
RAL-TR-2008-027

August 2008

J. K. Reid and J. A. Scott

Guidelines for the development of HSL
software, 2008 Version

c© Science and Technology Facilities Council

Enquires about copyright, reproduction and requests for additional
copies of this report should be addressed to:

Library and Information Services

SFTC Rutherford Appleton Laboratory
Harwell Science and Innovation Campus
Didcot
OX11 0QX
UK

Tel: +44 (0)1235 445384
Fax: +44(0)1235 446403
Email: library@rl.ac.uk

The STFC ePublication archive (epubs), recording the scientific output of the
Chilbolton, Daresbury, and Rutherford Appleton Laboratories is available

online at: http://epubs.cclrc.ac.uk/

ISSN 1358-6254

Neither the Council nor the Laboratory accept any responsibility for loss or
damage arising from the use of information contained in any of their reports
or in any communication about their tests or investigation

RAL-TR-2008-027

Guidelines for the development of HSL software,

2008 Version1

by

J. K. Reid and J. A. Scott2

Abstract

HSL is a collection of portable, fully documented, and tested Fortran packages for large-scale

scientific computation. It has been developed by the Numerical Analysis Group at the Rutherford

Appleton Laboratory, with additional input from other experts and collaborators.

The aim of this report is to provide clear and comprehensive guidelines for those involved

in the design, development and maintenance of software for HSL. It explains the organisation

of HSL, including the use of version numbers and naming conventions, the aims and format of

the user documentation, the programming language standards and style, and the verification and

testing procedures.

This version supersedes RAL-TR-2006-031.

Keywords: HSL, software development, software testing.

1 Current reports available from “http://www.numerical.rl.ac.uk/reports/reports.html”.

2 The work of the second author was supported by the EPSRC grant GR/S42170.

Computational Science and Engineering Department,

Atlas Centre, Rutherford Appleton Laboratory,

Oxon OX11 0QX, England.

August 11, 2008.

Contents

1 Introduction 1

2 Organisation of HSL 2

2.1 Versions . 2

2.2 Naming conventions . 2

2.3 File naming conventions . 3

3 Documentation 3

3.1 HSL specification documents . 4

3.1.1 SUMMARY . 4

3.1.2 HOW TO USE THE PACKAGE . 5

3.1.3 GENERAL INFORMATION . 6

3.1.4 METHOD . 6

3.1.5 EXAMPLE OF USE . 6

3.2 Accompanying reports . 7

3.3 HSL catalogue . 7

4 Programming language and style 7

4.1 Use of Fortran 95 . 7

4.2 HSL rules and conventions . 8

4.3 Use of control parameters . 10

4.4 Checking of the user’s data . 11

4.5 The role of information parameters . 11

4.6 Communication between procedures . 12

4.7 Use of MPI . 12

4.8 Use of OpenMP . 12

4.9 Use of other library routines . 13

5 Verification and testing 14

5.1 Simple examples . 14

5.2 Comprehensive test . 14

5.3 Independent testing . 14

5.4 Use of compilers . 15

6 Role of the Librarian 15

6.1 Check lists . 17

7 Licence issues 18

8 Acknowledgements 18

9 Appendices 18

9.1 Coverage with g95 . 18

9.2 Coverage with nag coverage95 . 19

9.3 Checking line lengths . 19

i

9.4 Debugging and checking conformance with standards 19

9.5 Polishing Fortran 95 code . 20

9.6 Polishing Fortran 77 code . 20

9.7 Time Profiling . 20

9.8 Other tools . 21

9.9 Check list for new packages . 22

9.10 Check list for revised packages . 23

ii

1 Introduction

HSL is a collection of portable, fully documented, and tested Fortran codes for large-scale scientific

computation. HSL began as the Harwell Subroutine Library back in 1963, making it one of the

oldest such libraries. Over the past four decades, HSL has continually evolved and been updated

as new algorithms and codes have been developed and older codes have been superseded. It moved

to Fortran 77 in 1990 and now consists of a mixture of Fortran 77 and Fortran 95 codes that are

all threadsafe. The majority of HSL codes are written and developed by the Numerical Analysis

Group at the Rutherford Appleton Laboratory (http://www.cse.scitech.ac.uk/nag/), with

additional input from other experts and collaborators.

Many of the older HSL codes have gradually been superseded by newer versions, with increases

in functionality, improved interfaces, or speed of execution. As a result, HSL is now arranged

in two parts, the main library (currently HSL 2007) and an archive, HSL Archive. The HSL

Archive comprises older codes that were part of previous releases of HSL, many of which have

been superseded by more modern codes. We do not maintain the codes in HSL Archive and the

rest of this report refers to the main library except where HSL Archive is explicitly mentioned.

HSL 2007 and the HSL Archive are arranged as collections of Fortran 77 and Fortran 90/95

packages, each of which consists of either a single program unit or a set of program units.

Almost all the Fortran 77 program units are subroutines, but there are also some functions

and some HSL Archive packages contain block data subprograms. The Fortran 90/95 program

units are mostly modules, but there are some external procedures. Each package performs a

basic numerical task and has been designed to be incorporated into programs. Each has its own

specification document, which gives full details about how to use the package (see Section 3.1),

and is available as a PDF file.

As well as being widely used by the academic community for both teaching and research

purposes, HSL packages are regularly incorporated into advanced software applications. More

than 2000 organisations world-wide use HSL, with packages incorporated, under licence, into

more than 90 commercially available software products. Such users must contact the software

distributors, Aspen Technology Inc, for a licence (see Section 7).

HSL offers users a high standard of reliability and, over the years, it has gained an international

reputation as a source of robust and efficient numerical software. Furthermore, HSL software is

fully supported and maintained.

The aim of this report is to provide clear and comprehensive guidelines for those involved in

the design, development and maintenance of software for HSL. Section 2 explains the organisation

of HSL, including the use of version numbers and naming conventions. In Section 3, we discuss

the user documentation, which is an important part of the Library. The programming language

and style that is used by HSL is discussed in Section 4. Then, in Section 5, we explain the

verification and testing procedures that we employ before a new package is accepted. The role of

the Librarian is discussed in Section 6 and commercial issues are the subject of Section 7.

1

2 Organisation of HSL

2.1 Versions

Prior to 1990, HSL evolved continuously. New packages were added whenever they were ready.

