
www.hep.manchester.ac.uk/GPMAD , where there are appropriate installation packages

7

EUROTeV-Report-2008-022 v0.1

for several systems. In addition, the CUDA Driver, Toolkit and Software Development
kit are required and are available from www.nvidia.com/object/cuda get.html.

2.3 Installation

The first step is to install the CUDA driver, toolkit and SDK. Under Windows XP or
Vista, this requires downloading the executable files, running, and following the instruc-
tions. For all other installations, the nVidia instructions should be followed. Following
successful installation, the GPMAD installation instructions should be followed for the
relevant operating system.

3 Using GPMAD

The input file parser is based on a slightly modified implementation of the gmad parser
used in BDSIM [17]. It is an XSIF standard parser which is also used within MAD
8 and MAD X [18]. However, minor modifications may be necessary to allow current
input lattice descriptions to be used with GPMAD, due to small differences in grammer.
GPMAD is case-sensitive, therefore it is necessary to define parameters in lower case,
otherwise, they shall be assumed to take a value of zero. Being C++, each line ending
should be terminated by a semicolon.

3.1 Input File Overview

3.1.1 Input particle file

The particles to be tracked through the lattice must be defined in a seperate file. This
is a basic text file, with each row representing a single particle. Each column may be
delimited by either a space or a tab. From left to right, the columns are ordered by the
canonical variable set;

x px y py τ pt

where:
x = transverse horizontal position
px = transverse horizontal momentum
y = transverse vertical position
py = transverse vertical momentum
τ = time of flight relative to ideal reference particle
pt = 4E/psc,

where 4E is energy relative to reference particle, ps is the nominal momentum of an
on-energy particle and c is the velocity of light.

8

EUROTeV-Report-2008-022 v0.1

For example,:

0.00556 -0.756e-4 -0.00345 -0.00234 0.00465 0.00345

0.00546 -0.00765 0.00543 0.01567 -0.00657 0.00134

-0.00456 0.00876 -0.00564 0.556e-4 0.00765 0.00876

All particle parameters must be written in SI units, which may include base-10 expo-
nentials in the form 0.00e0. GPMAD will automatically count the number of particles
in the file, and display this at the start of execution.

3.1.2 GPMAD Configuration File

Included with the distribution of GPMAD is a configuration file, GPMADconf.txt. The
only functionally important part of this file is the first four integers. GPMAD was de-
signed with certain flexibilities that are controlled by these variables and should this
file be missing or otherwise damaged, GPMAD will assume the high-performance de-
faults, printing an appropriate warning. If the configuration file requires restoration, a
replacement text file called GPMADconf.txt should be created, with four integer values,
separated by a space according to Table 3.

Table 3: Parameters to set in GPMAD configuration file

a)Output to screen set to 0 for off, 1 for on
b)Output every step set to 0 for off, 1 for on
c)Order of precision set to 1 for 1st order, 2 for 2nd order

d)GPU or CPU set to 0 to use the GPU, 1 to use the CPU

Example: High performance defaults for "GPMADconf.txt"

0 0 2 0

3.1.3 Lattice File Structure

The GMAD parser is defined using the XSIF standard input. For example, to track a
3.0GeV electron through a F0D0 cell will require:

focusquad:quadrupole, l=1.5*m, k1=0.5;

defocusquad:quadrupole, l=1.5*m, k1=-0.5;

drift04:drift, l=0.4*m;

fodo:line=(focusquad,drift04,defocusquad,drift04);

use, period=fodo;

beam, energy = 3.0*GeV;

9

EUROTeV-Report-2008-022 v0.1

Notice the use of units when defining values. If the units are not given, SI units will
be assumed. The user must first define the elements to be used in the beamline (using
drift, quadrupole etc). From this, a beamline must be defined such as line. Using the
command use, the beamline to be studied is selected. Beam parameters are set using the
commands beam and option. To output the particle vectors at any point, use the sample
command. For example, to output at the entrance to the defocussing quadrupole in the
F0D0 cell, write;

sample, range=defocusquad;

If an element is used more than once in the beamline, disambiguate using square-bracket
notation. For example, to sample at the second drift in the F0D0 lattice, write;

sample, range=drift04[2];

3.2 Physical Elements

GPMAD provides a basic set of physical elements to use in the beamline. Please note
that SI units are assumed in element definition, unless overwritten with explicit units.
Where a global variable has been set, an element with a conflicting value will override
the global parameter. Such a condition would be the beam pipe radius, if an aperture
is defined for an element, the beam pipe radius is ignored.

