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Abstract:  A theory of neutron scattering by magnetic ions is developed and applied

to diffraction by crystals in which ions in the unit cell are not equivalent on account of

a lack of translational symmetry in their environments.  The development

demonstrates a close connection between interpretations of neutron and resonant x-ray

magnetic Bragg diffraction, in terms of an atomic model.  Cross-sections for neutron

diffraction by powders and single crystals, including polarization induced interference

between nuclear and magnetic amplitudes, are considered.  By way of illustrating the

theoretical development, cross-sections are predicted for two materials, V2O3 and

DyB2C2, on the basis of findings from extensive studies, using resonant x-ray

diffraction, of their spatially anisotropic distributions of charge and magnetization.
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I. Introduction

The determination of magnetization distributions by the Bragg diffraction of

neutrons is not a new experimental technique but one that has developed over the past

four decades [1].  It is a technique of paramount value in understanding modern

magnetic materials whose complex properties can involve an interplay of charge,

orbital and spin degrees of freedom of the valence electrons [2, 3].  A theoretical

framework for the interpretation of neutron diffraction data has also been in place for

some time, starting essentially with Trammell’s work [4].  Resonant Bragg diffraction

of x-rays has come to the fore as a complementary technique in the past decade [5]

with the growing availability of intense, polarized and tuneable beams of x-rays from

synchrotron sources.  The instrumentation now available at synchrotron sources

provides accurate and detailed information on charge and magnetization distributions.

As examples of recent applications of resonant x-ray diffraction revealing new

features of complex magnetic materials we will consider one

3d-transition compound, V2O3 [6], and one lanthanide compound, DyB2C2 [7, 8].

We calculate the intensity of neutrons diffracted from crystals that support

long-range magnetic order.  Ions in a unit cell are not equivalent due to a lack of

translational symmetry in their environments. The present work is based on atomic

models which have proved to be good starting points for the interpretation of a wealth

of data on 3d-transition and lanthanide compounds.  A theory of neutron diffraction,

with full account of scattering by spin and orbital magnetic moments, is developed

from previous work [9, 10] and applied to powder and single crystal samples.  In the

case of single crystal samples, information to be found from the interference of

nuclear and magnetic amplitudes enabled by polarization in the primary neutron beam

is also considered.  One aim in the development is to expose common structure in

frameworks for the interpretation of neutron diffraction and resonant x-ray diffraction

data.  To this end, we predict neutron diffraction signals for V2O3 and DyB2C2 on the

basis of successful interpretations of available resonant x-ray diffraction data [11, 12].

Advantages of the neutron beam technique over the x-ray beam technique are seen in

quality and quantity of data.  For, at present, resonant x-ray Bragg diffraction does not

provide absolute values of atomic quantities, and the energy of the resonance limits

the number of Bragg reflections observed.  The limit on data set by the resonance
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energy can be quite severe for electric dipole resonance events that give direct access

to the valence shell of 3d-transition and lanthanide ions, i.e. 2p ����������� ������	


which x-ray wavelengths are of the order 17 ������� ��
���������

Vanadium sesquioxide exhibits a first-order, ferroelastic structural phase

transition, at a temperature in the range 150 – 160K, at which the material changes

from a metal to an insulator and from a paramagnet to a collinear antiferromagnet.

The long-range magnetic order coexists with a monoclinic crystal structure with space

group I2/a (number 15) in which vanadium ions occupy sites 8(f) that possess no

symmetry.  The energy dependence of resonant x-ray scattering from V2O3 [6] at

space-group forbidden reflections (Miller indices h k l satisfy h + k + l an odd integer)

is strikingly different at reflections with even and odd values of h, and this feature has

been shown to be due to a selection rule [11] that stems from the configuration of the

V moments.  The same theory [11] accounts for data collected in azimuthal-angle

scans at space-group forbidden reflections.

Dysprosium borocarbide, while not quite so exotic as V2O3, is a very

interesting metallic conductor with a tetragonal crystal structure.  The material

displays a continuous structural phase-transition at TQ = 24.7K [7], at which the

crystal symmetry is lowered to space group 136 from space group 127, and a

magnetic transition at Tc = 15.3K [8, 13] below which there is a net moment in the

plane normal to the two-fold axis of rotation that passes through sites 4 (c) occupied

by Dy ions.  The lattice distortion at TQ is accompanied by the appearance of

Templeton & Templeton scattering at reflections (00l + ½).  Magnetic neutron

diffraction signals from powder samples appear at Tc [13, 14].  At the same

temperature a signal is seen in resonant x-ray diffraction at the reflection (102) [8].

The resonant x-ray diffraction data for DyB2C2 is consistent with structure factors

[12] calculated for the space group 136 and the configuration of Dy magnetic

moments proposed by Yamauchi et al. [13].

Expressions for the amplitude and intensity of magnetic neutron diffraction are

recorded in the next section, where they are developed for the standard atomic model

of a magnetic material.  We include a new expression for the intensity which

highlights contributions made to scattering by anisotropic components of the
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magnetization.  Properties of the amplitude set in principal axes are given in section 3.

Neutron diffraction by V2O3 is the subject of section 4, where we give an expression

for the intensity expected from a single crystal.  Use of the expression for the

interpretation of experimental data should yield valuable information that can be

compared directly with findings from ab initio calculations and results derived from

complementary experiments.  To illustrate the information content of the neutron

intensity we evaluate our expression for a model V wavefunction, and our findings

suggest intensities at some equivalent reflections have the potential to yield good

quality information about the orbital magnetization.  We also estimate the intensity of

reflections first seen in resonant x-ray diffraction [6].  Our findings for DyB2C2 in

section 5, based on a successful interpretation resonant x-ray diffraction experiments

[12], include an estimate of the wavefunction that describes the Dy magnetization.