Since then, additions have been collected into releases, with intervals of around two to three

years between releases, although packages are made available as soon as they ready. The original

motivation for having formal releases was for bound sets of documentation (both the catalogue and

the specification documents for the individual packages) to be printed. Nowadays, the catalogue

is made available online (http://www.cse.scitech.ac.uk/nag/hsl/contents.shtml), but it

remains convenient to construct a new catalogue only occasionally and it is convenient for

publicity, too, to have distinct releases.

Academic licence holders (see Section 7) can download PDF versions of individual specification

documents while, for those purchasing an HSL licence, the documentation is distributed with the

Fortran source code. At the time of writing, the current release is HSL 2007.

With HSL 2004, we started to mark each version of a package with a version label of the form

l.m.n where

l is a digit that labels major changes that affect the interface,

m is a digit that labels a technical change, usually a bug fix, that does not affect the interface,

and

n is a digit that labels an editorial change such as the correction of a spelling error in an output

format or a non-trivial alteration to the documentation (typos in the documentation do not

lead to a new label) .

The first version of a package is labelled 1.0.0. We did not attempt to mark the changes prior to

HSL 2004 with version labels.

The documentation, which is described in Section 3, includes the version label. In addition,

the leading comments in the source code for each package provide a copyright statement and, for

each version, a brief description of the changes that led to it.

2.2 Naming conventions

Each Fortran 77 package has a sequence of two letters and two digits as its name. The name

of each program unit within the package starts with these four characters. The fifth character,

which is always alphabetic, is used to distinguish between the program units. The sixth character

of the name (or its absence) identifies the type of its principal argument. The possibilities are

Absent Single precision.

D Double precision.

I Integer.

L Long integer.

C Single precision complex.

Z Double precision complex.

If the principal argument is always complex, the sixth letter is absent or D. If there are more

than 26 procedures in a package, another four-character name is used for these but they are still

2

regarded as a part of the package; for example, EA16 has procedure names that start with EA16,

EA17, and EA18.

The name of each Fortran 90/95 package starts HSL and is followed by a sequence of two

letters and two digits. In most cases, this is its whole name, but occasionally this is followed by

a qualifier such as ELEMENT. The letters in the name are written in upper case. The package

usually consists of one or more modules, but may also contain some external procedures. Each

module name starts with the package name and is followed by a qualifier to identify the type of

its principal argument. The possibilities are:

single Single precision.

double Double precision.

integer Integer.

long integer Long integer.

complex Single precision complex.

double complex Double precision complex.

If the principal argument is always complex, the qualifier is single or double. Each public name

is the sequence of four characters (excluding the leading HSL), followed by a qualifier (if any),

followed by further characters.

With the appearance of hardware for which single precision working is significantly faster

than double precision, we anticipate that the main use of the single precision versions will be in

mixed precison computations where the single precision result is computed and then refined to

double precision accuracy.

2.3 File naming conventions

The naming convention that is used for the files of a double-precision package that uses the free

source form are summarized in Table 2.1. For files in the fixed source form, the suffix .f is use

instead of .f90. All the Fortran 77 packages1 use the old source form, of course. All of the Fortran

90/95 packages except HSL MP01 use the new source form. By ‘source’, we mean the source code

of the package itself, excluding any modules accessed from elsewhere (e.g. other HSL packages)

or procedures invoked from elsewhere. By ‘test’, we mean the comprehensive test (see Section

5.2). By ‘spec’, we mean the first or only simple example in the specification document (see

Section 3.1.5). By ‘other spec’, we mean another simple example in the specification document.

Single-precision versions are as for double with the d replaced by s. Integer versions are as

for double with the d replaced by i. Where a package contains both real and complex versions,

the complex version is as for double with the d replaced by c and the double complex version is

as for double with the d replaced by z.

3 Documentation

Each HSL package is accompanied by a specification document that the user will need to read

to find out how to use the package. For many of the more complex packages, which cannot be

fully described in this way, a separate technical report is written. In this section, we discuss the

1
The default versions of FD15 and ZA12 call Fortran 95 intrinsic functions.

3

Table 2.1: The file naming convention for double-precision Fortran 95 packages

directory: package

source: packaged.f90

test: packagedt.f90

test data: packagedt.data

test output: packagedt.output

spec: packageds.f90

spec data: packageds.data

spec output: packageds.output

other spec: packageds1.f90

other spec data: packageds1.data

other spec output: packageds1.output

other spec: packageds2.f90

other spec data: packageds2.data

other spec output: packageds2.output

specification document in detail and then briefly comment on the aims and objectives of writing

a report to provide users and other researchers with further information.

3.1 HSL specification documents

For most potential users, their first in-depth contact with the software is likely to be through the

specification document. It is therefore essential that it is clear, concise, and well written. Writing

good user documentation is an integral part of the design process and developers of HSL software

are strongly encouraged to draft the user documentation in the early stages of code development.

This allows others in the Group to comment on the design and make suggestions on the options

offered and on the user interface.

The specification documents are written in Latex or TSSD. New specification documents will

usually be written in Latex. A template Latex file together the necessary style files are provided

to assist developers. As already noted, the typeset versions of the specification documents are

made available to users in PDF format.

The complexity of a specification document will, in part, depend upon the complexity of the

package and the range of options that it offers. But, for each package, the specification follows a

similar format. In the rest of this subsection, the various sections of the specification document

are explained.

3.1.1 SUMMARY

The summary begins with a single sentence that states the purpose of the package, with the most

relevant part in bold. Often the reader should be able to decide whether or not the package is

suitable by reading this one sentence.

It continues with a fuller description that introduces any mathematical ideas and notation

that are needed in the rest of the document. This is usually less than about half a page in length,

but sometimes it has to be longer than this. The summary ends with a list of attributes that

include:

4

Version: The version label (see Section 2.1).

Types: The types offered (see Section 2.2).

Remark: (Optional) Any useful information not covered otherwise. Examples are that it uses

MPI, that at least 8-byte arithmetic is recommended, that the package supersedes or is

superseded by some other package, or that it is a front end for some other package. If the

development of the package was supported by a grant (or other funding), this should be

highlighted here.

Language: Fortran 77, Fortran 95, or Fortran 95 plus allocatable dummy arguments and

allocatable components of derived types.

Parallelism: Either ‘MPI’ or ‘OpenMP available’. This must be noted for packages that use

parallelism directly or through the procedures that they call.

Calls: The names of the packages containing procedures that are called or the generic names

of other procedures that are called or used. This will include other HSL packages, BLAS

routines and any LAPACK routines that are called (see Section 4.9).

