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Abstract

This thesis describes two separate areas of work conducted for the delphi detector
at lep.

The first concerns the Slow Controls of the delphi detector, which enable a single
operator to oversee the proper functioning of the apparatus and to diagnose faults as
they occur. The hardware and software of this system, as well as their interface to
the experiment and the operator, are described. Some conclusions are drawn from
seven years’ design work and the initial six years’ operation of delphi.

Secondly, a study is made of the production, at e+e− collision centre of mass
energies close to the Z0 resonance, of J/ψ mesons, decaying to µ+µ−. J/ψ mesons
produced via a B-hadron are used to measure the mean B lifetime,

τB = (1.53 ± 0.11 (stat.) ± 0.06 (syst.)) ps.

A measurement is also made of the fraction of J/ψs produced promptly at the e+e−

collision point,

N(Z0 → prompt J/ψX)

N(Z0 → J/ψX)
= (9.6 ± 3.2 (stat.) ± 1.2 (syst.))%.

This method is largely model-independent.
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Introduction

This thesis describes work carried out on the delphi detector at the lep e+e− collider

at cern near Geneva in Switzerland. Until the autumn of 1995, lep operated at

centre-of-mass energies close to the Z0 pole. This has provided many rich fields of

study: probing the properties of the Z0 itself, searching for new particles among its

decays, and making use of the large cross-section as a factory for the production

of other particles for study in a relatively clean environment compared to hadron

machines.

delphi is a general purpose detector with particular strengths in the fields of

particle identification and the precise measurement of particle decays close to the

collision point. It is no coincidence that these are both especially important for the

study of B-hadrons, which have been an active area of research at lep, and are central

to the analysis presented in chapter 4.

I first worked on the delphi detector as a summer student at the Rutherford

Appleton Laboratory (ral) in 1984, when I made some first Monte Carlo studies

of the proposed Vertex Detector. Since 1986, when I took up a position at ral

as a Physicist–Programmer, I have been responsible for much of the delphi Slow

Controls system: specifically the Elementary Process (described in section 3.5.1) and

a first version of hipe (section 3.5.2). I have also collaborated on the vax–g64

communications (section 3.3.2) and emu (section 3.6) systems, as well as the overall

design of the Slow Controls system. In 1994 I wrote a description of this system for

publication [82]. Chapter 3 is based on this paper, though considerably expanded.

After delphi started running in 1989/90, I started the DPhil for which this thesis



2 Introduction

is submitted. As well as continuing work on the Slow Controls (much of the final sys-

tem came into operation during this period), I was also involved in the initial design

and implementation of the Vertex Detector event viewing [27] and the analysis pack-

age, vdclap (section 2.3.1). My main field of analysis has been on J/ψ production

in delphi, and this is described in chapter 4. The early stages of this work involved

studies of the delphi track reconstruction (section 2.11.2) quality.

Much of the J/ψ studies presented later have been performed in close collabo-

ration with Paula Collins. While I created the basic analysis program framework

(described in section 4.2) and our post-ntuple analyses and fits were largely indepen-

dent, Paula contributed significantly to the development of the analysis program in

many areas of additional study detailed in [1]. She also developed code for extracting

and interpreting Monte Carlo truth information, of which I have made extensive use.

This thesis is organized as follows.

Chapter 1 presents a brief outline of the current understanding of J/ψ production

at lep. Further details may be obtained from the references given.

Chapter 2 describes the delphi detector, its Data Acquisition system, and those

aspects of the event analysis chain that are common to a variety of studies.

Chapter 3 gives a detailed account of the delphi Slow Controls system, concen-

trating on the system in operation from 1993–5. In previous years the system was still

under development. Subsequent years saw running above the W+W− threshold, as

well as the replacement in 1997 of the vax computers with Alpha (axp) systems (still

running the vms operating system), and the initial deployment of G64-based 68020

processors as a replacement for some of the more heavily loaded 6809 processors.

Chapter 4 details a study of J/ψ production at lep. J/ψs are used as a tag of

B-hadron decay positions, allowing for a measurement of a mean B-hadron lifetime.

The number of J/ψs produced at the e+e− collision point is also obtained.
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List of Common Abbreviations

adc analog-to-digital converter

aleph [13] detector situated at collision point 4 of the lep collider

ascii American Standard Code for Information Interchange (ba-
sic 7-bit character set)

ast [114] Asynchronous System Trap (vms process-context inter-
rupt)

bco §2.10 lep beam cross-over

caen §3.3.1 a commercial high voltage unit

cargo §3.7 the delphi database system

cats §3.3.2 Common Access to Transport Service (communications
protocols interface)

cern European Laboratory for Particle Physics

cms centre of mass system

cpu Central Processing Unit

das §2.10 Data Acquisition system (aka daq)

delana §2.11.1 delphi analysis program

delphi §2.2 detector situated at collision point 8 of the lep collider

delsim §2.12 delphi simulation program

dim §3.8 delphi Information Management communications system

dma direct memory access, allowing a peripheral to access mem-
ory without intervention by the cpu

dst §2.11.1 post-delana data storage format

dstana §2.11.1 post-delana analysis library

dstfix §2.11.1 post-delana event processing

dui §3.8.2 delphi (graphical) User Interface

emf §§2.5.2,3.2.6 Forward Electromagnetic Calorimeter

emu §3.6 Error Message Utility

ep §3.5.1 Elementary Process

eprom Erasable Programmable Read Only Memory

fb §2.10 Fastbus



6 List of Common Abbreviations

fca §§2.3.5,3.2.4 Forward (tracking) Chambers A

fcb §§2.3.6,3.2.4 Forward (tracking) Chambers B

flex §3.3.2 the G64 Operating System

G64 §3.3 microprocessor bus or the microcomputer based on it

gss §3.9.2 General Surveillance System

hac §§2.5.3,3.2.6 Hadron Calorimeter

hipe §3.5.2 expert interface to the Elementary Process

hof §§2.7,3.2.8 Forward Hodoscope

hpc §§2.5.1,3.2.6 High-density Projection Chamber (barrel electromagnetic
calorimeter)

hv high voltage

id §§2.3.2,3.2.3 Inner (tracking) Detector

ieee Institute of Electrical and Electronics Engineers

jetset §2.12 Lund e+e− Monte Carlo generator with jet fragmentation

L3 [15] detector situated at collision point 2 of the lep collider

led Light-Emitting Diode

lep §2.1 Large Electron–Positron collider

lv low voltage

mac §3.3.1 double-height crate containing G64 and input/output cards

mc Monte Carlo simulation

mhi [121] Model Human Interface package

minuit [148] function minimization and error analysis package

mub §§2.6.1,3.2.7 Barrel Muon Chambers

muc §2.6 Muon Chambers (barrel, forward, and surround)

muf §§2.6.2,3.2.7 Forward Muon Chambers

mus §§2.6.3,3.2.7 Surround Muon Chambers

mwpc multiwire proportional chambers

ndf number of degrees of freedom

nmr nuclear magnetic resonance

od §§2.3.4,3.2.3 Outer (tracking) Detector

opal [16] detector situated at collision point 6 of the lep collider

osi §3.3.2 Open Systems Interconnect network protocols (iso stan-
dard)

paw [145] Physics Analysis Workstation data manipulation and pre-
sentation program

pia §3.3.1 Parallel Input Adapter

qed Quantum Electrodynamics
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ral Rutherford Appleton Laboratory

ram random-access (read/write) memory

rib §3.2.5 Barrel rich

rich §§2.4,3.2.5 Ring Imaging Cherenkov Counters

rif §3.2.5 Forward rich

rms root mean square

rom read-only memory

rpc §3.3.2 Remote Procedure Call

sat §§2.8.1,3.2.9 Small Angle Tagger luminosity monitor

sci §§2.7,3.2.8 Scintillator Trigger Counters

sc chapter 3 Slow Controls

slimos §3.10 shift leader in matters of safety

smi §3.8 State Management Interface

S/N signal to noise ratio

sps §2.1 Super Proton Synchrotron

stic §§2.8.2,3.2.9 Small Angle Tile Calorimeter luminosity monitor

tanagra §2.11.1 data storage format used in delana

tcp/ip Transmission Control Protocol over Internet Protocol (In-
ternet standard)

td §2.11.1 digitization tanagra bank

te §2.11.1 track element tanagra bank

tk §2.11.1 reconstructed track tanagra bank

tla three-letter acronym

tmae §3.2.5 a photo-ionizing vapour

tof §§2.7,3.2.8 Time of Flight counters

tpc §§2.3.3,3.2.3 Time Projection Chamber

vax §3.4 computers used in the online for high-level control

vd §§2.3.1,3.2.3 Vertex Detector

vdclap §2.3.1 vd analysis library

vms §3.4.2 the vax operating system

vsat §§2.8.3,3.2.9 Very Small Angle Tagger luminosity monitor

VT100 text-based computer terminal





Chapter 1

J/ψ Production from the Z0

J/ψ meson production from Z0 decays can be described by two classes of mechanism.

The dominant one is via the weak decay of B-hadrons1

Z → bb̄, b → J/ψX. (1.1)

with the J/ψ produced in association with other hadrons, X, produced both in the

hadronization of the b quark and the subsequent decay of the B-hadron.

In common with other B decay modes, the large Z0 mass (91 GeV/c2, compared

to B-hadron masses of 5.3–5.6 GeV/c2) provides the B-hadrons with a large boost

(∼ 6.1, with average momentum ∼ 32 GeV/c) which, coupled with their relatively

long lifetime (∼ 1.6 ps), gives an average decay distance of around 2.9 mm at lep.

Such distances are measurable using vertex detectors, such as the one pioneered by

delphi and described in section 2.3.1. This is exploited in the analysis described in

chapter 4.

In the spectator model, the B-hadron decay is dominated by the b-quark, for

example as shown in figure 1.1. Although the spectator model fails dramatically

in the charm sector, as evidenced by different lifetimes for different species (e.g.

τD+ = (1.057 ± 0.015) ps but τΩ0
c

= (0.064 ± 0.020) ps [2]), the heavier b-quark

1In other words, the decay of naked beauty to hidden charm.
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Figure 1.1: Mechanism for the decay B → J/ψK.

mass should produce much smaller differences, though there is still considerable the-

oretical uncertainty as to how much smaller [3, 4]. Experimentally [5], there seem

to be no significant differences between the B±, B0, and Bs meson lifetimes, but a

shorter B-baryon lifetime is seen (τΛB
/τB0 = 0.78± 0.05), though not yet understood

theoretically.

Many experimental determinations of B-hadron lifetimes, including the one de-

scribed in chapter 4, do not distinguish the different species, and so measure a mean.

Given the different B lifetimes, slightly different values may be obtained depending

upon the composition of the B-hadron source and (for exclusive and semi-inclusive

studies) the branching fractions to the selected final states.

More details on the mean B lifetime and J/ψ production from B decays can be

found in [1, chapter 1]

Other production mechanisms produce the J/ψ promptly at the e+e− collision

point (see figure 1.2). The most significant processes are

Charm fragmentation: The primary reaction is Z0 → cc̄. One c-quark emits a

gluon, which splits into another cc̄ pair. If the secondary c̄-quark is of opposite

colour and approximately collinear to the primary c-quark, then a charmonium

state can be formed. The branching fraction for this process is predicted [7] to

be

Br(Z0 → cc̄ + prompt J/ψ) = 0.8 × 10−4 (1.2)
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Figure 1.2: Feynman diagrams for various prompt J/ψ production mechanisms [6].

Gluon fragmentation: In this case a virtual gluon emitted from one of the quarks

in a Z0 → qq̄ decay forms a charmonium state. Originally this process was

expected to have had a much smaller branching fraction [8] than that of charm

fragmentation because only the ‘colour singlet’ mode was considered. This

requires the cc̄ quarks to be mutually colourless to form a J/ψ. However more

recent models, where the J/ψ is formed via a ‘colour octet’ state which evolves

into the singlet state with the emission of soft gluons, give larger expected

branching fractions

Br(Z0 → qq̄+g∗ → prompt J/ψ) = 1.9×10−4 [7]2 and 1.5×10−4 [11] (1.3)

though with a factor of ∼ 2 uncertainty. In principle, the colour octet mode

also contributes to charm fragmentation, but is expected to be negligible.

In both cases the branching ratio predictions are based on fits [9, 10] to J/ψ

2Reference [7] quotes a branching ratio of 3.3× 10−4, which is based on an amplitude calculated
in [9]. Using their updated amplitude from [10] gives 1.9 × 10−4.
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transverse momentum distributions measured at cdf [12].

The large Z0 hadronic cross section (∼ 30 nb) and lep luminosities (139 pb−1

integrated luminosity at the Z0 recorded by delphi in 1992–5) mean that, despite

the small branching fraction [2, page 218]

Br(Z0 → J/ψX) = (0.380 ± 0.027)% , (1.4)

a reasonable number of J/ψs are produced. The decay mode J/ψ → µ+µ−, which

accounts for (6.02 ± 0.19)% [2, page 532] of J/ψ decays allows a particularly clean

J/ψ selection.



Chapter 2

The DELPHI Detector

The delphi1 detector is one of four [13, 14, 15, 16] installed around the lep2 electron–

positron collider at cern.3 For its first seven years lep operated at around 91 GeV

centre-of-mass energy (the Z0 resonance). At the end of 1995 it made a brief foray

to 136 GeV. From July 1996 it has been mostly been running above the W+W−

threshold, initially at 161 GeV. In this thesis I describe the detector configuration

and experimental results from the period of Z0 running.

delphi is designed as a general purpose detector with special emphasis on par-

ticle identification (using the Ring Imaging Cherenkov (rich) detector) and precise

measurement of particle decays close to the collision point (using the silicon Vertex

Detector (vd)).

2.1 The LEP Machine

As shown in figure 2.1, lep is located on the Swiss–French border near Geneva.

It is roughly circular (actually eight straight sections on either side of each cavern,

interspersed with curved sections), 26.7 km in circumference and between 50 and

1Detector with Lepton, Photon, and Hadron Identification, c©Gerald Myatt. The members of
the delphi Collaboration are listed in appendix A.

2Large Electron–Positron collider
3European Laboratory for Particle Physics. The acronym, ‘cern’, is from its original title, Conseil

Européen pour la Recherche Nucléaire.
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Figure 2.1: Location of the lep collider at cern. The positions of the four experi-
ments (delphi, opal, aleph, and L3) and the sps accelerator are also shown.
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Figure 2.2: The lep injector complex. The two closest detector caverns on the lep
beamline (delphi and L3) are also shown.

170 m below ground level.

The injector system, which starts at the main cern site, is shown in figure 2.2.

The lep Injector Linacs (lil) produce electrons and positrons (the positrons from

the collision of 200 MeV electrons with a tungsten converter), which are separately

accelerated to 600 MeV. After storage in the Electron–Positron Accumulator (epa),

they are injected into the Proton Synchrotron (ps) and thence into the Super Pro-

ton Synchrotron (sps); these accelerate the particles to 3.5 and 20 GeV respectively.

After injection into lep, the counter-rotating electrons and positrons are acceler-

ated to 45 GeV using a radio frequency (rf) acceleration system powered by six-

teen 1 MW klystrons, operating in two of the straight sections of the ring. The

beams are bent into orbit by 3368 dipole magnets and focused with 808 quadrupole

and 504 sextupole magnets. Superconducting quadrupoles provide additional focus-

ing around the four interaction regions, where the beams are squeezed to a rms width

of about (200 × 5) µm2 (horizontal × vertical).
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The expected event rate is

N =

∫
σL(t)dt , (2.1)

where σ is the cross-section for the process in question (∼ 30 nb for e+e− → Z0 → qq̄

at the Z0 peak4). In lep, the luminosity, L, defined by equation 2.1, is approximately

L =
nbfNe−Ne+

4πσxσy
(2.2)

The nb bunches in each beam circulate round the ring with a frequency f . Each

bunch contains Ne− electrons or Ne+ positrons and has rms dimensions σx × σy

(given above) at the interaction point. Typical 1994 values nb = 8 and f = 11.2 kHz

(corresponding to a beam cross-over rate of 11 µs), with Ne+ = Ne− = 1.7×1011 give

a luminosity, L, of 2.1 × 1031 cm−2s−1.

The lep design and commissioning is described in [17], while its subsequent op-

eration and performance is summarized in [18]. As well as higher currents and better

operational efficiency, the luminosity was improved using the Pretzel [19] and bunch

train [20] schemes, which increased the number of bunches of electrons + positrons in

the machine from 4 + 4 (1989–92) to 8 + 8 (1992–4), and thence to 12 + 12 (1995).

Table 2.1 summarizes the luminosity and number of events observed by delphi.

2.2 Detector Overview

The detector and its front-end electronics are situated 100 m underground in the

experimental cavern (see figure 2.3). The layout of delphi is illustrated in figure 2.4.

The detector has a cylindrical geometry consisting of successive layers of charged

tracking detectors (Vertex Detector, Inner Detector, Time Projection Chamber (tpc),

and outside the Cherenkov detector (Barrel rich), the Outer Detector at a radius

of 2 m), followed by electromagnetic and hadron calorimetry (provided respectively

41 nb = 10−33 cm2
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Year
∫ Ldt (pb−1) Nhad/103

1989 0.7 13
1990 5.8 125
1991 17.2 275
1992 24.1 751
1993 36.3 755
1994 46.3 1484
1995 31.7 750
Total 162.1 4153

Table 2.1: Integrated luminosity and total number of hadronic Z0 events [23] recorded
by delphi in the period 1989–95. Nhad is higher in 1992 and 1994 relative to the
integrated luminosity because during the other years a significant amount of data was
taken off-peak, where the cross-section is much lower.

Figure 2.3: The delphi experimental hall. This view shows the counting houses,
which are in front of the detector itself.
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DELPHI
Vertex Detector

Inner Detector

Time Projection Chamber

Small Angle Tile Calorimeter

Very Small Angle Tagger

Beam Pipe

Quadrupole

Barrel RICH

Outer Detector

High Density Projection Chamber

Superconducting Coil

Scintillators

Barrel Hadron Calorimeter

Barrel Muon ChambersForward Chamber A

Forward RICH

Forward Chamber B

Forward EM Calorimeter

Forward Hadron Calorimeter

Forward Hodoscope

Forward Muon Chambers

Surround Muon Chambers

Figure 2.4: Schematic layout of the 1994–5 delphi detector, showing a cutaway view
of the barrel and the −z endcap, and a ‘standard woman’ for scale. Note that the
Forward Chambers A are actually fixed to the Time Projection Chamber, but shown
here on the front of the endcap for clarity.
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by the High-density Projection Chamber and instrumented magnet yoke), and finally

muon chambers (at 5 m radius). There is a similar arrangement in the endcaps

(forward tracking chambers, rich, electromagnetic and hadron calorimetry, and muon

chambers at 5 m on either side of the interaction point). Additional scintillators

and muon chambers between barrel and endcaps, and low-angle calorimeters (mainly

for measuring Bhabhas) aim to provide near-4π solid-angle coverage. The tracking

chambers use a solenoidal magnetic field of 1.2 tesla, provided by a superconducting

electromagnet just inside the hadron calorimeter.

The primary coordinate scheme [21] used by the delphi collaboration has the

z-axis along the electron beam direction (parallel to the detector’s central magnetic

field), horizontal x-axis pointing towards the centre of lep, and vertical y-axis point-

ing upwards, so that (x, y, z) make a right-handed Cartesian system. Given the

cylindrical symmetry of the detector (and the processes it measures) it is often more

convenient to use a cylindrical or spherical coordinate system with radial and polar

coordinates, R and θ, giving respectively the perpendicular distance and the angle

from the z-axis. The azimuthal coordinate, φ, gives the angle from the x-axis in the

xy projection. Due to delphi’s symmetry about the xy plane, quoted polar angles

θ < 90◦ will imply also the reflection in the xy plane (180◦ − θ), unless otherwise

stated.

Tables 2.2 and 2.3 summarize the characteristics of the main detector components

described in the following sections. Particular attention is paid to the Vertex Detec-

tor and Muon Chambers which play an important rôle in the analysis presented in

chapter 4. More details of the detector design may be found in [22, 14] and references

given below. A review of the performance of delphi in its first six years of opera-

tion is given in [23]. The Slow Controls of each detector component are described in

section 3.2, with table 3.1 listing the gas mixtures used.
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2.3 Tracking Detectors

The trajectory of charged particles may be determined by their ionizing effects on

the material they pass through. The track curvature in a magnetic field can be used

to determine a particle’s momentum (and charge), which in delphi’s central uniform

1.2 T field is given in GeV/c by p = 0.0036ρ/ sin θ, where ρ is the radius of curvature

in cm.

Tracking of charged particles in the barrel is provided by the Inner Detector (id),

tpc, and Outer Detector (od). The forward chambers (fca and fcb) are used in

the endcaps. All these detectors use gases as ionizing media. Additional extremely

precise measurements are made close to the interaction point by the silicon Vertex

Detector (vd). See table 2.2 for a comparison of these detectors’ specifications.

2.3.1 Vertex Detector (VD)

A recognition of the importance of precise measurements close to the interaction

region to identify and reconstruct short-lived particles, particularly given the emphasis

on particle identification prompted by the riches, led to the inclusion of a high-

precision silicon Vertex Detector in the design of delphi.

Geometry

After initial tests during the pilot run of 1989, two layers of single-sided detectors

(measuring only the azimuthal coordinate) at 9 and 11 cm radii (designated inner and

outer respectively) were installed in 1990. This was the first use of this technology

in a collider [24].

In 1991 an additional (closer) layer was added at 6.3 cm, when experience with

lep operation allowed a reduction of the beampipe radius from 7.9 to 5.6 cm. The

new beampipe is composed of beryllium, rather than aluminium to reduce multiple

scattering.

For the 1994 run, the closer and outer layers were replaced with double-sided
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Detector Geometric Acceptance measurements Resolution
Coordinate R [cm] |z| [cm] θ [deg] per track per point

(+z) per coord. (σ) [mm]

vd (1990) Rφ 9, 11 ≤ 12 ≥ 37 2 0.008
vd (1991–3) Rφ 6.3, 9, 11 ≤ 12 ≥ 28 3 0.008
vd (1994–5) Rφ 6.3, 9, 11 ≤ 14 ≥ 25 3 0.008

z 2 0.009(⊥)–0.040
id (–1994) Rφ 11.8–22.3 ≤ 40 ≥ 17 24 0.075–0.125
trigger layers z 23–28 ≤ 50 ≥ 30 5 0.5(⊥)–1
id (1995–) Rφ 11.8–22.3 ≤ 62 ≥ 10 24 0.085
straw tubes Rφ 25–30 ≤ 105 ≥ 15 5 2.4
tpc Rφ 35–111 ≤ 134 ≥ 20 16 0.25

z 16 0.88
dE/dx 192 6.2% total

rib liquid θc 124–148 ≤ 155 ≥ 40 ∼ 14 13.3 mrad
rib gas θc 148–196 ≤ 177 ≥ 40 ∼ 8 4.3 mrad
od Rφ 197–206 ≤ 232 ≥ 42 5 0.11

z 3 35
mub Rφ 445, 479, 532 ≤ 385 ≥ 52 2–6 1

z 10
fca x, u, v 30–103 155–165 11–32 2 .3
rif liquid θc 450–125 172–185 16–35 ∼ 7 11.4 mrad
rif gas θc 450–180 206–266 12–35 ∼ 8 2.5 mrad
fcb x, u, v 53–195 267–283 11–36 4 .3
muf x, y 70–460 463, 500 9–43 2 + 2 1 + 2
mus φ, θ 480–655 410–575 42–52 2 10,25

Table 2.2: Some characteristics of the delphi tracking and particle identification
detectors: Vertex Detector (vd), Inner Detector (id), tpc, Outer Detector (od),
Forward Chambers A and B (fca and fcb respectively), Barrel and Forward riches
(rib and rif), and Barrel, Forward, and Surround Muon Chambers (mub, muf, and
mus).

detectors [25], which are capable of measuring both the azimuthal and longitudinal

coordinates. The inner layer remained of the old design (and in fact used modules

scavenged from the inner and outer layers of the previous detector).

The geometry of the 1994 detector is shown in figure 2.5. Each shell consists

of 24 modules with a 10–20% overlap in φ between modules. The 12 modules in

the three layers on each side (+x and −x) are assembled into two half-shells, which

are independently installed into delphi. Each module consists of 4 silicon detectors

(plaquettes), bonded together end-to-end for a total length of 24 cm for the inner

and outer layers, and 22 cm (1991–3) / 28 cm (1994–5) for the closer layer.
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a) b)

Figure 2.5: Schematic layout of the 1994 Vertex Detector in a) perspective and b) Rφ
views. The scale is in cm. The geometry of the 1991–3 detector was similar, except
that it did not have the longer innermost layer, and the modules of the outer two
layers had a ‘paddle wheel’ arrangement.

Detectors

The single-sided detector plaquettes consist of 285 µm-thick phosphorous-doped n-

type silicon with 7 µm-wide boron-doped p+ strips parallel to the z-axis spaced at

intervals of 25 µm. By applying a reverse bias of ∼ 60 V to these diodes, the n-

type silicon is depleted of charge carriers. The passage of a charged particle through

the detector liberates electron–hole pairs. The holes drift to the diodes where the

deposited charge is detected.