3.2.1 marker

This element has no effect on the particles or optics. It is a convenience element to
identify a position along the line. It is often used with the sampler command.
Example:

pointofinterest : marker;

...
sampler, range=pointofinterest;

3.2.2 drift

The drift element represents a length of accelerator in which there are no magnetic or
electric forces acting.

• l - length [m]

10

EUROTeV-Report-2008-022 v0.1

• aper - aperture radius [m], will override the beampiperadius

Example:

drift04 : drift, l=0.5*m;

drift02 : drift, l=0.2*m, aper=0.3*m

3.2.3 sbend

The sbend element represents a sector dipole. GPMAD features the ability to model
combined-function dipoles with a quadrupole component. It is also possible to define
the pole face rotation relative to the beam direction.

• l - length [m]

• angle - bending angle [rad]

• k1 - quadrupole field strength in combined-function dipole

• e1 - pole face rotation at entry [rad] (default = 0)

• e2 - pole face rotation at exit [rad] (default = 0)

• aper - aperture radius [m]

Example:

secdip003 : sbend, l=0.5*m, k1=1.4, angle=0.03;

3.2.4 rbend

An rbend element represents a rectangular dipole magnet. This is modelled as a sector
dipole with pole face rotations equal to half of the bending angle.

• l - length [m]

• angle - bending angle [rad]

• k1 - quadrupole field strength in combined-function dipole

• aper - aperture radius [m]

Example:

11

EUROTeV-Report-2008-022 v0.1

recdip004 : rbend, l=0.7*m, k1=0.0, angle=0.04;

3.2.5 quadrupole

The quadrupole element represents the region in which a quadrupole magnetic field is
present.

• l - length [m]

• k1 - normal quadrupole field strength (coefficient). Postive k1 means horizontally
focussing

• aper - aperture radius [m]

Example:

quad0314 : quadrupole, l=0.3*m, k1=1.4;

3.2.6 sextupole

The sextupole element represent a sextupole.

• l - length [m]

• k2 - normal sextupole field strength

• aper - aperture radius [m]

Example:

sext0102 : sextupole, l=0.1*m, k2=0.2;

3.2.7 kicker

A hkicker represents a horizontal kick, whereas a vkicker represents a vertical kick.
Where a kicker is defined as having a finite length, it is modelled as a half-length drift,
then a kicker, and then a second half-length drift.

• angle - the angle by which the particle is kicked in the appropriate direction

• l - length [m]

12

EUROTeV-Report-2008-022 v0.1

• aper aperture radius [m]

Example:

kickinx02003 : hkick, l=0.2, angle = 0.03;

3.2.8 rcol

The rcol element describes a rectangular collimator. GPMAD assumes a hard-edged
model in which particles that are considered lost if their spatial co-ordinates equal, or
exceed the dimensions of the collimator. For tracking and optics, a collimator is treated
as a drift, with collimation tested at both entrance and exit.

• l - length [m]

• xsize - horizontal width of collimator aperture [m]

• ysize - vertical height of collimator aperture [m]

Example:

col05002001 : rcol, l=0.5*m, xsize=0.02*m, ysize=0.0*m1;

3.2.9 ecol

The ecol element is a eliptical collimator that utilises the same assumptions as that for
the rcol.

• l - length [m]

• xsize - horizontal width of ellipse [m]

• ysize - vertical height of ellipse [m]

Example:

col03003004 : ecol, l=0.3*m, xsize=0.03*m, ysize=0.04*m;

3.2.10 line

To define a beamline, an ordered list of the elements is required. The line element pro-
vides this functionality.

beamline01 : line=(element1, element2,...);

13

EUROTeV-Report-2008-022 v0.1

Example:

focusquad:quadrupole, l=1.5*m, k1=0.5;

defocusquad:quadrupole, l=1.5*m, k1=-0.5;

drift04:drift, l=0.4*m;

fodo:line=(focusquad,drift04,defocusquad,drift04);

As an element, the line can be part of the beamline of another line:

beamline09 : line=(fodo, fodo, fodo);

By using the BDSIM parser, other manipulations are available such as reversing the
beamline:

beamlinebackwards : line=(-beamlineforwards);

3.3 Beam and Option Parameters

Certain parameters within GPMAD are controlled via option and beam commands.