Original date: The date that the package entered HSL.

Origin: The names of the authors and their affiliations at the time of writing the package.

3.1.2 HOW TO USE THE PACKAGE

The main body of the documentation explains how to use the package. This should be

straightforward to understand, avoiding as far as possible technical terms and details of the

underlying algorithms because the reader may not be an expert in the area. The input required

from the user and the output that will be generated should be clearly described, with full details

of any changes that the code may make to the user’s data. This section is divided into a number

of subsections.

If the package contains modules, the first subsection starts with an explanation of the use

statements that are needed. Two modules of different types may contain the same public name

if it is expected that they will rarely be used together. In this case, the documentation explains

what renaming will be needed should they be used together.

If the package uses OpenMP, there should be a warning that the user who wishes to take

advantage of this needs to tell the compiler about OpenMP at compile time.

The procedures that are available to the user are then listed, with a very brief description of

each (this should just be one or two sentences). If reverse communication is used, this is explained

here. The aim is to provide readers with a quick overview of the procedures and introduce them

to the calls that they will need to make to use the package. It should be made clear whether a

procedure must be called or is optional.

If the package contains public derived types, these are explained in the next subsection. A

full description of each component that the user is expected to access is either given here or in a

later subsection. Since Fortran 95 does not allow individual components to be declared public

or private, sometimes there are additional components that are not documented.

5

There follows a full description of all the argument lists of procedures that the user may call

and their calling sequences. Usually, there is a separate subsection for each procedure. In each

of these, the type, shape and intent of each argument is documented ahead of a description of

its purpose. If a full description would be long, e.g. for all the possible values of an error flag,

it is better to give a short description here and refer the reader to a full description in a later

subsection. Any restrictions on the argument (e.g. n > 0) are listed in bold at the end of the

description of the argument. In each call, OPTIONAL arguments are listed as the last arguments

and square brackets [] are used to indicate these in the description. For example, in the call

call MA77_open(n,filename,keep,control,info[,nelt,path])

the arguments nelt and path are optional. Since we reserve the right to add additional optional

arguments in future releases of the code, we advise users that all optional arguments be called

by keyword, not by position.

After the subsections that describe the argument lists there may be a number of additional

sections describing, for example, a derived type that has many components, information that is

returned to the user, possible error and warning diagnostics, and other features of the package

that have not been described elsewhere.

3.1.3 GENERAL INFORMATION

The general information section has the following headings:

Input/output: This includes diagnostic printing plus any I/O to direct-access and/or sequential

access files.

Restrictions: A list of the restrictions mentioned for one or more of the arguments and/or

control parameters.

Changes from Version l.m.n: (l.m.n is replaced by the version label) If a major change has

been made (that is, l has changed), this should be explained here.

3.1.4 METHOD

The method section provides a brief self-contained description of the method, which should give

the reader some understanding of it without delving into fine details. It is normally less than a

page long.

For details, the reader should be given a short list of references to papers and to the

accompanying report, where available (see Section 3.2).

3.1.5 EXAMPLE OF USE

The calling sequence for the package is illustrated through the inclusion of a simple example,

which is supplied complete with the input data and expected output. In our experience, if it is

well written and fully commented, this kind of example provides a template that is invaluable,

particularly for first-time users of a package.

Some packages have a second example to illustrate some other aspect of the way the package

is used. Very occasionally, for a complex package with a number of different possible calling

sequences, there is a third example.

6

The examples that are included in the specification documents generally use the default

settings (see Section 4.3) and do not attempt to illustrate the use of all the facilities of the

package.

3.2 Accompanying reports

For many users, a report that provides full details of the capabilities of the package and the options

it offers is useful. This will describe in greater depth the algorithms used, highlight important or

novel implementation details, present theoretical results, and show numerical results for practical

applications. It will also provide references to other relevant research reports and papers. The

report should enable advanced users to select suitable control parameters (see Section 4.3) and to

understand the ways in which the current package differs from other packages. For the software

developer, explaining a new code in a report is a useful exercise; a careful review frequently leads

to modifications and improvements and so should be undertaken before the package is formally

included within HSL.

The reports that accompany HSL software are made available via the Group’s webpage

(www.numerical.rl.ac.uk/reports/reports.shtml). They are often also submitted (possibly

in a modified form) for publication in a leading international journal, such as ACM Transactions

on Mathematical Software.

3.3 HSL catalogue

The catalogue contains a complete list of all the packages in the current release of HSL and

gives for each one a brief outline of its purpose, method, origin, language, and other attributes.

It was originally hoped that this data could be extracted automatically from the specification

documents, but this has not proved possible and separate source files are maintained.

The catalogue also contains an extensive index which is designed to help a potential user

identify the appropriate package for a particular task.

There is a separate catalogue with the same format for HSL Archive.

4 Programming language and style

4.1 Use of Fortran 95

All the packages in HSL are written in Fortran 77 or Fortran 90/95. The first Fortran 90 package

to be included in HSL was HSL MA42 in 1995. Since 1995, developers have individually chosen to

use Fortran 77 or Fortran 90/95. A major consideration when choosing the language was, in the

past, portability. Fortran 77 compilers are almost always freely available on all platforms. Good

quality free Fortran 90/95 compilers were slow to appear and was one reason why many HSL users

were reluctant to switch from Fortran 77 to Fortran 90/95. However, in the last couple of years

the free Fortran 95 compiler g95 has become available. Our experiences of using it have been

very positive and so we are happy to recommend it to HSL users. As access to g95 is widespread

(at least on serial machines), new HSL packages should normally be written in Fortran 95. The

developer may choose whether or not to also supply a Fortran 77 version (note that a number of

Fortran 77 packages within HSL, including MA57 and MA48, have Fortran 95 wrappers).

7

Packages must adhere to the Fortran 95 standard except that, from September 2006, we allow

the use of allocatable structure components and dummy arguments. These are part of the official

extension that is defined by Technical Report TR 15581(E) and is included in Fortran 2003.

It allows arrays to be of dynamic size without the computing overheads and memory-leakage

dangers of pointers. Addressing is less efficient in code that implements pointer arrays since it

has to allow for the possibility that the array is associated with an array section, such as a(i,:),

that is not a contiguous part of its parent. Furthermore, optimization of a loop that involves a

pointer may be inhibited by the possibility that its target is also accessed in another way in the

loop.