We predict intensities to be compared with data collected on single crystal samples.

A brief discussion of our main results appears in section 6, and material on the atomic

spherical tensors at the heart of our theoretical framework is gathered in an Appendix.

II. Basics

The interaction between a neutron with spin sn and electrons with position,

spin and momentum variables Rj, sj and pj, respectively, is sn.Q⊥ where,

)}.x(
i

)ˆx(xˆ){iexp(
2 jjj

j k
pkkskRkQ

�
−⋅= ∑⊥ (2.1)

Here, k is the change on scattering in the wavevector of the neutron and k̂  = k/k. In

an atomic model of a magnetic material the sum on j over electrons is partitioned into

a sum over electrons in the valence shell of an ion and a sum over all ions.  The

magnetic amplitude observed in Bragg diffraction is the mean value of  Q⊥, denoted

here by 〈 Q⊥〉,  evaluated for magnetic ions in the unit cell.  It has been shown that the

magnetic amplitude can be written as,
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In this expression the Clebsch-Gordan  coefficient couples two spherical tensors, of

rank K and K′, to form a tensor of rank one (a vector) and projection p = 0, ± 1.  The

coefficient is zero unless K is equal to |K′ − 1|, K′ or K′ + 1, and p = q + q′.  Evidently,

the geometric content of the magnetic amplitude is contained in spherical harmonics

).ˆ(kK
qY  The quantity )(KK

q
′

′ is the unit-cell structure factor,

,)()iexp()(
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dk KTK K
q

K
q

′
′

′
′ ⋅=Ψ ∑ (2.3)

where 
d

)(KT K
q

′
′  describes the valence shell of the ion at position d in the cell.  With

a small value of k the atomic tensor 〈T1〉 is proportional to the magnetic moment

µ = 〈L + 2S〉.  Additional properties of atomic spherical-tensors for neutron

diffraction are gathered in an Appendix.

The interpretation of resonant x-ray diffraction, based on an atomic model,

contains a quantity very similar to (2.2) [15].  The amplitude in this instance is a

scalar, i.e. a tensor of rank zero.  Introducing the identity (KqK′q′|00) α δK,K′ δq,− q′ in

(2.2) the quantity which in x-ray diffraction corresponds to (2.2) is actually a scalar

product of a geometric factor with the structure factor, where the geometric factor

contains information on the condition of the primary and diffracted x-ray beams.

Returning to neutron diffraction, we recount the limiting value taken by the

magnetic amplitude as k tends to the forward direction.  With k →0 one finds

〈T1〉→µ/3 and for one ion,

.)}ˆ(ˆ{2
1 kkQ ⋅−→⊥ (2.4)

Retaining the first correction to these limiting values leads to the so-called dipole

approximation for 〈T1〉 in which,
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In this expression 〈 jn(k)〉 is the Bessel function transform of order n of the radial

component of the magnetization distribution.  The components have the properties

〈 j0(0)〉 = 1 and for n> 0 〈 j0(0)〉 = 0.  For the interpretation of data gathered with a

view to examining spatial anisotropy in the magnetization distribution higher-order

K′> 1 atomic tensors are considered.  The upper limit is set by the angular momentum

of the valence shell; for a 3d-transition ion the maximum value of K′ in (2.2) is 5, and

for a lanthanide ion the corresponding value is 7.

The intensity observed in a powder pattern is interpreted in terms of,

.)(
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3ˆd
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1 22
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K
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qKK
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This expression can be simplified by using a general property of the atomic tensor.  If

K′ is an odd integer, then K = K′ ± 1, and,

.)1(
1

)1(
2/1

−′






+′
′
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K
KT K

q
K
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If K′ is even the only non-zero tensor occurs when K = K′.

Physical properties of the sample can impose restrictions on K′ and usually

one finds that K′ is restricted to odd integers.  There are two sources of restrictions.

First, a property of states used to describe the valence shell can impose restrictions on

K′.  For example, if a 4f shell is adequately described by states with the same values

of J, S and L then K′  is odd, for atomic tensors with even K′ are zero.  Secondly, the

configuration of magnetic moments can lead to a selection rule on K′ in the structure

factor.  Such a case is V2O3, which is a collinear antiferromagnet, and Ψ K′ vanishes

unless K′ is odd.



7

Experiments on single crystals are interpreted in terms of |〈Q⊥〉|2.  When K′ is

odd the single-crystal intensity can be written in a simple and appealing form, which

has the geometric content expressed in terms of spherical harmonics )ˆ(kl
mY instead of

products of spherical harmonics.  We find from (2.2),
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Values of G (K′, I′; l) are listed in Table I, and satisfy the sum rule,

.0);,(
000
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(2.9)

3j-symbols in (2.8) and (2.9) are more convenient to use than Clebsch-Gordan

coefficients;

.)|()12()1( 2/1 mlKqIrl
m

l

r

I

q

K mIK −+−=




 −−− (2.10)

The quantity summed in (2.9) is also included in Table I. To demonstrate that the

expression for the single-crystal intensity is purely real one uses

G(K′, I′; l) = G(I′, K′; l) and l
m

ml
m YY −−= )1()*(  together with an identity for

interchanging two columns of a 3j symbol.  The term in (2.8) with l = m = 0  is

identical to the powder intensity derived from (2.6), because integration over the

direction of  k sets equal to zero every term in (2.8) except the term l = m = 0.  Terms

in (2.8) with l > 0 represent the influence on scattering of anisotropy in the

magnetization distribution.