3.3.1 beam

It is necessary to define certain beam parameters for runtime. GPMAD requires the
ratio of beam energy to charged particle mass (γrel). GPMAD will assume an electron
at 1.0GeV, warning the user of this assumption.

beam, name=value,...;

Example:

beam, particle="e-", energy=3.0*GeV;

The particle may be either ”e-”, ”e+” or ”proton”. Any undefined values will assume
the particle is an electron.

3.3.2 option

The option command may be used to set various parameters.

option, name=value,...;

Example:

option, beampipeRadius=0.03*m

14

EUROTeV-Report-2008-022 v0.1

This would set the beampipe radius to be 30mm. At the end of each element in the
beamline, GPMAD uses collimation testing to record particles lost to the beampipe wall.

Example:

option, betx=12.1345, alfx=-2.9196, bety=2.94009, alfy=0.748352;

This sets the initial conditions of the optical functions at the start of the beamline.
These are used to produce the values of the optical functions at each point in the beam-
line.

3.4 Running GPMAD

To run, the GPMAD executable, lattice file and particle input file should be in the same
directory. GPMAD uses command-line arguements to select the particle and lattice files.
At the command line, type:

→ GPMAD.exe <XSIF input> <Particle Data Input>

Should the command arguements not be present, GPMAD will display an error, in-
structing the proper arguement layout. Once these arguements have been satisfied,
GPMAD will run. GPMAD displays the bare minimum of screen output for perfomance
reasons. Should this information be required for debugging processes, the ’Output to
screen’ variable in the GPMAD configuration file should be set to ’1’.

3.5 Output File Overview

GPMAD will produce four output files. GPMAD has been designed such that the output
files will contain the name of the input lattice file used. This makes it easier for the user
to identify which output belongs to each input.

3.5.1 OUTPUT OF <XSIF input>

The output of this file depends on the value ’Output every step’ in the GPMADconfig.txt
file. If this value is set to ’0’, this file will only contain particle data at the start, end and
sampler positions. If the ’Output Every Step’ integer is set to ’1’, this file will contain
particle data at every element in the beamline. The former is the high-performance
default, the latter is useful if the particle distribution is required to be known at every
point. The output contains the name of the element, and then lists the all of the par-
ticles using the same format as the particle input file. The particle data is based upon
the values at the exit of the element.

Example:

15

EUROTeV-Report-2008-022 v0.1

BFQUD:

0.00556 -0.756e-4 -0.00345 -0.00234 0.00465 0.00345

0.00546 -0.00765 0.00543 0.01567 -0.00657 0.00134

-0.00456 0.00876 -0.00564 0.556e-4 0.00765 0.00876

DFT180:

0.00556 -0.00665 0.00843 0.00527 -0.01647 0.00134

...

3.5.2 OUTPUTDATA OF <XSIF input>

For every run, GPMAD will output this file. It contains particle data for the first particle
in the particle input data. Each column represents s, x, px, y, py, τ and pt respectively,
where s is the longitudinal distance along the latttice. Each row represents the particle
position at the exit of each element in beamline. The purpose of this is mainly diagnos-
tic, to plot the trajectory along the beamline.

Example:

1.06 0.00556 -0.756e-4 -0.00345 -0.00234 0.00465 0.00345

1.67 0.00546 -0.00765 0.00543 0.01567 -0.00657 0.00134

2.35 -0.00456 0.00876 -0.00564 0.556e-4 0.00765 0.00876

3.5.3 OPTICS OF <XSIF input>

To be able to obtain plots of the optical functions in GPMAD, the user must first define
αx, αy, βx and βy. If these are not defined, they are defaulted to zero, and therefore the
results will become non-physical. Defining the optical functions at the beginning of the
lattice is detailed in 3.3.2, γx and γy are calculated from these values.
The output file will contain the values of αx, αy, βx, βy, γx and γy. In addition, the
first-order transfer matrix is displayed laid out as in equation 1. This is the overall
matrix between the start of the beamline, and the exit at that particular element. This
is helpful in diagnosing problems within the lattice.

