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ABSTRACT

The main bottleneck for emerging computing architectures is memory bandwidth. The amount of data

moved around within a sparse direct solver can be approximately halved by using single precision arith-

metic. However, the cost of this is a potential loss of accuracy in the solution of the linear systems. Double

precision iterative methods preconditioned by a single precision factorization can enable the recovery of

high precision solutions more quickly than a sparse direct solver run using double precision arithmetic.

The gains from the reduced memory bandwidth are expected to be particularly prominent on multicore

machines where the ratio of computational power to memory bandwidth is higher.

In this paper, we develop a practical algorithm to apply such a mixed precision approach and suggest

parameters and techniques to minimize the number of solves required by the iterative recovery process.

These experiments provide the basis for our new code HSL MA79 — a fast, robust, mixed precision sparse

symmetric solver that will be included in the mathematical software library HSL.

Numerical results for a wide range of problems from practical applications are presented.
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1 Introduction

A common task in scientific software packages is solving linear systems

Ax = b (1.1)

where A is a large sparse symmetric matrix and b is the known right hand side. There are two common

approaches to the solution of such systems:

Direct Methods: these are generally variants of Gaussian elimination, involving a factorization PAP T →

LDLT of the system matrix A, where L is unit lower triangular, D is block diagonal (with 1 × 1

and 2 × 2 blocks), and P is permutation matrix. The solution process is completed by performing

forward and then backward substitutions (that is, by first solving a lower triangular system and then

an upper triangular system). Direct methods are popular because, when properly implemented, they

are generally robust and achieve a high level of accuracy, making them suitable for use as general-

purpose black-box solvers for a wide range of problems. The main limitation of direct methods is

that the memory required normally increases rapidly with problem size.

Iterative Methods: these involve some iterative scheme and are often based on using Krylov subspaces

of A. In general, their performance is dependent upon the availability of an appropriate precondi-

tioner. For large-scale problems, a carefully chosen and tuned preconditioned iterative method will

often run significantly faster than a direct solver and will require far less memory; indeed for very

large problems, an iterative method is often the only available choice. Unfortunately, for many of

the “tough” systems that arise from practical applications, the difficulties involved in finding and

computing a good preconditioner can make iterative methods infeasible.

In this paper, we are concerned with using a direct method to obtain an approximate solution to

(1.1) and then applying an iterative method to refine the solution. In other words, we use the direct

factorization as a preconditioner for an iterative solver. All our results are obtained using multifrontal

solvers, but much of our work will apply equally to left- and right-looking supernodal solvers. Modern

direct solvers for sparse matrices make extensive use of Level 3 BLAS kernels [12] in their aim to achieve

close to dense performance on modern cache-based architectures (see, for example, [20] for details of

currently available sparse symmetric direct solvers). As such, they are limited by the rate of transfer of

data for their floating point operands through and between main memory and the cache hierarchy. With

the recent emergence of multicore processors and with future chips likely to have ever larger numbers of

cores, this data transfer rate is expected to become an ever tighter constraint. Approximately half the

storage required by a double precision factorization is needed when using single precision arithmetic (by

which we mean working with 32-bit floating-point numbers), potentially allowing larger problems to be

solved, and the movement of data is much reduced. Moreover, on a number of architectures, such as

Cell processors and general-purpose computing on graphics cards (GPGPU), single precision arithmetic is

currently more highly optimised (and hence faster) than double precision computation. Buttari, Dongarra,

and Kurzak [6] report differences as great as a factor of ten in speed. Thus it is highly advantageous to

carry out as much computation as possible on these chips using single precision arithmetic. Single precision

is potentially particularly advantageous for an out-of-core direct solver (that is, a solver that stores the

factors and possibly some of its work arrays in files) because the amount of disk access is also approximately

halved.

In general, direct solvers use double precision arithmetic, although some packages (including those from

the HSL mathematical software library [22]) also offer a single precision version. The accuracy required

when solving the system (1.1) is application dependent. If the required accuracy is less than O(10−5)

(which may be all that is appropriate if, for example, the problem data is not known to high accuracy),

single precision may generally be used. However, users frequently request greater accuracy or, if the

problem is ill-conditioned, higher precision may be necessary to ensure a solution with the sought-after

accuracy. In such cases, the double precision version of the solver has traditionally been used. Motivated
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by the advantages of using single precision on modern architectures, recent studies [4, 7, 8] have shown

that it may be possible to use a matrix factorization computed using the single precision version of a direct

solver as a preconditioner for a simple iterative method that is used to regain higher precision.

Our aim is to design and develop a mixed precision sparse solver for the solution of symmetric (pos-

sibly indefinite) linear systems and to demonstrate its performance in terms of efficiency and robustness.

Section 2 describes the algorithms used in our mixed precision solver and establishes default values for

the parameters involved, extending both the work of Buttari et al [7] and the preliminary MATLAB ex-

perimental results of Arioli and Duff [4]. Section 3 describes our Fortran 95 implementation of the mixed

precision solver as the new package HSL MA79. HSL MA79 is built upon the HSL multifrontal solvers MA57

[13] and HSL MA77 [25] and is intended for inclusion within HSL. Numerical results for HSL MA79 are given

in Section 4 and our conclusions are presented in Section 5.

All reported experiments are performed on a Dell Precision T5400 with two Intel E5420 quad core

processors running at 2.5GHz backed by 8GB of RAM. In all our tests, we use the Goto BLAS [19] and

the gfortran-4.3 compiler with -O1 optimization. All timings are elapsed times in seconds. We work

with two test sets; all but three of the problems are drawn from the University of Florida Sparse Matrix

Collection [10] and all are symmetric with either real or integer valued entries.

Test Set 1. Small to medium matrices with n ≥ 1000 and at most 107 entries in the upper (or lower)

triangular part. This set comprises 330 problems.

Test Set 2. Medium to large matrices with n ≥ 10000. This set comprises 232 problems.