Since Fortran 77 has no dynamic memory, working memory required by a Fortran 77 package

must be provided by the user and passed to the package as real and integer arrays. If the

memory is insufficient, the code should terminate and give advice to the user on how far the

computation has proceeded and how much additional memory is needed. The user will then need

to provide larger work arrays and, very often will be required to restart the computation from the

beginning (although sometimes it is possible to restart at some point before it was found that the

memory was insufficient). This is much less convenient for the user than working with a Fortran

95 code that automatically allocates and deallocates memory as required (especially since once

larger arrays have been chosen, there is still no guarantee that they will be large enough and the

process may need to be repeated). Relying on the package to allocate and deallocate memory also

simplifies the specification documentation since the number of arguments can often be reduced

and this helps restrict the number of possible errors the user can make.

The use of dynamic memory allocation does come with a memory-management issue: the

developer should provide the means for all temporary storage that has been allocated by the

package to be released when the computation terminates. In particular, if the code fails before

the computation is complete (perhaps because of an error in the user-supplied data), the developer

should ensure that all temporary storage is released. This can be difficult, especially if there are

many possible return paths back to the user’s calling program. For storage that cannot be released

until the user has finished with the computation, a straightforward method of deallocating the

storage should be included within the package. A sparse solver is very commonly used in the

inner loop of an iterative process, such as in solving Jacobian linear systems in the solution of

differential-algebraic equations. If pointer memory is used in such a setting, even a small memory

leak can lead to memory exhaustion over the course of the iterative process.

4.2 HSL rules and conventions

While it is recognised that each software developer will have his or her own programming style,

there are a small number of rules and conventions that all contributors to HSL should adhere to.

These are currently as follows:

• Each package starts with comments that specify the Copyright, original date, and give a

brief summary of each change that has been made since the original version.

• Since 2002, every package in the Library must be threadsafe. This allows a user to safely

run multiple instances of the package simultaneously in different threads or on different

processors. A consequence of this requirement is that no common blocks or Fortran save

statements may be used within HSL packages.

8

• The source code should conform to the Fortran standard; in particular, it should contain

no tabs. forchk (see Section 9.4) checks for these.

• Neither the code itself nor any of its tests should have any variables that are not referenced

or are referenced without being defined.

• For Fortran 90/95 packages, each line of the source must be at most 80 characters in length;

for Fortran 77 packages, the limit is 72 characters (see Section 9.3).

• No implicit typing should be employed. Fortran 90/95 packages should use implicit none.

• There should be no go to statements that branch backwards (that is, the branch target

statement should not be earlier in the code than the go to statment). They should be used

in Fortran 90/95 only when they make the code clearer.

• Packages that allocate memory internally must either deallocate all such memory or must

explicitly explain in the specification document if there are any arrays that have been

allocated but not deallocated. An example might be arrays that the package has allocated

to hold matrix factors and which the user may wish to retain for later solves. If there

remains allocated memory it must be possible for the user to successfully deallocate it.

• Packages that hold data in direct-access and/or sequential-access files must provide a means

of releasing file storage once it is no longer required.

• Optional arguments are allowed and are always at the end of the argument list.

• The source code must contain no stop statements (it should always be possible for the

calling code to recover from error situations).

• There must be a way to suppress the printing of warning and error messages and, if printing

is offered, the user must be able to specify the unit number(s) for this.

• List-directed I/O (that is, print or write in which the format specification is an asterisk)

should be avoided in the source code and in the simple and comprehensive tests (see

Sections 5.1 and 5.2). This is because the output is not portable, and can vary with

both compiler and/or computer platform.

• From September 2006, all new Fortran 90/95 packages must specify the intent of each

argument of each user-callable procedure. All information parameters (see Section 4.5) must

be of intent(out); except in a procedure that sets default values for control parameters,

each control parameter (see Section 4.3) must have intent(in).

• Allocatable arrays should be used in preference to pointer arrays.

• Where a format is used only once, it is preferable to place it as a character constant within

the output statement, e.g.

write(*,’(a,es12.4)’) " 2-norm of residual =", resid

• Pointers should be used only where they offer a significant advantage.

9

4.3 Use of control parameters

Since the early 1990s, many HSL packages have made use of control parameters, which have

default values but may be set by the user to control the action; they are not altered by an HSL

procedure unless it is initializing them with default values. Some HSL packages are designed to

offer the user a large degree of control, while others leave few decisions open to the user. Clearly, a

balance has to be achieved between flexibility and simplicity and this will, in part, depend on the

target user groups/application areas and the complexity of the algorithms being implemented.

Apart from simple controls (such as those that control diagnostic printing and whether or not

the user’s data is to be checked for errors), default values for control parameters should normally

be selected on the basis of numerical experimentation as being in some way the “best all round”

values. Getting these choices right is really important because, in our experience, many users

(in particular, those who would regard themselves as non-experts) frequently rely on the default

settings and are reluctant to try other values even if their hardware is very different from the

original test platform (possibly because they do not feel confident about making other choices).

Thus when developing a new package experiments should be performed on as wide a range of

computing platforms and practical problems as possible; this is discussed further in Section 5.3.

There will inevitably be situations when the defaults may give far from optimal results and the

user will then need to try out other values. Note that the ability to try different values can also

be invaluable to those doing research. The developer may want to change the default settings at

a later date as a result of hardware developments; within HSL this would lead to a new leading

digit in the version label.

HSL routines that are written in Fortran 77 use an array for integer controls and another for

real controls. In general, the packages include an initialisation subroutine that the user may call

to assign default values to these control arrays. If other values are wanted, the relevant individual

entries of the arrays can be reset by the user after the initialisation and prior to calling other

subroutines in the package. We recommend using arrays for the controls and allowing some extra

space for controls that may be wanted in the future.

Most of the Fortran 90/95 packages in the Library currently adopt a similar approach for

initialising the controls but, in place of the arrays, use a derived datatype whose components are

the control parameters. Extra components can be added, if necessary, in a new version of the

package. If the default value gives the behaviour of the unmodified code, only the second digit of

the version label need change; otherwise, the first digit should change. Using a derived type can

be more user-friendly as it allows meaningful names to be used for the controls. Since we started

to use Fortran 95, the components of the control derived type can be given default values when

a variable of this type is declared. We do this in some packages, including HSL MA77.