Example:

BFQUD s = 0.17 length = 0.17 K1 = 1.40278

0.979798 0.168854 0 0 0 0

-0.236864 0.979798 0 0 0 0

0 0 1.02034 0.171151 0 0

0 0 0.240086 1.02034 0 0

0 0 0 0 1 0.0188889

16

EUROTeV-Report-2008-022 v0.1

0 0 0 0 0 1

Alpha(x) = 0.000247588 Beta(x) = 12.6376 Gamma(x) = 0.0791289

Alpha(y) = -0.00303968 Beta(y) = 2.81507 Gamma(y) = 0.355234

3.5.4 LOSTPARTICLEDATA OF <XSIF input>

GPMAD uses a hard-edged collimation model for both collimators, and the surface of
the beam pipe. If the spatial co-ordinates of a particle exceed the confines of the contain-
ment vessel, it is recorded as a lost particle in this file. Contained within is a list of the
names of the elements, the length along the beam pipe, the particle positions at which
they were declared lost, and a tally of the loss. For beampipe losses, testing happens at
the end of the element. For dedicated collimators, testing takes place at both entrance
and exit.

Example:

Particles lost at DFT180 ENTRANCE, S = 1.06:

-0.00222907 -0.000716004 -0.000573608 0.000181213 -0.00212511 -0.00151551

Total lost at this element = 1

Particles lost at DFT180 EXIT, S = 1.30:

Total lost at this element = 0

Particles lost at DFT180, S = 1.30:

Total lost at this element = 0

4 GPMAD and the Second-Order TRANSPORT Maps

GPMAD uses the same TRANSPORT [20] mapping system as used in MAD. This
consists of a 6 x 6 matrix to represent the first-order terms, known as the the R-matrix,
and second order effects known as the T-terms.

4.1 Production of GPMAD

GPMAD is mainly written in C++, with CUDA implementations for regions of high
computational density. This permits uncomplicated interface with the many C++ ori-
ented programs available in physics, including the data analysis package, ROOT. One
point of note is that CUDA is based on non-object oriented C, not C++. As a result,
GPMAD is typically not object oriented. Later releases of GPMAD will feature en-
hanced use of object orientation.
GPMAD is comprised of two main components, the parser and the program itself. The
parser is a slight modification of that used in BDSIM [17], wrapped up in as a library. The
program itself extracts the appropriate information from the parser, calls the relevant
functions, calculates the TRANSPORT parameters required, calls the CUDA implemen-
tation for the computation and handles any output required.

17

EUROTeV-Report-2008-022 v0.1

4.2 TRANSPORT maps

The motion of a charged particle is modelled by a six-dimensional vector, using the
following canonical variables, as defined in Section 3.1.1;

X =

x
px

y
py

τ
pt

To first-order approximation, the motion may be modelled as a matrix-vector opera-
tion per magnetic element, the R-matrix.

R =

R11 R12 R13 R14 R15 R16

R21 R22 R23 R24 R25 R26

R31 R32 R33 R34 R35 R36

R41 R42 R43 R44 R45 R46

R51 R52 R53 R54 R55 R56

R61 R62 R63 R64 R65 R66

(1)

This particular example is of a drift element (no magnetic field present). L is the
length of the drift space, and βs and γs are the usual relativistic factors;

Xf =

1 L 0 0 0 0
0 1 0 0 0 0
0 0 1 L 0 0
0 0 0 1 0 0
0 0 0 0 1 L

β2
sγ2

s

0 0 0 0 0 1

×Xi

The complete TRANSPORT map is modelled including second order Tijk terms;

Zj = 4Xj +
6∑

k=1

RjkXk +
6∑

k=1

6∑

l=1

TjklXkXl

,
where 4Xj gives a beam centroid shift. The TRANSPORT system assumes the

charged particles to not interact with each other in the ultra-relativistic limit. Therefore,
the same operation is applied to each particle independently. As the number of particles
is increased, the operation becomes highly parallel, a task well suited to the parallel
architecture of the GPU.