We note that 170 problems belong to both sets. The problems are held as two test sets because it is more

efficient to perform a lot of tests on the smaller test problems. Furthermore, MA57 is not able to solve the

largest problems in Test Set 2 (because of insufficient memory), while HSL MA77 is an out-of-core solver

that is specifically designed for solving large problems. In all our experiments, we use threshold partial

pivoting with the threshold parameter set to u = 0.01 (thus all the test problems are treated as indefinite,

even though some are known to be positive definite). Furthermore, we scale the test problems using the

HSL package MC77 (the ∞-norm scaling is used) [21, 26]1. The FGMRES iterative solver employed in our

experiments uses the HSL implementation MI15.

2 Algorithm

As we have already observed, use of single precision arithmetic reduces the movement of data between

memory hierarchies and cache and the processing units, speeding up core operations. This is illustrated

in Figure 2.1. Here we show the performance of the Level 3 BLAS kernel for matrix-matrix multiplication

in single precision (SGEMM) and in double precision (DGEMM) for square matrices of order up to 1000. Since

GEMM is used extensively within direct solvers, this demonstrates the potential advantage of performing

the factorization using single precision. Figure 2.2 shows how this translates into a performance gain for

the factorization phase of the sparse symmetric solver MA57 (problems from Test Set 1 that take at least

0.01 seconds to factorize on our test machine). While we do not see gains of quite a factor of two from

the matrix-matrix multiply, we do see worthwhile improvements on the larger problems, that is, those

taking longer than about 1 second to factorize. Here GEMM operations dominate the factorization time,

whereas on the smaller problems, integer operations as well as book keeping are more dominant and for

such problems there may be little reward in pursuing a mixed precision approach.

In our early runs of MA57, floating point underflows caused single precision to underperform double,

because of the way modern Intel CPUs handle such events. This problem was reduced by setting a

processor flag to flush denormals to zero, avoiding a cascade of slow operations, though there is still a

potential speed drop if a significant number occur (indeed a similar situation can occur in double precision

1The direct solvers were unable to solve problem GHS indef/boyd1 with this choice of scaling so, in this case, we scale

using MC64 [13, 14].
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Figure 2.1: The performance of single (SGEMM) and double (DGEMM) precision matrix-matrix multiplication

for a range of sizes of square matrices. These experiments used the Goto BLAS [19].
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Figure 2.2: A comparison of the times required by the factorization phase of MA57 when run in single and

double precision (Test Set 1).
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but is less common due to a much larger exponent range). There is also one problem (not shown) that

has a ratio of well over two. This was an indefinite problem and, in double precision, the pivot sequence

chosen by the analyse phase of MA57 had to be modified more than in the single precision case, resulting

in a higher flop count and denser factors.

Our aim is to perform a single precision factorization and then, if necessary, use double precision

post-processing to recover a solution to the desired precision. For maximum efficiency, we want to try

the cheapest algorithm first and, only if this fails, do we want to resort to applying more computationally

expensive alternatives. In the worst case, we fall back to performing a double precision factorization.

Setting r = b − Ax, we define the norm of the scaled residual (the backward error) to be

β =
‖r‖∞

‖A‖∞‖x‖∞ + ‖b‖∞
. (2.1)

The computed solution is assumed to be of the required accuracy when β ≤ γ, where γ is a parameter

chosen by the user.

Algorithm 1 outlines our basic mixed precision approach. The factorization is performed in single

precision then, if β > γ, iterative refinement in double precision is performed. If the required accuracy has

not yet been achieved, FGMRES (in double precision) is used and, finally, if β is still too large, a switch is

made to double precision and the computation restarted. In the next two sections, we discuss the iterative

refinement and FGMRES steps.

Algorithm 1 Mixed precision solver

Input: Desired accuracy γ

Set prec = single

loop

Factorize PAPT as LDLT using precision prec.

Solve Ax = b and compute β.

if β ≤ γ then exit

Perform iterative refinement (Algorithm 2)

if β ≤ γ then exit

Perform FGMRES (Algorithm 3)

if β ≤ γ then exit

if prec = single then

Set prec = double and cycle

else

Set error flag and exit

end if

end loop

2.1 Iterative Refinement

Iterative refinement is a simple first order method used to improve a computed solution of (1.1); it

is outlined in Algorithm 2. Here βk is the norm of the scaled residual (2.1) on the kth iteration. The

system Ax = b and the correction equation Ayk+1 = rk are solved using the computed single precision

factors of A. Skeel [29] proved that, to reduce the scaled residual to a given precision, it is sufficient to

compute the residual and the correction in that precision. However, since we wish to obtain residuals with

double precision accuracy using factors computed in single precision, we perform the forward and back

substitutions (which we refer to as the solves throughout the rest of this paper) in single precision and

compute the residuals and corrected solution xk+1 in double precision. This mixed precision version of

iterative refinement is also used by Buttari et al. [7, 8].
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Algorithm 2 Mixed precision iterative refinement

Input: Single precision factors of A, desired accuracy γ, minimum reduction δ and

maximum number of iterations i maxitr

Solve Ax1 = b (using single precision)

Compute r1 = b − Ax1 and β1 (using double precision)

Set k = 1.

for k = 1,i maxitr do

if βk ≤ γ exit

Solve Ayk+1 = rk (using single precision)

Set xk+1 = xk + yk+1 (using double precision)

Compute rk+1 = b − Axk+1 and βk+1 (using double precision)

if βk+1 > δβk or rk+1 ≥ 2rk then Set error flag and exit (stagnation)

Set k = k + 1

end for

x = xk

Iterative refinement generally decreases the residual significantly for a number of iterations before

stagnating (that is, reaching a point after which little further accuracy is achieved), although for some

problems (including the test problems HB/bcsstm27, Cylshell/s3rmq4m1, and GHS psdef/s3dkq4m2 that

were considered in [4]), a large number of iterations are needed before any substantial reduction in the

residual is achieved. To detect stagnation (and thus avoid performing unnecessary solves), we employ

a minimum improvement parameter δ. A large δ allows the iterative refinement to continue until the

maximum number of iterations has been performed. This increases the likelihood of convergence at the

expense of carrying out additional iterations for problems that have stagnated before reaching the desired

accuracy γ. The number of additional iterations can be reduced or eliminated by choosing a small δ.