Every other diode (i.e. at 50 µm intervals) is read out via capacitive coupling:

the aluminium readout strip is separated from the p+ silicon by a 0.23 µm layer

of silicon dioxide insulator. Capacitive coupling, rather than direct charge readout,

is used to reduce the leakage current and hence detector noise. Each unconnected

strip is capacitively coupled to the readout strips on either side of it. This causes

the deposited charge to be distributed over several readout strips (most often two),

allowing the position measurement to be improved over simple strip enumeration by

using the relative charge deposits on each strip.

As shown in figure 2.6, the double-sided detector has n+ strips running across its

other side, allowing the z-coordinate to be measured by picking up the electron signal.

A layer of metal readout lines, orthogonal to those running along the n+ strips, allows
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Figure 2.6: Cross section of a Vertex Detector double-sided plaquette.

the signals from the n-side to be read out at the end of the detector.

In order to improve the signal-to-noise (S/N) ratio in z, the n+ strip pitch is

increased at the ends of the module, where the larger incidence angle of the tracks

spreads the charge over a larger area. The two plaquettes on each side of a module

are bonded such that the n-side of one is joined to the p-side of the other, further

improving the (S/N) of the z-measurement. The opposite polarities of signals from

the two plaquettes also alleviates the ambiguity produced by multiplexing (3:1 in the

closer and 2:1 in the outer layer) the connections between the two metal layers on the

n-side.

Readout

Pairs of plaquettes are wire-bonded in series to form half-modules, which are read

out at either end by onboard cmos chips, which each preamplify and multiplex the

charges from 128 channels. 4–10 chips are read out serially at 2.5 MHz on a single
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twisted pair cable connected via a line driver and repeater to the data acquisition

crates (in the counting houses, ∼ 25 m away). 36 (1991–3) or 48 (1994–5) sirocco5

Fastbus modules, each with two readout units consisting of a flash adc and digital

signal processor are used to digitize the signal stream and perform pedestal and noise

calculations and zero suppression. A total of 73,728 (1991–3) or 125,952 (1994–5)

strips are read out.

Temperature and humidity variations (which are monitored as described in sec-

tions 3.2.3 and 3.2.10) as well as detector interventions can affect the alignment. Until

1995, the stability of the outer layer position relative to the id was monitored (every

64th beam crossing) to a 1 µm precision using lasers.

Reconstruction

Channels passing a S/N cut (in 1994, 2.5 on the p-side and 1.4 on the n-side) are

grouped into clusters, which are accepted if their total S/N > 5. The hit position

is calculated from the pulse-height weighted position of the cluster maximum and

its largest neighbour (η = Si+1/(Si + Si+1)), corrected for nonlinear charge sharing

between the two strips. n-side clusters with a large incidence angle (> 15◦ from the

normal) where the charge is spread over several strips use the strips on the edge of

the cluster.

The local x or z coordinates cannot be converted into global delphi coordinates

without additional information (usually external tracks). Before 1994, no z coordinate

was available, and even since then there is no reliable way of directly associating the

p-side hit with its n-side counterpart. Although the plaquettes are aligned closely

with the z-axis, this is not perfect, so even a precise separate measurement of Rφ

or z cannot be made. For these reasons, it is necessary to associate initial track

measurements from the id, tpc, and od with individual vd hits before conversion

to the delphi coordinate system and inclusion into the global track fit. First Rφ

5Silicon Strip Readout Camac Controller, anachronisticly named since they are Fastbus
modules.
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and then (using the resultant precision improvement) z hits are associated with each

track. Remaining unassociated hits are checked for the possibility of vd-only tracks

(perhaps due to material interaction outside the vd) using the beamspot position as

the external constraint.

In order to obtain the full precision of the Vertex Detector, the relative positions

of the plaquettes as well as the global alignment of the vd within delphi must be

accurately measured [26]. The relative position of each module within a half-shell is

determined to 25 µm before insertion into delphi with a combination of microscope

(for the strip positions relative to the module) and mechanical probe (relative module

positions) measurements. The 2 µm (1994–5) microscope measurement precision

is sufficient for plaquette–plaquette alignment. Tracks passing through the regions

where two modules overlap, 3-hit tracks, and dimuon (Z0 → µ+µ−) events are used

to improve the module–module alignment, align the two half-shells relative to each

other, and align the vd with respect to the rest of delphi. An overall alignment

precision of the order of half the intrinsic hit precision is obtained.

All these tasks are performed by a single software library, vdclap6 [28], which

was the first detector physics package in delphi to be used at all levels of the recon-

struction (delana, dstfix, as well as analysis programs). vdclap operates on vd

hit, track, alignment, association, efficiency, dead strip, and beamspot data held in

standard COMMON blocks.

Performance

Minimum ionizing particles at normal incidence give (1994–5) S/N between 11 (closer z)

and 17 (outer, Rφ and z), producing a single-hit efficiency of 98–99% and, as shown

in figure 2.7, an intrinsic resolution of 8–9 µm (7.6 µm in the outer layer) in Rφ and

9–40 µm in z (9 µm for perpendicular tracks passing through the outer layer).

The overall precision of a vertex detector may be described in terms of track

impact parameters (see definition in appendix B) with respect to the production

6Vertex Detector Common Library for All Programs
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a) σ = 12.5

Closer Rφ Residuals (µm)

b) σ = 12.5

Inner Rφ Residuals (µm)

c) σ = 10.8

Outer Rφ Residuals (µm)

d) σ = 10.0

Three hit residuals (µm)

Figure 2.7: Vertex Detector intrinsic hit resolutions. Shown on the left are the Rφ
residuals for tracks passing through the overlap regions in the a) closer, b) inner,
and c) outer layers (σ/

√
2 gives the single hit resolution). d) shows the inner-layer

residuals for tracks with hits in all three layers (single hit resolution = σ/
√

1.5).
In z the resolution depends on the track incidence angle, as shown for the outer layer
on the right. The closed circles represent the region where the readout pitch was
doubled. The inset shows the z hit residuals for normally incident tracks (single hit
resolution = σ/

√
2).

vertex, usually the primary vertex (see section 2.11.3). There are two components

to the impact parameter error (excluding the uncertainty in the production vertex,

which does not concern us here): the intrinsic precision of the vd hits, extrapolated

to the vertex; and the uncertainty due to multiple scattering in the beam pipe and

vd material. In the Rφ and Rz planes these may be parameterized with

σRφ =
αMS

p sin3/2 θ
⊕ σ0,Rφ (2.3)

and

σz =
α′

MS

p sin5/2 θ
⊕ σ0,z , (2.4)

where the constants αMS (multiple scattering) and σ0 (intrinsic precision) are best

fitted from the data as shown in figure 2.8. The fitted curves give αMS = 65 µm·GeV/c

and σ0,Rφ = 20 µm in equation 2.3 and α′
MS = 71 µm·GeV/c and σ0,z = 39 µm

(80◦ < θ < 90◦) or 96 µm (45◦ < θ < 55◦) in equation 2.4.
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(a) (b)

Figure 2.8: Track impact parameter errors as a function of momentum in (a) the Rφ
plane and (b) the Rz plane (lower curve: 80◦ < θ < 90◦, upper curve: 45◦ < θ < 55◦).
Fits to parameterizations 2.3 and 2.4 are shown. The error due to uncertainty in the
primary vertex position (shown on the lower curve in (a)) has been removed.

2.3.2 Inner Detector (ID)

The Inner Detector [29] consists of two components: the jet chamber is a high-

resolution drift chamber providing Rφ tracking information, while the trigger layers

provide a rapid readout in both Rφ and z.

The jet chamber consists of 24 azimuthal sectors, each with a plane of 24 axial

wires down its centre. A variation in the drift field (and hence drift velocity) with R

allows for constant drift time for all measurements of radial tracks, and hence a rapid

trigger.

Outside this, the trigger layers consist of 5 layers of 192 multiwire proportional

chambers (mwpc; before 1995) or straw tubes (1995 [30]). As well as measuring the z-

coordinate, the Rφ measurement can be used to help resolve the left–right ambiguity

of the jet chamber.

2.3.3 Time Projection Chamber (TPC)

The tpc [31] is the main tracking detector in delphi, providing three-dimensional

position information, a momentum measurement (from the track curvature in the

magnetic field), and some particle identification based on the specific ionization in
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Figure 2.9: Schematic layout the the tpc.

the detector.

The layout of the tpc is shown in figure 2.9. The cylindrical vessel is divided in

two by a cathode plane at z = 0 producing a uniform drift field of 187 V/cm. Primary

electrons liberated by the passage of charged particles drift to the two ends of the

detector. These are each divided into 6 azimuthal sectors, acting as mwpcs, each with

16 azimuthal cathode pad rows 4 mm behind 192 sense wires. The charge avalanche

initiated on the anode wires by the primary electrons induces a signal on the pads,

giving the Rφ-coordinate. The drift time to the sense wires gives the z-coordinate.

The pulse height is a measure of the initial ionization (dE/dx), which can be used

for particle identification.

2.3.4 Outer Detector (OD)

The size of the the tpc is constrained by the Barrel rich surrounding it. The Outer

Detector [32] provides an additional track measurement outside this to extend the

distance over which the track curvature is measured and hence improve the overall

momentum resolution.
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The od consists of 24 overlapping planks, each of 145 drift tubes, arranged into

5 staggered layers. The Rφ-coordinate is obtained from the drift time, and z (3 layers

only) from the relative timings of the signal at the two ends of the anode wires.

2.3.5 Forward Chambers A (FCA)

The Forward Chambers A are mounted on either end of the tpc, and are thus mechan-

ically part of the barrel. Each side consists of three modules each of two staggered

layers of drift tubes, operating in limited streamer mode. The wire orientation of

each module is 120◦ from the other two, providing two measurements of each of three

non-orthogonal coordinates (x, u, v).

2.3.6 Forward Chambers B (FCB)

The Forward Chambers B are positioned outside the Forward rich. Each endcap

consists of two semicircular modules, each with 12 planes of wires. Pairs of staggered

wire planes are orientated 120◦ from their neighbours, providing four measurements

of each of the same (x, u, v) coordinates used in the fca.

2.4 Ring Imaging Cherenkov Counters (RICH)

The rich detectors (rib [33] and rif [34]) employ an ambitious technique to identify

charged hadrons in the barrel and endcaps respectively. The velocity, β, of a particle

travelling faster than the local speed of light in a material medium may be determined

by measuring the presence and angle of emission of Cherenkov light. This ultraviolet

light is detected using the time projection technique in quartz drift tubes (48 in the

barrel, 24 in each endcap) containing a small quantity of a photo-ionizing vapour

(tmae). Both the Cherenkov angle (reconstructed from the positions of individual

photons crossing the drift tubes with respect to the particle’s trajectory) and number

of photons give a measure of the particle’s velocity. With the momentum determined
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from the tracking detectors, this allows, in many cases, the particle’s mass, and hence

identity, to be determined.

Two perfluorocarbon Cherenkov radiators are used: a liquid radiator consisting

of C6F14 to identify soft particles (0.7–8 GeV/c) and a gaseous radiator of C5F12

(rib) or C4F10 (rif) to identify hard particles (2.5–25 GeV/c). The gas radiator is

situated behind the drift tubes, so the Cherenkov light is reflected and focused back

to them with parabolic/spherical (rib/rif) mirrors on the far wall of the detector.

No focusing is required for light from the liquid radiator which is thin compared to

its distance from the drift tube.

2.5 Calorimetry

By converting an incident particle into a shower of secondary particles, calorimeters

provide information on the energy of neutral as well as charged particles and can help

in particle identification. Electromagnetic calorimeters are designed for the identifi-

cation of electrons and photons, which induce a shower of electrons, positrons, and

photons by elastic Coulomb scattering from nuclei in the converter. On the other

hand, hadron calorimeters rely specifically on detecting the hadron showers produced

by inelastic hadronic interactions with the nucleons of the converter.

The two principal electromagnetic calorimeters in delphi are the hpc in the

barrel and emf in the endcaps. The sat (before 1994), stic (from 1994), and vsat

provide additional electromagnetic calorimetry in the very forward region, though are

mainly used for the luminosity measurement (see section 2.8). The barrel and endcap

Hadron Calorimeters (hac) are of similar design. The properties of the calorimeters

are listed in table 2.3.

2.5.1 High-density Projection Chamber (HPC)

The barrel electromagnetic calorimeter, hpc [35], consists of 6 rings of 24 modules

each. Each module is a small tpc, segmented with 41 lead partitions, which induce
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Detector Geometric Acceptance Depth Samples Readout gran- Shower
R [cm] |z| [cm] θ [deg] along ularity [deg] resolution

(+z) shower ∆θ ∆φ (σE/E) [%]

hpc 208–260 ≤ 254 ≥ 43 18X0 9 .1 1 6.4
hac (barrel) 320–479 ≤ 380 ≥ 43 6λI 4 3 3.75 17
sat (–1993) 10–36 233–285 2.5–7.7 28X0 8 .7 7.5,15 4.4
stic (1994–) 6.5–42 218–249 1.7–10.6 27X0 49 .9 22.5 2.7
emf 46–240 284–340 10–36.5 20X0 1 1 1 3.8
hac (endcaps) 65–460 340–489 11–48 6λI 3–4 2.6 3.75 17
vsat ∼ 6–9 770 0.3–0.5 24X0 12 5

Table 2.3: Some characteristics of the delphi calorimeters: barrel and forward elec-
tromagnetic calorimeters (hpc and emf respectively), Hadron Calorimeter (hac),
and luminosity monitors (sat/stic and vsat). X0 is the radiation length and λI the
nuclear interaction length. The shower energy resolution is given for 45.6 GeV.

an electromagnetic shower from the passage of electrons or photons, as well as pro-

viding the drift field. A pattern of pads at the end of each module measures the

radial and azimuthal coordinates, with the z-coordinate coming from the drift time.

This technique provides a three-dimensional picture of the evolution through the lead

converters of an electromagnetic shower. Scintillators [36] to provide fast triggering

on electromagnetic showers are placed close to the position of shower maxima in the

hpc.

2.5.2 Forward Electromagnetic Calorimeter (EMF)

The Forward Electromagnetic Calorimeter [37] consists of 4532 lead glass blocks on

each side. The Cherenkov signal induced by the charged particles in a shower is read

out by the phototriode backing each block.

2.5.3 Hadron Calorimeter (HAC)

The iron yoke for the magnet is instrumented with plastic streamer tubes [38] to detect

showers produced by hadrons interacting in the iron. The barrel Hadron Calorimeter

consists of 20 layers of limited streamer tubes sandwiched between 5 cm thick iron

plates and segmented into 24 modules. A similar arrangement of 12 sectors are used

in each endcap. Each tube consists of a plastic cathode surrounding a single anode
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wire. The streamer charges from the anodes of 4–7 layers are read out together. Since

1995 (1996 in the endcaps), the cathode of each tube has been read out independently,

thus increasing the granularity to improve the π/µ separation [39].

2.6 Muon Chambers

The Muon Chambers (muc) are designed to identify muons by detecting them outside

most of the iron of the hadron calorimeter — all other charged particles are likely

to have been absorbed within the calorimeters. Since muons are minimum ionizing

particles with an energy loss of dE/dx ≈ 0.016 GeV/cm in the hac iron, any with

momenta above 2–3 GeV/c can penetrate the ∼ 110 cm of iron.

Three layers of drift chambers are provided for muon detection in the barrel, and

two in the endcaps. During 1994, additional chambers were added covering the gap

at 50◦ between the barrel and forward muon chambers.

2.6.1 Barrel Muon Chambers (MUB)

Drift chambers, operating in proportional mode and surrounding the delphi barrel,

make up the Barrel Muon Chambers [40]. As shown in figure 2.10, the inner modules

(20 cm inside the iron of the Hadron Calorimeter) are composed of 14 chambers

bonded together, arranged into three layers. The third layer is not normally read

out, but was included as a spare, given the near impossibility of replacement. The

outer and peripheral modules (outside the iron), each made up of 7 chambers in

two layers, are arranged such that the peripherals cover the cable gaps between outer

modules. In all cases the active chambers within each module are staggered in order

to resolve the drift chambers’ inherent left–right ambiguity. Two modules, separated

by a 3 cm gap at z = 0, cover the length of the delphi barrel.

Figure 2.11 shows a single mub chamber. Most have a gas volume of 363 ×
20× 1.6 cm3, consisting of an argon/methane/carbon dioxide mixture in proportions

84.6/8.9/6.5% (1994).



Chapter 2. The DELPHI Detector 33

Figure 2.10: xy view of a Barrel Muon Chamber sector. The shaded third layer of
the inner module is not used.

Figure 2.11: Cross-section in the xy plane showing half of a Barrel Muon Chamber.
The dimensions are given in cm. The labels (a) and (b) are referred to in the text.
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Charged particles (mostly muons, hopefully!) passing through this gas produce

electron–ion pairs. These drift at a constant velocity of 4.6×10−3 cm/ns, accelerated

by the electric field and decelerated by collisions with gas molecules. The roughly

uniform 400 V/cm electric field is produced between a 47 µm diameter gold-plated

tungsten anode wire at 6150 V, running down the centre of the chamber, and 13 copper

cathode strips along each wall, graded between 4000 V (on the central strip, (a)) and

ground (at the edges, (b)).

When the electrons approach the central anode wire, they gain sufficient energy

from the higher field there to ionize the gas, producing an avalanche of electron–ion

pairs and a signal on the wire. The time from the incident particle’s crossing the mub

(assumed to be when the e+e− bunches collided in lep) and this signal is the drift

time, which gives a measure of the drift distance and hence Rφ coordinate (assuming

the left–right ambiguity can be resolved).

One of the two wider central cathode strips acts as a delay line. It is composed of

insulated copper windings with a signal propagation time of 0.5 cm/ns. The signal

induced on the delay line from the avalanche at the anode is measured at both ends

of the chamber, the relative times of arrival giving a measure of the z-coordinate.

An intrinsic measurement precision of about 1 mm in Rφ and 10 mm in z is

obtained from each chamber.

2.6.2 Forward Muon Chambers (MUF)

The Forward Muon Chambers [41] consist of two planes of chambers in each endcap,

operating in limited streamer mode. One plane is 20 cm inside the iron of the forward

hac, the other outside. They each consist of four 4.4×4.4 m2 quadrants (with a corner

cut off to make room for the beampipe) of two layers of 22 drift chambers each. The

two layers have wires orthogonal to each other, so that the drift coordinate of one

measures x, the other y.

Each drift chamber (see figure 2.12) has a sensitive volume of 435×19×2 cm3, filled

with a carbon dioxide/argon/isobutane/isopropanol vapour mixture in proportions
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Figure 2.12: Cross-section in the xz or yz plane showing half of a Forward Muon
Chamber. The dimensions are given in mm.

68.3/15.0/15.0/1.7%. Its principles of operation are similar to that of the mub, except

that the muf is operated in limited streamer rather than proportional mode. The

anode is a 100 µm diameter stainless steel wire. The drift velocity is 7.3×10−4 cm/ns

in the 700 V/cm electric field. The drift time to the anode gives one coordinate (x

or y) to a precision of about 1 mm, while the propagation time down the delay line

gives the other (y or x) to about 2 mm.

2.6.3 Surround Muon Chambers (MUS)

The Surround Muon Chambers [42], which were added during 1994, cover the gap at

θ ∼ 50◦ between the barrel and forward muon chambers, significantly improving the

hermeticity of delphi’s muon detection. Each of the eight chambers (mounted at

the sides, top, and bottom of each endcap) is composed of two modules of two planes

of plastic streamer tubes of the same design as those of the Hadron Calorimeter (see

section 2.5.3).
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2.7 Scintillators

Scintillators provide a very rapid signal on the passage of charged particles, and so

are an important component of the Trigger to read out the rest of the detector.

They can also be used to reject cosmic muons, which are not synchronized with

the beam crossing, as well as completing the angular coverage over dead regions in

the other detectors. Light generated in the scintillating material is detected with

photomultipliers.

The scintillator layer in the hpc has already been mentioned (section 2.5.1). The

Time of Flight (tof) counters [43] in the barrel are mounted just outside the Solenoid,

and the Forward Hodoscope (hof) outside the iron in the endcaps. In order to identify

the presence of unreconstructed missing energy (particularly important for particle

searches at lep 2) due to the gaps in the calorimeters, lead-scintillator counters are

placed in the hpc θ-gaps at 90◦ [45] and 40◦ [44], and in the φ-cracks between hpc

modules.

2.8 Luminosity Monitors

Knowledge of the electron–positron luminosity is required for the measurement of

absolute cross-sections, which are given by

σ =
Nsel −Nbkg

ε
∫ Ldt

(2.5)

where the numbers of events in a selected sample are Nsel (total) and Nbkg (back-

ground), and the selection efficiency is ε.

The integrated luminosity,
∫Ldt, is obtained by measuring the rate of small-

angle Bhabha (non-resonant e+e− → e+e− scattering) events. The cross-section of

this reaction is dominated by well-understood qed processes. Using the lowest-order
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Born approximation, the cross-section in the angular range θmin to θmax is given by

σB =
16π(α�c)2

s

(
1

θ2
min

− 1

θ2
max

)
≈ 1042 (GeV)2 · nb

sθ2
min

(2.6)

where s is the square of the centre of mass energy and α is the fine-structure constant.

Using this and equation 2.5 for Bhabha events selected by the luminosity moni-

tors, the e+e− luminosity may be measured. Equation 2.6 shows the importance of

accurately measuring the lower bound of the angular acceptance.

2.8.1 Small Angle Tagger (SAT)

The Small Angle Tagger calorimeter [46] consisted of cylindrical layers, concentric

with the beam axis, of lead and scintillating fibres, read out with photodiodes.

A precisely machined lead (–1992)/tungsten (1992–3) mask, 12 radiation lengths

(12X0) deep, accurately defined the inner edge of the fiducial region. A silicon-

strip tracker [47] (1991–3) was used to check for distortions in calorimeter position

measurements. The sat was in operation until the end of 1993.

2.8.2 Small Angle Tile Calorimeter (STIC)

The Small Angle Tile Calorimeter [48] replaced the sat for the start of datataking in

1994. It is a sampling calorimeter consisting of layers of scintillating tiles sandwiched

between steel-laminated lead plates. The tiles are read out, via wavelength shifting

fibres, with phototetrodes. Silicon-strip detectors aid the reconstruction of the shower

direction. A 17X0 thick tungsten mask on one side is used to accurately define the

inner radial acceptance for Bhabhas.

2.8.3 Very Small Angle Tagger (VSAT)

The Very Small Angle Tagger [49], by virtue of the higher Bhabha rates at lower angles

(equation 2.6), allows the luminosity to be monitored online. It consists of interleaved
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tungsten converters and silicon detectors positioned beyond the lep superconducting

quadrupole focusing magnets on either end of delphi.

2.9 Solenoid

The solenoidal magnet [50] produces a field of 1.2 tesla by using a 2.6 m-radius

superconducting coil carrying a current of 5000 A, maintained at a temperature of

4.5 K. Trim coils round the two ends of the main coil (I ≈ −850 and I ≈ −650) are

used to improve the field homogeneity.

2.10 Data Acquisition (DAS) and Trigger

The Data Acquisition system (das, rather than the more common acronym, daq) [51]

is responsible for reading out the digitized data from the various parts of the detector

and recording the results for subsequent analysis.

The basic problem to be overcome by most data acquisition systems is the differ-

ence in rate between beam collisions (in lep, beam cross-over, or BCO, occurs every

22 or 11 µs depending upon whether there are 4 or 8 bunches per beam) and the

maximum possible (or desirable) data readout and storage rate (perhaps 20 Hz). The

Trigger system [52] overcomes this problem by only reading out the detector if there

are indications of a significant interaction.

Four levels of triggering are used in delphi. The first level, T1, makes no correla-

tion between detector partitions, and uses information only from detectors with fast

readout times: id, tpc (θ < 43◦), od, fca, fcb, tof, hof, hpc scintillators, emf,

and mub; so the decision can be made 3.5 µs after bco. Once the tpc, hpc, and muf

drift times are complete the signals from these detectors (available 23 µs after bco) as

well as correlations between detectors, can be added to provide the second level trig-

ger, T2, 39 µs after bco. At a nominal luminosity of 1.5×1031 cm−2s−1, the ∼ 700 Hz

(t1) and ∼ 4.5 Hz (t2) trigger rates produce dead times of 2% (t1) and 1% (t2).
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The various t2 components are designed to select tracks, muon signals, calorimeter

energy deposits, or Bhabha events. There is considerable redundancy between Trig-

ger components, allowing an accurate determination of the trigger efficiency, though

it is barely distinguishable from 100% for hadronic events.

T3 repeats the t2 logic in software using digitized and calibrated data, allowing

tighter cuts to be applied. T4 uses a tailored version of the delphi reconstruction

program, delana (see section 2.11.1), to reject events with no track pointing towards

the interaction region and no energy deposit in the calorimeters. The t3 and t4

processing occurs asynchronously with respect to bco, introducing no dead time.

Each reduces the data rate by a factor of two, so data is recorded at a rate of about

1 Hz.

The data acquisition performed in the counting rooms in the experimental cavern

is based on the Fastbus standard [53]. Each detector partition has its own digitization

modules, most with a 4-event Front-End Buffer (FEB) to reduce the loss of events due

to chance spurts in the trigger rate. Following a positive t2 signal the feb data

is copied (asynchronously with bco) to the Crate Event Buffer (CEB) by the Crate

Processor (CP) program, running in a Fastbus Intersegment Processor (FIP). The fip

also performs local t3 processing. Data from a number of cebs are merged by the

partition’s Local Event Supervisor (LES; also running in a fip) into the Spy-Event

Buffer (SEB; used for local monitoring) and Multi-Event Buffer (MEB).