4.3 R-matrix performance enhancements

For the current set of elements available in GPMAD, many of the values in the R-matrix
are always zero. Standard matrix-vector techniques would implement the multiplication

18

EUROTeV-Report-2008-022 v0.1

by zero, even though it is redundant. As a result, the GPMAD kernel only contains the
relevant matrix-vector terms, with other omitted. As GPMAD becomes more general-
purpose, this specificity will be lost, and the full matrix-vector multiplication will be
required. This can be provided by the CUBLAS library within CUDA, and will be
available in future releases.

4.4 T-term definition different to MAD

For performance reasons, GPMAD uses symmetry to reduce the number of terms of Txyz

TGPMAD
xyz = TMAD

xyz (2)

where y = z and;
TGPMAD

xyz = 2× TMAD
xyz (3)

where y 6= z. As such, there are no terms Txyz in GPMAD where y > z.

4.5 R-matrix element definitions

4.5.1 drift

x
px

y
py

τ
pt

=

1 L 0 0 0 0
0 1 0 0 0 0
0 0 1 L 0 0
0 0 0 1 0 0
0 0 0 0 1 L

β2
sγ2

s

0 0 0 0 0 1

×

x0

p0
x

y0

p0
y

τ 0

p0
t

where L is the length of the element.

4.5.2 sbend/rbend

In GPMAD, the dipole is modelled by three matrices, one dipole matrix sandwiched
between an entrance and exit matrix to represent edge-focusing effects. Edge focusing
effects at both the entrance and exit are modelled by:

x
px

y
py

τ
pt

=

1 0 0 0 0 0
+h tan ψi 1 0 0 0 0

0 0 1 0 0 0
0 0 −h tan ψi 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

×

x0

p0
x

y0

p0
y

τ 0

p0
t

Where ψ is the pole face rotation. For an rbend, this is treated as half of the bending
angle. For the body of the dipole. The value of kx and ky is defined as;

kx =

√
K1 +

(
θ

L

)2

(4)

19

EUROTeV-Report-2008-022 v0.1

ky =
√
−K1 (5)

where K1 is the quadrupole co-efficient of the combined function component of the dipole
and θ is the bending angle. The dipole R-matrix is given by;

cos(kxL) sin(kxL)
kx

0 0 0 h
βs
× 1−cos(kxL)

k2
x

−kx sin(kxL) cos(kxL) 0 0 0 h
βs
× sin(kx)

kx

0 0 cos(kyL) sin(kyL)

ky
0 0

0 0 −ky sin(kyL) cos(kyL) 0 0

− h
βs
× sin(kx)

kx
− h

βs
× 1−cos(kxL)

k2
x

0 0 1 L
β2

sγ2
s
− h2

β2
s

L− sin(kxL)
kx

k2
x

0 0 0 0 0 1

It is possible that either kx or ky could be imaginary, in which case the hyperbolic
identities are used

cos(kL) ≡ cosh(ikl) (6)

sin(kL)

kL
≡ sinh(ikL)

ik
(7)

4.5.3 quadrupole

k2
x = K1 = −k2

y (8)

where K1 is the quadrupole coefficient, the quadrupole is given by;

cos(kxL) sin(kxL)
kx

0 0 0 0

−kx sin(kxL) cos(kxL) 0 0 0 0

0 0 cos(kyL) sin(kyL)

ky
0 0

0 0 −ky sin(kyL) cos(kyL) 0 0
0 0 0 0 1 L

β2
sγ2

s

0 0 0 0 0 1

4.5.4 sextupole

To first-order, the sextupole is identical to the R-matrix for drift. Second order terms
are the important components of the sextupole.

4.6 Second Order T terms

These have been derived precisely from those given in the MAD 8 physics manual.
In parts of the MAD Physics Manual, the TRANSPORT map is given as a complete
equation, including both first-order and second-order terms. The second order (T) terms
have been derived from expansion of these equations. This is an important diagnostic
tool of GPMAD, permitting the user to run in at first-order approximation only. For
example,

20

EUROTeV-Report-2008-022 v0.1

T211 = −1

6
(K2 + 2hK1)

sin(kxL)

kx

(1 + 2cos(kxL)), (9)

gives the second order term coupling x2 in the initial state to px in the final state,
where K2 is the sextupole coefficient, h the curvature, K1 the quadrupole coefficient, L
the element length and kx =

√
K1 .