For different values of δ, Table 2.1 reports the number of problems belonging to Test Set 1 that achieve

the requested accuracy when factorized using MA57 in single precision and then corrected using mixed

precision iterative refinement. We see that values in the range [0.05, 0.5] have a similar success rate of just

under 80%. We choose as our default δ = 0.3 as this provides a good compromise between the number

of problems that converged (259) and minimizing the wasted iterations on the remainder — 62% of the

problems that failed with this δ used the same number of solves as for δ = 0.001, and only 4 of the 65

required more than 2 additional iterations before stagnation was recognised. We remark that the package

MA57 includes an option to perform iterative refinement (using the same precision as the factorization)

and, by default, it uses δ = 0.5.

Table 2.1: The number of problems in Test Set 1 for which iterative refinement achieved the requested

accuracy (γ = 5 × 10−15) using a range of values of the improvement parameter δ (i maxitr= 10).

δ 0.001 0.01 0.05 0.07 0.08 0.1 0.2 0.3 0.4 0.5 ∞

Converged 194 227 252 256 258 259 264 265 265 265 268

Failed 136 103 78 74 72 71 66 65 65 65 62

Our implementation of iterative refinement also offers an option to terminate once a chosen maximum

number i maxitr of iterations has been performed. An upper limit on the maximum number of iterations

can be established by considering the following example. Assume the initial residual is β = 10−7 and

the default improvement parameter δ = 0.3 is used. If stagnation has not occurred, after 13 iterations

the residual must be less than 1.6 × 10−14 and after 15 iterations, less than 4.8 × 10−15. Based on our

experiments, we set the default value to i maxitr = 10 (note that, for most of our test examples we found

that either the required accuracy was achieved or stagnation was recognised before this limit was reached).
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2.2 Preconditioned FGMRES

For our examination of FGMRES, we use the 62 problems from Test Set 1 that failed to achieve the

requested accuracy using iterative refinement with any δ. We call this the Reduced Test Set 1.

Algorithm 3 Mixed Precision FGMRES right preconditioned by a direct solver with adaptive restarting

Input: Single precision factors of A, γ, δ, f maxitr, restart, max restart

Solve Ax = b

Compute r = b − Ax and β

Initialise j = 0; βold = β; xold = x

while β > γ and j < f maxitr do

βold = β

Initialise v1 = r/‖r‖, y0 = 0, k = 0

while ‖‖r‖e1 − Hkyk‖ ≥ γ(‖A‖‖x‖ + ‖b‖) and k < restart do

k = k + 1 (Increment restart counter)

j = j + 1 (Increment iteration counter)

Solve Azk = vk and compute w = Azk

Orthogonalize w against v1, . . . , vk to obtain a new w. Set vk+1 = w/‖w‖

Form Hk, a trapezoidal basis for the Krylov subspace spanned by v1, . . . , vk (Full details of this

step may be found in [28])

yk = argminy ‖‖r‖e1 − Hkyk‖ (Minimize the residual over the Krylov subspace)

end while

Set Zk = [z1 · · · zk]

Compute x = x + Zkyk, r = b − Ax and compute new β

if β ≥ δβold then

restart = 2 × restart

if restart > max restart then Set error flag and exit

end if

if β > βold then

x = xold

else

xold = x; βold = β

end if

end while

In Algorithm 1, FGMRES [27] refers to a right preconditioned variant of FGMRES. Arioli, Duff, Grat-

ton, and Pralet [5] have shown that, in cases where iterative refinement fails, FGMRES will often succeed

and is more robust than either iterative refinement or GMRES. Arioli and Duff [4] prove a convergence

result for the use of a mixed precision FGMRES algorithm to recover double precision accuracy following

a single precision factorization. This motivates our use of FGMRES.

Our variant of FGMRES, shown as Algorithm 3, is essentially that given in [4] but additionally uses

an adaptive restart parameter. Here e1 denotes the first column of the identity matrix. Algorithm 3 uses

double precision throughout except for the solution of the systems involving A; for these systems we have

the ability to perform the forward and backward substitutions in either single or double precision, as we

detail below. Our adaptive restarting strategy relies on a similar concept to the minimum improvement

parameter in iterative refinement — we expect to reduce the residual in the outer iterations and, if the

reduction is too small, we increase the restart parameter (up to a specified maximum max restart). If

there is no reduction in the residual (it may increase), we restore the solution from the previous outer

iteration before restarting. In our experiments, we compared adaptive restarting with using a fixed restart

parameter. We found that a small initial value for the adaptive restart parameter (typically less than or

equal to 4) reduced the number of iterations required to obtain the desired accuracy and enabled us to
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solve some problems that failed to converge with a fixed restart; the strategy had little effect for larger

initial values.

Following Arioli and Duff, we consider converting the matrix factor that has been computed in single

precision into double precision, allowing us to perform the forward and backward substitutions in either

single or double precision. Performing the solves in single precision has obvious speed advantages per

iteration but experiments using a range of values for the adaptive restart parameter show that, in all

cases, using double precision reduces the total number of solves required. Table 2.2 attempts to capture

to what extent the double precision approach is better. Shown here are:

• The number of problems that fail to converge using either single or double precision solves.

• The number of problems that converge only using the double precision solve.

• The arithmetic mean of the number of extra solves needed in single precision, that is,

1

|P|

∑

i∈P

(Solvesi(single)− Solvesi(double)) , (2.2)

where Solvesi(double) (Solvesi(single)) is the number of solves used for problem i when performed

in double (single) precision, and P is the set of problems on which both single and double precision

solves converge to the required accuracy.