We note that it is important that the control parameters are fully documented within the

specification document. However, as many of them are primarily intended for tuning and

experimentation by experts, they should not over complicate the documentation for the novice

user. The specification document needs to explain what, in broad terms, the effect of resetting a

control parameter is likely to be.

If a parameter is important enough for the HSL developer to want the user to really consider

what value to use (which may be the case if, for instance, the best value is too platform or problem

dependent for a default to be confidently selected), then that parameter should not be a control

but should be passed to the subroutines as an input argument. An example might be the use of

10

scaling for a linear solver. Our experience has been that the benefits of different scaling strategies

are highly problem dependent and so we feel a user should really be aware of what scaling, if any,

is being performed and that it should not be “hidden” away in a control parameter.

4.4 Checking of the user’s data

To make a package robust, it needs to incorporate checking of the user’s data. This is done

(sometimes optionally) by most of the packages in the Library. The main exceptions are routines

that are primarily intended for use by other HSL packages so that the data will have already

been checked before they are called (and rechecking would not only be unnecessary and would

complicate the code but could also add an unacceptable overhead). An example is MC34, which

generates the expanded structure for a symmetric sparse matrix given the structure for the lower

triangular part.

As already noted, in the description of the argument lists, the specification document

highlights what restrictions there are, if any, on the parameters that must be set by the user. The

code should normally check that the user-supplied controls are feasible; if one is not, we suggest

that either a warning is raised and the default value is used or a return is made after setting an

appropriate error flag. The user’s control parameters should not be overwritten; if one or more

is unsuitable and is replaced by the default, this should be done using an internal copy.

A number of packages in HSL, including most of the sparse direct solvers, allow the matrix

data that is input by the user to include out-of-range indices and duplicated indices. In this

case, the specification document should clearly explain what action is taken if such indices are

encountered. We recommend that out-of-range indices are ignored and that the real (or complex)

values corresponding to duplicated entries are summed (although sometimes the developer may

offer the user, via a control parameter, an alternative course of action, such as taking the first

occurrence and ignoring subsequent duplicates). In each case, a warning should be issued and the

number of such indices returned to the user. Ignoring out-of-range indices and summing those

that are duplicated may result in changes to the user-supplied data, in which case this should be

clearly explained. Note there are instances when the software developer may not wish to allow

out-of-range indices and/or duplicated indices. An example is the frontal solver MA42. The user

has to specify the largest integer used to index a variable (the variables need not be numbered

contiguously) and if any user-supplied variable indices exceed this it is considered to be an error

and an immediate return is made after setting the relevant error flag.

4.5 The role of information parameters

Most HSL packages provide the user with information, both on successful completion and in the

event of an error. The information that is provided does, of course, depend very much on the

package but, as a minimum, this information will include an error flag. In the event of an error,

the user needs to be given sufficient details to understand what has gone wrong together with

advice on how to avoid the error in a future run. All error and warning returns should be fully

explained in the specification document.

HSL routines that are written in Fortran 77 use “information arrays” to return information

to the user; in general two arrays are used (one for real and the other for integer information)

and should be slightly larger than needed to allow for later additional requirements. The arrays

11

need not be set by the user, although some codes that have a reverse communication interface

currently rely on the information in these arrays not being altered by the user between calls; from

January 2007, new HSL packages will not do this. In Fortran 90/95 packages, derived types (with

intent(out)) can be used in place of arrays. As with the control parameters, this can be more

user-friendly as it allows meaningful names to be used. However, printing a simple list of the

information generated is then less straightforward; one possibility to assist users is to provide a

separate printing routine to do this or, alternatively, to use a control parameter to allow the user

to select an option that prints the information parameters once the computation is complete.

4.6 Communication between procedures

It often happens that data that is constructed during an invocation of a procedure in an HSL

package is needed on a later invocation of the procedure or on an invocation of another procedure.

The requirement that the code be threadsafe (see Section 4.2) means that this data must be passed

through the argument lists.

This can often be done naturally by changing one or more of the principal arguments; for

example, an array might be overwritten by its LU factorization and a permutation array might

be set. If this is not realistic or further data is need, variables with the name keep (or a name

including these four characters) are normally used (note that some existing HSL packages use

the name save in place of keep). In Fortran 77, they are usually arrays; in Fortran 90/95, they

are usually scalars of a derived type that is part of the package.

In Fortran 77, there is no way to stop users altering a keep array, which would probably have

a disastrous effect, so the documentation tells users not to do it. In Fortran 90/95, the derived

type may be defined in a module with its components declared private, which will mean that

the user cannot alter them. However, it may be desirable that some of the data is visible to

the user or to other HSL packages. In this case, only those components that are intended to be

visible to the user should be mentioned in the specification document.

4.7 Use of MPI

When writing a package that uses MPI, it is important to avoid interfering with communications

in other libraries or on other processes.

We recommend creating a new communicator and using it exclusively within the package.

The easiest way to do this is to duplicate the user’s communicator by calling MPI COMM DUP. If a

smaller communicator is needed, MPI COMM SPLIT is available. When the package has finished, it

should destroy its communicators by calling MPI COMM FREE, in order to avoid a memory leak.

The use of a separate communicator means that the package’s communication is not confused

with the user’s, which aids debugging for both.

4.8 Use of OpenMP

An HSL package that supports OpenMP parallelism may need to call some of the procedures that

are part of OpenMP. In particular, omp get num threads() may be used to find out whether the

code is executing in a uniprocessor environment, which allows key parts to be written differently

for this case.

12

For users that are not running OpenMP, HSL has a replacement module omp lib that provides

suitable constants and procedures for a uniprocessor. The package code must include a use

statement for this module.

4.9 Use of other library routines

Where appropriate, we recommend that developers of new HSL packages make use of existing

HSL packages. Many of the packages whose names begin with the characters MC are sparse-matrix

manipulation routines that have been included as separate packages so that those designing, for

example, sparse direct solvers can use them to simplify both the development and maintenance

of what is inevitably very complex code. Another advantage of using existing packages is that

they will have been tested separately and so can be used with confidence, without retesting.

Sometimes when developing a new package it will be appropriate to put part of the code into

a separate HSL package to improve the modularity of the design and to allow others access in

the future. For example, the out-of-core solver HSL MA77 has at its heart a call to a routine that

efficiently performs a partial factorization (and corresponding partial solve) of a dense matrix.

It was felt that this would be useful to have as a separate package (HSL MA54). Similarly, all the

handling of the out-of-core working is done by a separate HSL package (HSL OF01), which we

anticipate reusing for future out-of-core codes.