4.7 Zero-order elements

Both hkicker and vkicker are modelled as zeroth order terms that change the transverse
momentum by a fixed amount.

pxory = p0
xory + θ (10)

5 Case Study - The DIAMOND BTS Lattice

The DIAMOND light source in Oxford [21], United Kingdom, provided an opportunity
to study GPMAD against known results. In particular, the 68.04 metre booster to
storage-ring (BTS) lattice provided a source of study to compare GPMAD against the
conventional computing code, MAD. This particular section has been well studied due
to the requirement for small emittance for injection into the storage ring.

5.1 Introduction to the BTS

The DIAMOND BTS lattice consists of drift, sector bend, quadrupole, kicker and col-
limator elements. None of these elements have an associated skew value, which is not
covered in this first release of GPMAD. The lattice was already available in MAD format
for study, requiring only minor modifications to be compatible with GPMAD. Of par-
ticular importance was to determine that GPMAD lost very little in terms of accuracy
compared to MAD. GPUs are single-precision, but due to small deviations, not fully
IEEE 754 compatible. The accuracy was determined using single-particle tracking and
ensuring that particle distribution characteristics were maintained. The performance
enhancements were also measured. Similar results were presented at EPAC [6].

21

EUROTeV-Report-2008-022 v0.1

-0.008-0.006-0.004-0.00200.0020.0040.0060.008 0 10 20 30 40 50 60 70 80x position [m] Distance along Beamline [m] MAD (Reference) TrackingGPMAD Tracking
Figure 1:

Single-Particle, Accuracy-Verifying Tracking in x

5.2 Results

5.2.1 Single Particle Tracking

In Figure 1, the plot of the horizontal displacement is given for the length of the beamline
for both GPMAD and MAD, each with the same starting particle for simulation. Both
these plots are overlaid onto the same axes to allow for comparison. It is clear from the
the figure that the trajectories computed in MAD and GPMAD agree to a very high
accuracy.

Figure 3 is a quantitative evaluation of the deviations due to GPU processing. In this
particular example, the deviation from MAD;

4py

py

=
pMAD

y − pGPMAD
y

pMAD
y

(11)

is plotted across the beamline. Throughout all the 94 magnetic elements, the deviation
is kept to less than 0.025%, which is small. Note also that the deviation is largely
oscillatory about the origin indicating the deviations are not cumulative, and to a large
extent will cancel with each other. This is particularly important for long-term stability
in lengthy beamlines. This deviation is most likely due to the non-standard floating-
point precision of the GPU.

5.2.2 High Statistic Tracking

In the particle accelerator, a distribution of particles at input is generally Gaussian in
form. The particle bunch retains a largely Gaussian distribution for the length of the

22

EUROTeV-Report-2008-022 v0.1

0510152025
30354045

0 10 20 30 40 50 60 70 80Optical Function [m] Distance Along Beamline [m] Beta(x)Beta(y)
Figure 2:

Beta Function evolution through the BTS Lattice

beamline under study. To confirm that high-statistic tracking is acceptably accurate,
64000 particles were evolved through the BTS lattice. Both codes were run, and the
distribution calculated at points of interest.

As is evident in Figure 4, the distributions produced by both MAD and GPMAD are
practically identical. The calculated mean of x for GPMAD is 0.008173096 whereas the
mean for MAD is 0.008173098. This shows that to within approximately 2.44 × 10−5

%, GPMAD is suitable for calculating the mean position of the beam. The standard
deviation from GPMAD is 0.3440153 compared with 0.3440155 in MAD, thus confirming
that the high-statistic results of GPMAD agree to those of MAD to within 6× 10−5 %

5.2.3 Performance Gains

The reason for using GPMAD over other codes is for the reduction in processing time for
a given job. GPMAD has been tested up to 8,192,000 particles in a single job, whereas
other codes such as MAD and DIMAD, would require this to be processed in multiple
jobs. For this many particles, GPMAD was shown to be using approximately 150 MB
of main system memory and, given the latest graphics cards are available with up to
1 GB of memory, equates to a limit around 24,000,000 particles for these cards. This
makes GPMAD a particularly efficient code where batch numbers are large. As well as
this GPMAD uses the high-performance GPU processor for the intensive linear algebra.
The benchmarking was performed on a laptop containing an Intel Core 2 Duo 1.5 GHz
processor and an nVidia 8600m GT GPU (chosen for this case study to represent a
typical desktop computer in 2008).