For events that pass t3, individual partitions’ meb data are combined by the

Global Event Supervisor (GES) into the Global Event Buffer (GEB) and transferred

to the vax mainframe on the surface via optical fibre. On the vax the data is

managed by the Model Buffer Manager (MBM) and written to disk by Data Logger

processes. t4 processing is performed, and selected events are written to disk and

then copied to tape (before 1995: 250 Mb ibm 3480 cartridges, written locally; now

10 Gb Digital Linear Tape (dlt) in the cern central computer centre).7

7The feb is connected to the ceb. The ceb is connected to the seb. The seb is connected to
the meb. The meb is connected to the geb. The geb is connected to the mbm. Hear the word of
the Lord.
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2.11 Event Reconstruction

2.11.1 Offline Processing

The raw data tapes written by the Data Acquisition system go through a number

of standard processing steps before being used for individual analyses, such as the

one described in chapter 4. Their task is to infer details of the products of the

e+e− interaction from the electronic measurements made by the detector. Thus, for

example, the raw data, consisting of digitized drift times and charge measurements on

specified channels in the tracking detectors, are converted into trajectories through

delphi from which the creation point, direction, and momentum of the charged

particles can be inferred.

The majority of this generic analysis is performed by the DELANA program [54],

which is based on the TANAGRA8 [55] data model and access routines. tanagra

provides a common format for storing the results of each stage of the processing,9 as

described below.

1. Calibrations are applied to the digitizations from the raw data and saved in a

semi-standard form (TD tanagra banks).

2. Where possible, pattern recognition, local to each subdetector, is performed.

The sophistication of the output track elements (TE banks) depends on the sub-

detector concerned (e.g. individual Rφ or Rz measurements from the vd, track

segments from the id, tpc, and od, and energy clusters from the calorimeters).

3. tpc track elements are extrapolated to the other detectors and an initial asso-

ciation is made with their track elements (not the vd at this stage). Additional

searches are made for id–od (in the tpc cracks), fca–fcb, and fcb–beamspot

(for very small angles) track element associations in order to recover tracks

8Track Analysis and Graphics
9“tanagra is like the mafia: it protects you, it is expensive, and you did not ask for it.” [55]
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that are not seen (or well measured) in the tpc. At this stage, ambiguous

associations are maintained as separate track strings (TS banks).

4. Each track string is then passed through the full track fit (see section 2.11.2).

Ambiguities can now be removed using the fit χ2, leaving a self-consistent set

of tracks (TK banks).

5. These tracks are then extrapolated to each detector and used to guide a second

stage of local pattern recognition and, where necessary, the track is refitted. It

is at this stage that the vd hits are associated and included in the track fit (done

here in order to take advantage of the optimum track determination in the vd

association). A final search for missed tracks is performed on unassociated tes.

6. Calorimeter energy clusters, muon chamber hits (see section 2.11.4), and rich

information are associated with the fitted tracks. Unassociated calorimeter

energy deposits are used to form neutral ‘tracks’.

7. A vertex search produces track bundles (TB banks), and a vertex fit performed

to determine vertex positions (primary and possibly decay vertices; TV banks).

At present this information is only used for diagnostic purposes, since the cuts

used in vertex fitting are highly analysis-dependent.

Constants and parameters used by delana are read [56] from the cargo [129]

database based upon the time the event being analysed was captured by the das.

Section 3.7 describes cargo and the information written to it by the online system.

cargo is also used by delana for many of its other parameters, such as the detector

geometry. The statuses of the various detector partitions are combined with the

delana processing status to provide a set of flags, which are written out as run

selection files for use in physics analyses.

Following the delana reconstruction, two types of tagging algorithms are ap-

plied. Both have very loose cuts in order not to reject events that might be accepted

after post-delana corrections are applied. The ‘delana tags’ [57] produce a broad
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categorization of each event as, for example, hadronic Z0, leptonic Z0, Bhabha seen

in sat/stic, etc. The ‘Physics Teams tags’ [58] select events of interest to specific

classes of analysis. Events selected by either of these groups of tags are written to

the main (‘DST OR’) output stream.

A full delana processing of a year’s data can take many weeks. In order to allow

corrections and refined calibrations (e.g. Vertex Detector alignment) to be updated

at frequent intervals, a second stage of processing, DSTFIX [59], is performed (and

can be reperformed) on the dst output of delana. dstfix can make changes at

the te level and refit tracks. It is also used to adjust the efficiency, cleanliness,

and precision of simulated data to better match the quality of the real data. A

number of particle identification algorithms, considerably more sophisticated than

those used in delana, are run on the output of dstfix: charged hadrons (p, K±,

and π±) are identified with the rich [60] and tpc dE/dx [61], electrons [62] with

the electromagnetic calorimeters, and muons [75, 76] with the muon chambers. A

primary vertex fit and b-tagging algorithm [63] is also run to identify Z0 → bb̄ events

by the increased impact parameters of tracks from B hadron decays.

The analysis chain causes the data to be interpreted and transformed between

a number of forms, all of which are based on the ZEBRA [64] memory management

system (part of the cern library), which provides dynamic data structuring within

Fortran 77 (which lacks the pointer or reference data types required for this data

model). zebra also provides methods for file input/output for these data structures

in a format that allows the data to be transported between computers with different

numeric representations.

Raw data [65] is output by the das (or, for simulated events, by delsim) and read

in by DELANA.

TANAGRA [55] provides a data model to ensure a clean and safe interface between

delana routines, since these are written and maintained by many different

people. tanagra is also based on zebra, so its data can be output to a file,
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and in fact this was the primary output of delana in delphi’s first two years.

However, since then, the volume of data has made it impractical to save the

detailed tanagra files for anything other than debugging purposes.

DST10 [66] is now the primary output of delana. It includes reconstructed track

parameters, as well as the te track elements, allowing the tracks to be refit

post-delana. The average full dst hadronic event size is 60 kilobytes.

LongDST [67] is written by dstfix and has the results of the particle identification

and b-tagging algorithms included.

ShortDST [68] is also written by dstfix, but includes less reconstruction information

(e.g. it does not include the tes), reducing the average hadronic event size to

20 kilobytes.

MiniDST [69] is written by the phdst program. It contains a subset of information

from the shortdst, stored in a compressed form, allowing it to be kept on disk

for rapid analysis. The average minidst hadronic event size is 6 kilobytes.

All the offline code is written in Fortran 77 [116]. Due to the large number of

collaborating institutes within delphi as well as its long timescale, the simulation

and analysis tools have been required to work on a diverse collection of computing

architectures and operating systems: hp-ux and dec Alpha Unix, vax and Alpha

vms, and ibm vm/cms systems being only the most common. In order to allow for

system-specific code, as well as providing a rudimentary form of revision control, the

patchy system [70] was used.

2.11.2 Track Reconstruction

Two stages of track fitting are performed in delana (once on the possibly ambiguous

track strings, and then again following ambiguity resolution) as well as an additional

10Data Summary Tapes
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Figure 2.13: Assumed variation of energy loss (dE/dx) with momentum (plotted
as p/m), relative to the minimum ionization. dE/dxmin depends on the materials
traversed; composite values between 0.02 and 0.2 GeV per radiation length are typical.

track fit using the corrections and improved vd alignment available in dstfix. Es-

sentially the same algorithm is used in each case, with tes as input. In the case of

the id, tpc, and od these are themselves the result of local track fits.

The effects of the particle’s passage through the material between the points where

measurements are made must be taken into account. Small-angle multiple scat-

tering, which introduces additional uncertainties in the angle of extrapolated track

elements, is described by a Gaussian distribution with rms plane-projected scattering

angle of

σθ =
0.0136 GeV/c

p

√
x/X0 [1 + 0.038 ln(x/X0)] (2.7)

(a good approximation for γ 
 1), where p is the momentum and x/X0 is the fraction

of a radiation length traversed. Scattering at larger angles is not treated at this stage.

The energy loss due to ionization is also taken into account in the fit as shown in

figure 2.13.

The track fit is based on a Kalman filter [71], which allows ‘outliers’ (tes whose

presence in the track fit significantly degrades the fit χ2) to be iteratively removed as

part of the fit process.

The spatial precision of the overall tracking is largely determined by the vertex

detector, so the results were summarized in section 2.3.1 (see in particular figure 2.8).
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The momentum precision at 45.6 GeV/c can be measured using Z0 → µ+µ− events

(radiative Z0 decays are removed by requiring an acollinearity of less than 0.15◦).

These are shown in figure 2.14. rms widths of σp/p = 3% in the barrel and 6% in

the endcaps are found. At lower momenta, simulated data are used, as shown in

figure 2.15.

2.11.3 Beamspot

The primary vertex (Z0 decay position) is within the region encompassed by the

crossing of the electron and positron beams. Its rms size is typically 200 µm in x,

negligible in y (< 3.9 µm in 1994), and ∼ 1 cm in z. The position and size change

slowly throughout the lep fill as well as between fills.

The beamspot position and size [72] (at least in the xy plane) can be used directly

as a measure of the primary vertex position and error, as a constraint on an event-

by-event primary vertex fit, or to identify tracks coming from a secondary vertex.

A primary vertex fit is performed for each hadronic event passing cuts designed to

reduce the contribution from poorly measured tracks and secondary vertices. These

are divided into samples corresponding to each tape written by the das (∼ 200

hadronic events in 1994). For each sample a fit is performed, assuming independent

Gaussian beam profiles in all three coordinates, and the primary vertex position and

size in x and z is determined. The beam size in y is too small to measure for this

sample size. Since the beamspot position determination is critically dependent on

(and relative to) the detector alignment (particularly that of the vd), it is performed

separately for each dst and shortdst production. The mean beamspot position is

typically measured to an accuracy of (σx, σy, σz) = (15, 5, 1500) µm for each sample.

2.11.4 Muon Identification

Similar algorithms are used for muon identification [73] in delana (the emmass

package [74]) and afterwards (the mucfix [75] and muflag [76] packages). The
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Figure 2.14: Inverse momentum distribution of 45.6 GeV/c (1/p = 0.0219) muons
seen in (a) the vd, id, tpc, and od; or (b) the vd and fcb.

Figure 2.15: Track momentum precisions estimated by comparing simulated and
reconstructed parameters. The errors in momentum (a,b), azimuthal angle φ (c,d),
and polar angle θ (e,f) are shown. The variation of each parameter’s precision with
respect to θ is shown on the left; with respect to momentum on the right.
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difference is that EMMASS employs extremely loose selection criteria (useful for pro-

ducing dimuon (Z0 → µ+µ−) samples for checking and alignment), whereas MUCFIX

allows for variable cuts, specifically those defined in MUFLAG, which are optimized for

identifying muons in hadronic jets. mucfix can also take advantage of the improved

tracking available after dstfix and, as is the case with all post-delana reconstruc-

tion, allows corrections to be implemented more rapidly.

Hadron contamination in the set of tracks selected as muons in jets is due to

Sail-through: About 0.3% of hadrons pass through the calorimeters without inter-

acting.

Sneak-through: Hadrons that pass down the cracks between hac sectors have a

lower chance of interaction.

Punch-through: The dominant source of background is due to secondary particles

produced by hadronic interactions, particularly in the outer layers of iron, which

themselves penetrate to the muon chambers.

Decays in flight: Muons produced from pion or kaon decay are an additional source

of background to muons produced closer to the production vertex.

Since the particles seen in the muc from punch-through and decays in flight are

not the same as the originating hadron, they will tend to have a slightly different

trajectory. Their contribution can thus be reduced by requiring that the extrapolated

trajectory of the supposed muon match the muc hits within the accuracy expected

from multiple scattering and measurement errors.

Contamination can be further reduced by requiring hits in muon chambers outside

the iron, where they will have had to pass through an additional interaction length

of iron.

emmass/mucfix perform a fit for the particle’s trajectory at the muc, using the

muc hit coordinates (and errors) and the extrapolated track position and direction

(and full error matrix, including multiple scattering). χ2s from this fit are used to
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select the best association, drop bad hits, and reduce the contamination from punch-

throughs and π/K decays.

muflag provides four predefined selections, the results of which are written to

the Shortdst. The Very Loose tag (intended for Z0 → µ+µ− studies) has no cut

on the χ2, so the best association made (after the very loose preselection and bad

hit rejection made by emmass) is used. The other three tags (intended for studies of

muons in hadronic jets) use a tighter bad-hit cut and progressively tighter χ2 cuts.

The Loose tag aims to maximize efficiency. As well as tighter χ2 cuts, the Standard

and Tight tags require at least one hit in the chambers outside the iron.

The muon identification efficiency for the standard tag is shown in figure 2.16. The

overall efficiencies and misidentification probabilities for all four tags are summarized

in table 2.4. In both cases, particles only contribute if their momentum is greater

than 3 GeV/c and their polar angle is within 20◦ < θ < 42◦ (muf) or 52◦ < θ < 88.5◦

(mub). These selections exclude regions of poor track reconstruction (θ < 20◦ and

88.5◦ < θ < 91.5◦) or limited coverage (also 42◦ < θ < 52◦). The mus (only installed

during 1994) is not used here.

2.12 Detector Simulation

Simulated events are of great importance in checking and/or correcting for non-trivial

or unforeseen detector or physics effects, as well as comparing detector performance

with expectations. With the possible exception of the effect being studied, simulated

events should be as close as possible to real data events. Hence the primary goal of

the simulation programme is to model closely the physical interactions involved, the

detector performance, and the event reconstruction.

The delphi simulation program, DELSIM [77], is composed of three main compo-

nents: generators, tracking, and detector response.

1. The primary physics processes can be modelled using a variety of generators.

For Standard Model hadronic production, the JETSET [78] generator is most
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Figure 2.16: Identification efficiency in 1994 of standard muon tag as a function of
momentum (above) and polar angle (below, where the solid line shows the efficiencies
from simulation).

Tag Very Loose Standard Tight
Loose

Efficiency mub Data 95.6±0.2 91.4 ±0.3 79.9 ±0.5 65.9 ±0.6
(%) mc 96.3±0.2 92.6 ±0.3 79.7 ±0.4 65.8 ±0.6

muf Data 94.4±0.4 92.4 ±0.5 84.5 ±0.7 67.9 ±1.0
mc 94.0±0.4 92.5 ±0.4 83.8 ±0.6 67.7 ±0.9

Misidentification mub Data 4.9±0.2 1.3 ±0.1 0.65±0.07 0.42±0.06
probability mc 2.9±0.1 0.66±0.06 0.27±0.04 0.16±0.03
(%) muf Data 7.9±0.6 2.3 ±0.3 0.9 ±0.2 0.55±0.16

mc 6.2±0.4 1.8 ±0.2 0.7 ±0.1 0.36±0.10

Table 2.4: Muon identification efficiencies and misidentification probabilities for the
four muflag tags on 1994 data. The data efficiencies and misidentification probabil-
ities are determined using τ− → µ−ν̄µντ and τ− → π−π−π+ντ (and charge-conjugate)
events respectively. These can be compared with the equivalent numbers from the
simulation (MC).
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commonly used. This simulates e+e− → Z0 → qq̄ and hadronization, producing

a set of four-vectors for the next stage. jetset model parameters are tuned

using lep data.

2. In delsim, particles are tracked through the detector, accounting for weak de-

cays, curvature in the magnetic field, ionization energy loss, multiple scattering,

the photoelectric effect, delta ray emission, bremsstrahlung, positron annihila-

tion, pair production, Compton scattering, and nuclear interactions.11

3. Subsequently, the response of each part of the detector is simulated, producing

a set of simulated electronic signals.

Since the output of delsim closely models the real raw data produced by the das,

delana can be used directly, thus well-modelling the real data reconstruction. Like

delana, delsim uses cargo to store the detector geometry, material descriptions,

and sensing device parameters (e.g. noise and efficiency). In principle, this allows

simulated events to be produced for the current or any previous detector configuration.

11Note that unlike most other lep and planned future detectors, the delphi simulation program
is not based on geant [79], though geanth is used to simulate nuclear interactions.
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Slow Controls

3.1 Introduction and Overview

The delphi detector has been equipped with an automated system for monitoring

and controlling technical aspects of the experiment, such as high voltages and gas

supplies, for reporting and acting on changes in the status of the detector or its

environment, and for maintaining the safety of the equipment.

This Slow Controls system should be distinguished from the Data Acquisition

system (das; see section 2.10), which is responsible for the digitizing and recording of

each physics event — the products of the electron–positron collision. The emphasis

of the Data Acquisition system is on efficient triggering and fast readout, since the

electron and positron bunches cross every 11 µs. In contrast, the Slow Controls reacts

to events that can take from seconds to hours to develop, but is more concerned with

reliability, particularly due to its safety requirements.

The overall structure of the delphi Slow Controls system is summarized in fig-

ure 3.1. As can be seen, the system is highly modular and highly distributed with

many programs running on both high-level (vax) and front-end (G64) processors.

The delphi Slow Controls operator makes use of two main graphical displays,

shown in vaxstation windows. The status display gives a colour-coded representation

of the state of the various detector partitions. These states are defined in the State



52 Chapter 3. Slow Controls

State
changes

Actions

State
changes

SMI
Outer Detector

domain

VD

ID TPC

RIB...

State
changes

Actions

EP

Commands

Alarms

Fastbus control
and monitoring, etc.CAEN

high voltage

G64 systems
accessed via
ethernet

Detector partition
VAXstation

Central slow controls
VAXstation

Requests for data
and new parameters

MAC

G64*

*
below MAC
Physically G64 is

EP

Error
messages

(RPC)

HIPE

Expert’s
display

Updates
for offline 

analysis
(RPC)

Configuration
and initial
values

Database server

To offline
analysis

Status display (SMI)

EMU

Error message display (EMU)

Central operator’s displays

Error Message
Utility (EMU)

State management
(SMI)

central domain

Other Elementary
Processes

High Voltage
Elementary Process

(EP)
section
global
VMS

New defaults

EMU
logfiles

Status
Update

Database

Slow Controls
Configuration

Database

Figure 3.1: Diagram of the overall structure of delphi Slow Controls system repre-
sented by the example of the high voltage control of the Outer Detector.
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Management Interface (SMI) (see section 3.8.1), which is a hierarchical set of

objects representing different aspects of the detector as seen by the Slow Controls

system. smi is also responsible for passing commands (either to the whole of delphi

or to a particular detector partition) down to the appropriate subsystems which act on

them. During 1994 an even higher level of smi-based automation, called Big Brother

(see section 3.8.3), was added to coordinate the actions of the Slow Controls and the

Data Acquisition systems with the states of the lep machine. The error message

display shows outstanding anomalies in a textual form, grouped according to detector

partition. These messages are handled by the Error Message Utility (EMU) (see

section 3.6).

Both smi and emu show conditions determined by the Elementary Processes

(EP) (see section 3.5.1), which are the lowest-level vax control programs. The El-

ementary Processes are also responsible for handling smi commands, logging state

changes to the Status Update Database (see section 3.7.2) for use by the off-

line analysis, and providing a route for occasional expert intervention, using a user

interface, HIPE (section 3.5.2).

The Elementary Processes communicate over ethernet (using the Remote Pro-

cedure Call (RPC) protocol) with the front-end control and monitoring microcom-

puters, the G64 crates (see section 3.3). The G64s monitor and control a variety of

different types of hardware using digital and analog monitoring and control devices.

Most high voltage supplies are controlled by an intelligent CAEN high voltage unit [80]

(see section 3.3.1), which is in turn controlled and monitored by the G64.

The unified gas system, which controls and monitors the flows and mixtures of

gases supplied to various parts of the detector, and the GSS safety system, which

monitors the detector and its environment for hazardous conditions, use different

structures (see sections 3.9.1 and 3.9.2), but are integrated with the rest of the Slow

Controls at the smi and emu level. These software links are complemented by a

system of hardwired interlocks.

A brief description of the delphi Slow Controls system has been given previ-



54 Chapter 3. Slow Controls

ously [81]. In this chapter I give a detailed and considered description of the sys-

tems employed. A less technical version has also been published [82]. For detailed

descriptions of the gas and safety systems the reader is referred to separate publi-

cations [83, 84]. The slow controls of the other three lep experiments have been

described elsewhere [85, 86, 87].

3.2 Detector Requirements

The various detector partitions exploit different techniques to achieve their aims

of identifying or measuring the position, momentum, or energy of the products of

electron–positron collisions. Consequently they have different requirements for their

Slow Controls. Here only those aspects relevant to the Slow Controls are detailed.

Full details of the detector itself may be found in chapter 2 and the references given

therein.

3.2.1 General Principles

Most modern particle detectors rely on the detection of charged particles by their

ionizing effect on the material they pass through. The charged particles are either

those from the physics interactions or part of a shower of particles formed when either

charged or neutral particles pass through a dense medium. The electrons (or ions)

liberated by this ionization are drawn to an electrode by an electric field. These

signals can then be amplified, digitized, and recorded for subsequent analysis.

To control and monitor the provision of these conditions is one of the major

tasks of a slow controls system. Different types of detector use different ionizing

materials, usually gases. Careful monitoring is required of the gas supply, mixing,

and distribution, particularly as a number of the gases are flammable. To provide

sufficiently strong electric fields, high voltages of thousands of volts are often required.

The electronics used to process the detected signals requires carefully controlled (low)

voltages. All these systems must be capable of being switched off quickly in the event
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Partition Gas % Gas % Gas % Gas %
id (jet) CO2 94.65 iC4H10 4.7 C3H7OH 0.65
id (trigger) Ar 70 CO2 30
tpc Ar 80 CH4 20
od Ar 49.7 iC4H10 49 C3H7OH 1.3
fca Ar 49 iC4H10 48.5 C2H5OH 2.5
fcb Ar 50 C2H6 48 C2H5OH 2
rib CH4 75 C2H6 25
rif C2H6 100
hpc Ar 80 CH4 20
hac/mus CO2 59 iC4H10 30 Ar 11
mub Ar 84.6 CO2 6.5 CH4 8.9
muf CO2 68.3 Ar 15 iC4H10 15 C3H7OH 1.7

Table 3.1: The gases used by each delphi detector partition. In addition, argon
and a hydrogen–argon mixture (7%/93%) are used for regeneration of the active
copper purification columns; and nitrogen and carbon dioxide are used for cooling
and purging. The rich Fluids (C6F14 liquid, C5F12/C4F10 gas, and tmae vapour)
are supplied by a separate system, described briefly in section 3.2.5.

of a dangerous condition. Finally, the environment has to be monitored carefully for

conditions, such as a high temperature, which could damage equipment or indicate

burning electronics.

There are thousands of these quantities which require monitoring or control — far

far too many to oversee manually. Hence the need for computer control.

3.2.2 General Features

Apart from the rich fluids, all gases used in delphi, despite the different composi-

tions required by differing detection techniques, are provided by a unified gas system,

summarized in section 3.9.1. The gases used in the various detector partitions are

summarized in table 3.1.

Most high voltages are supplied by the caen high voltage unit, described in sec-

tion 3.3.1. When large numbers of stray particles are produced by lep (i.e. while filling

the machine), high voltages of a number of detector partitions have to be ramped to

a lower value to prevent excessive currents due to large amounts of ionization. This

is necessary for the Inner Detector, Time Projection Chamber (tpc), Outer Detec-

tor, forward tracking chambers, Barrel and Forward riches, barrel electromagnetic



56 Chapter 3. Slow Controls

calorimeter (hpc), Forward Muon Chambers, and stic. Consequently, speed and

reliability of ramping for these detector partitions is particularly important.

Except for the hpc, the voltages and currents of the Fastbus Data Acquisition

crate power supplies are all monitored, and can be switched on or off under computer

control. Most detector partitions provide similar monitoring and control for their

front-end electronics.

Temperature monitoring inside the detector is performed by the delphi Slow

Controls. In the electronics counting rooms, the environment (including rack tem-

peratures) is monitored by the gss system, summarized in section 3.9.2.

A summary of the general requirements for each detector partition is shown in the

Elementary Process function columns of table 3.2 on page 63 and, in more detail, in

table C.1 on pages 155–161. Specific details of each detector partition, as they relate

to the Slow Controls, are given below.

3.2.3 Barrel Tracking Detectors

Vertex Detector (VD)

The vd requires a bias voltage of about 60 V, and detector cooling. The Slow Controls

hardware is described in [88], although the dedicated vax software described therein

is now supplemented by standard Elementary Processes.

Monitoring of temperature is vital, both in order to prevent damage to the detec-

tors due to overheating, and to keep track of temperature variations which can lead

to movement and consequent degradation of the precise alignment. These movements

relative to the Inner Detector are monitored both by capacitive probes [89]1 and by

lasers.

1Until the end of 1993.
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Inner Detector (ID)

The id uses LeCroy power supplies to provide high voltages for the drift field (not

sensitive to lep conditions), the anodes, and the mwpc. They are controlled using

RS232–C connected to the id vaxstation (via a terminal server), where a special

process emulates a G64 system controlling a caen. This allows standard vax software

to be used with only minor changes. For more precise measurement of the detector

voltages than can be provided by the LeCroys, a digital voltmeter is used.