We also encourage the use of BLAS (Basic Linear Algebra Subroutines). BLAS are an aid

to clarity, portability, modularity, and maintenance of software, and they have become a de

facto standard for elementary matrix and vector operations. Performance (speed) will typically

be critically influenced by the use of appropriately tuned BLAS so, although the BLAS source

code should be used when testing (and is supplied with HSL), users are advised to replace this

with BLAS that are tuned for the target machine, for example, vendor-supplied BLAS or ones

generated by ATLAS (see http://math-atlas.sourceforge.net/).

We also allow the use of LAPACK routines. The main problem associated with this is that

many of the LAPACK routines involve a large number of dependencies, which must be identified

and the source compiled when testing. As with the BLAS, source code is provided with HSL but

performance will be dependent on using a tuned version.

The packages in the EP and MP sections of HSL rely on the MPI (Message Passing Interface)

library. If this is not already available on the user’s computer, it may be downloaded from

http://www-unix.mcs.anl.gov/mpi/

The package HSL MP01 consists solely of a module with an include statement for the MPI

constants. All Fortran 95 packages in HSL should use this module since this will permit them to

be written in the free source form.

The only other external library that may currently be called from an HSL package is the

ordering library METIS. This is optionally used by MA57. If used, it must be downloaded

separately by the user from the METIS website

http://glaros.dtc.umn.edu/gkhome/metis/metis/overview

13

5 Verification and testing

5.1 Simple examples

One or more simple examples are included in the specification documents, see Section 3.1.5, and

are intended to provide a simple illustration of the use of the package. While they do provide

a check for gross blunders, they rarely exercise enough of the code to give confidence in its

correctness.

5.2 Comprehensive test

The comprehensive test is intended to provide a fuller check on the correctness of the code. It

(and the simple examples) are rerun whenever a change is made to a package so it is important

both that its execution time be not too long and that it explores as much of the code as possible.

Furthermore, it should be designed so that the output is (as far as possible) machine and compiler

independent. For example, for a linear equation solver, the output should not be the computed

solution or the residual; instead, the test code should check that the solution and residual are as

expected and then only perform printing in the event that it is not.

These objectives mean that it has to be designed specifically for testing the package. It would

not be satisfactory, for example, to employ a code that was used to tune its performance or

compare it with other codes. The aim is to check that it really is performing the algorithm that

was finally chosen and this can usually be achieved with small test cases, perhaps constructed

with a generator for pseudo-random numbers.

It should exercise all the modes that the user is permitted to employ (including testing of

different settings for the control parameters, errors and warnings, and the different levels of

printing). Ideally, it would exercise all possible execution sequences, but we recognize that this

would usually not be practicable. Instead, we aim to exercise every statement at least once.

Even this is often not practicable; for example, it is desirable to test the stat= variable of a

deallocate statement, but it is probably impossible to provoke the statement to fail.

A tool should be used by the developer to discover which statements are not being exercised.

Each such statement should be examined to make sure that it is not practicable to exercise it and

to check by eye that the statement is correct and that the statements that would be executed

following its execution are correct. In Section 9.1, we explain how we currently use the g95

compiler for this purpose.

5.3 Independent testing

In addition to the simple examples that are included in the specification document and the

comprehensive test, testing should be performed on a set of problems representing those at which

the package is primarily aimed. These tests do not form part of the Library but they will typically

be reported on in any accompanying report (see Section 3.2).

Testing on practical applications needs to be performed continually while the package is

under development. Such tests often result in changes to the user interface, in particular,

it may become apparent that further options are needed (perhaps via optional arguments

or additional control parameters). The tests may be used to select defaults for the control

parameters. The test set should be as large and varied as possible. If a package is

14

intended to be general-purpose, the test set not only needs to include problems of different

sizes but also problems from a range of application areas. For testing sparse linear solvers

and sparse eigensolvers, matrices from the University of Florida Sparse Matrix Collection

(www.cise.ufl.edu/research/sparse/matrices/) may be used. This is an extensive set of

matrices arising from real problems. It includes the original Harwell-Boeing Collection (which

members of the Group were responsible for creating back in the 1980s) and is constantly being

updated to include ever larger problems. For optimisation, there is the CUTEr suite of Fortran

subroutines (see http://www.cse.scitech.ac.uk/nag/cuter/cuter.shtml for details), which

is developed by the Group and collaborators. A key advantage of using these collections is that

they are available via the web, which facilitates comparisons with other packages (both HSL and

non-HSL packages). Where appropriate, comparisons with other packages needs to be part of

the validation and testing process.

As well as testing on a range of problems, a package should be tested on as many different

platforms as possible. This is to help ensure portability and robustness and also to check that

the default settings for the control parameters are appropriate.

We highly recommend that the developer of an HSL package involves someone who has not

themselves been closely involved in the design and development of the code in the testing. This

may be another Group member who has an interest in the package or, ideally, a potential user

from outside the Group. In our experience, feedback from an independent user is invaluable,

both for the specification document and the package.

5.4 Use of compilers

We are fortunate in having access to a range of up-to-date Fortran compilers (currently, Nag, g95,

gfortran, lf95, ifort). The developer should test his or her software using each of these compilers.

We often find that different compilers will unearth errors that others failed to detect and can

provide assistance in tracking down and correcting an error. When compiling the simple test(s)

and the comprehensive test, the highest level of error checking offered by the compiler needs to be

used. Any warnings returned at compile time should be checked. Ideally, no compiler warnings

should be issued but, as we now allow allocatable structure components and dummy arguments,

these will currently lead to a warning message. In our opinion, warnings can be off-putting for

users, who may be concerned that they have made an error in the compilation process, and it is

normally very easy to make simple changes to the code to eliminate most of these warnings.

6 Role of the Librarian

The Librarian is responsible for maintaining an up-to-date copy of HSL and associated tools. For

HSL 2007, this is currently in the directory

/numerical/num/hsl2007

on the Group’s Linux computer nag. This directory is maintained under version control with

the Linux tool svn. Everything associated with a particular package is held in a subdirectory

named after the package in the subdirectory packages. For example, everything associated with

HSL MA48 is held in the directory

15

/numerical/num/hsl2007/packages/hsl_ma48

For the HSL package package, the names of the files for source, data, and output are

summarized in Table 2.1. The output files are those produced by the Nag compiler on the

Linux computer nag.