• The geometric mean of the ratio of the number of solves in single precision to the number in double

precision, that is,

(

∏

i∈P

Solvesi(single)

Solvesi(double)

)

1

|P|
. (2.3)

We comment that the number of failing problems remaining constant regardless of the restart value is

what we expect from our adaptive restarting procedure.

Table 2.2: A comparison of the performance of FGMRES using single and double precision solves fol-

lowing a single precision factorization for a range of restart parameters on Reduced Test Set 1 (δ = 0.3,

f maxitr=128).

restart = 1 2 4 8 16

Problems failed for both single and double 23 23 23 23 23

Problems solved by double but not single 5 5 5 5 5

Average difference in number of solves (see (2.2)) 14.9 15.6 16.2 12.9 12.9

Average ratio of number of solves (see (2.3)) 2.8 2.5 3.1 2.1 2.1

The reduction in the number of solves when using double precision has to be set against the slow down

experienced because of increased data movement through the memory hierarchy. On our test computer

the time for a solve in double precision is approximately twice that in single precision, hence if the ratio of

the number of solves in single precision to those in double is more than two then double precision (as is the

case in the last line of Table 2.2) is faster, in addition to allowing us to solve more problems. Because of

this, we shall use double precision solves for FGMRES in the remainder of this paper. Note that iterative

refinement will still use single precision solves as similar experiments showed there to be limited benefit in

using double precision. In particular, although more iterations were carried out, iterative refinement still

eventually stagnates on the problems belonging to the Reduced Test Set 1.

In Table 2.3, we report the number of solves performed within FGMRES for a range of values for

the adaptive restart parameter on the 39 problems in the Reduced Test Set 1 for which FGMRES was

successful. The results indicate that restart = 4, 8 or 16 is generally the best choice; we use as our default

restart = 4.
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Table 2.3: The number of solves performed within FGMRES for Reduced Test Set 1 using a range of values

for restart following unsuccessful iterative refinement. Results are shown for δ = 0.3 and f maxitr= 64.

The 23 problems that failed for all values of restart are not shown.

restart
Problem

1 2 4 8 16

Boeing/bcsstk35 49 48 64 48 48

Boeing/bcsstk38 3 4 4 8 8

Boeing/crystk01 15 14 12 8 8

Boeing/crystk02 3 6 4 8 8

Boeing/crystk03 3 6 4 8 8

Boeing/msc01050 7 6 4 8 8

Cunningham/qa8fk 3 6 4 8 8

Cylshell/s3rmq4m1 11 10 8 8 8

Cylshell/s3rmt3m1 17 12 4 8 8

DNVS/ship 001 48 48 48 64 64

GHS indef/cont-201 25 24 20 16 16

GHS indef/cvxqp3 23 22 32 24 24

GHS indef/ncvxbqp1 11 8 8 8 8

GHS indef/ncvxqp5 10 10 8 8 8

GHS indef/sparsine 14 14 12 16 16

GHS indef/stokes128 1 2 4 8 8

GHS psdef/oilpan 11 10 8 8 8

GHS psdef/s3dkq4m2 40 16 16 8 8

GHS psdef/s3dkt3m2 17 16 16 16 16

GHS psdef/vanbody 31 30 28 24 24

Gset/G33 2 2 4 8 8

HB/bcsstm27 13 12 8 8 8

Koutsovasilis/F2 3 6 4 8 8

ND/nd3k 2 2 4 8 8

Oberwolfach/gyro 10 8 8 8 8

Oberwolfach/gyro k 10 8 8 8 8

Oberwolfach/t2dah 7 6 4 8 8

Oberwolfach/t2dah a 7 6 4 8 8

Oberwolfach/t2dal 7 6 4 8 8

Oberwolfach/t2dal a 7 6 4 8 8

Oberwolfach/t2dal bci 7 6 4 8 8

Oberwolfach/t3dh 3 6 4 8 8

Oberwolfach/t3dh a 3 6 4 8 8

Oberwolfach/t3dl 3 6 4 8 8

Oberwolfach/t3dl a 3 6 4 8 8

Pajek/Reuters911 15 12 12 8 8

Schenk IBMNA/c-56 31 30 28 16 16

Schenk IBMNA/c-62 31 30 28 24 24

Simon/olafu 16 12 16 8 8
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3 Implementing the mixed precision strategy

In this section, we discuss the design and development of our new mixed precision solver HSL MA79. The

code is written in Fortran 95 and, at its heart, uses the HSL direct solvers MA57 [13] and HSL MA77 [25]. We

start by giving a brief overview of these solvers, highlighting some of their key features that are important

for HSL MA79.

3.1 MA57

MA57 is designed to solve sparse symmetric linear systems (1.1); the system matrix may be either positive

definite or indefinite. The multifrontal method is used [17]. A detailed discussion of the design of MA57

and its performance is given by Duff [13]. Relevant work on the pivoting and scaling strategies available

within MA57 is given by Duff and Pralet [15, 16].

In common with other HSL solvers, MA57 is available in both double and single precision versions. It

offers a range of options, including solving for multiple right-hand sides, computing partial solutions, error

analysis, a matrix modification facility, and a stop and restart facility. Although the default settings for

the control parameters should work well in general, there are several parameters available to enable the

user to tune the code for his or her problem class or computer architecture.

Like many modern symmetric direct solvers, MA57 has three distinct phases: an analyse phase that

works only with the sparsity pattern to set up data structures for the factorization, the numerical factor-

ization phase that uses these data structures to compute the matrix factor, and a solve phase that may be

called any number of times after the factorization is complete to solve repeatedly for different right-hand

sides.

Built-in scaling is available through a symmetrized version of the well-known package MC64 [14]. The

system matrix is explicitly scaled internally to the package, as are the right-hand sides and the solution,

so that the user need not be concerned with this.