A useful approximation to the intensity is obtained from the term in (2.8) with

K′ = I′ = 1.  The corresponding value of the structure factor )0(1
q′  is a spherical
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component of a vector 1 with real Cartesian components.  Setting K′ = I′ = 1 in (2.8)

it reduces to,

{ }.)ˆ( 2111
crystal 4

9 k ⋅−⋅=I (2.11)

The dipole approximation for the intensity is obtained from (2.11) on using in )0(1
q′

the appropriate approximation for the atomic tensor.

To interpret the interference between magnetic and nuclear amplitudes

induced by polarization P in the primary beam one needs to evaluate,

.)1( ,
1,0

qq
q

q

QP ⊥−
±=

⊥ −=⋅ ∑QP (2.12)

The identity expresses the scalar product of P and 〈Q⊥〉 in terms of their spherical

components.  Cartesian components of P, say, are,

,2/)(i,2/)( 11y11x +−+− +=−= PPPPPP  and Pz = P0. (2.13)

III Principal axes

In many cases the physical properties of an ion in a crystal are most

conveniently addressed in a set of axes that are not the crystal axes, nor the axes used

to define the geometry of the experiment.  Let us label the second set of axes by

Cartesian coordinates (ξηζ).  We use Euler angles α, β and γ to define the second set

of axes, used for calculations of atomic quantities, relative to the chosen crystal axes

and find,

,),,(
)(

α−β−γ−=
ξηζ

∑ K
rq

K
r

r

K
q DTT (3.1)

where K
rqD  is an element of the rotation matrix.
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We will label (ξηζ) principal axes when atomic tensors )(ξηζ>< K
rT  for the

model in question are zero unless r = 0.  Alternatively, in principal axes atomic

tensors are said to be diagonal, and the ζ - axis is called the axis of quantization.

It can be shown that the magnetic amplitude is zero if k is parallel to the axis

of quantization, i.e. for k and ζ parallel 〈Q⊥〉 = 0.  This finding is a generalization of

the standard result which says the intensity is zero when k and the moment direction

are parallel.

A second result of this nature is found in the value of P⋅ 〈Q⊥〉 when P and ζ

are parallel.  We find,

{ } [ ] ,)()()1(
12

3ˆ
11)(0

2/1
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⊥ −−′Ψ
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KK
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where K′ is odd, and k ˆˆ ⋅=ζk is the projection of the scattering wavevector on the

axis of quantization. In arriving at (3.2) the term with K = K′ is found to vanish, and

the two terms K = K′ ± 1 combine with the aid of (2.7) to give the very simple

expression we report. The Legendre polynomial Pn(x) satisfies P0(x) = 1 and

Pn(1) = 1. From the second property we see that scattering is zero should k and ζ

coincide, a result we anticipated.  For K′ = 1 and 3,

,)1()(1 2
2 2

3 xxP −=−  and  .)15)(1()()( 22
42 8

7 −−=− xxxPxP (3.3)

IV. Vanadium sesquioxide

At room temperature vanadium sesquioxide has a trigonal (corundum)

structure with space group 167 )3( cR .  Lowering the temperature of the material

induces distortions which include tilting of the trigonal (hexagonal-c) axis and

reduction of the point-group symmetry of sites occupied by vanadium ions [16].
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The space group of the low temperature monoclinic structure is number

15(I2/a). This is a body-centred cell and Bragg wavevectors τm(hkl) for charge

reflections have the necessary condition h + k + l an even integer. (Miller indices h, k

and l are integers.) The antiferromagnetic configuration of vanadium magnetic

moments, displayed in Fig. 1, consists of sheets of moments with ferromagnetic

alignment within (010)m layers, or hexagonal (110) layers, and moment reversal

between adjacent layers [17].  The moments are orientated along some easy-axis in

these layers, and we take φ as the canting angle with respect to the trigonal axis.

The trigonal basis vectors are ah = a(1, 0, 0), bh = a(−½, ½ 3 ,0) and ch = c(0,

0, 1) and the volume of the unit cell = a2c 3 /2.  Following Dernier and Marezio [16]

in the use of an I - centred cell, from these vectors we generate monoclinic basis

vectors am = (0, 
3

1  2 a, 1/3c),  bm = ah and cm = (0, 
3

1  a, − 1/3 c), and the volume

of the cell = a2c/ 3 .  The corresponding Bragg wavevector τm(hkl) ≡ (hkl)m  is,

.))2(),(,()(
3

11 lhlhkhkl c
a

am −+= (4.1)

We note that (l0 l )m is parallel to ch and ( 2lkl )m is normal to ch.

Referring to Fig. 1, the position coordinates of  vanadium ions labelled (1) and

(5) are (x, y, z) and (−x, −y, −z), respectively, with x = 0.3439, y = 0.0012 and z =

0.2993  [16]. The positions of the pair (2) and (6) are related by a body-centre

translation to the pair (1) and (5). The position coordinates of (3) and (7) are (½ −x, y,

− z) and (½ +x, −y, z), respectively, and the pairs (4) and (8), and (3) and (7) are

related by the body-centre translation.  The body-centre translation (½,½,½)m =

2
a (1, 3 , 0) and (½,½,½)m⋅τm(hkl) = ½ (h + k + l). It is convenient to define an angle

ν = 2π (x, y, z)m ⋅τm(hkl) = 2π (xh + yk + zl).