In addition, there are the following files:

• makefile, whose purpose is explained in the next paragraph

• blas holds the names of the files for the source for the BLAS procedures called directly or

indirectly in the single-length case. dblas, cblas, . . . hold the names for other cases.

• lapack holds the names of the files for the source for the LAPACK procedures called

directly or indirectly in the single-length case. dlapack, clapack, . . . hold the names for

other cases.

• deps holds the names of the files for the source for the HSL codes called or used directly

or indirectly in the single-length case. ddeps, cdeps, . . . hold the names for other cases.

• package.tssd or package.tex holds source for the specification document.

• package.ral.pdf and package.aspen.pdf hold the RAL and Aspen Technology versions

of the specification document in PDF format (they differ only in that the footnotes refer to

different web addresses for the licence conditions).

The makefile is used by the Librarian for the following tasks:

• Run the comprehensive test. This relies on a fresh compilation of all the code invoked

(including any BLAS and/or LAPACK routines called by the package), which allows full

tests to be made for errors such as out-of-range subscripts or argument list mismatches

wherever they occur.

• Run the simple tests. Again, all the invoked code is compiled.

• Check the 80-character line length for Fortran 90/95 code or the 72-character line length

for Fortran 77 code.

• Run a coverage check of the comprehensive test.

• Construct all the files needed by Aspen Technology.

• Clean the directory of all temporary files.

• Merge the versions of the source code, the comprehensive test and the specification tests

into master files with suffix .coco.

• Expand the master files (usually after editing them) back to their orginal form, overwriting

existing versions.

For each release of a package, the Librarian’s responsibilities are:

• to check the leading comments in the code;

16

• to check conformance with the relevant language standard;

• to run the comprehensive and examples codes under the Nag compiler and check that the

output remains unchanged, or that the changes are acceptable;

• to check that the tests do not have any unused variables or references to undefined variables;

• to check that the line-length limits have not been exceeded;

• to construct the PDF files of the specification document; and

• to construct the files needed by Aspen Technology.

The Librarian is also responsible choosing new HSL names (in consultation with Group

members) and for maintaining lists of HSL names. All names, including those under development

and those that have been deleted from HSL, are listed in

/numerical/num/hsl2007/hslnames.txt

A slightly shortened version, containing only those currently in HSL and HSL Archive, is

contained in

/numerical/num/hsl2007/schedulec.txt

This is an Annex of the contract with Aspen Technology.

In addition, the Librarian has responsibility for all aspects of the catalogue, which is normally

not changed except at a new release of the whole Library.

The Librarian is not responsible for constructing the code and its tests, eye-ball checking of

the code and its comments (other than the leading comments), performing performance checks,

running the tests on compilers other than Nag, constructing and checking the specification

document, or correcting bugs. These are all the responsibility of the developer. Of course,

the Librarian is a member of the Group, so he may perform these tasks as a developer or as a

colleague of the developer.

6.1 Check lists

Starting in January 2007, before passing a new package to the Librarian for inclusion in HSL, a

pre-release check list needs to be completed. Similarly, after a level one revision is accepted (the

first digit in the version label is incremented), a revision check list must be completed. Sample

pre-release and revision check lists are in Appendices 9.9 and 9.10. These check lists are intended

to remind the developer of the steps that need to be gone through when preparing the code

and the accompanying documentation and should prevent packages from being passed to the

Librarian prematurely. In particular, the specification document and the main source code must

be signed off by a senior member of the Group (currently Duff, Reid and Scott may approve a

package).

17

7 Licence issues

All use of HSL codes requires the user to have a valid licence. Academics may apply

for free access to HSL for non-commercial purposes. Access is via a short-lived individual

password-controlled account, details of which are sent on completion of a short online form

(see http://hsl.rl.ac.uk/hsl2007/hsl20074researchers.html). Other potential users must

contact the software distributors, Aspen Technology Inc, for a licence (details are available

at http://www.cse.scitech.ac.uk/nag/hsl/howto.shtml). Each package is distributed as

Fortran source code, starting with comments that detail the Copyright and conditions of use,

followed by comments on the version history (see Section 2.1). There follows the code itself.

The Copyright lines specify all the institutions and/or individuals that have any Intellectual

Property Rights in the package. Where this extends beyond Science & Technology Facilities

Council (or CCLRC, RAL, etc) and Aspen Technology Inc. (or Hyprotech, AEA, etc), there

should be an agreement in place that specifies the rights and how any revenues will be shared.

In the case of a collaboration in which the outside party does not claim any Intellectual Property

Rights, there should be a memorandum signed by the outside party that makes this clear.

8 Acknowledgements

We would like to express our thanks to Iain Duff, Chris Greenough, Jonathan Hogg, and David

Worth for their careful reading of drafts and many helpful suggestions. We are grateful to

Coralia Cartis and Sue Dollar for commenting on a draft and for putting together the check

lists in Appendices 9.9 and 9.10. We also appreciate the comments that were made by the late

Lawrence Daniels of Aspen Technology Inc.

9 Appendices

9.1 Coverage with g95

The tool that we recommend comes with the Fortran compiler g95 and may be run on one of the

Group’s computers nag and softeng as is illustrated by the example

/home/mathsoft/bin/g95 -fprofile-arcs -ftest-coverage \

fa14d.f90 of01d.f90 of01dt.f90 ddeps.f

./a.out > temp

/home/mathsoft/bin/gcov4 of01d

gedit of01d.f90.gcov

The steps in this example are as follows:

1. Compile the program, adding counting instructions to the executable. This also creates

files with suffix gcno.

2. Run the program. This also creates files with suffix gcna.

3. Construct an annotated listing of of01d. This needs the files of01d.gcno and of01d.gcna.

18

4. Examine the annotated listing with an editor. Executable lines that were not executed are

marked #####.

9.2 Coverage with nag coverage95

An alternative is the Nag tool nag coverage95. The way the Librarian uses it is illustrated by

the example

nag_coverage95 -source -load all_together.f90 -first ddeps.o

all_together.inst.exe

The code to be profiled must include the main program. Here it has been collected into

all together.f90 and the rest has been compiled under f95 into ddeps.o. The first line

creates instrumented code in all together.inst.f90, compiles it, and links it with ddeps.o

to all together.inst.exe. The second line runs this executable and produces counts in

all together.out.