The efficiency of a direct method, in terms of both the storage needed and the work performed, is

dependent on the order in which the elimination operations are performed, that is, the order in which the

pivots are selected. For symmetric matrices that are positive definite, the pivotal sequence chosen using

the sparsity pattern of A alone can be used during the factorization without modification. For symmetric

indefinite problems, a tentative pivot sequence is chosen based upon the sparsity pattern (treating zeros

on the diagonal as entries) and this is modified if necessary (possibly to include 2 × 2 pivots) during the

factorization to maintain numerical stability. MA57 offers the user a number of ordering options, including

variants of the minimum degree algorithm [1, 2] and multilevel nested dissection through an interface to

the well-known MeTiS package [23]. Based on the study by Duff and Scott [18], by default, MA57 chooses

between MeTiS and approximate minimum degree (avoiding problems with dense rows [3, 11]).

3.2 HSL MA77

HSL MA77 [25] is also a multifrontal solver that is designed to solve positive definite and indefinite sparse

symmetric systems. It too has separate analyse, factorize and solve phases. The fundamental difference

between MA57 and HSL MA77 is that the latter is an out-of-core solver, that is, it is designed to allow the

matrix data, the computed factors and some of the intermediate work arrays to be held in files. The

advantage of this is that it enables much larger problems to be solved.

Storing data in files potentially adds a significant overhead to the time required to factor and then

solve the linear system. To minimise this overhead, Reid and Scott [24] have written a set of Fortran

subroutines that manage a virtual memory system so that actual input/output occurs only when really

necessary. These routines are available within HSL as the package HSL OF01 and are used by HSL MA77 to

efficiently handle all input and output. Results reported by Reid and Scott [25] illustrate the effectiveness

of HSL OF01 in minimizing the out-of-core overhead; they also present results for problems that were too

large for MA57 to solve on their test machine. On problems that MA57 is able to solve, the performance
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of HSL MA77 is favourable: on some problems it is faster than MA57, while on others the converse is true.

The main exception is the solve time. The factor data has to be read from file twice: once for the forward

substitution and once for the back substitution. This is independent of the number of right-hand sides.

Thus, for a single right-hand side (or small number of right-hand sides), the solve phase of HSL MA77 can

be significantly more expensive than the corresponding phase of MA57, although for a large number of

right-hand sides there is a smaller relative difference.

As with MA57, HSL MA77 offers a range of options. These include allowing the files to be replaced by

arrays (so that, if there is sufficient space, the data is all stored in main memory). The user can specify

the initial sizes of these arrays and an overall limit on their total size. If an array is found to be too small,

the code will continue using a combination of files and arrays. Another important option allows the user

to specify whether he or she is running the code on a 32-bit or 64-bit architecture. On a 64-bit machine,

it is possible to run problems with much larger frontal matrices (on a 32-bit machine, the maximum front

size is limited to approximately 16,000).

We remark that HSL MA77 requires the user to input the pivot order. This can be computed by calling

MeTiS or the HSL package MC47 that implements an approximate minimum degree algorithm; alternatively,

the user may choose to call the analyse phase of MA57 and allow it to select the pivot sequence. Each

of these alternatives computes a pivot order of 1 × 1 pivots; 2 × 2 pivots may be selected during the

factorization. In some cases, it may be advantageous to specify a tentative pivot sequence that includes

2 × 2 pivots; HSL MA77 allows the user to do this. A pivot order that contains 2 × 2 pivots may be found

using the package HSL MC68, and this remains an area of active research.

3.3 Design of HSL MA79

HSL MA79 is designed to provide a robust and efficient implementation of Algorithm 1 for both positive

definite and indefinite systems, using existing HSL packages as its main building blocks. In particular, it

uses the direct solvers MA57 and HSL MA77 and the implementation of FMGRES offered by MI15, together

with the scaling packages MC30, MC64, and MC77. HSL MA79 includes a range of options but it is not our

intention to incorporate all possibilities available within the direct solvers MA57 and HSL MA77. Instead,

we have designed a general purpose package that is straightforward to use and, by limiting the number of

parameters that have to be set, we do not require the user to have a detailed knowledge and understanding

of all the different components of the algorithms used.

The following procedures are available to the user:

• MA79 factor solve accepts the matrix A, the right-hand sides b, and the required accuracy. Based

on the matrix, it selects whether to use MA57 or HSL MA77; by default, the single precision is selected

as the initial precision. The code then implements Algorithm 1. The matrix factorization is retained

for further solves.

• MA79 refactor solve uses the information returned from a previous call to MA79 factor solve

to reduce the time required to factorize and solve Ax = b. The sparsity pattern of A must be

unchanged since the call to MA79 factor solve; only the numerical values of the entries of A and b

may have changed. By default, the precision for the factorization is chosen based on that used by

MA79 factor solve. The matrix factorization is retained for further solves.

• MA79 solve uses the computed factors generated by MA79 factor solve (or MA79 refactor solve)

to solve further systems Ax = b. Multiple calls to MA79 solvemay follow a call to MA79 factor solve

(or MA79 refactor solve). A warning is issued if the computed factors are unable to achieve the

requested accuracy.

• MA79 finalize should be called after all other calls are complete for a problem. It deallocates the

components of the derived data types and discards the matrix factors.
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Derived types are used to pass data between the different routines. In particular, MA79 control

has components that control the action within the package and MA79 info has components that return

information from subroutine calls. The control components are given default values when a variable

of type MA79 control is declared and may be altered thereafter. Full details are provided in the user

documentation.

We now discuss the first three of the above procedures in more detail (the finalize routine needs no

further explanation).