Time Projection Chamber (TPC)

Both drift field and sense wire high voltages (25.3 and 1.435 kV respectively) are

provided by caen units. Only the sense wire voltages need to be lowered during

lep filling. Special modules are used to measure the current in each sector. High

voltage channels are ‘daisy-chained’ together in the caen in such a way that if one

channel trips, then all channels of the same polarity trip. Trips are minimized by

automatically lowering the volts if the current becomes too high.

Due to the proximity of the heated Barrel rich, the temperatures are monitored

and, if they are too high, the preamplifiers are switched off.

Outer Detector (OD)

High voltages are required for the od anode wires. Since the od is attached to the

outside of the heated Barrel rich, the temperatures and positions of the planks are

monitored to check that the alignment does not change.

3.2.4 Forward Tracking Chambers

The high voltage systems of both fca and fcb provide automatic trip-recovery. When

a channel trips (due to a large current being drawn by excessive ionization in the

chamber), this system automatically ramps the channel up again (after a short delay

to allow the chambers to recover). If this occurs repeatedly, then the system gives
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up, leaving further action to the operator (who is kept informed via smi and emu).

In addition, the software ensures that ramping is always done in groups of channels

so that there are no delays between the start of ramping for different channels within

an endcap (fca) or module (fcb).

These functions were implemented by changes to the standard Elementary Pro-

cess, which treats all channels independently.

Special precautions are taken to prevent the possibility of significant voltage dif-

ferences between the fcb wire planes, which are only 1 cm apart. The caen high

voltage channel for each plane is daisy-chained with the others in the same module

in such a way that if one channel trips, then they all trip.

Monitoring of the fcb preamplifier low voltages is required to maintain a balance

between sufficient amplification of the signals and noise reduction.

3.2.5 Ring Imaging Cherenkov Counters (RICH)

The rich fluids [90] (C6F14 liquid, C5F12/C4F10 gas, methane and ethane used as drift

gases, and tmae vapour) are supplied by a special system controlled by five Siemens

process controllers, which perform the particularly careful control and monitoring

required by these sensitive detectors. The radiator ultraviolet transparency is checked

with a monochromator controlled by G64.

Barrel RICH (RIB)

The Barrel rich gases are heated to 40◦C. This allows the normally liquid C5F12 to

be used as a gas radiator, and a greater quantity of tmae vapour to be present.2 The

temperature has to be controlled and monitored very carefully to prevent condensa-

tion of the tmae by cooling, damage to the detector by overheating, or expansion or

contraction which would destroy the detector alignment.

2The elevated temperature was originally intended to also allow a higher gas radiator pressure
(which would otherwise condense), providing improved pion/kaon differentiation at intermediate
momenta. However this option has been ruled out for mechanical reasons.
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An 80 kV Heinzinger very high voltage unit (controlled, via an ieee bus, by G64)

provides the electric field to drift photoelectrons to multiwire proportional chambers

(mwpc), which are supplied by caen units.

Forward RICH (RIF)

The Forward rich uses C4F10, which has a lower boiling point than C5F12, as its

gas radiator, and thus does not require the elevated temperature used in the barrel,

considerably simplifying the Slow Controls. A 35 kV fug very high voltage unit

(controlled via a caen unit) provides the drift fields, and caens are used for the

mwpcs. The temperatures of the gas radiator, drift gas, front-end electronics, and

fastbus crates are monitored by G64s, which can cut the tmae flow or crate power

in the event of problems.

3.2.6 Calorimetry

High-density Projection Chamber (HPC)

Due to the fairly large number of hpc caen channels (144) and to particular features

of the switching on/off procedure, special software has been developed for the high

voltage control. This optimizes the time needed to ramp up the chambers’ high

voltages and performs extensive checks on the power supply hardware to ensure safe

operation of the chambers.

Since energy and position measurements depend critically on the gas mixture,

continuous monitoring of the drift velocity and chamber gain is performed on external

drift tubes connected to the gas system [91]. These measurements are performed using

camac devices, which are then read out by a G64 acting as a crate controller.

Forward Electromagnetic Calorimeter (EMF)

All phototriode high voltages on each side of the emf are supplied by a single Kepco

high voltage unit. A splitter allows the voltage and current for each quadrant to be
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individually controlled and monitored directly by G64, and the 2560 currents drawn

by individual groups of phototriodes are also monitored. A water cooling system is

employed and temperatures are monitored, allowing the detector to be automatically

switched off if the temperature rises too high.

Hadron Calorimeter (HAC)

The high voltage [92] for each hac tower is provided by a single caen channel, for

which automatic trip-recovery is provided. Each of the 1872 layers can be discon-

nected separately by relay. This prevents a single short putting an entire tower out

of action. To achieve this, the current drawn by each layer is monitored [93]; if it

is too high, the relay is switched off directly by the G64 (for speed). The front-end

electronics supplies are also controlled [94]. Test streamer tubes are used to monitor

the gas mixture quality and drift velocity.

3.2.7 Muon Chambers

Both Barrel and Forward Muon Chamber high voltage control includes automatic

trip-recovery, similar to that described for the Forward Tracking Chambers in sec-

tion 3.2.4 (though without the form of channel grouping used there).

Barrel Muon Chambers (MUB)

The Barrel Muon Chambers’ high voltages are applied to both the anode wires

(6150 V) and the cathode (grading) strips (graded with voltage between 4000 V

and ground). Hardware interlocks ensure that both anode and grading will trip if the

current drawn by either is too large. The voltage difference between anode and grad-

ing is further protected by automatically ramping the voltages in 500 V steps. Special

conditioning logic automatically comes into operation for sectors tripping repeatedly.

This reduces, for a time, the target voltages to find a level where the chambers can

operate without tripping. The voltages are ramped down if the gas supply is stopped

or the mixture is bad (in addition to the general switch-off in the event of a gas loss).
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Forward Muon Chambers (MUF)

The Forward Muon Chambers’ anode wire voltages are provided by caen and the

cathode strips by fug power supplies, which are controlled directly by the G64s. The

anode voltages are varied (by the Elementary Process) as a function of atmospheric

pressure in order to maintain a constant efficiency. The drift velocity is monitored [95]

with a special chamber supplied with the same gas mixture as the detector.

Surround Muon Chambers (MUS)

Since the mus streamer tubes are of the same design as those of the Hadron Calorime-

ter, the same gas supply can be used for the two detectors. However, the smaller

number of planes allows each one to be provided with high voltage by a single caen

channel.

3.2.8 Scintillators

Scintillator Trigger Counters (SCI)

High voltages for the sci photomultiplier tubes are provided by non-standard caen

voltage dividers, controlled using the hpc G64 system and special vax software.

Time of Flight Counters (TOF)

High voltages are used for the photomultiplier tubes.

Forward Scintillator Hodoscope (HOF)

The hof Slow Controls are considered a subsystem of the Forward Muon Chambers

(section 3.2.7), which provides high voltages for the photomultiplier tubes.

3.2.9 Luminosity Monitors

The Slow Controls of the sat and vsat are described in [97]. Bias voltages for both

detector partitions are provided by special low voltage crates, which are connected via
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RS232–C to a shared G64. The G64 Skeleton program and the Elementary Process

have been adapted to control these bias channels. This system is also used for the

bias voltages of the stic, which replaced the sat at the start of 1994.

Monitoring is performed on the currents drawn by each of the 320 stic pho-

totetrodes, which are supplied by a system based on that of the emf (see section 3.2.6).

Control is performed on each endcap as a whole: this is emulated in the G64 as a 2-

channel caen crate. The veto hodoscope photomultiplier high voltages are provided

by a caen SY403 high voltage unit, at present controlled by hardwired signals. The

stic fastbus monitoring and control are provided by the old sat system.

3.2.10 Other Systems

Monitoring is also performed for the central Data Acquisition and Trigger system

fastbus crate power supplies, temperatures at various places round the delphi barrel,

cavern temperature and humidity, and the detector cooling water temperatures, flows,

and vessel condition.

3.3 Front-end Systems (G64)

The lowest level of computer functionality (excepting intelligent devices such as the

caen high voltage units described in section 3.3.1) is vested in the G64 systems.

These are located in the electronics counting rooms adjacent to the detector in the

experimental cavern. The number of G64s used by each detector partition is shown

in table 3.2. A full list of G64s and Elementary Processes and a summary of their

functions is given in table C.1 on pages 155–161. In total 88 G64 crates are used:

50 for the detector monitoring and control, 34 for the gas systems,3 and 4 for the

magnet.

3Of these, 7 (6 supervisors and one supply monitoring) are not included in table 3.2.
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Part- Number of Number of Comments
ition G64s sc Elementary Processes

sc gas hv lv temp fb other

vd 2 – – 2 1 1 –

id 1 3 1,2m) 1 1 1 – High voltages supplied by
LeCroy units and directly
controlled by vax processes
which emulate G64s/caens.

tpc 7p) 3 1p) 2p) 1p) 2p) 2p)

od 2 2 1 1 1 1 –
fca 1m) 2 1m) – – 1 –
fcb 2m) 3 2m) 1 – 2 –

rib 2,1,m) 1 2,m) – 1 4p)

5p) 1p) 1p)

rif 2,2m) 1 4 – 2 2 1p)

rich fluids are overseen by
five Siemens process
controllers.

hpc 2,4p) 3 1p) 1p) 1 1p) 2p)

sci – – 1p) – – – – hpc G64/caen crates used.
emf 2p) – 2p) 2p) 2p) 2p) –
hac 1,4,m) 4 4,4m) 4 – 1

1p) 3p)

mub 2 2 2m) 2 – 2 –
muf 2m) 3 2m) 2 – 2 –

hof – – 2m) – – – – muf G64/caen crates used.
mus 1 – 2 – – – – hac gas supplies used. lv

and fb control to be
implemented.

tof 1 – 1 – – 1 –

sat 1m) – – 1,1m) 1 1 –
stic 1m) – 3 1m) 1 1 1
vsat – – – 1,1m) – 1 –

The stic replaced the sat in
1994. sat/stic and vsat
bias G64 crates are shared.

Sol 4p) – – – – – 4p) The Solenoid is described in
section 3.9.3.

Misc 1 – – – 3 2 – fca G64 crate also used.

Total 54 27 39 23 15 25 17

Table 3.2: A summary of the G64 crates and Elementary Processes used by each
detector partition. The numbers of Slow Controls detector-monitoring (sc) and gas-
system G64s are given, as well as the numbers of Elementary Processes for high
voltages (hv), low voltage electronics (lv), temperature monitoring (temp), fastbus
power supply monitoring (fb), and others.

m) indicates that the G64 Skeletons or vax Elementary Processes (ep) have been
modified (often only slightly) for functions specific to a particular detector par-
tition.

p) indicates that partition-specific programs, not based on the G64 Skeleton or
standard Elementary Process, are used.

Note that the gas-system G64s run a different program from the detector-monitoring
G64s. The functions of the individual G64s and Elementary Processes enumerated
here are detailed in table C.1 on pages 155–161.
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Figure 3.2: The mac–G64 and caen crates. The mac–G64 crate (on top) consists of
a G64 bus below a mac bus. The G64 bus contains, from left to right, a double-card
caen interface, two digital input/output cards, a G64–ethernet interface connected
to thinwire ethernet, a cpu card with two RS232–C connectors, and a disk controller
and drive. The mac bus contains a double-card caen interface, two digital input/
output adapters, and the power supplies on the right. Below the mac–G64 crate is a
caen high voltage crate, connected to the G64 by caennet.

3.3.1 G64 Hardware

G64 is a simple 64-line microprocessor bus developed by the Gespac company [98],

though the term is often used to designate the entire computer system. Its simplicity

has led to the production of a number of cheap input/output cards, and is thus well

suited to an experiment, such as delphi, with a requirement to monitor and control

a very large number of channels, without particular emphasis on speed.

The MAC–G64 chassis [99], designed by cern ecp division initially for aleph,

has also been used by delphi (figure 3.2). It contains two card frames; the lower

has a G64 bus, whilst the upper is used to hold the MAC (monitoring and control)
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cards [100] which are tailored to specific input or output functions (such as multi-

plexing analog signals). These cards are read out using a small selection of G64 cards

(typically analog-to-digital converter (adc) and digital input/output cards) in the

lower cardframe. This separation enables a small number of cards to be used for a

variety of functions, simplifying the software and the maintenance of the hardware. In

addition, the electrical separation of the mac and G64 buses reduces noise problems

by allowing the mac cards to be separately grounded.

G64 cards

The G64 system was designed with the 6800-series of 8-bit microprocessors in mind.

The cpu card [101] used by delphi includes the Motorola 6809E [102] microprocessor,

256 kilobytes of ram, 32 kilobytes of rom, two serial (RS232–C) interfaces, and a

real-time clock. Peripherals on the G64 bus are memory-mapped, normally into a

1-kilobyte region, the Valid Peripheral Address space, which is decoded on the cpu

card.

Since the 6809 has a 16-bit address bus, it can only directly address a maximum

of 64 kilobytes. Additional memory (either ram on the cpu card or ram/eprom on

other G64 cards) can be addressed by using a paging facility on the cpu card, which

allows, in our case, different 32-kilobyte sections of memory to be brought into use

under program control.

Communication with the vax systems is effected using a G64–ethernet inter-

face [103]. This contains a 68000 processor, onboard ram and eprom, and the

lance ethernet chip. The G64 cpu has access to a window of the 68000’s ram, and

the 68000 can access all of the 6809’s address space, allowing dma transfers.

Two broad configurations of G64 cards have been used by delphi. ‘Development’

systems contain a cpu card, eprom card containing parts of the operating system,

floppy disk controller card and 31
2

′′
disk drive, ethernet card, and various input/

output cards. Once the system is considered stable, the eproms are filled [104] with

the application program and the floppy disk drive and controller are removed. This
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‘production’ system can run with or without a terminal connection.

Input/Output cards

The main input/output G64 cards used are a Parallel Input Adapter (pia) card

for reading digital statuses, analog-to-digital converter (adc) cards (10- and 12-bit

resolution) for reading analog voltage levels, and an Output Register card to control

digital states. The output register card is preferred to the pia card for control, as

all its outputs go to the same (off) state when the G64 crate is switched on or reset.

Each adc card has 16 channels; the digital input/output cards have 32.

Many of the required ranges accepted by the G64 input cards, or voltages produced

by the output cards, are not suitable for direct connection to the detector. The

conversion and electrical isolation is performed by the mac cards: input adapters,

relay cards, platinum resistance thermometer (PT100) temperature adapter cards,

etc. Multiplexer cards, coupled with a pia card, allow a single adc channel to

monitor 32 input voltages, albeit more slowly. The type of each mac card can be

read out by a special G64 card, allowing a crosscheck between program configuration

and the actual hardware installed.

CAEN High Voltage Unit

Most high voltages required by delphi are provided by the caen SY127 system [80]

(figure 3.2). Each crate can control up to 40 channels, divided into modules of 4 chan-

nels each. Different modules can be fitted for different channel characteristics, such

as maximum voltage or current resolution.

The caen crates can be accessed by a front-panel keypad and led display, by

terminal (using a menu-driven system), or from the G64. Normal operation in delphi

relies on the link to the G64, which is effected via a G64–caen interface and then

caennet to the caen crate. caennet allows up to 100 crates to be daisy-chained

together, allowing a total of 4000 channels to be controlled and monitored from a

single G64–caen interface.



Chapter 3. Slow Controls 67

caen channels are normally maintained at a constant voltage (V0) unless the

current drawn exceeds a preset limit (I0). In this case, the caen can be set either to

trip (switch off) that channel immediately, or to enter a constant-current mode for a

prespecified time before tripping (unless the load is reduced in the meantime). When

voltages are changed, they ramp up or down at a preprogrammed rate. After the

command to start ramping has been given, the caen is free to accept other commands

for the same or different channels. All these parameters can be individually set or

read (for each channel) from the G64. The channel statuses (i.e. whether on, off,

tripped, etc.) and actual voltages (VMON) and currents (IMON) can also be read from

the G64.

In the event of a computer failure, the operator can initiate a hardwired central

ramp-down of all caen high voltages; this ramps the caen to an alternate set of

voltages (preset to zero in the caen), and subsequently triggers a ‘kill’.

3.3.2 G64 Software

System Software

The G64 ‘operating system’ is extremely primitive, and contains no facilities for

multitasking.

The 4 kilobyte monitor program in eprom handles the initialization, and pro-

vides basic routines for terminal and disk input and output. When the system is

switched on or reset, the monitor either bootstraps the operating system from disk

(in the development systems) or loads the application program from eprom.

The FLEX disk operating system [105] allows the editing, compilation, and running

of programs from disk.

Most application programs for the G64 have been written in Omegasoft Pas-

cal [106]. As well as standard Pascal features, this compiler allows the program

to be split into separate modules, and allows direct addressing of memory-mapped

peripherals.
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The size of the delphi standard application program is considerably larger than

the 64-kilobyte address space can hold. A mechanism has been developed to allow

different modules of a program to be placed on different pages in memory, overcoming

this problem [107]. Calls between Pascal routines on different pages are made in a

transparent fashion.

Communications

Communications between the vax and G64 systems [108] use the osi transport proto-

col over ethernet (ieee 802.3). The protocols are handled by the Marben Osiam prod-

uct [109], running in the G64–ethernet card. An interface to this, cats/tp4 [110],

has been implemented on the G64–ethernet card, using the CATS (common access

to transport service) calling standard developed at cern [111]. cats attempts to

standardize calling sequences to different transport protocols and implementations.

A simple protocol allows cats calls on the G64 to be executed by cats/tp4 on the

G64–ethernet card, using the shared-memory window.

Remote Procedure Calls (RPC) [112] are used both on vax and G64 to com-

municate commands and data. rpc is based on a client–server model, and allows

network calls (i.e. calls to cats) to be hidden from the application. The client appli-

cation calls an application-defined routine, which is implemented on the server. The

rpc system takes care of transmitting the request, along with the input parameters

of the call, to the server. The server rpc system then calls the requested routine

with the parameters decoded from the received message, and, upon its completion,

sends back the return parameters to the client rpc system, which returns them as

output parameters to the client application. rpc also handles the translation between

different number representations, such as the different floating point representations

used by the vax and Omegasoft Pascal on the G64.
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Application Program (G64 Skeleton)

Most G64 systems run a standard program, the G64 Skeleton [113], though a few

use dedicated programs (marked p) in the SC G64 column of table 3.2).

The G64 Skeleton, being at a low level and running on a comparatively slow

computer, was designed for greatest simplicity. Essentially it tries to hide from the

vax the details of accessing the hardware, providing little ‘intelligent’ control, while

at the same time minimizing the amount of communications necessary with the vax.

Control and inquiry functions are implemented as remote procedures callable from

the vax (i.e. rpc with vax as client, G64 as server). For efficiency, a single remote

procedure call can read or set a number of channels if desired.

The G64 Skeleton executes a continuous program loop, monitoring all input chan-

nels. Any status change is flagged by calling a reporting routine on the vax via rpc

(i.e. G64 as client, vax as server). Again, for the sake of efficiency, if the G64 detects

several status changes within one monitoring loop, up to 10 of these are buffered into

a single call.

The rpc/cats/osi connections are initiated from the vax and repeatedly checked

with application-watchdog messages from both sides.

A simple model of the hardware is presented to the vax: channels are classified

either as digital input, digital output, analog input, analog output, or caen. Except

for caen channels, all values are represented as integers at this level: 0 or 1 for digital

channels, or adc counts (e.g. 0 to 1023 for a 10-bit adc) for analog channels. Since

the caen communicates voltages and currents in units of the resolution of the relevant

module (whose type need not be known to the vax), the G64 Skeleton program applies

appropriate scale factors so that the vax can use volts and microamperes for all caen

channels, regardless of their type.

Digital and analog input channels are monitored continuously. The error status

of analog channels is determined using a desired value and two error limits. If the

monitored value differs from the desired value by more than the first error limit, then

the channel goes into error. In order for the error to be cancelled, the value must
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return to within the (narrower) second error limit. This hysteresis prevents frequent

state changes when the value hovers around the limit. State changes in either direction

(going into, or out of, error) cause a notification to be sent to the vax.

caen channel statuses are monitored continuously, and any changes are reported

to the vax. While the actual voltages and currents are readable by command from

the vax, these are not continuously monitored by the G64, since any faults here will

be signalled by the caen with a status change.

Digital setting, analog setting, and caen channel settings are only accessed by

explicit initialization or changes requested from the vax.

The channels to be monitored and their desired ranges are defined by rpc com-

mands from the vax. In addition, the G64 Skeleton program can be cleanly tailored

for the few systems with special needs, such as those with special hardware or with a

requirement for fast or particularly reliable intervention at the G64 level. (For exam-

ple the Forward rich stops tmae flow immediately if the temperature drops below

25◦C.) This allows most systems to be run from a standard eprom, while maintaining

flexibility.

3.4 VAX Systems

3.4.1 Hardware

The higher level control, overseeing, and logging is performed from various vax sys-

tems in a single vaxcluster, located in the surface control room.

A vax 6000 is used for the central Data Acquisition, a vax 4000 for user access,

and a vaxstation 4000 for the central Slow Controls. There are also a number of

general-purpose vaxstations. In addition each major detector partition has one or

two vaxstations (mostly vaxstation 4000s — 17 in all), which perform local Data

Acquisition, monitoring, and Slow Controls. In this chapter, the term VAX is used to

refer to any of these systems — they are all binary-compatible.

Ethernet is used for the connections between the vaxen, and for the link to the
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detector G64s and front-end Data Acquisition crates in the cavern. However, the

main (Fastbus) data flow between the cavern and the vax 6000 on the surface goes

via an optical link. An fddi optical link is used to connect the delphi ethernet to

the main cern site, 7 km away.

3.4.2 VAX System Software

The VMS operating system is used. This provides multitasking, virtual memory,

a networked filestore, and a rich set of system routines. From amongst them, the

Slow Controls software has made heavy use of event flags, mailboxes, interrupts (vms

asts), global sections, and logical name translation services [114].

For communications with the G64s using the osi protocols, the vots package

was used at first. This has subsequently been merged with the native vms network-

ing system as decnet Phase V. Except for the main dataflow, tcp/ip is used for

communications between the vaxen and Fastbus Data Acquisition crates.

A variety of programming languages is used for the Slow Controls software. For its

natural interfacing with vms system services, and due to its familiarity to physicists,

vax/Fortran [115] — essentially Fortran 77 [116] with extensions such as structures

— is used for the Elementary Processes, the error message display, and the databases.

To allow a comparatively easy porting to the G64, we have benefitted from the im-

plementation of the Remote Procedure Calls system in Pascal [117]. For its interfaces

to X products, and familiarity to software engineers, C [118] is used for most of the

software related to operator interaction and information exchange (hipe, dui, and

dim, which are described later). For its rich real-time and multithreaded capabilities,

Ada [119] is used for the Error Message Utility and the State Management Interface.

While this profusion of languages has had the disadvantage of compartmentalizing

expertise, the definition of clear interfaces between the various systems has meant

that in practice this has produced few problems.

Traditionally ascii terminals have been used, and many of the user-interaction

programs were originally written with a user interface based upon simple VT100-
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style menus (using either vms’s smg [120] or cern’s mhi [121] menu packages).

More and more, however, the online programs are being converted to use the X-

Windows/Motif [122, 123] graphical user interface. As well as allowing more detailed

colour displays, there is no doubt that its use is more intuitively obvious for the

operator. Since it can be used over the network (unlike many other graphical user

interfaces), X-Windows allows experts to check up on many aspects of the detector

operation without leaving the main cern site, or even their foreign institutes. The

disadvantage of this system is that it requires access to an X-terminal. For this reason

many of the old ascii-based user interfaces continue to be maintained in parallel.

3.5 VAX Monitoring and Control Programs

3.5.1 Elementary Process (EP)

G64s communicate with the Elementary Processes, which in general run in the detec-

tor partitions’ vaxstations. Most Elementary Processes either use standard software

or are closely based on it, and work with the G64 Skeleton program described in

section 3.3.2. A few are dedicated programs (marked p) in the Elementary Process

column of table 3.2), including those which handle the less standard applications. It

is the standard program that will be described here.

Each elementary process oversees one subsystem of a detector partition, and is

represented in smi by a single object, whose state indicates the condition of that

subsystem. For example, the temperatures on one side of the Hadron Calorimeter are

monitored by one ep and are represented by one smi state (indicating whether they

are within an acceptable range).

The Elementary Process provides the connection between, on the one hand, the

G64s and, on the other, the State Management Interface (smi, described in more

detail in section 3.8), the Error Message Utility (emu, section 3.6), and the expert

user interface (hipe, section 3.5.2). It also updates the Status Update Database

(section 3.7.2). These connections are represented diagrammatically in figure 3.1. In
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order to handle interrupts from many of these sources, as well as to perform periodic

monitoring, the ep is by necessity event driven, using the mechanism of vms event

flags [114].

Each Elementary Process communicates with one or more G64s, and each G64 can

communicate with up to eight eps (though each channel reports its status changes

only to one ep). Thus an Elementary Process can control, monitor, and accept status

changes for a large number of channels. Status change reports call an rpc routine

as an interrupt (vms ast level), allowing immediate timestamping and reporting to

emu. Other actions, such as recomputing the smi state, are queued for subsequent

execution. Analog values sent or received from the G64 can have a linear transfor-

mation applied to allow for conversion from the integer adc count to the physical

parameter being measured (e.g. temperature or voltage).