For other ways to use nag coverage95, see its documentation

http://www.nag.co.uk/nagware/nq/man/f95_tools/nag_coverage95.html

9.3 Checking line lengths

The commands

g95 /numerical/num/hsl2007/checks/check72.f90

a.out <ma48ad.f

check ma48ad.f for lines longer than 72 characters, copying any such lines to unit 6. The code

check80.f90 in the same directory checks for lines longer than 80 characters.

9.4 Debugging and checking conformance with standards

For debugging and checking conformance with standards, it is important to run several compilers.

Our experience is that different compilers can find different problems. The following command

lines may be used on the Group’s computer nag:

Nag compiler:

f95 -C=all -C=undefined -nan -u -gline

For Fortran 77 packages with double complex versions, the option -dcfuns may be needed.

Lahey-Fujitsu compiler:

lf95 --chk aesux

Gnu g95 compiler, allowing allocatable components and dummy arguments:

g95 -std=f95 -ftr15581 -Wall -Wimplicit-none -fbounds-check -ftrace=full

Intel compiler:

ifort -C -u

19

Forcheck syntax analysis for Fortran 77:
forchk -f77 -nwarn -ninf -nff

The following command lines may be used on the Group’s computer fox:

Gnu compiler:
gfortran-4.3 -std=f95 -fbounds-check -Wall

Since each of these find different problems, they should all be used.

9.5 Polishing Fortran 95 code

Fortran 95 code may be polished with the Nag tool nag polish95, as in the example

nag_polish95 temp.f90

which copies temp.f90 to temp.f90.original and overwrites temp.f90 by a polished version.

It uses a default set of options unless it finds a polish options file with name .polish options.

It looks first for the environment variable NAG POLOPT95 or NAG POLOPT90 containing the full

name of the file, then in the current directory, then in the home directory. We recommend that

you copy the file /numerical/num/hsl2007/tools/.polish options to your home directory.

You can edit it there with nag polopt95. There are man pages for both nag polish95 and

nag polopt95.

9.6 Polishing Fortran 77 code

Fortran 77 code may be polished with the Nag tool nag polish, as in the example

nag_polish -po ~/polish_options temp.f

which copies temp.f to temp.f.orig and overwrites temp.f by a polished version. It uses the

polish options file polish options in the home directory. We recommend that you copy the

file /numerical/num/hsl2007/tools/polish options to your home directory. You can edit it

there with nag polopt. There are man pages for both nag polish and nag polopt.

9.7 Time Profiling

Time profiling reveals the amount of CPU time that each subroutine uses and can indicate which

statements take the longest to execute. This in contrast to the coverage profiling of Subsections

9.1 and 9.2, which give the number of times each statement is executed.

There are two approaches – code instrumentation and hardware performance counters. We

describe the latter, since we have found it to be the more useful. Both provide only approximate

timings because of compiler optimizations and because they sample the execution.

Hardware performance counters work by counting specific events on each CPU core. When a

count reaches a configurable value, it triggers an interrupt which is recorded against the currently

executing instruction. The interrupts slow the execution slightly, but the approach has the benefit

that code does not need to be instrumented and therefore runs at near-production speed.

To obtain output that is easy to read, the user must compile the source with the -g option.

We now explain how to use oprofile on the Group’s computer fox. We need a separate

window in which root is logged in and two windows in which the user is logged in normally. On

one of the user windows, execute

20

top

This will dynamically show how the machine is being used. If anyone else is making significant use

of the machine when you are profiling, you will be monitoring (and slightly slowing) their use as

well as your own. Therefore, all members of the Group should be warned beforehand.

The profiling may be controlled by a GUI. To start this, execute

oprof_start &

in the root window. The GUI may be used to change settings. The most useful event is the

unhalted clock tick, CPU CLK UNHALTED, which essentially measures time.

To profile a program, first use the start button in the GUI to start the profiler. Next, in a

user window, run the program as normal. Use the GUI stop button to stop the profiler when the

run has completed. The results of the profile run can be viewed by executing commands in the

user window. To see a list of counts in procedures, execute

opreport -l a.out > temp

and view temp with an editor. To see a limited callgraph report, execute

opreport -l -c a.out > temp

To see annotated source code, execute

opannotate --source a.out > temp

For further profiling, the counts will be accumulated unless the ‘Reset sample files’ button in

the GUI is used to reset the counts to zero.

oprofile has many more advanced options. These are detailed in its own documentation,

available on the web.

9.8 Other tools

For advice on other tools see the web site of the Software Enginneering Group:

http://www.softeng.cse.clrc.ac.uk/SESP/

The Group has developed a tool

http://www.sesp.cse.clrc.ac.uk/html/SoftwareTools/pyqa_userdoc/pyqa_forcheck.html

that acts as a front end to the static analysis tool Forcheck. It

• automates most of the steps needed to run Forcheck, including searching for relevant source

files, sorting them based on module dependencies, selecting program options, and building

the Forcheck execution command; and

• parses the text-based output from Forcheck, and presents the results in a more manageable

and comprehensible format.

21

9.9 Check list for new packages

Check List for a New Package

Package name:

Start date:

Initial documentation: Read by

Check HSL rules (section 4.2): YES/NO

Simple tests: YES/NO

Comprehensive tests:

Profile: Coverage: YES/NO

Different modes: YES/NO

Compilers: g95: YES/NO Nag: YES/NO

ifort: YES/NO lf95: YES/NO

gfortran: YES/NO

Use source BLAS/LAPACK: YES/NO

Output portability: YES/NO

Independent testing: Tested by

Generate other versions (e.g. single): YES/NO

Simple tests: YES/NO

Comprehensive testing: YES/NO

Finalize documentation: YES/NO

Signed off date:

22

9.10 Check list for revised packages

Check List for a Revision

Package name:

Start date:

Version:

Start with the latest HSL version

of codes and documentation: YES/NO

Update documentation:

Version number: YES/NO

Comments on changes: YES/NO

Changes: YES/NO

Add comments to start of code: YES/NO

Simple tests: YES/NO

Comprehensive tests:

Profile: Coverage: YES/NO

Different modes: YES/NO

Compilers: g95: YES/NO Nag: YES/NO

ifort: YES/NO lf95: YES/NO

gfortran: YES/NO

Use source BLAS/LAPACK: YES/NO

Output portability: YES/NO

Independent testing (optional): Tested by

Generate other versions (e.g. single): YES/NO

Simple tests: YES/NO

Comprehensive testing: YES/NO

23