For the model of V2O3 we have described, in the previous paragraphs, ΨK′ can

be different from zero for even values of K′ + (h + k + l), so there is a selection rule in

the structure factor that links the rank of atomic tensors and the sum of Miller indices
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[11].  Neutron magnetic diffraction is observed at reflections with h + k + l an odd

integer, i.e. space-group forbidden reflections, and the scattering amplitude is

composed of tensors of rank K′ = 1, 3 and 5.  One finds,

{ }.)()1()()cos(4)( KTKTK K
q

hK
q

K
q

′
′−

′
′

′
′ −+ν=Ψ (4.2)

Moon [17] studied reflections with even h and established the configuration of

moments illustrated in Fig. 1, in which V moments are contained in the plane normal

to bm and cant at angle φ ~ 70° with respect to ch.  Intensity observed with odd h using

resonant x-ray diffraction [6] has been successfully interpreted using (4.2) [11].  Note

that for odd h we have K
q

K
q

′
′−

′
′ Ψ−=Ψ  and there is no contribution to scattering from

diagonal elements of the atomic tensor.  Scattering observed at space-group forbidden

reflections with odd h is the magnetic analogue of Templeton & Templeton

x-ray scattering [18] by anisotropic charge distributions.

A. Magnetic reflections with even h

The atomic tensor in (4.2) is obtained from principal axes (ξηζ) using (3.1).  It

is assumed that the axis of quantization is contained in the plane am - cm and it

encloses an angle φ with the trigonal axis.  One finds,

,)0,,()()( 20)(0 φ−= π′
′ξηζ

′′
′

K
q

KK
q DKTKT (4.3)

and the corresponding value of the structure factor is,

.)0,,()()cos(8)( 200 φ−ν=Ψ π′
′ξηζ

′′
′

K
q)(

KK
q DKTK (4.4)

The last result follows because, according to (4.3), K
q

K
q TT ′

′−
′

′ = .  (In consequence,

for odd h the result (4.3) predicts null scattering.)
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Using (4.4) in (2.8) we arrive at,
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On writing mˆ (h k l) = (t1, t2, t3) one has 2t=ζ  sinφ + t3 cosφ. If mˆ and ζ are

parallel 1=ζ  and the intensity is zero by virtue of the sum rule (2.9) which is

satisfied by G (K′, I′; l).  On retaining in (4.5) the term K′ = I′ = 1, and neglecting all

other terms in the sums on K′  and I′ , remaining terms l = 0 and l = 2 collapse to give,

{ } .)0()1()cos(8
2

)(

1
0

22
crystal 4

9
ξηζζτ−ν= TI (4.6)

In arriving at this expression we use entries in Table I and for the Legendre

polynomials the first entry in (3.3).  The result (4.6) is consistent with the more

general expression found in (2.11).

The intensity (4.5) contains the canting angle φ and three atomic tensors.

These four unknown quantities can be inferred by fitting experimental data for

intensities to (4.5).  Values of the atomic tensors derived from a model of the V ion’s

wavefunction can then be tested against measured values.

We have calculated (4.5) using for 
)(0 )1(

ξηζ

′ −′KT K expressions derived from

a model V wavefunction based on 3d2 and the configuration 3F, namely,

{ }.1,3)1(3,31,1G L
2/12

Ls ==ε−+−==ε=== MLMLMS (4.7)
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The value ε = 0.671 gives 8.0−=ζL  and a V magnetic moment µ = 1.2µB in

agreement with the finding of Moon [17].  In the expression for 
)(0 )1(

ξµζ

′ −′KT K

there are no contributions from cross-terms and one finds,

.11)1(11)1(

31)1(31)1(

Ls0Ls
2

Ls0Ls
2

)(0

==−′==ε−+

−==−′−==ε=−′

′

′

ξµζ

′

LMSMKTLMSM

LMSMKTLMSMKT

K

KK

(4.8)

Expressions for the two matrix elements, obtained by use of (A8), are listed in

Table II.  In our numerical estimates we use 〈 jn (k)〉 for V3+ from [19].

Regarding 
)(

1
0 )0(

ξηζ
T  that appears in the approximation (4.6) to Icrystal our

model wavefunction gives,

.)7419()()43()()0( 2
2

2
0)(

1
0 105

2
3
1 ε−+ε−=

ξηζ
kjkjT (4.9)

As anticipated in (2.5), the coefficient of 〈 j0〉/3 is the magnetic moment µ of the V

ion.

A confrontation of experimental data for magnetic Bragg intensities with Icrystal

listed in the second )8.0,45.0( 2 −==ε ζL and third )0,25.0( 2 ==ε ζL columns of

Table III will help find the exact nature of the magnetization and settle the

contribution to it made by the orbital moment.  The value of the canting angle φ = 70°

is consistent with the interpretation of neutron and resonant x-ray diffraction data [11,

17].

Equivalent reflections, identified by a common value of m , are particularly

valuable because uncertainty in the interpretation arising from uncertainty in )(kjn

is eliminated.  One factor in the variation of Icrystal within a group of equivalent

reflections is the value of the spatial phase ν, e.g. the difference in Icrystal between
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mm 0)1(2 & (210) is the difference in {cos(ν)}2 at the two reflections.  To a good

approximation, mm 0)1(2 & (210) and (201)m are a group of equivalent reflections and

the difference in Icrystal at the partners mm 0)1(2 & (210) , and (201)m is striking and it

is largely due to pronounced anisotropy in the magnetization.  Two other groups of

equivalent reflections that are very sensitive to  anisotropy are mm )1(40 & (003) , and

mm )3(02 & (023) , mm )12(4 & )1(42 .  These two groups of reflections are sensitive

to the orbital magnetization, which is seen in the variation of the ratio in column five

between Icrystal for 8.0−=ζL  and 0=ζL .  In this respect, we note that the last six

reflections in Table III have intensity due to the orbital magnetization and so they

appear to be particularly good sources of information.