Channel definitions, normal settings, and conversion factors are read from the

Slow Controls Configuration Database (section 3.7.1). This also defines names for

each channel, to make any error messages (sent via emu) helpful to the operator. The

overall program configuration is defined by vms logical names. ‘Hooks’ are provided

in the code to allow for special requirements (e.g. the automatic trip-recovery used

by the forward tracking and muon chambers, described in section 3.2.44).

The Elementary Process can accept commands from, and report state changes to,

smi. At any time a single smi state is evaluated to represent the status of all channels

overseen by an Elementary Process: these states are listed in table 3.3 on page 82.

smi commands, which act on all relevant channels, perform actions such as switching

apparatus on, off, or to an intermediate (standby) level (normally only used for high

voltages).

State changes in each channel, reported by the G64, are sent to emu. These

generally indicate an error condition being either raised or cancelled, though computer

problems, such as communication errors, also generate emu messages.

4A general-purpose automatic trip-recovery system, drawing on experience from these modifi-
caions, is now implemented in the standard Elementary Process.
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Changes in channel statuses reported by the G64, and in parameter values de-

termined by periodic monitoring are written onto the Status Update Database for

use by the offline data analysis. Multiple changes occurring together (within a few

seconds) are combined in order to reduce the number of updates to the same database

record (timestamped according to the time of receipt from the G64). Database up-

dates are usually inhibited when no data is being taken in order to minimize the

number of updates due to the raising and lowering of the high voltages at the start

and end of datataking. Outstanding changes are then written (backdated to their last

change) when datataking commences. These updates are sufficient because the offline

programs only require the detector status at the time of the events being analysed.

Since this task is of lower priority than others, a block of database updates may be

temporarily interrupted, for instance to respond to an operator command.

Special procedures are included for the caen. When a command to change the

voltages is given, all parameters (ramping rates, etc., as well as voltage values) are

downloaded from the Elementary Process to the G64 and thence to the caen. If

defined in the configuration database, a special ramping current limit is used in order

to prevent trips due to the higher currents drawn during ramping. When completion

of the ramp is signalled by the G64, the normal current limit is downloaded. The

Elementary Process also has to recognize caen crate-wide conditions, such as the

disabling of high voltages by manual intervention.

3.5.2 Expert Interaction (HIPE)

Display and control of individual channels by detector experts can be effected via the

Elementary Process using the hipe [124] user interface (see figure 3.3). This allows,

for example, high voltages to be adjusted for problem channels. At a command from

hipe, these modified values can then be written by the ep to the Slow Controls

Configuration Database, to become the new standard values. hipe uses a vms global

section to retrieve information directly from the ep’s datastructures in memory. This

keeps interactive access from interrupting the work of the Elementary Process, though
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Figure 3.3: A typical screen from the hipe Expert Display. Each row shows infor-
mation for a single channel (it could also show a summary of a group of channels).
In this case, some of the temperatures from the delphi environmental monitoring
are shown. Channel gives the sensor name, Demand the nominal desired temperature,
Value the actual monitored value, and Istat the channel status (i.e. whether it is in
error — in this case a number of channel values are out of range, as the detector is
switched off). Other monitoring parameters are also shown, and further details can
be requested by selecting a channel.

commands (such as the adjustment of channels) can be left for the Elementary Process

to perform when it is free.

hipe user interaction is based on the mhi [121] menu package. The definition

of the Elementary Processes to which hipe must connect, the channels and group-

ings, and the menu structure is made by configuration file. Special channel types or

requirements can usually be accommodated by changing the default menu structures.

3.6 Error Message Handling (EMU)

The Error Message Utility (emu) [125] is a cern product which provides a unified

system for handling alarm, error, warning, and informational messages from the Slow

Controls and Data Acquisition systems. Messages, which can be injected anywhere on

the network, are formatted by the emu system according to a message description file.

They are then sent to one of a number of logfiles or destination processes according

to a message routing file.

Application programs inject messages into emu using a short message name

(i.e. set_error or clr_error) and usually some parameters (e.g. the channel name).

The emu system consists of three processes, which in delphi all run on the central
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Slow Controls workstation, though in general they could each have many instances on

different machines. The emu decnet server acts as an rpc server for the application

programs, simply sending the messages without change via a mailbox to the emu

Decoder.

The Decoder attaches a description and properties to the message according

to those listed in the message file for the given message name. The description will

be used in the logfile and emu display to clarify the message. The parameters sent

by the application program are inserted at appropriate points to make an ‘English’

sentence. The properties are used for routing the message, and for selections by the

emu display (see section 3.6.2).

The Decoder passes the message on to the emu Router, which decides where to

send the message: into one of a number of logfiles, or on to an application process.

The routing can be based upon the name, properties (as attached by the decoder),

or source of the message, as specified by logical expressions given in the routing file

for each destination.

3.6.1 Use of EMU in DELPHI

Each Elementary Process or Data Acquisition program injects messages into emu.

The standard eps use a limited set of message names (and hence they all can be

associated with a single message description file). The message parameters are used

to send specific information such as the channel name or the newly-read value.

In order to allow the emu display to match an error message with its cancellation,

an additional convention is observed [126]. The message names start with set (for

raising) or clr (for cancelling messages), and significant text (such as the channel

name, which clearly must be the same if the two messages are to refer to the same

condition) is enclosed in square brackets. If these, the injecting program, and some

additional properties match, then the emu display is able to remove the message from

the list of outstanding errors when the cancellation message is received.

Each detector partition (or other system, such as the central gas system) has one
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emu logfile, which is normally only of interest to detector experts. All messages

from that partition, or messages relevant to that partition from the gas or safety

system, are sent to this logfile. Warning, error, and alarm messages are also sent into

central logfiles (one for the Slow Controls and one for the Data Acquisition), which

are watched by dedicated emu displays on the operators’ workstations. New versions

of the logfiles are created every midnight, while the old versions are kept available for

inspection by detector experts.

emu messages corresponding to conditions that require rapid intervention from a

detector expert are routed to a ‘beep-caller’ program [127]. This uses the auto-dial

facility of a modem to dial the telephone number that activates the pager carried by

the appropriate detector expert.

3.6.2 EMU Display

The emu Display [128] is a general configurable utility for showing outstanding condi-

tions reported by emu. It is based on the X-Windows/Motif graphical user interface

(figure 3.4), though a VT100-style terminal interface based on mhi is also provided.

The program watches for updates that emu makes to a logfile (signalled by the

vms file system) and displays them according to category (e.g. by detector partition

or severity), which may be selected for display separately. If not currently displayed, a

new message is indicated by a colour change (according to its severity) on the button

corresponding to its category. Cancelled messages are removed from the display,

though they remain in the logfile. A logfile browsing facility is also provided.

In normal operation emu displays are used by both Data Acquisition and Slow

Controls operators to monitor warning, error, and alarm conditions.

The program is highly configurable (both by configuration file and interactively),

allowing it also to be useful for detector experts to monitor or browse the partition-

specific logfiles.
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Figure 3.4: A typical screen from the emu Dis-
play. On the left are the controls, with a button to
select each partition’s messages. Those that have
unseen messages are coloured according to the high-
est severity of message. Above the controls are the
messages for the Outer Detector (selected by click-
ing on the OD button). These show a number of
trips of caen high voltage channels.

3.7 Databases

The delphi databases are based on the cargo [129] hierarchical database system,

which in turn uses a modified version of cern’s kapack [130] keyed-access file man-

agement routines.

cargo provides facilities for creating, updating, and interrogating the database,

either interactively or from a program. Its special features are the timestamping of

updates to a record, and the ability to create a formatted ASCII file. Each update

has a period of validity, which is usually from the time of the update until the

next update. This allows an analysis program to read the data item that was valid

at any past time, such as at the time that a particular physics event was recorded.

The ascii file contains a representation of all of, or a selected subset of, the binary

database file. This is particularly convenient for the periodic transport of database

updates from the online to the offline computers, which also use cargo to store the

detector calibration and alignment.

Each of the main cargo databases used in the online system (Slow Controls
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configuration, Slow Controls status update, and lep machine parameters) has an

access package, which provides a set of routines through which all database accesses

are performed. Application programs can either call these routines directly to access

a private database file, or can make a remote procedure call to a database server

process to access the common database files. The use of rpc provides automatic

protection against conflicts, such as two programs attempting to write to the same

record at the same time, since the server executes only one command at a time. It

also greatly simplifies the task of coordinating the export of update ascii files to the

offline computers, since all updates go through the same process.

3.7.1 Slow Controls Configuration Database

The Slow Controls Configuration Database [131] lists characteristics, physical ad-

dresses, default values and error limits for each channel associated with an Elemen-

tary Process. It also defines the correspondence between G64 channel number and

the Status Update Database word or words where changes will be recorded, and the

tolerance on the readings before an update is made.

Since updates to this database are only made at experts’ request (normally only

when the detector hardware or default running values are changed, i.e. via hipe), it is

usually found to be more convenient for each detector partition to have an individual

database file.

3.7.2 Status Update Database

The Status Update Database [132] is used by the offline analysis to determine the state

of the different parts of delphi as each physics event is analysed. The granularity of

description depends on the detector partition concerned (see [96] for an example).

Updates are written by the Elementary Processes using the database server, called

via rpc. These updates are periodically exported to the offline computers. During

datataking, the frequency of updates from each detector partition is checked online
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using time-development plots integrated into the quality checking system.

3.8 High-level Representation (SMI)

The State Management Interface (smi) [133] describes the various subsystems of the

experiment in terms of a set of objects.

Each object has a predefined set of states in which it can be, and for each state

a set of allowable actions that can be requested of it. The state of each object is

determined either by the state of other objects or, for elementary objects, by the

state set in its associated Elementary Process. Similarly, actions requested of an

object are either passed on to other objects or to an Elementary Process.

The definition of possible states, allowed actions, and the relationship between

objects is made in a dedicated smi language. In non-elementary objects it allows

conditions to be specified which will result in an automatic state change or set of

actions. For example, the state of a higher-level object can be determined by the

states of lower-level objects, or commands can be issued when a state change occurs.

A group of related smi objects forms an SMI domain, which is implemented in

a single process. Communication between an smi domain and other domains, or

with the Elementary Processes or the user interfaces, is effected using the DELPHI

Information Management (DIM) [134] system. This system allows smi states to

be directly viewable by the delphi User Interface (see section 3.8.2). It replaces

smi’s native communication system [135], providing greater reliability, since it does

not require all states to be held by a central server.

3.8.1 Use of SMI in DELPHI

smi provides the primary high-level control and reporting mechanism for both the

Slow Controls and Data Acquisition systems. Each detector partition is mapped

onto an smi domain, which contains an object for each Elementary Process, which

oversees a single well-defined subsystem. Some of the possible states of these objects



Chapter 3. Slow Controls 81

and the actions that can be performed on them are listed in table 3.3. The states

of all Elementary Objects in an smi domain are combined into summary objects SC

and, where relevant, LEP_RELATED.

The SC object gives the detector partition’s overall status. Its states are summa-

rized in table 3.4a.

Since lep activity (such as injection or coarse tuning) can produce a significant

number of stray particles in the detector, it is advisable to reduce the high voltages

of the more sensitive partitions during this time. The LEP_RELATED object shows the

state of these high voltages, and can be used to ensure that they are all lowered before

giving lep the go-ahead for the operation.

Conditions in the ancillary gas and gss systems (see section 3.9) relevant to each

detector partition are relayed to that partition’s smi domain and can be used to

switch off voltages when a serious condition is indicated. They can also contribute to

the partition’s SC summary state, giving the possibility of an ALARM state.

The summary states for each detector partition are relayed to a central smi do-

main, which composes overall SC and LEP_RELATED summary states for delphi.

The main commands used for the control of each detector partition are summa-

rized in table 3.4b. These commands can be received by the partition from one of

two sources: during data taking, they normally come from the central operator via

the central smi domain; during setting up, they (and other commands designed for

the control of specific detector partitions) are issued by detector experts from a lo-

cal smi display. A switch from local to central control and vice versa is provided so

that central switch-on commands can be inhibited during the intervention of detector

experts.

3.8.2 SMI Display

Operator display and control is provided by the delphi user interface (dui) [136] to

smi. dui is a general-purpose X-Windows/Motif graphical user interface. It is used

to show information as varied as the Slow Controls statuses and the lep collimator
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(a) smi state Condition
OFF All channels are off.
HELD_OFF Same as OFF, except that an explicit RELEASE command is

required before any control is possible.
ON All are on and ok.
STANDBY All caen channels are at their intermediate level.
RUN Same as ON, except that an explicit RELEASE command is required

before any control is possible.
CHANGING At least one channel is ramping up or down and at least one is

above its STANDBY level.
CHANGING_LO At least one caen channel is ramping up or down, and all are at

or below their STANDBY levels.
ERROR At least one channel is in error (e.g. reading outside limits or

tripped caen channel) and at least one other caen channel is
above its STANDBY level.

ERROR_LO At least one channel is in error, and all caen channels are at or
below their STANDBY level.

NOT_READY No channels are ramping or tripped, but they are not all at the
same stable state (e.g. some on and some off).

NO_CONTROL No communications with the G64, or between G64 and caen.
DEAD The Elementary Process is not running.

(b) smi Action
command
START Default settings from the Slow Controls Configuration Database are

downloaded to the G64, and control channels are switched on.
STANDBY Equivalent to START but sets intermediate values.
REPAIR Equivalent to START/STANDBY but only for caen channels that have

tripped.
STOP Control channels are switched off.
MONITOR Performs an additional read of all channel values.
HOLD If the state is ON or OFF, inhibits further commands (either from smi

or hipe). The smi state goes to RUN or HELD_OFF.
RELEASE Cancels the HOLD command.
ABORTIT Tells the Elementary Process to commit suicide.

Table 3.3: smi states (a) and commands (b) of the standard Elementary Process.
These correspond to the states and commands of the associated object in the de-
tector partition’s smi domain. For high voltage subsystems, the states STANDBY,
CHANGING_LO, ERROR_LO, and OFF indicate that the volts are no higher than the
standby level. The states of the LEP_RELATED object (ALLOW_BEAM_CT_DUMP_INJ,
DISALLOW_CHANGE, etc.) are set according to the states of the high voltage objects.
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(a) smi state Condition
READY Everything is on and can take data.
NOT_READY One or more subsystems is not ready to take data (e.g. at standby

level).
ALARM Unsafe condition (e.g. gas leak).
AL_CANCEL A previous alarm condition, now gone, requires explicit clearing.
ERROR One or more Elementary Objects is in ERROR.
CHANGING High voltages are ramping up or down.
NO_CONTROL No communications with one or more G64s or caens.
EP_DEAD One or more Elementary Processes are not running.
DEAD smi domain is not running.

(b) smi command Action
Prepare_For_Run All subsystems are STARTed to prepare for

datataking.
Respond_To_Background Lowers the voltages of subsystems which are

sensitive to ‘dirty’ beam conditions.
Prepare_For_Dump Lowers the voltages of subsystems which are

sensitive to conditions following physics beam.
Prepare_For_Injection Lowers the voltages of subsystems which are

sensitive to the beam conditions which occur
during lep injection.

Prepare_For_Coarse_Tuning Sets the voltages of subsystems which are
sensitive to the beam conditions which occur
during lep coarse tuning.

Switch_On_Fastbus Ensures that all Fastbus crate power supplies are
switched on in preparation for datataking.

Prepare_For_Shutdown Switches off all subsystems.
Clear_Cancelled_Alarms Clears a previous alarm condition, now gone,

subsequently allowing apparatus to be brought
back into operation.

Set_Central Switches the detector partition to central
operator control.

Set_Local Switches to local control.

Table 3.4: smi states (a) and commands (b) of a typical detector partition summary
object (SC).
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Figure 3.5: A typical screen from the smi display. The lep-sensitive high voltages
are currently lowered (hence the states indicating that any lep activity (beam coarse
tuning, dump, or injection) is permitted). The local smi for the Outer Detector (od),
obtained by selecting the OD SC button, is shown at the top right. The command
menu for all detector partitions, obtained by selecting the top CMD button, is shown
bottom right with the Prepare_For_Run command (see table 3.4b) selected.

positions. dui interfaces naturally to smi due to the latter’s use of the dim system.

The smi display program may be used to inspect and, when necessary, issue com-

mands to individual detector partitions by local operators, or to the whole of delphi

by the central operator.

The central Slow Controls smi display, shown in figure 3.5, allows the operator

to see the summary states of the central smi, of each of the detector partitions, and

of various ancillary systems. Details of the component states of each partition or

ancillary system can also be presented from this display; an example is also shown in

figure 3.5. The display can be used to send commands to all or part of delphi, or

(where authorized) to an individual object within a detector partition. The available
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global commands are similar to those for an individual detector partition (table 3.4b);

an example menu is also shown in figure 3.5.

A help facility is also available from the display to give advice to the operator on

the diagnosis and cure of problems occurring in each detector partition.

3.8.3 Big Brother

After several years of operator experience, it was decided to further automate the

system in order to provide the fastest-possible response to changes in the state of

the lep machine, Slow Controls, and Data Acquisition. This became possible once

a reliable determination of the lep machine condition was available to the delphi

smi [137]. It fitted smoothly into the existing software since the Data Acquisition

controls are also based on smi.

This system, dubbed Big Brother [138], was implemented entirely in smi during

the 1994 run. It introduces the following automatic actions based on correlations

between the three hitherto independent systems.

• Once lep acceleration is complete, and following confirmation from the Slow

Controls operator, a Prepare_For_Coarse_Tuning command is issued to raise

the stic high voltages. This gives an additional measure of the background

while the beams are adjusted.

• When the lep collimators are closed, and an additional confirmation is provided

by the Slow Controls operator, the remaining lep-sensitive high voltages are

raised with the Prepare_For_Run command.

• When all Slow Controls systems required for successful running are on, the Data

Acquisition system is started.

• If any of these Slow Controls systems has a problem, the run is automatically

paused. When the problem is resolved, the run is restarted.
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• If the lep backgrounds become too high, the run is paused. If they remain high

for some time, then lep-sensitive voltages are lowered with the Respond_To_

Background command. When conditions are better and confirmation has been

obtained from the sc operator, the volts are raised with Prepare_For_Run.

Once enough are up, the run is restarted.

• After lep dumps the beam or declares a machine development period, a Prepare_

For_Injection command is issued to lower the high voltages.

In order to maximize the amount of usable data taken, the run is only paused

for Slow Controls problems that would seriously impair the subsequent data recon-

struction or analysis. Similar conditions are used at the start of a fill to determine

when to start datataking. There are a number of conditions which, from the point

of view of the Slow Controls, are considered errors (and yield, for example, an ERROR

state) but for which datataking remains nonetheless profitable. In order to distin-

guish these cases, a set of RUN_RELATED smi objects, in parallel to the ones described

in section 3.8.1, are defined for the relevant detector partitions (id, tpc, od, hpc,

stic, and Trigger Partition). These can differ from the normal smi states at the

Elementary Process level (to distinguish, for example, a high voltage trip of a single

wire from that of an entire sector) or at the detector smi level (for example, temper-

ature warnings, while requiring expert intervention, rarely affect or are affected by

the state of the Data Acquisition, and so should not cause a pause of the run). The

detector RUN_RELATED states can be excluded from the global RUN_RELATED state by

the operator. This allows the run to be resumed if the error condition is determined

to be less serious than the smi state indicates.

As well as speeding detector operations (particularly when one of the operators

is temporarily absent from the control room — for example performing checks in

the cavern), with a consequent improvement in the overall datataking efficiency, this

system has the additional advantage of standardizing the conditions that determine

whether data is is taken.
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Prerecorded, digitized, audio messages are used to keep the shift crew aware of

Big Brother’s actions, to request confirmation of high voltage increases, and to alert

sleepy operators to serious problems such as safety alarms, high lep backgrounds, or

Slow Controls or Data Acquisition errors. Inevitably the controlling process has been

called ‘Big Sister’.

3.9 Ancillary Systems

The system described in sections 3.3–3.8 oversees and controls technical aspects of

the detector and its readout electronics. However, it does not operate alone. The

gas supplies, environmental monitoring for unsafe conditions (gss), the solenoidal

magnet, and the lep machine have been developed independently of the detector

Slow Controls system. In order to allow the Slow Controls operator easy access to

the condition of these systems, and to allow automatic actions in serious situations,

these systems have been interfaced with the delphi Slow Controls at the emu (see

section 3.6) and smi (section 3.8) levels.

The gas and Solenoid control systems were developed within the delphi collabo-

ration and both use a combination of G64 and vax computers. However, in contrast

to the detector control described in section 3.3.2, much more intelligence is vested

in the G64s, while the vax is used only for user interaction, logging, and interfac-

ing with other systems. This has the advantage of allowing each system to operate

independently. This was necessary as these systems were required before the rest of

the detector controls were needed or implemented, and in any case could be run out-

side normal datataking periods when the other systems may be subject to frequent

downtime. It did, however, lead to comparatively inflexible systems as program de-

velopment on the G64 is painful, and (even using paged ram) the program size is

limited. Despite the different design philosophies, both these systems use the same

G64 system software (flex, Pascal, etc.), the G64–ethernet card for communication

with the osi protocols, and (for the Solenoid) the rpc protocols.
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The environmental surveillance and lep monitoring systems were developed by in-

dependent groups at cern and, like the gas and Solenoid monitoring, were interfaced

a posteriori with the detector Slow Controls.

3.9.1 Gas Systems

All detector gases are provided by an integrated system of supplies, mixers, distrib-

utors, and purifiers [83], the state of which is monitored and controlled by 28 G64

systems. A further 6 G64s, which act as supervisors, are equipped with graphical dis-

plays and can control equipment and show the results of measurements throughout

the system. The flow rates and compositions are carefully monitored, as anomalies

could indicate a gas loss or a dangerous mixture.

Serious conditions are reported to a server on the vax, which can set an ALARM

smi state for the parts of the detector affected, and injects an emu message describing

the problem for the operator. The ALARM state causes detector high voltages to be

ramped down. This provides a backup to the hardwired connection directly from the

gas system to the caen high voltage units.

An rpc server on the vax is used to translate requests for information into com-

mands for the gas system G64s. This facility is used to log the main gas parameters

(as well as the atmospheric pressure) to the Status Update database. It is also used

by certain detector partitions which base their high voltage control on the values of

these parameters.

3.9.2 General Surveillance System (GSS)

The safe environment of all four lep experiments is monitored independently by

the General Surveillance System [84]. It monitors the ventilation, cooling water,

temperatures, and flammable gas and smoke detectors. If problems are detected, it

can alert the operator or the fire brigade; it can switch off gas supplies, high voltages,

or mains power; and it can activate fire extinguishers. A graphical interface to gss
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is provided.

The delphi Slow Controls system is linked to gss by both hardwired signals and

computer messages. Hardwired signals are generated in the case of many serious

conditions and are used to switch off high voltage and other potentially hazardous

equipment independently of any decision made by the software systems. Conditions

detected by gss that are relevant to delphi are sent to a server process on the delphi

vaxcluster, which translates them into emu messages and maintains the state of smi

objects for each detector partition and electronics barrack. The smi state changes can

provoke automatic actions such as switching off high voltages, before the condition

becomes serious enough to force a hardwired switch-off from gss.

Hazardous conditions detected within delphi, such as a gas loss detected by the

gas system, are forwarded from emu to gss. This allows gss to take independent

action, such as performing a hardwired switch-off of gas supplies and high voltages

before the possibility of a buildup of flammable gas in the environment.

3.9.3 Solenoidal Magnet

The solenoidal magnet [50] produces a field of 1.2 tesla by using a superconducting

coil carrying a current of 5000 A, maintained at a temperature of 4.5 K. Monitoring

is required for the temperature, pressure in the cryostat, current, mechanical strain,

and magnetic field in a number of places round the coil. Detailed computer control

of the power supplies is required.

These functions are performed by four G64 systems: for the power supplies, vac-

uum systems, data logging, and nmr magnetic field measurement. A standalone

vaxstation 4000–vlc provides user interfaces and logs the time-variation of monitored

values onto an independent database (implemented with cargo; see section 3.7).

Anomalous conditions detected by the G64 systems are sent to an alarm server

on the vax. A few of these conditions, for example a severe fault in the cooling

system, can provoke automatic action, such as running down the magnet currents.

All messages are injected into a local emu system, which can forward the more serious
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to the main cluster, thus notifying the Slow Controls operator in the usual manner.

3.9.4 LEP Accelerator

A typical lep fill can last up to 24 hours, though background problems seen in the

detectors may require intervention. During filling and high background conditions,

when large numbers of stray particles can be thrown into delphi, the high volt-

ages must be lowered for the Inner Detector, tpc, Outer Detector, forward tracking

chambers (fca, fcb), Barrel and Forward riches (rib, rif), barrel electromagnetic

calorimeter (hpc), Forward Muon Chambers (muf), and stic.

Since 1994, these actions are performed automatically by Big Brother (see sec-

tion 3.8.3). Prior to this it was necessary for all these interactions to be made by

hand, with the Slow Controls operator lowering the high voltages when indicated by

lep conditions or planned actions, and keeping the lep operators informed of the

state of delphi’s high voltages.