Figure 5 demonstrates the reduction in processing time achieveable using GPMAD. At
low particle numbers, the performance of GPMAD is drastically reduced. For very small

23

EUROTeV-Report-2008-022 v0.1

-2.00E-04-1.50E-04-1.00E-04-5.00E-050.00E+005.00E-051.00E-041.50E-042.00E-042.50E-043.00E-04 0 10 20 30 40 50 60 70 80Deviation Distance along Beamline [m]
Figure 3:

Deviation, 4py

py
along beamline relative to MAD

batches, MAD would be the faster choice. This is due to a feature of GPU Processing
known as the ’kernel overhead’. The GPU has a fixed setup time per kernel call. As
a result, this delay eclipses the performance gains. When using small batches, it is
recommended to alter the configuration file to process using the CPU.
At large batch sizes, upwards of 10,000 particles, the performance gains are clearly
evident. For example, at 4,096,000 particles, GPMAD completes the given task in 5
minutes, 38 seconds. The same task takes 22 minutes, 27 seconds. Profiling showed that
much of the time was spent reading-in, and writing-out particle data files. The fraction
of input and output time, relative to the whole job time, would be much reduced if a
longer beamline were to be used. In terms of performance, GPMAD is best used with
high particle numbers, and long beamlines.

6 Conclusion

Based upon the theory, and the case study of GPMAD, it is clear that stream processing
is an attractive computational option. Commodity GPUs offer excellent performance
to price ratio, which may be utilised to significantly reduce simulation times. Many
personal computers and laptops are shipped with a dedicated GPU, so it is possible that
this technology is available at no further cost to the user. The important points to note
is that whilst GPUs are increasing in performance, the price remains stable. Therefore,
in the future, GPMAD will take advantage of a yet greater GFLOPS per £ratio, thus
significantly reducing the cost of simulation.

24

EUROTeV-Report-2008-022 v0.1

010002000300040005000600070008000Number of Particles 'x' Distribution GPMADMAD
Figure 4:

Distribution of x at the end of the BTS lattice

6.1 Accuracy and Precision

Industry standard codes use at least IEEE 754 [19] floating-point precision, some may
even offer double-precision. Commodity GPUs are single-precision devices, but are not
truly IEEE 754 compliant. There are minor deviations from the standard, such as
rounding rules and exception handling of undefined numbers. As a result, GPMAD
may exhibit minor deviations to tracking codes (such as MAD) when used with GPUs.
TESLA solutions are considered IEEE 754 compliant, and thus, GPMAD run on a
TESLA device may also be considered to be compliant. The accuracy data and plots
presented in this paper indicate high-statistic tracking variation in the 6th figure of
significance.

6.2 Performance

GPMAD was demonstrated using an nVidia GeForce 8600m GT, which contains 16
stream processors. Performance of this processor is rated at less than 300 GFLOPS.
GPUs are now available with up to 256 stream processors, and a peak performance of
768 GFLOPS. This performance is available for less than £400 at the time of writing.
nVidia TESLA solutions offer up to 500 GFLOPS per GPU. With the fast pace of the
entertainment market, new generation GPUs are getting faster, and yet still available
at reasonable cost.

25

EUROTeV-Report-2008-022 v0.1

02004006008001000120014001600
0 500000 1000000 1500000 2000000 2500000 3000000 3500000 4000000 4500000Time Taken / s Number of Particles GPMAD TimeMAD Time

Figure 5:
Time taken to evolve particles through the BTS lattice

6.3 The Future of GPMAD

The current version of GPMAD (v0.1) includes a basic set of magnetic elements for
simulation purposes. A basic feature set is provided with this release. The intention is
to evolve GPMAD gradually, ensuring backwards compatibility with previous versions
where possible. Much has been learned about stream processing in producing GPMAD,
and this knowledge will be used to re-write later versions.