B. Magnetic reflections with odd h

We have estimated the neutron scattering intensity at magnetic reflections with

h odd by using atomic tensors inferred from a successful interpretation of resonant x-

ray diffraction on magnetically ordered V2O3.  The intensity of scattering from a

single crystal is derived from (2.8). For the reflections of interest here the nuclear

structure factor is zero, and thus polarization in the primary beam of neutrons does not

lead to mixed magnetic and nuclear reflections.  Because the V magnetic moment is

contained in the plane spanned by am and cm 01
1 =Ψ± . Our estimate of Icrystal is made

with tensors of rank K′ = 3 and the terms proportional to 〈 j2(k)〉 .  Terms we neglect

are proportional to 〈 j4(k)〉, cf. Table II, which for k ~ 0.6Å-1 is very small compared to

〈 j2(k)〉 that we retain.

By way of orientation, first we consider the intensity (2.6) observed in a

powder pattern.  Setting K′ = 3 and using (2.7),

.)2(
23

powder 4
3

q
q

I ′
′

Ψ= ∑
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In the sum q′ takes all values consistent with the rank K′ = 3 of the tensor, but for odd

h 00 =Ψ ′K .  Since the V ion occupies a site with no symmetry, site-symmetry plays

no part in selecting values of the projection label q′ on atomic tensors.

In (4.2) we set h odd and use *)1( K
q

qK
q TT ′

′
′′

′− −=  and find,

,)2()cos(8)2( 3
1

3
1

′
ν=Ψ ++ T

,)2()cos(8i)2( 3
2

3
2

″
ν=Ψ ++ T

.)2()cos(8)2( 3
3

3
3

′
ν=Ψ ++ T

Values of the atomic tensors inferred from an interpretation of resonant x-ray

diffraction data on V2O3 [6, 20] are listed in Table IV.  Our knowledge of  
″

+
3
2T  is

not as good as that for 
′

+
3
1T  and 

′
+
3
3T .  From entries in Table IV we find,

{ } .)cos()(31.0~)2()2()2()(cos96
2

2

2
3
3

2
3
2

2
3
1

2
powder ν







 ′

+
″

+
′

ν= +++ kjTTTI

Let us consider the reflection (340)m
 for which τ(340)m = 0.90Å−1, and cos(ν) = 0.98.

Using [18] 〈 j2(τ)〉 = 0.20 we obtain for (340)m the estimate Ipowder ~ 0.011.  Table V

contains estimates of intensities for single crystals derived from (2.8).  Reflections

(122)m and (320)m possess the same value of τm, as is evident by inspection of (4.1).

Spatial anisotropy in the intensities is highlighted in projections of 〈Q⊥〉 .

Accordingly, Table V contains some values of m ⋅ 〈Q⊥〉 for m parallel to the trigonal

axis ch and m normal to the plane am – cm that contains the V magnetic moments.  The

amplitude h ⋅ 〈Q⊥〉 is proportional to t1 and vanishes for reflections (h0l).  In detail,
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{

}.)3(15

)31(102)1115()cos(21ˆ

2
2

2
13

3
3

2
32

3
2

2
33

3
11

tttT

ttTttTth

−
′

+

−
″

+−
′

ν=⋅

+

++⊥Qc

(4.9)

Expressions for other projections are even more complicated and we refrain from

giving them.

V. Dysprosium borocarbide

Fig. 2 illustrates the sites and the configuration of Dy moments in the

magnetic unit cell.  According to findings for powder samples reported by Yamauchi

et al. [13], two neighbouring Dy moments along the c-axis are mutually perpendicular

and two neighbouring moments in the plane normal to the c-axis one almost

oppositely aligned.  This configuration of Dy moments and the space group 136 has

led to a successful interpretation of resonant x-ray diffraction data [12].  Here we

adopt the same information in calculations of intensities in magnetic neutron

diffraction.

Calculated structure factors do not contain a selection rule on the rank of

atomic tensors K′ that require K′ to be an odd integer, and even K′ is allowed.

However, tensors with even K′ are zero if states describing the valence shell have the

same values of the atomic quantum numbers J, S and L.  Such is the case when

valence states are drawn from one J – manifold and therefore in our interpretation

there are no contributions to magnetic neutron scattering from atomic tensors with

even K′ .

The structure factor for Dy ions can be different from zero for even K′ + q′, so

in )(KK
q

′
′Ψ  we have odd K′ and odd q′, and q′ = 0 is not allowed [12].  It transpires

that intensities are accurately described by the rank-one tensor 1,1 ±=′Ψ ′ qq , and we

begin with our results for Icrystal derived from (2.8).  Later we give the case for

believing that 1with >′Ψ ′
′ KK

q  are safely neglected.
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We introduce an atomic form factor,

,})()({)( 2
20 15

8 kjkjkF += (5.1)

with the property F(0) = 1.  Notice that the dipole approximation (2.5) has ½ as the

coefficient of  )(2 kj , whereas (5.1) is derived from the complete expression for the

contribution of rank one and the coefficient 8/15 is expected to be more accurate.  For

space-group allowed reflections (hkl: h + k = 2n) we find, following calculations

reported in [12],

).ˆ1)(()sin(cos 2
a

22
0crystal kkFI −φ−φµ= (5.2)