3.10 Operations

delphi is normally operated by three people, concerned, respectively, with the Data

Acquisition, data quality, and Slow Controls. In addition to controlling the detector,

the Slow Controls operator (or ‘SC Maestro’) has official responsibility for the safety

of the detector and personnel during her shift (functioning as shift leader in matters of

safety, or SLIMOS), and performs periodic tours round the cavern and gas barracks.

Continuous slimos cover is required whenever flammable gases are present in the

detector, even if lep is not running at the time. The user interfaces available in the

control room are the smi, emu, gss, and gas supervisor displays.

3.10.1 Normal Operations

The smi display (shown in figure 3.5) gives the primary indication of the state of each

detector partition, allowing the operator to coordinate with lep conditions.
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At the start of a lep fill, when beams are injected into the machine, the operator

must ensure that high voltages of sensitive detector partitions are lowered (normally

to their standby levels). This is indicated for each partition (and delphi as a whole)

by the LEP_RELATED objects shown on the smi display. When lep declares ‘physics’

conditions (colliding beams with collimators closed to reduce background), the volt-

ages must be raised in order to allow the detector to take data. When all the voltages

have reached their required levels, the run may be started. This is indicated for each

detector partition (and delphi as a whole) by the SC objects showing READY.

3.10.2 Dealing with Problems

Problems shown on the smi display may be followed up using the help facility provided

there (see section 3.8.2) and using more detailed information from emu (figure 3.4) or

hipe (figure 3.3). These are typically detector equipment problems (e.g. high voltage

channels tripping, which can often be cured by ramping up again), or safety-related

problems reported by gss or the gas system.

Safety-related conditions are indicated on the gss or gas supervisor displays, as

well as on the emu display, and in addition alert the operator by telephone pager.

Many alarm conditions provoke automatic actions, initially by software in a controlled

manner via smi (and hence also shown on the smi display), and then, in the case of

severe alarms, by hardwired actions such as turning off gas supplies or high voltages,

or by cutting the power to part or all of delphi. Some of the less critical actions may

be modified by the Slow Controls operator acknowledging the alarm.

3.11 Example

By way of an illustration of how the system works, we consider the operations per-

formed over one lep fill. This exemplifies all the components shown in figure 3.1 and

their interrelations.

1. While particles are injected into the lep ring, accelerated to 45 GeV per beam,
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and the beams are adjusted for collisions, the high voltages of sensitive detector

partitions (id, tpc, rib, od, hpc, fca, rif, fcb, muf, and stic5) must remain

lowered. Figure 3.5 shows the smi display in this state. Once the collimators

are closed, reducing the number of stray particles in the detector, and physics

conditions are declared, the high voltages have to be raised in order to take

data. This is only done if the background measured by delphi is acceptable; if

it is not, the lep operators are encouraged to improve the beam conditions.

2. The Slow Controls operator (or Big Brother, after confirmation from the Slow

Controls operator) issues the global Prepare_For_Run command from the smi

display. This command is forwarded to each detector partition’s smi domain,

but will only affect those partitions not already on (normally just those which

were lowered for lep setup) and under central control. Their Elementary Pro-

cesses will be given the START smi command.

3. This causes the ep to download the default running values to its G64s. For

the high voltage eps, the new voltages relayed by the G64s to the caens cause

the channels to start ramping. This new state is detected by the G64, which

reports it to the ep, which, in turn, reports its state to smi as CHANGING.

4. This state is visible to the operator until all voltages for that detector partition

reach their final values. Note that during this time, the eps, G64s, and caens

are not blocked, and can respond to other commands (for example to ramp

down again if lep has problems). As each caen channel reaches its final value,

the new state is detected by the G64’s monitoring loop, and reported to the

ep. When all channels have come up, the ep sets the state of its associated

smi object to ON, and the detector partition’s smi becomes READY. When all

partitions are ready, the central smi shows READY and the Data Acquisition

running may be started in order to collect data.

5The stic can in fact be switched on after acceleration is complete, but before the collimators
are closed. Doing this makes an additional measure of the background conditions available to the
lep and delphi operators.
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During this run, we now imagine a trip of a single caen high voltage channel.

5. The anode high voltage for plank 10 of the Outer Detector (od), normally

held at 4400 V, is detected by the caen to be drawing more than the specified

maximum current (50 µA; normally it might be expected to be drawing 15 µA).

This could generate a separate over-current message, which would eventually

be sent to emu, but we assume at this point that the trip time is set to zero,

so the channel trips immediately.

6. When the G64 next monitors this channel (normally within 10 seconds) by

reading its status byte, it will notice the change. This prompts it to make a

remote procedure call to the reporting routine in the Elementary Process defined

for this channel, in this case EP_OD_HVAN.

7. This ep immediately sends an emu message, set_error, with parameters giving

the channel type (‘CAEN’), channel name (‘Plank 10’), physical address (‘G64

crate 0800300010ac, slot 1, chan 10’), and current state (‘ramping down,

over-current, tripped, off’), which is formatted into a readable message

like those shown in figure 3.4, and is sent to a partition-specific logfile and to

the Slow Controls operator’s emu display. Since the channel name is unique for

this ep, it is enclosed in square brackets to allow the emu display to match it

up with the cancelling message (see section 3.6.1).

8. The Elementary Process marks this channel as being in error. If the number

of channels now in error passes a (partition-dependent) threshold, then the ep

changes its associated smi state to ERROR (assuming the other channels are at

their full voltages; if they were at their standby values — but maybe still high

enough to be prone to a trip — then the state would be ERROR_LO).

9. The change in the state of the high voltage object (HVAN) in the od’s smi domain

(OD_SC) causes the detector partition’s summary state (SC) to go to ERROR (but



94 Chapter 3. Slow Controls

the LEP_RELATED state remains unchanged, since the other voltages remain at

their previous values), and the delphi summary state changes to NOT_READY.

10. The change can also result in an update of the Status Update Database. Either

the new status or the changed voltage (assumed to be zero after the trip) will be

written. The details of the update depend upon definitions in the Slow Controls

Configuration Database for the specific subsystem. The database update is

important for the subsequent analysis of the data being taken. However, if the

trip had occurred when physics data was not being taken then the database

update would have been inhibited.

11. The Outer Detector high voltages make use of the ep’s automatic trip recovery

system, which will automatically try to restore the tripped channels, after a

minute’s delay (during which the smi state will be shown as ERROR_WAITING).

However if the channel trips more than three times (never staying on for longer

than 10 minutes), the automatic procedure gives up and an smi state of ERROR

(along with an emu message) warns the operator to contact a detector expert.

All the parameters (in this case, 3 retries, 1 and 10 minute times) are con-

figurable. Throughout this process, the operator is kept informed with emu

messages, and database updates are made to indicate the state of the high volt-

ages at all times. To see what might happen next, we imagine that the three

attempts to raise the high voltages failed.

12. The lack of voltage on Plank 10 will produce a reduction to zero in the efficiency

of this part of the Outer Detector. If the problem were to go uncorrected for

long enough, this would become statistically significant and be noticed by the

data quality checker. Normally, however, the Slow Controls operator will see the

trip on the smi and emu displays long before this occurs, and will be alerted to

the change of smi state by Big Sister. The problem could be due to an increase

in lep background (in which case many high voltages throughout delphi will

probably have tripped) or a momentary spike in detector background. Once
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the operator judges that it is safe to try to raise the voltage again, the smi

command REPAIR can be given from the central smi display.

13. The REPAIR command is relayed via the Outer Detector smi control object

(SC) to the ep controlling the Outer Detector high voltage, which switches on

Plank 10 (and any other tripped channels), resetting its voltage to the default

values using a Remote Procedure Call to the routine in the G64 for setting caen

values. (The REPAIR command is ignored for non-caen or untripped channels.)

The channel starts ramping up. This change of status is reported back to the

Elementary Process, which sets the smi state to CHANGING (or CHANGING_LO).

This change is reflected in the central smi domain.

14. When the channel reaches its desired final voltage, that condition is reported

to the ep, which generates an emu message, clr_error, cancelling the initial

report of the trip, and (if enough channels are now ok) sets the smi state ON

for object HVAN, and the detector partition state (OD_SC) goes to READY.

15. The new ok-status can be written to the Status Update Database, and (if

required) a read of the actual voltage will be triggered so that this too can be

written.

When finally we reach the sad time when the lep beam currents are too low to give

sufficient luminosity to make continued running worthwhile, lep will either dump

the beam or perform some machine studies, and the Data Acquisition run will be

stopped.

16. Before filling starts again or lep machine studies are started, the high voltages

of the sensitive detector partitions must be lowered to their standby levels in

an analogous manner to their raising at the start of the fill. This is done with

the Prepare_For_Injection command,6 issued either by Big Brother or the

operator.

6Prior to the autumn of 1993 the high voltages were lowered before the beam was dumped using
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17. After obtaining permission from the shift leader, the Slow Controls operator can

now go and make some tea (if English) or get some coffee (otherwise) while she

waits for lep to prepare a new fill. Of course, as soon as the vending machine

has delivered its elixir the operator returns immediately to her post to continue

to watch for any problem with the detector or ancillary systems.

3.12 Experience

3.12.1 Particular Strengths of the System

Many advantages have stemmed from the design of the system in a highly modular

fashion, with different subsystems on different platforms or in different processes, and

with well-defined interfaces between them.

This modular construction renders the overall system robust against problems in

any one area, so that a crash of a G64, an Elementary Process, or an smi domain only

affects those systems which it oversees. The levels above make the problem visible to

the operator, allowing for a more rapid cure.

Modularity has allowed a general system to be designed and implemented for

many different detector partitions, while still allowing certain parts of the system to

be tailored to specific requirements with comparative ease. As we have seen, these

modifications can be made at all levels: at the G64 level to cater for special hardware

or for rapid reaction to specific changes; at the Elementary Process level to allow for

special handling of the hardware, or to alter the determination of smi states, emu

messages, or status updates to the database; and at the smi level to allow for different

actions during different phases of running and to amalgamate the states of detector

partitions’ subsystems in different ways.

Except for smi, for which the smi-language description for each detector partition

the Prepare_For_Dump command. We have since determined that the beam dump procedure does
not produce any additional background radiation, so Prepare_For_Dump is now only used prior to
a period of lep machine development following a physics run.
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has to be tailored for different sets of subsystems, the standard programs have proved

sufficient for the majority of subsystems. This is due to the high level of configurability

of most of the software.

As described in section 3.9, the modularity has also simplified the interfacing of

the detector Slow Controls with the ancillary gas, gss, Solenoid, and lep systems.

The provision of such a modular system has been closely influenced and signifi-

cantly helped by the adoption of the rpc communications and the smi state-machine

models (sections 3.3.2 and 3.8 respectively).

3.12.2 Problems and Solutions

The implementation of the system in the ‘dirty’ environment of delphi as compared

to the development laboratory has resulted in previously underestimated difficulties

due, for example, to problems with the heavily-loaded ethernet. In such circum-

stances, the importance of fast error recovery, robust programs that do not hang or

crash if cooperating processes crash or restart, and good procedures for reconnecting

them, becomes paramount.

A general problem of all monitoring systems is limiting spurious (and sometimes

‘flooding’) messages without ignoring important conditions. At various times, delphi

has had particular problems with too frequent emu messages or status updates to the

database. When extreme, these can block the server processes against more important

messages, and fill up the disks. No specific solution has yet been developed to suppress

repetitive error messages for the Slow Controls, where a single problem can result in

many error messages for all the affected channels. In these cases it would be preferable

if all were combined into a single message. The database status update floods, which

can also slow down the subsequent analysis programs, have been solved by allowing

for the inhibition of updates when not taking data — the period when such updates

are by far the most frequent and yet are not required. Due to this change, and

improvements in the efficiency of both the emu and database servers, floods of both

types are now rarely a problem.
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A related problem is how to deal cleanly with known problems that have been

determined to be not serious, such as a faulty sensor. Obviously the long-term so-

lution is to fix the underlying problem, but it is not always practicable to do this

immediately. Detector channels can be disabled with hipe (short-term) or within the

Slow Controls configuration database (long-term); gas alarms can be inhibited; and

gss alarms acknowledged or inhibited. These temporary work-arounds require careful

documentation and communication between detector experts and the operators, and

can thus be subject to human error.

Since delphi was designed to operate over a period of more than ten years, it is

important to maintain a base of expertise and supplies of spare equipment to last the

lifetime of the experiment. This highlights the importance of choosing widely-used

hardware and software, ensuring that support for these is maintained, and of carefully

documenting systems produced within the collaboration.

3.12.3 Re-evaluation of Past Decisions and Possible Future

Improvements

The near-inevitable consequence of working in a large collaboration of independent

groups is that complete standardization does not always occur, even where this is

technically possible. As described above, the system has been designed to minimize

the impact of this fact of life. However, the long-term ease of maintenance, in par-

ticular, would be improved by reducing the number of such special systems to a

minimum. In software, this can often be done by generalizing the standard software

to handle these specific cases in a configurable way. In hardware, where, originally,

reductions in cost favoured the adoption of a solution tailored to a particular part

of the detector, it is often desirable to replace these systems with more standardized

ones when funds become available.

The G64 system was widely adopted at cern and elsewhere to provide monitoring

and control of a large number of disparate channels at low cost. The G64–mac systems
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remain cost-effective, but the 6809 8-bit processors originally chosen for the system

— although physically robust — are now to be regarded as archaic, and any similar

Slow Controls system designed now would certainly use the 68000 family of 16-bit

processors (for which cpu cards are available for G64, e.g. [139]).

3.13 Summary

The delphi Slow Controls system has been in operation since the lep pilot run

in August of 1989, though the system has been improved significantly since then,

culminating in the system described in this chapter.7 Over this time, as higher and

higher level systems have been added, the Slow Controls system has taken over the

functions previously performed manually by detector experts. Along with analogous

improvements in the Data Acquisition system, this has reduced the number of people

required on shift from around twenty to three, allowing detector experts more time

to spend on physics analysis.

By the end of 1993, delphi had recorded the results of about two million Z0-

decays, as well as Bhabha events used to measure the luminosity. The automation of

the Slow Controls system (particularly the reduction in high voltage ramping times

at the start and end of lep fills) has made a significant contribution to improving

the efficiency (live-time) of datataking, which in 1993 reached an average of 90% over

1500 hours of datataking.8

7The majority of the improvements were in operation at the start of datataking in 1992.
8Buy your Slow Controls system from DELPHI! Washes whiter than white! (i.e. Whitewashes all

known problems).





Chapter 4

A Measurement of the Mean

B-Hadron Lifetime

Calvin You can’t just turn on creativity like a faucet, you have to be
in the right mood.

Hobbes What mood is that?
Calvin Last-minute panic.

Calvin and Hobbes, Bill Watterson

4.1 Overview of Method

This analysis uses data from electron–positron collisions at lep with centre of mass

energies at or near the Z0 pole, recorded by the delphi detector. The detector is

described in chapter 2. The data capture and its subsequent analysis common to

all delphi measurements are detailed, respectively, in sections 2.10 and 2.11 and

references therein.

From this reconstructed data, hadronic events were selected and J/ψ → µ+µ−

candidates were searched for in these events. Initially, very loose J/ψ cuts were

applied in order to provide samples of both signal and background candidates, as

well as allowing for easier tuning of cuts later on. Detailed information on each

of these candidates (both muon parameters and tagging information as well as the
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reconstructed parameters of the putative J/ψ) was written to disk for interactive

analysis.

By selecting candidates with reconstructed mass close to the J/ψ mass, MJ/ψ, a

fairly pure sample of J/ψs was obtained. By parameterizing the distribution of re-

constructed masses over a larger range, the purity of the signal sample was measured.

Samples of events with the ‘wrong’ mass or charge were used to model the background

in the signal sample.

Since the distance the J/ψ travels over its lifetime is negligible compared to our

experimental resolution, the J/ψ decay point, measured from the crossing point of

the two muons’ (extrapolated) trajectories, was used to determine the J/ψ’s produc-

tion point. If this is significantly removed from the electron–positron collision point

(coincident with the Z0 decay point), the presence of a relatively long-lived interme-

diate in the decay chain is indicated. Assuming this is a B-hadron (see chapter 1)

and that its momentum can be determined, estimates of the B decay times can be

made. Their distribution should be near-exponential, but for the experimental reso-

lution, after correcting for the background contamination. The expected similarity of

the different B-hadron lifetimes allows us to assume a single exponential. The decay

constant allows us to measure the mean lifetime of B-hadrons decaying to J/ψs. Any

excess near zero decay time indicates the presence of J/ψs produced directly (or via

short-lived intermediaries) from the Z0 decay.

4.2 Analysis Program

All physics events recorded between 1992 and 1995 inclusive were studied. The vertex

detector configuration was significantly different before 1991 (see section 2.3.1) and

the data prior to 1992 has so far not been processed with more recent versions of

the delana/dstfix reconstruction code. Since the additional statistics that could

be gained by inclusion of these years is minimal (as can be seen from table 2.1), the

1990 and 1991 data (initially studied for this analysis) were not used.
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The shortdst data, both real and simulated, were copied from the cern Computer

Centre robots onto 10 gigabyte dlt20001 tapes and transported to the Rutherford

Appleton Laboratory, where the data were read into the Atlas Data Store.2

Three stages of J/ψ candidate selection were used: event preselection, J/ψ candi-

date reconstruction and n-tuple creation, and n-tuple analysis. The first two stages

were performed together in batch jobs (each reading, typically, around one million

events) running on the Rutherford Computing Department’s Digital Openvms/Alpha

service (a 4 processor dec 7000). To process the shortdst datasets for 1992–5 means

reading a total of ∼ 90 gigabytes (for the real data alone — not counting the simulated

data), which typically takes several days.

Considerably longer processing times would have been required but for the use

of event preselection. This uses information written to the shortdst event header,

allowing hadronic event selection and initial lepton identification to be performed.

Events that fail these cuts do not need to be further read into memory, significantly

speeding the overall processing time. The hadronic event selections (performed en-

tirely at the preselection stage) are described in section 4.2.1. The initial lepton

identification merely requires two tracks to be identified as muons by any of the iden-

tification algorithms, and is thus guaranteed to select all events that pass subsequent

cuts. Checks were performed by repeating the preselection procedure for small sam-

ples of events. Although minor discrepancies were found (and the bugs identified and

reported to the shortdst production team for correction in subsequent processings),

these fortunately did not affect the events selected by the combination of cuts used

here.

Pairs of tracks, in events selected as hadronic, that pass the J/ψ candidate se-

lections described in section 4.2.3 cause an entry to be written to disk (in n-tuple

format) for subsequent analysis. Information on the event, the two selected tracks,

1digital linear tape
2The Atlas Data Store is a facility to store large amounts of data, logically accessed as tape

volumes of user-specified size, independently of their physical location in the Atlas Centre robots.
Data can be accessed from on-site or from anywhere in the United Kingdom via Superjanet.
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Year 1992 1993 1994 1995 Total

Processing version 92E2 93D2 94C2 95D2

Integrated Luminosity (pb−1) 24.1 36.3 46.3 31.7 138.4
Shortdst data size (Gb) 16.5 16.8 36.6 20.2 90.1
Events on shortdst 2482495 2766589 5753343 3661917 14664344
Hadronic events 717880 721410 1416289 682448 3538027
Events after muon preselection 108437 104692 206324 101346 520799
Events with ≥ 1 candidate 9713 9175 19008 9477 47373
J/ψ candidates output 11684 10901 22988 11397 56970
Output n-tuple size (Mb) 3.7 3.5 7.4 3.7 18.3

Table 4.1: Initial J/ψ candidate selection statistics. The hadronic events are those
passing the section 4.2.1 selections. It is comparable with the counts given in ta-
ble 2.1, though the slightly higher numbers there reflect the very loose hadronic cuts
performed in the online. The muon preselection (section 4.2) requires that the event
have two or more muon-tagged tracks. The J/ψ candidates listed here are passed on
for additional cuts, described in section 4.3

and the reconstructed putative J/ψ is saved (see section 4.2.5). By performing the

candidate reconstruction at this stage and writing out only the information relevant

to this analysis, the final candidate selection and analysis needs only ∼ 18 megabytes

of data, and can consequently be performed interactively. Table 4.1 summarizes the

results of the event selections.

The same analysis program is used for simulated data, though additional infor-

mation on the generated B, J/ψ, and muon parameters is also extracted [1, sec-

tion 3.9]. Hadronic events are generated with the lund Parton Shower (ps) Monte

Carlo, jetset 7.3, and the delsim detector simulation (see section 2.12). A B life-

time of 1.6 ps is used for all species of B-hadron. 7,082,380 hadronic (about twice

the data sample) and 2,190,147 bb̄ events were simulated (detector simulations for

each of the four years, 1992–5, were used for different parts of the sample). Between

them, these samples contained 3835 B → J/ψ → µ+µ− events, but only 22 prompt

J/ψ → µ+µ−. A dedicated sample with a similar number of J/ψs helped with cross-

checking, but was processed with an old version of the reconstruction software (93C

without fixing), so was not used for detailed studies.

In fact the program that was developed for this analysis is considerably more

general than this, a number of additional studies having been described in [1]. It
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has options for using a variety of algorithms for lepton identification (electrons [1,

section 3.6] as well as muons), charged track refitting (normally the shortdst track

parameters are used without refit), jet assignment [1, section 6.2.3], charged+neutral

energy summation, vertex fitting (e.g. mass-constrained fit [1, section 5.2]), as well

as selecting different two-body (‘V0’) decays (K0
S → π+π− and Λ0 → pπ). As well

as muon identification and track reconstruction studies, these facilities were used to

compare selections, check different dst and shortdst processings, and provide cross-

checks of the candidate reconstruction. Other options can be used to search for some

specific decay modes of the J/ψ parent: ψ(2S) → J/ψ π+π− and Λb → J/ψ Λ0 [1,

chapter 5]. Finally, options are present to identify and work around bugs found (and

reported!) in various prior and current dst and shortdst processings.

4.2.1 Event Selection

Standard ‘open’ hadronic cuts were used to select tracks and events as follows. For a

charged particle track to be used, it was required to have

• momentum, p ≥ 0.1 GeV/c,

• track length, L ≥ 30 cm,

• transverse impact parameter, |ε| ≤ 8 cm,

• longitudinal impact parameter, |z| ≤ 8 cm, and

• reconstructed energy uncertainty, dE/E ≤ 100%,

where ε and z are two of the track’s perigee parameters (defined in appendix B).

These cuts are intended to reject tracks that were poorly reconstructed, from long-

lived particle decays (e.g. K0
L), or not from the primary vertex (e.g. cosmic rays or

beam–gas events).

Hadronic Z0 decays were selected with

• number of charged tracks, Nch ≥ 5,
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• charged energy as a fraction of the lep centre of mass energy, Ech/Ecms ≥ 10%,

and

• thrust [141] axis z-component magnitude, | cos θthrust| ≤ 0.95.

All three event selections use only charged tracks as defined above. They remove,

in turn, leptonic decays, two photon interactions, and events where a significant

proportion of the tracks are likely to be lost down the beampipe. Distributions of

these track and event selection parameters are shown in figure 4.1.

4.2.2 Muon Identification

Although only (6.02±0.19)% [2, page 41] of J/ψs decay to muons, these decays can be

identified with high purity and reasonable efficiency. Decays to electrons (which occur

just as often as decays to muons) can in principle also be identified. However, the

lower electron identification efficiency of delphi, combined with the increased prob-

ability of significant energy loss from ionization and bremsstrahlung (which hinders

reconstruction of the J/ψ mass) significantly reduces the efficiency of J/ψ → e+e−

selection. More critically, since in our subsequent analysis we are interested in the

decay position, which requires accurate measurement of the tracks’ position, the in-

creased error in this measurement due to scattering of electrons conspires against a

useful measurement in the e+e− channel.

The standard set of muflag muon identification algorithms (described in sec-

tion 2.11.4), performed by dstfix and written to the shortdst, were used. It should

be noted that the very loose tag was not intended for selection of muons in jets.

However, in order to allow flexibility in choice of selection criteria at a later stage,

candidates where one track was identified by only the very loose tag were included in

this initial selection.

As noted in section 2.11.4, there is no coverage by the barrel and forward muon

chambers (mub and muf) in the region 42◦ < θ < 52◦. The surround muon chambers

(mus) which bridge this gap were not fully operational until the end of 1994 (partially
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Figure 4.1: Distribution of parameters used in the hadronic event selection. The
shaded regions show the cuts detailed in section 4.2.1.
The first five histograms show particle momenta (with charge sign; qp), track lengths
(L), transverse and longitudinal impact parameters relative to the origin (ε and z),
and energy measurement errors (dE/E). The solid lines show all 7.4×106 recon-
structed charged tracks in a sample of 951807 shortdst events (1994 dst or stream).
The dashed lines show tracks in hadronic events passing the other variables’ cuts.
The remaining three histograms show the charged track multiplicity (Nch), the total
energy from charged tracks (Ech), and thrust axis z-component (cos θthrust), calculated
using the selected tracks. The solid lines are for all events, while the dashed lines are
only for events that passed the other hadronic cuts.
The number of tracks in the ε, z, and dE/E plots; and events in the Nch and Ech

plots are shown on a log scale.
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for ∼ 40% of the 1994 data, fully for ∼ 25%) and das problems prevented them being

read out in 1995, so we have full coverage for only ∼ 10% of events. They are, however,

used when available.