6.3.1 Symplectic Mapping

GPMAD provides the user with the TRANSPORT mapping system. This is acceptable
for modelling specific sections, or linear machines. For many-turn circular machines,
the symplectic mapping system is required. In later versions of GPMAD, symplectic
mapping will be included using Lie algebraic maps.

6.3.2 Memory-Model Performance Enhancements

In the current guise, GPMAD uses C++ for all the control steps. Through each magnetic
element, particle parameters are copied from main memory to GPU memory, processed,
and then returned to main memory. This is a particularly slow process due to memory
latency. To improve this in later versions, the magnetic elements will be processed in
advance of any kernel operations, then passed as a list to the kernel. The kernel can then
process many magnetic elements in one call, rather than one call per magnetic element.
Should a sampler be required, provisions can be put into place to output a copy of GPU
memory to main memory for output to file. GPU memory may also use assyncronous

26

EUROTeV-Report-2008-022 v0.1

timing to disguise memory latency.

6.3.3 Object Orientation

CUDA is based on C, and therefore is not object-oriented by default. As a result,
and to ensure smooth integration with CUDA, GPMAD makes only minimal use of
objects. Now that the interface between CUDA and C++ is better understood, it will
be possible to make better use of objects. This will improve the modularity of later
GPMAD versions, should any additional features be required.

6.3.4 Magnetic Elements

The range of magnetic elements in GPMAD will be expanded. These will require a more
general kernel for processing purposes.

6.3.5 Double-Precision Support

The next generation of HPC stream processors are described as double-precision devices.
When these become available, GPMAD will be converted to double-precision.

27

EUROTeV-Report-2008-022 v0.1

References

[1] http://www.nvidia.com/object/geforce 9800gx2.html accessed 08/05/2008

[2] M.J.Harris, G.Coombe, T.Scheuermann and A.Lastra Physically-Based Visual Sim-
ulation on Graphics Hardware

[3] SciComp Inc. http://www.scicomp.com/parallel computing/GPU OpenMP

[4] J.Michalakes and M.Vachharajani (National Center for Atmospheric Research)
GPU Acceleration of Numerical Weather Prediction

[5] Revolutionary Technique to Recover Lost Passwords Quickly
http://www.elcomsoft.com/EDPR/gpu en.pdf

[6] M.D.Salt, R.B.Appleby, D.S.Bailey, Beam Dynamics using Graphical Processing
Units - EPAC08 - TUPP085

[7] Stanford Graphics Laboratories http://graphics.stanford.edu/projects/brookgpu/

[8] R.B.Appleby, D.S.Bailey, J.Higham and M.D.Salt High-Performance Stream Com-
puting for Particle Beam Transport Simulations - Computing for High Energy
Physics Conference 2007, 66

[9] Brook+ http://ati.amd.com/technology/streamcomputing/AMD-Brookplus.pdf ac-
cessed 08/05/2008

[10] D. Luebke GPU Computing: the Democratization of Parallel Computing -
http://www.gpgpu.org/asplos2008/ASPLOS08-1-intro-overview.pdf

[11] nVidia www.nvidia.com

[12] ATi ati.amd.com

[13] ATi Crossfire Technology crossfire.ati.com

[14] nVidia SLi Technology sli.nvidia.com

[15] Compute Unified Device Architecture www.nvidia.com/object/cuda home.html

[16] TESLA www.nvidia.com/object/tesla computing solutions.html

[17] I.Agapov, G.Blair, J.Carter, O.Dadoun The BDSIM Toolkit - EUROTeV-Report-
2006-014-1

[18] Methodical Accelerator Design mad.cern.ch

[19] Institute of Electrical and Electronics Engineers www.ieee.org

28

EUROTeV-Report-2008-022 v0.1

[20] K.Brown, A First- and Second-Order Matrix Theory for the Design of Beam Trans-
port Systems and Charged Particle Spectrometers - SLAC-75

[21] DIAMOND Light Source www.diamond.ac.uk

29