In this instance, the intensity is due to the net moment µ0(cosφ − sinφ) that is aligned

with the crystal a-axis and ak̂  is the projection of k̂ on this axis.  At space-group

forbidden reflections (00l + ½), and (h0l) with odd h, equivalent to (0kl) with odd k,

we find,

,)ˆ1)(()sin(cos)2/100( 2
b

22
0crystal kkFlI −φ−φµ=+ (5.3)

and,

.)ˆ1)(()sin(cos)0( 2
b

22
0crystal kkFlhI −φ+φµ= (5.4)

For two of the three classes of reflections 0ˆ
b =k . Since φ ~ 30° (h0l) with odd h

index strong reflections in the magnetic neutron diffraction pattern.  The intensity of

reflections (h0l  +  ½) with odd h, equivalent to (0kl + ½) with odd k, is derived from

(5.4) by putting ak̂  in place of bk̂ . In resonant x-ray diffraction reflections (00l + ½)

are mixed magnetic and charge [12, 21] and (h0l) with odd h are purely magnetic [8,

12].
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By constructing a wavefunction for a Dy ion in magnetically ordered DyB2C2

we can assess the magnitude of tensors with K′> 1 relative to K′ = 1 used to derive

(5.2) – (5.4).  In addition, we can more closely relate magnetic neutron and resonant

x-ray diffraction.

A crystal-field potential for J = 15/2 and symmetry 2/m contains 8 distinct

energy levels, each one spanned by a Kramers doublet. (The same is true for 4/m

which is the site symmetry of a Dy ion in space group 127.  Hence, both above and

below the structural phase transition at TQ = 24.7K the action of the crystal-field

potential lifts the 8-fold degeneracy, barring an accidental degeneracy.)  Let us

assume a separation of the first excited state from the ground state >Tc = 15.3K so we

can realistically describe a Dy ion by one Kramers doublet.  We denote the two states

in the doublet, that account for low temperature properties, by ψ  and ψ  where

ψ  is derived from ψ  by application of the operator for time reversal.  The

degeneracy of the doublet is lifted by the onset of long-range magnetic order and the

two energy levels are spanned by G  and G  where,

,}e{G i

2
1 ψ+ψ= δ (5.5)

,}e{G i

2
1 ψ−ψ= δ− (5.6)

and δ is the mixing angle.  In the scenario we describe, magnetic properties of a Dy

ion are mapped to a pseudo-spin ½ with eigenstates G  and G .  For time-odd

operators, like angular momentum Jα, time-reversed states have the property

>ψψ<−=>ψψ< αα JJ .  Moreover, an ion with an odd number of electrons and

half-integer J has the property 0z =>ψψ< J  because ψ  and ψ  have no states in

common.  The two properties lead to the result 0GG z =>< J , and the z-axis is

parallel to the crystal c-axis and the axis of two-fold rotation symmetry.  Mean values

of Jx and Jy can be different from zero if ψ  contains 2/1=M , or 2/1−=M .

From (5.5) it follows that,
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}.e.{ReGG i >ψψ<>=< α
δ−

α JJ (5.7)

Another feature required of ψ  is that it is a linear combination of states with M

values that differ by  ± 2, on account of the site symmetry 2/m.  Looking at candidates

for ψ  with minimal parameters one is led to consider linear combination of 2/5

and 2/1 , or 2/1  and 2/3− .  We find that,

}2/3i2/1{
2

1 −+=ψ , (5.8)

with,

}2/3i2/1{
2

1 −−=ψ , (5.9)

provides a realistic description of the magnetic properties of a Dy ion in DyB2C2.  The

90° phase difference between the two components is required to satisfy the

observation in resonant x-ray diffraction of Templeton & Templeton scattering at

(00l + ½).

Next, we examine the saturation moment predicted by (5.8) and (5.9). From

µ = g<J> = (4/3) <J> we find,

2/1
2

y

2

x0 }GGGG{3
4 JJ +=µ , (5.10)

with mean values obtained from (5.7). The dependence of µ0 on the canting angle φ is

derived from,

.GG/GGtan xy JJ=φ (5.11)
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The maximum value µ0 = 8.59 is achieved with φ = 45°, which corresponds to a

vanishing unit-cell magnetic moment.  There is no consensus on actual values of φ

and µ0 determined by powder neutron diffraction [13, 14].  (Neutron diffraction data

has been interpreted on the basis of space group number 127, which is not consistent

with x-ray diffraction data and the model used here based on space-group number

136.)  In the subsequent discussion we use φ = 34° and the value µ0 = 6.99 which is

derived from (5.8) – (5.11).  These values of the canting angle and saturation moment

are in line with values derived from the analysis of neutron diffraction data [13].

Let us review general properties of atomic quantities that enter the

interpretation of diffraction data.  First, atomic tensors of even-rank are purely

imaginary and account for Templeton & Templeton scattering observed in x-ray

diffraction at reflections indexed by (00l + ½). Structure factors for space-group

forbidden reflections vanish with q′ = 0 whereas structure factors for space-group

allowed reflections and q′ = 0 are different from zero.  We find [12] for (00l + ½),

,})(e)(}{e1{)( 2/i2/i KTKTK K
q

qK
q

qK
q

′
′−

π′′
′

π′′
′ +−=Ψ (5.12)

and for (h0l) with odd h,

.})(e)(}{e1{)( 2/i2/i KTKTK K
q

qK
q

qK
q

′
′−

π′′
′

π′′
′ −+=Ψ (5.13)

Evaluated for K = K′ −1 and K′=1, without approximation,  these expressions are,

,})()({)sin(cos)17()0( 20
1
1 15

8
4
3

9
28i kjkj +δ±δ−=Ψ+ � (5.14)

where the upper (lower) choice of signs are for reflections indexed by (00l + ½)

(reflections (h0l) with odd h), and  Ψ1
−1 (0) = Ψ1

+1 (0). Using (5.14) in (2.11) we

recover (5.3) and (5.4) when φ = 34°, µ0 = 6.99 and δ = 75.52° which is obtained from

(5.11).  At space-group allowed reflections )0(1
q′Ψ is purely real and the two

components allowed by the chemical structure and configuration of moments )0(1
1±Ψ
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satisfy )0()0( 1
1

1
1 −+ Ψ−=Ψ ; in fact, )0(1

1+Ψ  is equal to the imaginary part of (5.14)

evaluated with the upper choice of signs.