3.3.1 MA79 factor solve

On the call to MA79 factor solve, the user must supply the entries in the lower triangular part of A

in compressed sparse column (CSC) format. The user is also required to state whether the matrix is

known to be positive definite (if it is, it is generally advantageous to take advantage of this by switching

off numerical pivoting). HSL MA79 first checks the user-supplied data for errors (any out-of-range matrix

entries are removed and duplicates are summed). The user may supply a pivot order; otherwise, the analyse

phase of MA57 is called to compute the pivot order. Statistics on the forthcoming factorization (such as

the maximum frontsize, the number of flops, and the number of entries in the factor) are computed. These

are exact for the factorization phase of MA57 if the problem is positive definite; otherwise, they are lower

bounds for MA57 and estimates of lower bounds for HSL MA77. By default, the statistics are used to choose

the direct solver. MA57 is selected unless one or more of the following holds:

(i) It is not possible to allocate the arrays required by MA57. (We allow the user to specify a maximum

amount of memory, and if the predicted memory usage for MA57 exceeds this, we use HSL MA77)

(ii) The matrix is positive definite with a maximum frontsize greater than 1500.

(iii) The matrix is not positive definite and the user-supplied pivot sequence includes 2 × 2 pivots.

(iv) The user has chosen HSL MA77.

The reason for (ii) is that tests have shown that HSL MA77 generally outperforms MA57 under these con-

ditions (see [25]). If the user has flagged the problem as positive definite, any supplied 2 × 2 pivots are

replaced by two consecutive 1 × 1 pivots. The main motivation for selecting MA57 as the default solver is

that HSL MA77 is primarily designed as an out-of-core solver and this incurs an overhead (which may be

significant if the problem is not very large). Furthermore, if MA57 is chosen, the analyse phase has already

been performed, whereas for HSL MA77, ma77 analyse still has to be called. The process of refactorizing

in double precision is also more expensive for HSL MA77 because it is necessary to reload the matrix data

and repeat its analysis phase (this can be avoided for MA57). We remark that, if (iii) or (iv) applies, the

analyse phase of MA57 is not called; instead, the code proceeds directly to calling MA77 analyse.

HSL MA79 offers the user the option of choosing the direct solver. In particular, the results of Reid and

Scott [25] show that HSL MA77 can be significantly faster than MA57 on some problems and the user may

have previous experience that indicates for his or her application HSL MA77 outperforms MA57. Should the

user request MA57 but the problem is found to be too large, a warning flag is issued and the computation

proceeds using HSL MA77. At the start of the factorization with MA57, HSL MA79 allocates the required arrays

based on the analyse statistics (allowing 10 per cent additional space in the indefinite case to accommodate

pivots that may be delayed by numerical pivoting). If during the factorization, MA57 requires larger work

arrays because of delayed pivots, HSL MA79 uses the stop and restart facility offered by MA57 to allocate

larger arrays (the array size is doubled) and to restart the factorization from the failure point. If there is

insufficient memory to allocate these arrays, HSL MA79 switches to HSL MA77. This may add a significant

extra cost as MA77 analyse must be called and the factorization completely restarted.

By default, HSL MA79 works in mixed precision following Algorithm 1 and its development through

Section 2. The user may, however, choose to perform the whole computation in double precision. In this

case, HSL MA79 provides a convenient interface to MA57 and HSL MA77 (albeit without the full flexibility

and options offered by each of these packages individually). This facilitates comparisons between mixed
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and double precision. Working in double precision throughout may be advisable for very ill-conditioned

systems or for very large problems for which repeated calls to the solve routine MA79 solve are expected.

HSL MA79 includes a number of scaling options, provided by the HSL packages MC30 (Curtis and Reid’s

method minimizing the sum of logarithms of the entries [9]), MC64 (symmetrized scaling based on maximum

matching by Duff and Koster [14, 15]), and MC77 using the 1 or ∞ norms (iterative process of simultaneous

norm equilibration [26]). The default is the ∞ norm equilibration scaling from MC77 because recent tests

[21] on a large number of problems from practical applications have shown that, in general, this provides

a good fast scaling.

HSL MA79 offers complete control of the parameters in Algorithms 2 and 3, in addition to the ability to

disable any particular method of recovering precision in Algorithm 1 (for example, the user may specify

that the use of iterative refinement is to be skipped). It also supports tuning of the major parameters

affecting the performance of the factorization phase, such as the block size used by the dense linear algebra

kernels that lie at the heart of the multifrontal algorithm.

An important feature of MA79 factor solve is that it returns (using the derived type MA79 info)

detailed information on the solution process. This includes which solver was used and the precision,

together with details of the matrix factorization (the number of entries in the factor, the maximum

frontsize, the number of 2× 2 pivots chosen, the numbers of negative and zero pivots) and information on

the refinement (the number of steps of iterative refinement, the number of FGMRES iterations performed,

and the total number of calls to the solution phase of MA57 or HSL MA77). In addition, to allow the user to

examine the fine detail of the factorization, the full information type or array from the factorization code

(MA57B or MA77 factor) is returned to the user as a component of the derived type MA79 info.

We note that the user can pass any number of right-hand sides b to MA79 factor solve. In particular,

the user can set the number of right-hand sides to zero. In this case, the routine will only perform the

matrix factorization in the requested (or default) precision.

3.3.2 MA79 refactor solve

We envisage that a user may want to factorize and solve a series of problems with the same sparsity

pattern as the original matrix A but different numerical values. In this case, HSL MA79 can take advantage

of the experience gained on the initial factorization. In particular, information on the size of the computed

factor and work arrays used by MA57 can be used in allocating arrays for subsequent factorizations so that,

unless the new numerical values lead to significantly more delayed pivots, MA57 will not need to stop and

restart because of the arrays not being of adequate size. If the initial factorization found it was necessary

(because of memory limitations) to switch from using MA57 to the out-of-core code HSL MA77, on a second

or subsequent factorization it will be more efficient to go straight for using HSL MA77. Similarly, if the

requested accuracy was only achieved by using a double precision factorization, if the user still wants the

same accuracy, it will generally not be worthwhile to attempt the computation in mixed precision. Thus,

the aim of MA79 refactor solve is to use the experience from the preceding call to MA79 factor solve

to more efficiently factorize and solve subsequent systems with an unchanged sparsity pattern. Although

by default MA79 refactor solve selects the precision for the factorization, an optional argument allows

the user to specify the precision.