One final tag, pxhaid, uses the Hadron Calorimeter (hac) which, while less

efficient, has no gap in coverage between the barrel and endcap. Unfortunately,

unlike the muon chamber algorithms which have been continuously developed to take

account of changes in the detector and reconstruction, pxhaid has not been tuned

since 1992, probably because it is poorly modelled by the simulation and so is not

widely used. Nevertheless, again for flexibility, candidates that are selected by pxhaid

are included in the initial selection. Studies of its performance on 1991–2 data are

described in [1, section 3.5].

4.2.3 Initial J/ψ Candidate Selection

Pairs of charged tracks passing the section 4.2.1 cuts, that are identified as muons by

at least one of the muon identification algorithms (see sections 2.11.4 and 4.2.2), are

considered as J/ψ candidates. However candidates where both tracks are identified

as muons by only the very loose tag are rejected.

A vertex fit is performed for each of the remaining candidates (see section 4.2.4),

and the track parameters are adjusted accordingly. Candidates are selected according

to

• µ+µ− opening angle, ω ≤ 90◦, and

• reconstructed parent (putative J/ψ) mass, Mµµ ≥ 1.5 GeV/c2.

The opening angle (cosω ≡ p̂µ+ · p̂µ−) cut removes muons from opposite jets (e.g.

Z0 → bb̄ with both B-hadrons decaying semileptonically) with, says the Monte Carlo,

negligible loss of J/ψs.

The number of background events falls near-exponentially with Mµµ. The Mµµ

cut was chosen to remove the majority of the background, while leaving a reasonable

range of masses for background estimation. Obviously any true J/ψs (for which we
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hope for Mµµ close to MJ/ψ ≈ 3.1 GeV/c2) removed by this cut are much too poorly

measured to be of any use.

All candidates so selected are written to disk. Distributions of Mµµ and ω are

shown in figures 4.2 and 4.3. For simulated events, true J/ψs are written (flagged)

even if they are not selected.

4.2.4 Vertex Reconstruction

The track parameters of the two muon candidates are used to reconstruct the pa-

rameters of their parent. If both particles do in fact come from the same parent

and they have no other siblings, the distribution of reconstructed masses should give

a peak around the parent’s true mass. Other combinations produce a continuous

background.

The delphi-standard PXFVTX routine [142] is used to fit a vertex from the track

perigee parameters, (ε, z, θ, φ, κ) (see appendix B). In order to allow for the curvature

of the track between its perigee to the origin (the initial perigee parameters’ reference

point) and the vertex position, the fit is iterated, each time relative to the previously

fitted vertex position. The iteration normally terminates when the last change in

vertex position is less than 100 µm. Typically a couple of iterations are sufficient.

With two tracks, this three-dimensional fit has one degree of freedom, which can

be thought of as the requirement that the two tracks have the same z-coordinate at

their xy crossing point. Since the tracks’ trajectories are measured at some distance

from the vertex position (expressed as correlations between their position and tra-

jectory at the vertex), the vertex constraint can in principle improve the trajectory

measurement. However, it should be noted that with the single-sided vertex detector

(i.e. prior to 1994) which only measured the azimuthal coordinate, the z-coordinate

is relatively poorly measured and so the vertex fit constraint is rather weak.

This procedure gives a fitted vertex position, (x, y, z), and particle momenta at

this point, (θ, φ, κ), as well as covariance matrices for these parameters. The track

parameters are updated with these new values. The parent’s parameters and their
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Figure 4.2: Reconstructed masses of all J/ψ candidates passing the initial cuts (1992–
5). Candidates with like-signed (shaded histogram) and unlike-signed (unshaded)
track charges are shown. The signal at MJ/ψ ≈ 3.1 GeV/c2 can already be seen
(corresponding to 472±29 J/ψs or (27.7±1.7)% of the candidates in 2.95 ≤Mµ+µ−<
3.25 GeV/c2).
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Figure 4.3: µµ opening angle for all J/ψ candidates passing the initial cuts (1992–5),
signed according to the topology of the muons: ‘cowboys’ (where the effect of the
magnetic field is to bend the tracks towards each other in the xy plane) have ω < 0,
and ‘sailors’ (tracks bent away from each other) have ω > 0 (see the description of
OANGF in section 4.2.5). The shaded histogram shows the subset of candidates where
both tracks were selected by the loose, standard, or tight muon tags. The remainder
had at least one track identified only by the Hadron Calorimeter or very loose muon
tags. The clear asymmetry in this latter sample is well-described by the Monte Carlo.
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errors are then calculated, ignoring the effect of track–track correlations.3 This is done

by converting the geometric track parameters, (θ, φ, κ), (and their 3-by-3 covariance

matrices) to Cartesian four-momenta, (px, py, pz, E), (and 4-by-4 covariance matrices).

The muon mass (with zero error) is assumed for both particles. Then applying energy

and momentum conservation, the parent’s four-momentum (and its error matrix) is

just the sum of that of the daughters. Finally the mass, momentum, and azimuthal

direction (and errors) of the parent are calculated.4

The vertex position gives the putative J/ψ production point. The primary vertex

position is estimated from the beamspot position (see section 2.11.3) and the decay

position relative to this is calculated. The errors on the relative decay coordinates

are quadrature-sums of the vertex reconstruction error, the beamspot size, and the

uncertainty in the beamspot centre.

4.2.5 Intermediate Candidate Parameters

Candidates passing the initial selections described above are written to disk in ‘row-

wise’ n-tuple [144] format. This allows the interactive study of derived variables (e.g.

various decay time determinations) and complex cuts (e.g. combinations of cuts on

many variables) without the need to reread the entire shortdst dataset each time. To

allow for detailed crosschecks to be made on the analysis methods and code, and also

to allow for flexibility in the choice of selection criteria and measurement variables,

many more variables than were eventually used in this analysis were written. The

variables written to the n-tuple are as follows:

3By constraining the two tracks to go through the same point, the errors on the two particles’
momenta become correlated. In principle this should be taken into account when combining them
to form the errors on the parent’s mass and momentum. A procedure for using the track–track
correlations was developed. Since the change in the calculated errors turned out to be small (∼ 3%
on the Mµµ error) and not noticeably better, for simplicity this procedure was disabled.

4Routines developed for this analysis are now part of the delphi-standard dstana library [143].
They allow one to iterate over the vertex fit (VDF2ND), convert the track parameters to Cartesians
(VDPE2E), calculate the parent’s parameters (REC2ND), and from them its mass, momentum, and
direction (VDMPER). Although only two daughters of equal mass are considered in this analysis, the
code allows for an arbitrary number of tracks with individually assigned masses. At each stage
the parameter errors are calculated, along with their correlations (though only optionally for the
track–track correlations).
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Event Variables.

RUN run number

EVT event number

BEAM beam energy

TAPE input tape identifier

BSX beamspot x-coordinate

BSY beamspot y-coordinate

BSZ beamspot z-coordinate

JTHE polar angle of the jet containing the two candidate tracks, θjet

JPHI azimuthal angle of the jet, φjet

ENE1 charged + neutral energy in the sphericity [141] hemisphere containing this

candidate (zero if daughters are in different hemispheres)

ENE2 hemisphere energy (ENE1) after applying 4-momentum conservation constraint

NUMB candidate number in this event (in decreasing order of MF). NUMB=0 for a

Monte Carlo generated J/ψ that was not reconstructed or did not pass the

initial candidate cuts.

Q charge sum of the two daughters (e.g. Q=0 for µ+µ−)

RSEL run selection flag (specifies operational detector components)

Track variables. The following variables (EPS1 etc.) are for track 1. They are

repeated for track 2 (EPS2 etc.). Track 1 is taken as the one with the higher tag

(TAG1 below) or, if they are equal, with the higher momentum (|P1|).

EPS1 signed impact parameter with respect to beamspot, ε

THE1 track direction polar angle, θ

PHI1 track direction azimuthal angle, φ (at perigee to beamspot)
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P1 particle momentum, signed with the charge

CHI1 muon chamber total χ2 per degree of freedom

HIT1 muon chamber hit pattern (with bit 8=muf, bit 9=muf, else mus)

MSC1 delana particle-id mass code

NVD1 number of vd hits associated with track

TAG1 muon selection flag. Each bit indicates whether a tag has selected this track

as a muon.

bit 0 very loose

bit 1 Hadron Calorimeter (pxhaid)

bit 2 loose

bit 3 standard

bit 4 tight

AMB1 track shortdst mass ambiguity code

Reconstructed parameters of the putative J/ψ. These parameters are from the

standard vertex fit described in section 4.2.4. The results of other vertex fit options

(e.g. 2D unconstrained, or mass-constrained) can be stored in the same format with

names ending in B or P rather than the F used here.

MF mass, Mµµ

PF momentum, pµµ

PTHEF polar angle of momentum vector, θJ/ψ

PPHIF azimuthal angle of momentum vector, φJ/ψ

CTHEF µ+ polar angle in the J/ψ cms, θ∗µ+

CPHIF µ+ azimuthal angle in the J/ψ cms, φ∗
µ+
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OANGF opening angle, ω, with the sign of the z-component of pµ+ × pµ− .5 I.e.

‘cowboys’ have OANGF < 0 and ‘sailors’ OANGF > 0.

PANGF pointing angle (angle between the momentum and decay vectors) in the xy

plane, ζ ≡ φJ/ψ − φV (−π < ζ ≤ π)

LXYF decay length from the beamspot in the xy plane, lxy . A negative sign is

assigned if the decay point is behind beamspot position with respect to the

J/ψ momentum direction, φJ/ψ (i.e. LXYF has the sign of cos ζ).

LZF z-coordinate of vertex relative to the beamspot

CHIFF fit χ2. If the fit failed, CHIFF < 0 and the number gives an error code.

MEF error on mass, dMµµ

PEF error on momentum, dpµµ

PANEF error on pointing angle, dζ (includes the effect of the beamspot size)

LXYEF error on xy decay length, dlxy (includes the effect of the beamspot size)

Monte Carlo truth information. These variables are calculated from the particles’

generated parameters. This set of variables and those that follow are only written

out for simulated events.

EVTM Monte Carlo event type (a code specifying the ‘most interesting’ decay chain

in the event, as specified in MC1 and MC2). To this is added 10000× the initial

state code (e.g. flavour of qq̄).

JTHM, JPHM, QM

parameters analogous to JTHE, JPHI, and Q, but calculated using the true

track parameters

ENEM1 charged + neutral energy in the sphericity hemisphere containing this candi-

date (zero if daughters are in different hemispheres)

5Actually pS ×pL is used, where pS (pL) is the momentum of the track with the smaller (larger)
geometric curvature (−qB/pxy) in the magnetic field. This definition works for both like- and
unlike-sign candidates.
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ENEM2 charged + neutral energy in the other hemisphere

Generated parameters of selected tracks. The following variables (MC1 etc.) are

for track 1. They are repeated for track 2 (MC2 etc.).

MC1 code (same encoding as EVTM) specifying the particle’s type and the decay

chain that produced it.

EPSM1, THEM1, PHIM1, PM1

parameters analogous to EPS1, THE1, etc., but specifying the true track pa-

rameters.

Generated candidate parameters.

MM, PM, PTHEM, PPHIM, CTHEM, CPHIM, OANGM, PANGM, LXYM, LZM

parameters analogous to MF, PF, etc., but calculated using the true track

parameters and primary vertex position (as opposed to the beamspot).

MCERR error code for simulation parameters’ determination

Grandparent’s true parameters (e.g. of the B for B → J/ψ).

MMB mass, MB

PMB momentum, pB

PTHEMB polar angle, θB

PPHIMB azimuthal angle, φB

All variables are stored in REAL format (even integers and bit masks). Energy,

momentum, mass, charge, distance, and angle are specified in units of GeV, GeV/c,

GeV/c2, e, cm, and radians (0 ≤ θ < π or 0 ≤ φ < 2π), respectively.

The following analysis was performed using these variables.
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Figure 4.4: Variation in the sample composition with reconstructed momentum in
simulated candidates that pass the other cuts and are in the mass window 2.95 ≤
Mµ+µ− < 3.25 GeV/c2. The line histogram shows J/ψ → µ+µ− (or occasionally
ψ(2S) → µ+µ−), while the shaded histograms show the background, with candidates
with two muons from cascade decays (see section 4.6) on top. The dashed line shows
the limit of the chosen pµµ ≥ 10 GeV/c cut.

4.3 J/ψ Candidate Selection

Subsequent analysis is performed interactively on the n-tuples using paw [145].

A set of fairly loose cuts was chosen for the final selection, since efficiency is all, and

a reasonable purity can still be obtained. Only candidates passing the section 4.2.1

and 4.2.3 cuts are considered.6 Tighter muon identification is now performed: both

daughter tracks must be identified as muons by the loose, standard, or tight tags

(candidates previously selected with the very loose tag or Hadron Calorimeter tag

(pxhaid) are dropped here). Since the reconstruction errors will be used in subse-

quent fits, candidates for which the standard vertex fit did not converge are rejected.

Figure 4.4 shows the value of cutting on the reconstructed momentum at rejecting

misidentified muon background, so a selection

• reconstructed momentum, pµµ ≥ 10 GeV/c

6Simulated J/ψs that failed those cuts are nevertheless stored on the n-tuple, so must be rejected
here (NUMB > 0).
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is applied. Although of little value anyway, momentum cuts much above 10 GeV/c

start to significantly constrain the kinematically allowed range of B decay parameters,

reducing the average ratio of B to J/ψ momenta and consequently increasing the

required Monte Carlo correction to the decay time (c.f. equation 4.12). Note that

this momentum cut is likely to remove more direct J/ψs (not shown in figure 4.4)

than J/ψs from B decays, since direct J/ψs are expected to be softer.

In order to use the same sample as will eventually be used in the lifetime fit we

require that the measured decay time (described later, in section 4.5) be within the

fit range

• measured decay time, −4 ≤ t < 10 ps.

The distribution of reconstructed masses of candidates selected by these cuts is

shown in figure 4.5.

Various samples dependent on the relative charge of the daughter particles and on

the reconstructed mass are used for background studies. The signal sample requires

opposite daughter charges and

• reconstructed mass window, 2.95 ≤Mµµ< 3.25 GeV/c2.

One event from this signal sample is shown in figures 4.6 and 4.7.

4.4 Fit Techniques

Two principal types of fit are used in this analysis. The background contamination is

measured using fits to reconstructed masses (Mµµ) and the lifetime is measured using

fits to proper times (calculated from lxy). In both cases an unbinned maximum

likelihood fit is performed using the reconstructed parameters and their errors (which

are calculated for each event).

Appendix D gives some of the formalism of maximum likelihood fitting and shows

the relationships between the (normalized) maximum likelihood, extended maximum

likelihood, binned maximum likelihood, and binned χ2 fits. The extended maximum



118 Chapter 4. A Measurement of the Mean B-Hadron Lifetime

Mµµ (GeV/c2)

E
n

tr
ie

s 
p

er
 4

0 
M

eV
/c

2

µ+µ−

µ+µ+ or µ−µ−

MJ/ψ Mψ(2S)

0

20

40

60

80

100

120

140

2 2.5 3 3.5 4 4.5 5 5.5 6

Opposite-sign fit (1941 candidates; 495 in 2.95 ≤Mµµ< 3.25 GeV/c2 window)
J/ψ fraction in window fJ/ψ = (73.3±2.1) %
hemiparabola fraction PN = (69.9±1.6) %
total ψ(2S)s Nψ(2S) = 16.7±6.6
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error scale factor ασ = 1.34±0.09
function vs. histogram χ2 = 52.5 (55 d.f.)
χ2 in window χ2

w = 8.9 (5 d.f.)

Like-sign fit (532 candidates; 41 in 2.95 ≤Mµµ< 3.25 GeV/c2 window)
total in window Nw = 47.0±2.4
exponential parameter κ = (1.40±0.13) (GeV/c2)−1

function vs. histogram χ2 = 58.6 (51 d.f.)
χ2 in window χ2
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Figure 4.5: Fit to the reconstructed masses of J/ψ candidates passing the section 4.3
cuts (1992–5). Candidates with opposite-sign (error bars) and like-sign (shaded
histogram) track charges are shown. The solid curve shows a (2 × Gaussian +
hemiparabola+constant) fit to the opposite-sign candidates. The dashed curve shows
an (exponential+ constant) fit to the like-sign candidates. The fit parameters are de-
scribed in more detail in section 4.4.3; their values and errors are listed here above.
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Figure 4.6: Display of a candidate J/ψ event.
The outer barrel tracking detectors (tpc and od) are shown in orange, the barrel
calorimeters (hpc and hac) in blue, and the barrel muon chambers (mub) in red.
The two jets are coloured red and green. The two tracks identified as muons (both
pass the tight selection) are extrapolated to the muon chambers: one (µ−) gives two
hits in the peripheral modules, the other (µ+) two in the inner and one in the outer
modules.
This event (run 49286 event 1261) was recorded on 12th July 1994. See figure 4.7 for
a closeup of the central region.
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Figure 4.7: Vertex Detector views of a candidate J/ψ event. The upper diagram
shows the vd plaquettes in green and vd hits as red circles (+z), squares (−z), or
(for hits not associated with a track) crosses.
The lower diagram shows a blowup of the vertex region. Tracks that could not
be (unambiguously) associated [63] with a vertex are shown dashed; those with no
associated vd hits are dotted. Reconstructed vertices and the beamspot are shown
in red by their (just visible!) error ellipses.
This event is one of the 495 signal events passing the section 4.3 cuts. The two muons
(shown in green) give a reconstructed J/ψ mass of 3.067 ± 0.031 GeV/c2, xy decay
length of 0.605 ± 0.015 cm, and estimated decay time of 3.65 ± 0.78 ps.
The other (6-track) vertex is 0.653 ± 0.019 cm (xy) from the primary vertex.
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likelihood fit was, in the end, not used in this analysis: it is unnecessary as the

parameters of interest are only weakly dependent on the total sample size, and the

function normalization is calculable. Significant variation in the reconstruction errors

of different decay times requires that these be taken into account in the fit. An

unbinned likelihood fit is the optimal method for doing this.

This is not of such overriding importance for the fit to the reconstructed masses,

but here the rapid changes in the fit function round the J/ψ peak makes the choice of

binning problematic (as shown in section D.3, the binned fit requires that the function

not vary much over each bin), especially when the number of events per bin is small.

This requires a difficult trade-off between having a reasonable number of entries per

bin (required for a χ2 fit) and a reasonably small bin size. This was a major problem

in [146], which required rather dubious hand-adjustment of the binning to line up the

bin positions with the peak position.

Fits on n-tuple data can in principle be performed within paw. Unfortunately this

is prohibitively slow using the tools currently available,7 so instead the selected data

points and their errors are written to a file and a separately compiled fitting program

is run as a subprocess. The results of the fit (and function representation) are written

to another file, read into paw, and displayed. A single fitting program, based on the

minuit [148] fitting package, is used for both the mass parameterization and the

lifetime fit. The fit function is specified entirely with minuit parameters, allowing

changes to be made from within minuit itself or specified when the subprocess is

launched from paw.

Since during the minimization process the fit function (which is interpreted as a

likelihood, L) cannot be constrained to remain positive for all of its range (although

the overall normalization remains constant) giving an undefined log-likelihood, a cut-

off is applied at L ≤ 1 × 10−10. Below that limit a polynomial is used instead of

7To perform the fit within paw on vms, the Fortran fit function would have to be calculated
using the comis [147] interpreter. While a wonderful tool for simple routines, it is considerably
slower than a compiled program, making it impracticable as an interactive tool for unbinned fits
with many data points.
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logarithm (with value and first two derivatives matched at the cut-off). Note that

this is only applied during the minimization process — if the fit minimum (or the range

of values on either side used to determine its error) has any data point’s likelihood

less than this cut-off, then the fit is considered to have failed.

4.4.1 Fit Result Representation

A general problem with unbinned fits is representation of the fit results. A related

problem with likelihood fits is the determination of the quality of the fit (i.e. whether

the final fit result well-describes the data — a poor fit quality could indicate that

the original model or its allowed variation is not a good representation of the data).

These problems are related because, if the fit result can be represented in a way that

allows comparison with the data, then the quality of fit can be judged — either by

eye or using a statistical test such as χ2 or Kolmogorov.

The fit representation is not just of importance for determining the fit quality. On

the mass plot, its area within the selection range is used to determine the background

contamination.

This problem is easily solved for a fit to a 1-dimensional distribution (such as Mµµ

or the lifetime) when we don’t allow for any variation on reconstruction errors. The

fit function, normalized to the number of events, can be compared directly with a

histogram of the data. However, if each event has its own reconstruction error, the

likelihood function is a convolution of the true distribution with a smearing function

f(x; σ) = ftrue(x) ⊗G(x; σ) =

∫
ftrue(u)

1√
2πσ

e−(x−u)2/2σ2

du (4.1)

where x is the measured variable, ftrue(u) is the distribution before measurement er-

rors are introduced (e.g. the near-exponential distribution of B lifetimes) and G(x; σ)

is the smearing function: a Gaussian of width σ is used, and indeed the pull dis-

tribution ((xreconstructed − xtrue)/σ) for both mass and lifetime in simulated data is
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reasonably Gaussian centred on the origin and of unit rms.8

There is usually no ideal method of representing this distribution that allows its

comparison with the data on a 1-dimensional plot against x. Of course if the true

distribution of errors, S(x; σ), were known then we could plot

F (x) =

∫
f(x; σ)S(x; σ)dσ (4.2)

However this is rarely the case. Note that, in general (and often in practice), the

reconstruction errors have some dependency on the measured variable, x.

One approximation that is often made is to assume that the true distribution of

errors, S(x; σ), may be approximated by the distribution of errors seen in the data.

S(x; σ) ≈
∑
i

δ(σ − σi) (4.3)

where σi are the errors of each event in the sample. Substituting into 4.2 gives

F (x) ≈
∑
i

f(x; σi) (4.4)

However it doesn’t often seem to be recognized that this is a reasonable approxi-

mation only if the dependence of S(x; σ) upon x is weak. As shown in figure 4.8 this

is not true for our two fits.

For the mass fit, a reasonable approximation is to assume that the errors are

proportional to the reconstructed mass, so we replace f(x; σi) with f(x; σix/xi) in

equation 4.4. In fact we need only do this for the Gaussian signal part — the shape

of the background is only weakly dependent on the reconstruction errors. This is

convenient, as f(x; σix/xi) is difficult to determine for exponential ftrue (at least

no analytic form is known, and calculating it numerically for each event is a heavy

burden on computer time). For the signal, where ftrue(u) = δ(u−MJ/ψ), it is simply

8A better description for the reconstructed mass pulls would be to include a second Gaussian of
width 3.5 consisting of 2.6% of the data.
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Figure 4.8: Mass and decay time reconstruction errors. The left-hand plot shows the
variation in the reconstruction error on Mµµ with respect to Mµµ for 1992–5 data.
The right-hand plot shows the variation in the reconstruction error of the decay times
with respect to the measured decay times (cf. equation 4.13) for simulated true J/ψs.

G(x; σiMJ/ψ/xi). The change this produces can be seen in figure 4.9.

For the lifetime fit we cannot use this method. The errors are obviously not

proportional to the decay time near the origin. We could of course attempt to pa-

rameterize the dependence on the decay time, but even a simple linear function (which

would well-describe the distribution) would produce a non-analytic plot function. For

this reason we choose a simpler method. The events are divided into four near-equal

samples, ordered according to xi. Equation 4.4 is used, but the sum is performed only

over the events in the relevant sample, chosen such that x is within the range of xis in

the sample (the limits at each end being halfway between the largest xi in one sample

and the smallest in the next). Four samples were chosen as a compromise between

allowing a reasonable number of events per sample and reducing the variation of er-

rors within each sample. The normalization of the function within each sample range

is adjusted to ensure continuity at the limits and the overall function is normalized

to the total number of events. We cannot normalize to the number of events in each

sample range, as that would bias the function shape to that of the data. The change

this method produces can be seen in figure 4.10.

This perhaps arbitrary technique produces reasonable behaviour. Changing the
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Figure 4.9: Comparison of mass fit representations for simulated data (blown up round
the signal region). Both curves are representations of a single fit to the opposite sign
candidate masses in the full mass range, 2 ≤ Mµ+µ− < 6 GeV/c2. The dashed curve
shows the simple plot function of equation 4.4, while the solid curve shows the plot
function corrected for the variation in errors with mass. In the signal region 2.95 ≤
Mµ+µ− < 3.25 GeV/c2, the corrected function clearly agrees (χ2/ndf = 24.2/18)
with the histogram of the data (error bars) better than the uncorrected function
(χ2/ndf = 42.8/18).
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Figure 4.10: Comparison of lifetime fit representations for simulated true B → J/ψ
events. The dashed curve shows the simple plot function of equation 4.4, while the
solid curve shows the four-sample plot function. While not perfect, the latter clearly
agrees (χ2/ndf = 62.8/44) with the histogram of the data (error bars) better than
the former (χ2/ndf = 114/49).
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fit parameters by 1σ (the errors on the fitted function) causes a change of ∼ 1 in the

χ2 between the plot function and a histogram of the data.

For a quantitative comparison of plot function and data histogram, a χ2 test was

used.9 The plot function was integrated across each bin to determine the expected

bin contents, fb. For the χ2 test bin errors of
√
fb were assumed. Since the Poisson-

distributed bin contents only approximate to the Gaussian distribution assumed by

the χ2 test for large fb, bins with fb < 5 were combined with their neighbours until

the total was 5 or more.