In general, the atomic tensor  )(KT K
q

′
′  is a linear combination of )(1 kjK −′

and )(1 kjK +′ .  For K′>1 and our model Dy wavefunction we find coefficients of

)(kjn  in )(KT K
q

′
′  that are very small compared to coefficients of  )(0 kj  and

)(2 kj  in )0(1
qT ′ .  In consequence, (5.14) for )0(1

q′Ψ is very accurate.  In part this

result is due to the fact that we deal with an f 9 ion, and the orbital contribution to the

tensor of rank three is identically zero.  (The same result holds for f 2, f 5 and f 12

[10 ].)  We find the coefficient of 
2

2j  in )2(3
q′Ψ  has values 0.0050 and 0.0022 for

the reflections (00l + ½) and (h0l), respectively, that amount to corrections to (8/15)2

in F(k) of less than 2%.  Coefficients of 2j 4j  and 
2

4j  are 0.0036 and 0.0006,

respectively, and these terms can be safely neglected compared to the ones appearing

in F(k).

Unlike the diffraction pattern of V2O3, discussed in the previous section, the

pattern of DyB2C2 contains (space-group allowed) reflections with overlapping

magnetic and nuclear contributions.  At these space-group allowed reflections,

polarization P in the primary beam of neutrons creates mixed magnetic and nuclear

intensities.  P is taken to be parallel to the net magnetic moment.  The magnetic

amplitude in a mixed reflection is proportional to ⊥⋅ Qâ  for which we find the

result,

{ } ).ˆ1()()sin(cosˆ 2
a

2/1
0 kkF −φ−φµ=⋅ ⊥Qa (5.15)

VI. Discussion
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In the context of an atomic model of a material, we have developed and

applied a theoretical framework for magnetic neutron diffraction.  The framework has

the same formal structure as one used recently for the successful interpretation of

resonant x-ray Bragg diffraction by magnetic crystals.  A formal structure in the

interpretation of diffraction data that is common to neutron and resonant x-ray

techniques facilities the comparison of results.  By way  of illustrating this advantage,

we predict results for magnetic neutron diffraction by V2O3 on the basis of results

from resonant x-ray diffraction by the material that reveal reflections not yet observed

with the neutron technique.  In a second example, we calculate intensities for

magnetic neutron diffraction by DyB2C2 on the basis of results derived from resonant

x-ray diffraction data.

A new expression we give for the intensity of neutrons magnetically diffracted

by a single crystal is well suited to the identification of features due to spatial

anisotropy in the distribution of magnetization.  In this expression, the leading term is

the intensity expected from a powder sample.  Other general results include properties

of the amplitude for magnetic diffraction when set in principal axes, where atomic

spherical tensors describing the valence shell are diagonal.  The atomic tensors have

been expressed in terms of unit tensors that are widely used in atomic physics.  The

literature on the interpretation of x-ray dichroic signals and resonant diffraction

already contains extensive tabulations of the unit tensors evaluated for 3d transition

and lanthanide ions, and the results complement tabulations of closely related

quantities that have been used in the interpretation of magnetic neutron diffraction

signals.
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Appendix

The purpose of the appendix is to record key expressions for the atomic tensor

and to relate work to previous findings.  The reduced matrix element in the Wigner-

Eckart theorem,

),)(()1()( JLSKTSLJ
M

J

q

K

M

J
MJKTJM KMJK

q ′′′





′
′

′
′

−
−=′′ ′−′

′ (A1)

is simply related to quantities A(K, K′) and B(K, K′) used previously [9, 10] in the spin

and orbital matrix elements of TK′, namely,

{ }.),(),()12()1())(( 2/1 KKBKKAJJLSKTSLJ JJKK ′+′+−=′′′ −′+′′ (A2)

We will not review properties of A(K, K′) and B(K, K′) but refer the reader to

references [9, 10] for this information. Tables of A(K, K′) and B(K, K′) for various

ions are found in [10].

Let us, however, express the spin and orbital contributions to the reduced

matrix element in terms of a standard reduced matrix element in atomic physics

W(ab)K′ used also in the interpretation of resonant x-ray diffraction.  In W(ab)K′ the

integer a is the rank of its spin contribution, and b is the rank of its orbital

contribution.  Tables of W(ab)K′,  and W(ab) used in (A8), are found in [14].

Writing,

)()())(( orbspin KZKZJLSKTSLJ KKK ′′′ +=′′′ , (A3)

we find,
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{ }

,),,()12()]1([

)()(i)1()1(

)0(22/1

11,
1

orb

3
2 KK

KKSS
KKK

WlKKAlK

kjkjKZ

′′

+′−′′
+′′′

′′++′

+δ−=−′

(A4)

where  K′ is an odd integer, l is the angular momentum of the valence shell (l = 2 and

3, respectively, for 3d and lanthanide ions) and  A(K′, K′, l) is given in [9, 10].