On a call to MA79 refactor solve, the user must input the values of the entries in both the lower

and upper triangular parts of the new matrix in CSC format, with the entries in each column in order

of increasing row index. This format (which is the format the original matrix is returned to the user in

on exit from MA79 factor solve) is required so that HSL MA79 can avoid, before the factorization begins,

taking and manipulating additional copies of the matrix (for large problems, this avoidance is important).

Having the matrix in this form also has the side benefit of allowing a more efficient matrix-vector product.

Note that, if necessary, existing sparse matrix manipulation packages within HSL can be employed by the

user to assist in putting the data into the required format. The only other parameters the user must set

are the required accuracy and the right-hand side vectors.

MA79 refactor solve avoids recalling the analyse phase of MA57 (or HSL MA77) and uses the pivot
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sequence that was computed by (or input to) MA79 factor solve. If the user wishes to experiment with

a different pivot sequence, MA79 factor solve must be called. The user may, however, reset the block

size used by the dense kernels and the pivoting threshold u, as well as the parameters used by iterative

refinement and FGMRES.

3.3.3 MA79 solve

After a call to MA79 factor solve (or to MA79 refactor solve), MA79 solve may be called to solve for

additional right-hand sides. If MA57 has been used to compute the factorization (or HSL MA77 was run in-

core), the cost of each additional solve is generally much less than the factorization time but, if HSL MA77

was run with the factors held on disk, the solve time can be significant (see [25]). If the solve is performed

at the same time as the factorization, the factors can be used to perform the forward substitution as they

are generated, cutting the input and output (and hence the time) for the solve approximately in half.

There is, of course, no guarantee that the requested accuracy will be achieved for one or more of the

user’s right-hand sides. In this case, MA79 solve will return a warning together with the computed solution

and information on size of the corresponding scaled residual. In particular, if the factorization has been

performed in single precision, the required accuracy may not be achieved without resorting to a double

precision factorization, which will not occur automatically with MA79 solve. If the user wants to switch to

double precision after a warning from MA79 solve, he or she should call MA79 refactor solve, explicitly

specifying the factorization is to be performed in double precision.

Between calls to MA79 solve, the user may change any of the parameters relating to the iterative

methods, such as the minimum improvement parameter (δ) and the parameters f maxitr and i maxitr

that control the maximum number of iterations.

4 Numerical Results

In this section, we present results obtained using a pre-release version of HSL MA79. This uses Version 3.2.0

of MA57 and Version 4.0.0 of HSL MA77. Our experiments are performed on the machine and test examples

described in Section 1. The requested accuracy is β < 5 × 10−15 and, unless stated otherwise, we use

the default settings for all the HSL MA79 parameters (in particular, the parameters chosen in Section 2 are

used to control the solution recovery).

Figures 4.3 and 4.4 compare the performance of mixed precision and double precision for Test Sets 1

and 2, respectively, with MA57 selected as the direct solver within HSL MA79 for Test Set 1 and HSL MA77

for Test Set 2. We note that, if the mixed precision approach is used, 31 problems in Test Set 1 and 27

problems in Test Set 2 fail to achieve the required accuracy (that is, mixed precision fails for about 10 per

cent of our test problems). From Figure 4.3, we see that, if the time taken by HSL MA79 in double precision

is less than about 1 second, there is generally little or no advantage in using mixed precision (in fact,

for a number of problems, running in double precision is almost twice as fast as using mixed precision).

However, for the larger problems within Test Set 1, mixed precision is more than 1.5 times faster than

double precision. For the problems in Test Set 2 with the out-of-core solver HSL MA77, mixed precision is

only recommended if the double precision time is greater than about 10 seconds. For problems that run

more rapidly than this, the savings from the single precision factorization are not large enough to offset the

cost of the additional solves (which, in this case, involve reading data from disk). Of course, if the user is

prepared to accept a less accurate solution (that is, the tolerance γ is chosen to be greater than 5×10−15),

this will effect the balance between the mixed precision time (which will decrease as fewer refinement steps

will be needed) and the double precision time (which, in many instances, will be unchanged).

In Table 4.4, we report the number and percentage of problems in each test set for which the required

accuracy was achieved after iterative refinement and after iterative refinement followed by FGMRES. We

also report the number of problems that had to switch to a double precision factorization to achieve the

required accuracy and the number that failed to achieve this even in double precision. There were just two
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Figure 4.3: Ratio of times to solve (1.1) with HSL MA79 in mixed precision and double precision modes on

Test Set 1 using MA57 as the solver, with accuracy γ = 5 × 10−15.

 0

 0.5

 1

 1.5

 2

 2.5

 0.001  0.01  0.1  1  10  100  1000  10000

tim
e(

do
ub

le
)/

tim
e(

m
ix

ed
)

time(double)

Accuracy achieved (305 problems)
Accuracy not achieved (25 problems)

14



Figure 4.4: Ratio of times to solve (1.1) with HSL MA79 in mixed precision and double precision modes on

test set 2 using HSL MA77 as the solver, with accuracy γ = 5 × 10−15.
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such problems: GHS indef/boyd1 and GHS indef/blockqp1 (these had final scaled residuals of 6.2×10−14

and 2.9 × 10−14, respectively).

Table 4.4: Number of problems that exited at each stage of Algorithm 1 implemented as HSL MA79.

Test Set 1 Test Set 2

MA57 HSL MA77

After iterative refinement 265 81% 157 68%

After FGMRES 40 12% 45 19%

After switch to double precision 24 7% 28 12%

Failed 1 <1% 2 1%

As expected, when mixed precision fails to reach the desired accuracy, HSL MA79 spends longer estab-

lishing this fact than if double precision was used originally. Thus it is essential for a potential user to

experiment to see whether the mixed precision approach will be advantageous for his or her application

and computing environment.