)1(orb ±′′ KZ K satisfies (2.7) and )(orb KZ K ′′ is zero.  The spin contribution in (A3) is

slightly more complicated.  Let us use,

[ ] .)12(
000

)12()()1(),( )1(2/1

2
3 KK

K
l WK

lKl
lkjKKD ′+





+−=′ (A5)

If K′ is even, the only non-zero value of B(K, K′) occurs when K = K′, in which case

[ ] ).,()12(i)(
2/1

spin 3
1 KKDKKZ KK ′′+′=′ ′′ (A6)

If K′ is odd, then K = K′ ± 1 and )1(spin ±′′ KZ K satisfies (2.7).  For K = K′ − 1,

[ ] {

[ ] }.),1(1)(

),1(1)()12(3i)1(

2/1

2/11
spin

KKDKK

KKDKKKZ KK

′+′+′′−

′−′+′+′=−′ −−′′

(A7)

The form of the Wigner-Eckart theorem quoted in (A1) is appropriate when

working with states labelled by the total angular momentum J.  In describing

properties of a 3d-transition ion it is quite common to have states labelled by spin and

orbital quantum numbers, SMS LML, with,

.)( LSLS JMJMLMSMLMSM
JM
∑=



25

By constructing a matrix element LSLS MLMSTLMSM K
q ′′′

′  and performing sums on

JM and J′M′ one finds that the appropriate form of the Wigner-Eckart theorem is

obtained by replacing the quantity,

,)1( )( KabMJ W
M

J

q

K

M

J ′−






′
′

′
′

−
−

by the expression,

.1)(1)(

)12)(12(

12
)1(

LLSS

)(

2/1
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n
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M
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S
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a

M

S

n

b

q

K

m

a
W

ba

K

MLMS

mn

abqba

(A8)

The reduced matrix elements W(ab) and W(ab)K′ are related by a 9j symbol, and the

general expression is,

.
)12)(12(

)12)(12)(12( )(

2/1

)( abKab W

KJJ

bLL

aSS

ba

JKJ
W













′′
′
′









++
+′+′+=′ (A9)

Properties of W (ab) that are relevant to the interpretation of neutron diffraction are

discussed in reference [22].
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Table II

Matrix elements LS0LS0 )1()1( LMSMKTLMSMKT KK −′=−′ ′′  with S = 1, MS =

1, L = 3 and ML = − 3 and 1 that enter the evaluation of the intensity when the V ion

wavefunction in V2O3 is modelled by (4.7).

ML = − 3:

)()()0( 20
1

0 21
22

3
1 kjkjT −−=

{ })()()2( 42
3

0 77
4 kjkjT +=

)()4( 4
5

0

2/1

11
15

7
1 kjT 


−=

ML =  1

)()()0( 20
1

0 105
38 kjkjT +=

{ })()()2( 42
3

0 3
2

5
1

77
4 kjkjT +=

)()4( 4
5

0

2/1

33
5

7
1 kjT 


−=
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Table III

The second column contains Icrystal derived from (4.5) and atomic tensors (4.8)

evaluated for ε2 = 0.45 which gives a V ion moment µ = 1.2µB.  Values are listed with

increasing magnitudes of selected Bragg wavevectors mτ =  (hkl)m, and the last three

columns specify the unit vector ),,(ˆ 321 tttm = .  The third column contains Icrystal

derived from (4.5) and (4.8) and ε2 = 0.25 which corresponds to a V ion moment with

no orbital content 〈Lζ〉 = 0 and µ = 2.0µB.  The ratio of Icrystal for µ = 1.2µB and

µ = 2.0µB, normalized to unity at the strongest reflection (010)m, is found in the fifth

column.  The canting angle φ = 70°.
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Table IV

Values of atomic tensors of rank three for V ions in magnetically ordered V2O3

inferred from an interpretation of resonant x-ray Bragg diffraction [19].

)()009.0037.0()2( 2
3
1 kjT ±=

′
+

)()014.0017.0()2( 2
3
2 kjT ±−=

″
+

)()013.0039.0()2( 2
3
3 kjT ±=

′
+
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Table V

Estimates for V2O3 of the single-crystal intensity (2.8) and projections of the magnetic

amplitude on ch and bm.

Reflection Icrystal h⋅〈Q⊥〉 b̂ m⋅〈Q⊥〉

(102)m 0.007 0 0.084

(120)m 0.002 0.027 0.004

(122)m 0.011 0.063 −0.036

(320)m 0.022 −0.118 −0.016

(140)m 0.001 0.021 0.002

(340)m 0.017 −0.091 −0.016
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Figure 1

Positions of the eight V ions in the monoclinic cell adopted by V2O3 below the

Néel temperature, together with the configuration of their moments in the plane

spanned by am and cm.  The monoclinic Bragg wavevector mm )220(=  is parallel to

the trigonal axis ch, and bm is normal to the plane of the diagram and parallel to ah

[11].

Figure 2

The figure illustrates the sites and magnetic configuration of the four Dy ions

in the magnetic unit-cell of DyB2C2.  The axis of quantization of the ion labelled 1

lies in the a – b plane, normal to the twofold axis of rotation symmetry, and it

subtends an angle φ with the a-axis: namely, it is the vector (cosφ, sinφ, 0).

Corresponding axes for Dy ions labelled 2, 3 and 4, respectively, are

(−sinφ, − cosφ, 0), (−sinφ,  cosφ, 0) and (cosφ, − sinφ, 0).  Below the magnetic critical

temperature Tc the net moment is directed along the a-axis and it vanishes for φ = 45°.
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