It is of interest to consider not only the total time taken to solve the system (1.1), but also the times for

each phase of the solution process in mixed precision and in double precision. Table 4.5 reports timings for

the various phases for a subset of problems of different sizes from Test Set 2. The problems are ordered by

the total time required to solve (1.1) using double precision. The time for the analyse phase (which here

includes the time to scale the matrix) is independent of the precision. The “Single Solve” time is the time

needed to perform forward and back substitution (for a single right hand side) in single precision (for the

mixed precision case) or double precision (for the double precision case). It is worth noting that, once a

single solve has been performed, future solves are often faster because of caching by the operating system.

The advantage of mixed precision on larger problems is clearly because such problems have a large ratio

for the factorize to solve time.
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Table 4.5: Times to solve (1.1) for a subset of problems from Test Set 2 with HSL MA79 using HSL MA77 as the solver. m denotes mixed precision and d

denotes double precision. The numbers in parentheses are iteration counts. - indicates iterative refinement (or FGMRES) was not required.

Total Analyse Factorize Iterative Refinement FGMRES β

Problem m d m d m d m d m d

HB/bcsstk17 0.30 0.25 0.10 0.11 0.14 0.06 (5) - - - 1.17e-15 1.24e-16

Boeing/crystm03 1.08 1.09 0.64 0.33 0.44 0.09 (3) - - - 3.78e-16 4.80e-16

Boeing/bcsstm39 3.86 3.97 3.66 0.11 0.30 0.09 (2) - - - 2.31e-15 1.28e-16

Rothberg/cfd1 6.22 8.41 2.98 2.48 5.43 0.69 (3) - - - 1.41e-16 2.32e-16

Rothberg/cfd2 11.8 14.6 4.97 5.27 9.62 1.39 (3) - - - 1.69e-16 2.74e-16

INPRO/msdoor 28.7 20.2 5.39 9.64 11.8 2.70 (3) - 10.1 (8) - 2.96e-16 2.64e-16

ND/nd6k 29.7 38.8 5.33 20.3 33.1 3.77 (8) - - - 3.67e-15 1.68e-15

GHS psdef/apache2 61.8 66.1 19.8 29.1 46.4 12.5 (6) - - - 1.79e-16 1.43e-15

Koutsovasilis/F1 63.5 79.1 16.9 36.1 60.1 9.10 (4) - - - 1.75e-15 2.16e-16

Lin/Lin 57.4 79.9 10.8 39.3 66.4 7.26 (5) 2.69 (1) - - 3.20e-16 2.03e-16

ND/nd12k 104 149 14.5 78.0 134 11.5 (8) - - - 1.00e-15 2.07e-15

PARSEC/Ga3As3H12 348 537 21.6 302 511 24.30 (8) 5.86 (1) - - 3.27e-15 3.37e-16

ND/nd24k 372 570 36.5 297 532 36.5 (9) - - - 1.02e-15 2.94e-15

GHS indef/sparsine 409 540 18.4 314 517 5.28 (2) 4.92 (1) 70.5 (16) - 4.20e-16 3.51e-16

PARSEC/Si34H36 783 1287 38.7 706 1236 37.7 (6) 12.1 (1) - - 4.91e-16 2.71e-16

GHS psdef/audikw 1 810 1329 65.7 620 1262 120 (7) - - - 4.67e-15 5.84e-17

PARSEC/Ga10As10H30 1187 2046 51.6 1082 1976 53.3 (6) 18.7 (1) - - 2.96e-16 1.96e-16

PARSEC/Si87H76 6058 9310 153 4703 8815 1202 (7) 344 (1) - - 6.64e-16 1.95e-16

1
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5 Conclusions and future directions

In this paper, we have explored a mixed precision strategy that is capable of outperforming a traditional

double precision approach for solving large sparse symmetric linear systems. Building on the recent work of

Arioli and Duff [4] and Buttari et al [7], we have designed and developed a practical and robust sparse mixed

precision solver; the new package HSL MA79 will be made available within the HSL Library. Numerical

experiments on a large number of problems has shown that, in about 90% of our test cases, it is possible

to use a mixed precision approach to get accuracy of 5 × 10−15; in the remaining cases, it is necessary to

resort to computing a double precision factorization (or to accept a less accurate solution). HSL MA79 is

designed to allow an automatic switch to double precision and is tuned to minimize the work performed

before the switch is made. However, although we have demonstrated robustness, our experience is that,

in terms of computational time, the advantage of using mixed precision is limited to large problems (how

large will depend on the direct solver used within HSL MA79, on the computing platform, and also on the

requested accuracy).

Future work on HSL MA79 will focus on more efficiently recovering double precision accuracy in the case

of multiple right hand sides; this will lead to the replacement of the MI15 implementation of FGMRES

with a specially modified variant of FGMRES, which may require a different adaptive restarting strategy.

We also plan to use HSL MA79 to solve problems that are so large that it is only possible to compute and

store a single precision factorization.

Throughout this paper, we have considered factorizing A in single precision combined with recovery

using double precision. However, this does not have to be the case. Provided the condition number of the

matrix is less than the reciprocal of the desired accuracy γ, the theory [4] supports recovery to arbitrary

precision. In this case, the refinement must be carried out in extended precision. It is also possible to

perform a factorization in double precision and then recover to higher precision. This will be the subject

of a separate study.

6 Code availability

All the codes discussed in this paper have been developed for inclusion in the mathematical software library

HSL. All use of HSL requires a licence. Individual HSL packages (together with their dependencies and

accompanying documentation) are available without charge to individual academic users for their personal

(non-commercial) research and for teaching; licences for other uses involve a fee. Details of the packages

and how to obtain a licence plus conditions of use are available at www.cse.clrc.ac.uk/nag/hsl/.
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