4.4.2 Backgroundless Decay Time Fit

The dependence of the errors on the decay time affects the lifetime fit as well as its

representation. In the fit to reconstructed decay times of simulated B → J/ψ (without

background or prompt component) shown in figure 4.10, a small but significant bias is

seen in the fitted lifetime compared to the mean true lifetime (and generated lifetime).

This is solely an effect of performing the likelihood fit with reconstruction errors

correlated with the decay times (see figure 4.8), as is demonstrated with a few simple

simulations.

First, each event’s true decay time is smeared with its reconstruction error and

then fitted using the same reconstruction error in the fit function. The fitted life-

time shows a bias, but no bias if the reconstruction error used in both smearing and

fit function is chosen from a different event. This latter case has the same distri-

bution of errors, but they are uncorrelated with the decay times. Similarly, fits to

randomly-generated decay times smeared with non-random or randomly-generated

errors only show a bias if the errors are correlated with the decay times (either true

or reconstructed).

The bias measured from Monte Carlo is used to correct the fitted lifetime. For-

9A Kolmogorov test was also used, but only as a crosscheck. Since the comparison is with the
result of a fit rather then some theoretical function, Kolmogorov probabilities very close to 1 were
obtained. However this might indicate a problem if a low probability were obtained.
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tunately the size of the correction should be relatively model-insensitive, since it is

primarily dependent on the distribution of decay time errors, the variation of which

depend upon the constants α and σα (described in section 4.5), which are applied

identically to both Monte Carlo and data. With a generated lifetime of 1.6 ps, the

fitted lifetime is (1.52 ± 0.04) ps. Reweighting the generated lifetime to 1.4 ps and

1.8 ps gives τB = (1.33±0.05) and (1.69±0.06) ps respectively. Due to the reweight-

ing process, these cannot be taken as independent estimates of the bias, but their

variation over a reasonable range of lifetimes gives a systematic error. The fitted

lifetime bias is thus

∆τ = (−0.08 ± 0.04 (stat.) ± 0.03 (syst.)) ps. (4.5)

4.4.3 Mass Distribution Parameterization

For the fit to the reconstructed masses in figure 4.5, basic fit functions

ftrue(x) = GNδ(x− µ) + ENΘ(x)e−κx + CN (4.6)

or

ftrue(x) = GNδ(x− µ) + PNΘ(x0 − x)(x0 − x)2 + CN (4.7)

were used.10 These were convoluted with a Gaussian of width given by each data

point’s measurement error (equation 4.1) multiplied by a scale factor ασ. The fit

parameters are GN (fraction of signal events), µ (fitted J/ψ mass), EN (exponen-

tial background fraction) or PN (hemiparabolic background fraction), κ (exponential

decay constant) or x0 (hemiparabola zero point), and ασ (error scaling). Overall

normalization is ensured by fixing the flat background fraction CN = 1 − GN − EN

(or PN). An extra term G
ψ(2S)
N δ(x−µψ(2S)) is added when there is sufficient signal to

see the ψ(2S) (i.e. when 1992–5 data are combined). Each term must be normalized

10Θ(x) is the Heaviside step function, which takes a value of zero for x < 0 and unity for x > 0.
Its differential is the Dirac delta function: δ(x) ≡ d

dxΘ(x).
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Term, T (x) Indefinite integral, I(x)

Gaussian G(x) e−(x−µ)2/2σ2 √
2π σP(x−µ

σ
)

Smeared exponential E(x) e−κx+
1
2
κ2σ2P(x/σ − κσ) (P(x/σ) − T (x))/κ

Smeared
hemiparabola

P (x) σ(x0−x)√
2π

e−(x0−x)2/2σ2
+

((x0 − x)2 + σ2)P(x0−x
σ

)

−σ((x0−x)2+2σ2)

3
√

2π
e−(x0−x)2/2σ2−

(1
3
(x0 − x)2 + σ2)(x0 − x)P(x0−x

σ
)

Flat background C(x) 1 x

Table 4.2: Fit function terms after convolution. The normalized term is given by
G(x), E(x), P (x), or C(x) = T (x)/(I(xhigh) − I(xlow)), where I(x) is the indefinite
integral of term T (x) and xlow : xhigh is the plot range (the flat background is referred
to as C(x) despite the fact that it is independent of x, as a reminder that it must also
be normalized to the plot range). x and σ are the data points and their measurement
errors (after scaling by the fit parameter ασ) respectively. µ, κ (or 1/τ), and x0 are

fit parameters. P(x) is the Normal Frequency function: P(x) ≡ 1√
2π

∫ x

−∞ e−
1
2
u2

du =
1
2

+ 1
2
erf(x/

√
2). Note that the functions listed here are those normally used — in

certain limits (e.g. small σ) a simpler approximation (e.g. the unsmeared function)
is used in order not to breach the machine’s floating point limits in intermediate
calculations.

to its fraction (GN , EN , etc.) within the plot range 2 ≤ x < 6 after smearing (not

before — convolution only preserves normalization to −∞ < x < ∞). The relevant

terms are listed in table 4.2. Using the terms defined there, the fit function is

f(x) = GNG(x;µ, σ) +G
ψ(2S)
N G(x;µψ(2S), σ) + ENE(x; κ, σ) + CNC(x) (4.8)

or with PNP (x; x0, σ) instead of the E(x) term.

The fitted J/ψ mass, µ, and error scaling, ασ, are left as free parameters to allow

for systematic reconstruction errors. Their divergence from their nominal values

(MJ/ψ and 1 respectively) relative to their fit errors gives an indication of the scale

of these systematic errors.

The other parameters stated above are not directly useful. From this fit we are

actually interested in determining the purity of the candidates to be used in our

lifetime sample, i.e. those in the mass window wlow ≤Mµ+µ− < whigh (usually 2.95 ≤
Mµ+µ− < 3.25 GeV/c2). This can be calculated from the integral, between wlow

and whigh, of the fit representation function described in section 4.4.1 and shown in
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figure 4.9, namely

fJ/ψ =

∫ whigh

wlow

∑
iGNG(x; σiµ/xi)dx∫ whigh

wlow

∑
i f(x; σi)dx

(4.9)

where f(x; σi) is the (normalized) function described above (with terms listed in

table 4.2) except that the Gaussian term has σi scaled to µ as is done in the numerator.

In order to allow for non-linearities in the calculation of errors on fJ/ψ, this pro-

cedure is applied in reverse by solution of equation 4.9 for GN . fJ/ψ is supplied as a

fit parameter and GN is calculated from it for each iteration of the fit. Allowing fJ/ψ

to vary in the fit allows its value and statistical error to be determined.

A similar, but simpler, fit is performed on the like-sign candidates. In this case,

no J/ψ signal is expected, so we fix GN = 0, fitting for the remaining parameters

(excluding µ of course). ασ also has to be fixed to its nominal value of 1 since, without

the J/ψ peak, ασ is hardly constrained by the mass distribution. From this fit we are

interested in extracting the number of like-sign candidates within the mass window

as an estimate of the number of opposite-sign misidentified muon candidates in the

lifetime sample. Of course we could obtain this most simply by just counting the

like sign candidates within the window. However, due to the relatively small number

of events involved, a better estimate is made by fitting for this number using the

entire distribution. Again we can use the integral of the plot function within the

mass window

Nw =

∫ whigh

wlow

∑
i

flike(x; σi)dx (4.10)

where flike(x; σi) is the like-sign fit function. Again this procedure is applied in reverse,

introducing Nw as a fit parameter replacing EN or PN (depending on the fit function

in use), which is calculated from Nw for each fit iteration.

4.5 B-Hadron Decay Times

The vertex fit described in section 4.2.4 gives a 3-dimensional vertex position relative

to the primary vertex (with errors that include the uncertainty in the primary vertex
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position as estimated from the beamspot). The decay length is the magnitude of this

relative vertex position, but using the z-component would introduce a prohibitively

large uncertainty due to the shape of the beamspot, which is 1 cm long in z, ∼ 50 times

longer than its width in x. Instead, the decay length in the transverse plane, lxy , is

used.11

If the decay length were perfectly known, then reducing the (x, y) coordinates to

lxy would recover the 1-dimensional transverse decay length. But smearing (x, y)

with a 2-dimensional uncertainty (e.g. bivariate Gaussian) gives a reduction (to zero

at the origin) in the number of events for lxy � σ. Given the complexity of the

functional form of the resulting distribution,12 the component of the decay vector

(the measured vector from primary to secondary vertex, with azimuthal angle φV )

along the B momentum vector (φB), dxy = lxy cos(φB − φV ), is used instead. This

variable doesn’t suffer from a phase space reduction. If φB were known, this would

be marginally better than using the magnitude of the decay vector as the other

component provides no lifetime information.

For B → J/ψ, the B (proper) decay times are given by t = l/cβγ, where l is the

(3D) decay length, and cβ is the velocity and γ the Lorentz boost (γ ≡ (1 − β2)−
1
2 )

of the B in the lab frame. cβγ = pB/mB and l = lxy cos(φB − φV )/ sin θB, so

t =
mBlxy cos(φB − φV )

pB sin θB
(4.11)

In the case of the B → J/ψ, we are fortunate to reconstruct a large (and well-

known) fraction of the parent’s mass. This makes estimation of the B momentum by

the method of [149] particularly appropriate: the B and J/ψ velocities are similar, so

the former can be estimated from the measurement of the latter: (βγ)B ≈ (βγ)J/ψ,

sin θB ≈ sin θJ/ψ, and φB ≈ φJ/ψ. Absorbing both the statistical and systematic

11Another possibility would be to perform a primary vertex fit for each event. However this
gives little improvement in the overall lifetime fit (where the number of signal events is of greatest
importance) and risks (slightly) reducing the sample size (due to events where no primary vertex fit
can be performed) and introducing systematic effects (due to erroneously including secondary tracks
in the primary vertex fit).

12requiring triple integration using numeric methods to obtain the normalized function
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Figure 4.11: Monte Carlo correction for B decay time uncertainty. The first histogram
shows α (equation 4.12) plotted for true B → J/ψ candidates that pass all cuts
(including 2.95 ≤Mµ+µ−< 3.25 GeV/c2). It has a central value of α = 1.094± 0.005
and width σα = 0.232 ± 0.004. The second histogram second shows the B decay
time pull ((t− ttrue)/σt) distribution when these values are used in equation 4.13. It
has a central value of −0.058 ± 0.025 and width 1.150 ± 0.018. The curves show the
Gaussian fits to the distributions which were used to determine the central values and
widths.

uncertainty of these approximations into a single factor,

α ≡ (βγ)J/ψ

(βγ)B

sin θJ/ψ
sin θB

cos(φB − φV )

cos(φJ/ψ − φV )
, (4.12)

the B decay times and their fractional errors become

t = α
MJ/ψlxy cos ζ

pJ/ψ sin θJ/ψ

σt
|t| =

σα
α

⊕
σlxy

lxy
⊕ σζ tan ζ ⊕ σpJ/ψ

pJ/ψ

(4.13)

For the signal, MJ/ψ is well known. For background ‘lifetime’ fits outside the

mass window, the reconstructed mass, Mµµ, is used instead to produce ‘decay’ time

distributions that are comparable between different mass ranges. lxy, pJ/ψ (i.e. pµµ),

θJ/ψ, and ζ ≡ φJ/ψ − φV (the pointing angle of section 4.2.5) are measured for each

event (the error on θJ/ψ is negligible and not included in the error determination). The

mean value of α and its spread (σα) are measured from Monte Carlo (see figure 4.11)

and used as a constant correction factor and error respectively. These two numbers
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Figure 4.12: Opposite-sign sample composition in simulated data. The components,
from top to bottom, are (a) J/ψ → µ+µ− or ψ(2S) → µ+µ−; (b) two muons from
cascade decay: b → cµ−ν̄µ, c → s/dµ+νµ (or charge conjugate); (c) one (or occasion-
ally two) muons, not from any of the above sources: mostly semileptonic B decays
with a hadron misidentified as a muon; and (d) neither particle is a muon.

are the only significant Monte Carlo contribution to this analysis.

Note that the cos ζ term gives t < 0 when the decay vector is in the opposite

direction to the J/ψ momentum vector. This can occur when measurement errors

move the decay vertex to behind the primary vertex. These events are a useful cross-

check that the errors (at small decay times at least) are well-understood.

4.6 Sample Composition

Figure 4.12 shows the composition of the opposite-sign sample. The sources of back-

ground can be divided into two main groups: other particles misidentified as muons,

and cascade decays: involving b → cµ−ν̄µ, c → s/dµ+νµ (and charge conjugate).

As figure 4.12 makes clear, the relative proportions of these two samples is signifi-

cantly different under the peak compared to either side: there are few cascade decays

with Mµµ 
 MJ/ψ, while it is the dominant component for Mµµ � MJ/ψ. The off-

peak data is required to correct for the background contamination to the signal, but
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since the two background components could have different ‘decay’ time distributions,

it is important to correct for the change in their proportions when extrapolating from

the off-peak to the peak samples.

This can be done using the like-sign candidates. The quark charges ensure that

cascade decays produce muons of opposite charges, while there is no such constraint

on misidentified muon background. Thus this is well-modelled by the like-sign can-

didates, while both are described by the opposite-sign candidates.

4.7 Lifetime Fit

Candidates for the lifetime fit are selected with the section 4.3 cuts and divided into

samples according the relative charge of the two muons and the reconstructed mass:

2 ≤ Mµµ< 2.8 GeV/c2 for the sideband and 2.95 ≤Mµµ< 3.25 GeV/c2 for the signal

window (see figures 4.13–4.15).

A single fit is performed on the three samples of events: like-sign candidates in the

sideband (like-sign sample), opposite-sign candidates in the sideband (sideband

sample), and opposite-sign candidates in the window (window sample, which in-

cludes the signal). Each component within these samples (misidentified muons, cas-

cade decays, and J/ψ) is fitted with a smeared exponential + Gaussian + constant

(using functional forms listed in table 4.2), except no constant term is included for

the J/ψ component. The Gaussian term is centred at the origin (µ = 0).

Candidates in the like-sign sample, assumed to consist entirely of the misidentified

muon component, are fitted with the function

L(x) = GmG(x) + EmE(x; τm) + CmC(x) (4.14)

The sideband sample is assumed to contain the same number of misidentified muon

candidates as the like-sign sample (fraction λs, modelled by L(x)) with the rest being
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cascade background. The sideband sample is fitted with

S(x) =(λsGm + (1 − λs)Gc)G(x) + λsEmE(x; τm) + (1 − λs)EcE(x; τc)+

(λsCm + (1 − λs)Cc)C(x).

(4.15)

Finally the window sample is assumed to consist of J/ψs (fraction fJ/ψ, which was

obtained from the fit to the opposite-sign masses, as shown in figure 4.5), the same

number of misidentified muon candidates as like-sign candidates in the window (frac-

tion λw, this number having been obtained from the fit to like-sign masses), and the

remainder cascade decays (fraction λc ≡ 1− fJ/ψ − λw). The window sample is fitted

with

W (x) =(λwGm + λcGc + fJ/ψGψ)G(x)+

λwEmE(x; τm) + λcEcE(x; τc) + fJ/ψEψE(x; τB)+

(λwCm + λcCc)C(x).

(4.16)

In the above formulae, τm, τc, and τB are the lifetimes of the misidentified muon,

cascade, and B → J/ψ components, respectively. These and the Gm, Em, Gc, Ec,

and Gψ fractions are fit parameters, while fractions

Cm = 1 −Gm − Em (4.17)

Cc = 1 −Gc − Ec (4.18)

Eψ = 1 −Gψ (4.19)

are defined by the requirement for overall normalization within each sample. Inter-

pretations of the fractions are given in table 4.3.
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Parameter Sample Component Term

Gm like-sign misidentified muon prompt G(x)
Em like-sign misidentified muon decay E(x; τm)
Gc sideband cascade decay prompt G(x)
Ec sideband cascade decay decay E(x; τc)
Gψ window J/ψ prompt G(x)
Cm like-sign misidentified muon flat C(x)
Cc sideband cascade decay flat C(x)
Eψ window B → J/ψ decay E(x; τB)

Table 4.3: Definition of lifetime fit fractions. Each parameter gives the fraction of
candidates in the specified sample and from the specified source component, that
are described by the given term. The first set are fit parameters; the second set are
derived from the fit parameters using equations 4.17–4.19.

A single log-likelihood is formed from all three samples

−L =
∑
i

lnL(ti, σi;Gm, Em, τm) +
∑
j

lnS(tj, σj ;Gc, Ec, τc)+

∑
k

lnW (tk, σk;Gψ, τB),

(4.20)

where the sum over i is performed for candidates in the like-sign sample, j for the

sideband sample, and k for the window sample. L is minimized with respect to the

fit parameters.

In the mass parameterization of section 4.4.3 it was possible to fit for an overall

error scale factor, ασ. That is not possible in the lifetime fit because the shape of the

distribution is most affected by the errors close to the origin, but this is the region

least affected by a multiplicative scale (since these candidates have smaller absolute

decay time errors). In contrast a correction, ∆σ, added in quadrature to each error

affects the small decay time candidates most, and can thus be determined from the

data. To allow for smooth variation round ∆σ = 0, the corrected error is defined as

σ′ = (σ2 ±∆2
σ)

1
2 , with ∆2

σ being subtracted for ∆σ < 0 (to a minimum σ′ ≥ σ/1000).

To allow for a better parameterization of the background components without

affecting the signal function, a separate error correction is applied to each compo-

nent: ∆m, ∆c, and ∆ψ for the misidentified muon, cascade, and signal components

respectively. ∆m is applied to fit functions E(x, τm) and the Gm part of G(x) in



136 Chapter 4. A Measurement of the Mean B-Hadron Lifetime

equations 4.14–4.16, and analogously for ∆c and ∆ψ.

The background events do not usually have a true vertex to reconstruct: typically

it is some sort of average between the primary and semileptonic decay vertices (for

misidentified muon background) or between the b and c decay vertices (for cascade

background). A non-zero error correction on the backgrounds could reflect this; on

the signal it would indicate that the errors were incorrectly determined.

4.7.1 Fit Results

From the section 4.4.3 mass fit (figure 4.5) and this lifetime fit, shown in figures 4.13–

4.15, we obtain

• number of selected J/ψs, NJ/ψ = 363 ± 19,

• fraction of prompt J/ψ, Nprompt/NJ/ψ ≡ Gψ = (9.6 ± 3.2)%, and

• B lifetime, τB = (1.53 ± 0.11) ps.

after applying the section 4.4.2 lifetime bias correction.

Apart from the error correction, ∆ψ, in figure 4.15, all fit errors are symmetric (to

within 2 in the last quoted figure) with parabolic fit function around the minimum.

The correlation coefficient between Gψ and τB is +0.23. The slightly larger error on

Gψ compared to the fit result in figure 4.15 is due to the uncertainties in λs, λw, and

λc (mainly the latter). Varying the parameter values input to the fit by their errors

(from the Poisson variation in the sample sizes or the figure 4.5 fit errors on fJ/ψ

and Nw, which were used to calculate the λs) gave a variation in Gψ of +1.4% and

-1.0% and in τB of ±0.02 ps. The effect of the statistical uncertainties in α and σα is

negligible.

The composition of the signal window sample is

• B → J/ψ, Ndecay = 328 ± 21,

• prompt J/ψ, Nprompt = 35 ± 12,
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Misidentified muon background lifetime fit (333 like-sign candidates)

prompt fraction Gm = (34.6±3.6) %
decay fraction Em = (51.3±4.0) %
lifetime τm = (1.26±0.16) ps
error correction ∆m (0.12±0.02) ps
function vs. histogram χ2 = 30.1 (23 d.f.)

Figure 4.13: Lifetime distribution for like-sign candidates in the sideband 2 ≤ Mµµ<
2.8 GeV/c2. The curve, with fit parameters here above, shows the results of the
equation-4.14 part of the fit, which can be compared with the histogram shown.
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Cascade background lifetime fit (1155 sideband candidates; λs = 0.288 ± 0.018)

prompt fraction Gc = (-6.3±4.2) %
lifetime τc = (1.44±0.09) ps
error correction ∆c (0.33±0.07) ps
function vs. histogram χ2 = 72.4 (39 d.f.)

Figure 4.14: Lifetime distribution for opposite-sign candidates in the sideband 2 ≤
Mµµ < 2.8 GeV/c2. The solid curve shows the results of the equation-4.15 part of
the fit, which can be compared with the histogram shown. The dashed curve shows
the misidentified muon component of this function, as specified in figure 4.13, scaled
by λs. The difference is the cascade component, whose parameters are specified here
above.
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Signal lifetime fit (495 window candidates; λw = 0.0949 ± 0.0064, λc = 0.172 ± 0.097)

prompt fraction Gψ = (9.6±2.8) %
lifetime τB (1.45±0.11) ps
error correction ∆ψ (-0.03+0.06

−0.01) ps
function vs. histogram χ2 = 29.3 (25 d.f.)

Figure 4.15: Lifetime distribution for opposite-sign candidates in the signal window
2.95 ≤ Mµµ < 3.25 GeV/c2. The solid curve shows the results of the equation-4.16
part of the fit, which can be compared with the histogram shown. The dotted curve
shows the misidentified muon component of this function, as specified in figure 4.13,
scaled by λw. The dashed curve shows the cascade component of this function, as
specified in figure 4.14, scaled by 1− λw − fJ/ψ. The remainder (fraction fJ/ψ) is the
J/ψ component, whose parameters are specified here above.
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• cascade decays, Nc = 85 ± 12, and

• misidentified muons, Nm = 47 ± 2,

though of course with highly correlated errors.

4.7.2 Fit to Monte Carlo Data

The method was repeated using an initial sample of 7,082,380 simulated hadronic

events. The mass and lifetime fit results are shown in table 4.4 and, after correcting

for the lifetime bias, we obtain

• NJ/ψ = 822 ± 28,

• Gψ = (2.2 ± 1.7)%, and

• τB = (1.56 ± 0.07) ps.

This can be compared with 842 true J/ψs selected, of which 1.0% were formed at

the primary vertex, the rest coming from B-hadrons with generated lifetime of 1.6 ps.

The fitted background fractions all agree with the true numbers of misidentified muon

and cascade events within each sample.

Additional cross-checks were performed using the same Monte Carlo sample but

with B → J/ψ lifetimes reweighted to 1.4 ps and 1.8 ps. 2,190,147 simulated bb̄ events

provided another cross-check with no prompt component and different background

fractions. In all cases the generated and measured lifetimes and prompt fractions

were compatible.

4.8 Systematic Errors

The beauty of this method is that most of its inputs are measured from the data,

so their uncertainties are statistical rather than systematic. In particular, the uncer-

tainties due to the statistical errors on background shapes and fractions are already
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Opposite-sign mass fit (3377 candidates; 1016 in 2.95 ≤ Mµµ< 3.25 GeV/c2 window)

J/ψ fraction in window fJ/ψ = (80.9±1.1) %
hemiparabola fraction PN = (67.6±1.0) %
total ψ(2S)s Nψ(2S) = 55.2±9.2
J/ψ mass MJ/ψ = (3101.1±1.5) MeV/c2

ψ(2S) mass Mψ(2S) = (3679±9) MeV/c2

hemiparabola root x0 = (3814±39) MeV/c2

error scale factor ασ = 1.02±0.03
function vs. histogram χ2 = 51.8 (56 d.f.)
χ2 in window χ2

w = 6.1 (5 d.f.)

Like-sign mass fit (605 candidates; 63 in 2.95 ≤Mµµ< 3.25 GeV/c2 window)

total in window Nw = 53.6±2.3
exponential parameter κ = (1.37±0.12) (GeV/c2)−1

function vs. histogram χ2 = 55.6 (56 d.f.)
χ2 in window χ2

w = 1.2 (5 d.f.)

Misidentified muon background lifetime fit (361 like-sign candidates)

prompt fraction Gm = (23.3±4.8) %
decay fraction Em = (64.0±4.7) %
lifetime τm = (1.22±0.16) ps
error correction ∆m (0.28±0.05) ps
function vs. histogram χ2 = 27.2 (25 d.f.)

Cascade background lifetime fit (1963 sideband candidates; λs = 0.184 ± 0.011)

prompt fraction Gc = (-0.2±1.8) %
lifetime τc = (1.55±0.06) ps
error correction ∆c (0.12±0.03) ps
function vs. histogram χ2 = 66.2 (46 d.f.)

Signal lifetime fit (1016 window candidates; λw = 0.0527±0.0028, λc = 0.139±0.054)

prompt fraction Gψ = (2.2±1.7) %
lifetime τB (1.48±0.07) ps
error correction ∆ψ (0.04+0.04

−0.08) ps
function vs. histogram χ2 = 32.5 (34 d.f.)

Table 4.4: Monte Carlo fit results, analogous to those shown in figures 4.5 and 4.13–
4.15.
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included above (the former are included by the fitting procedure and the latter were

added explicitly).

The main sources of systematic error are from the parameterizations of the back-

ground mass and lifetime distributions, and from the two Monte Carlo inputs to the

B momentum determination, α and σα. The error due to the estimation of the bias

correction is calculated in section 4.4.2.

For the opposite-sign mass distribution (used to determine fJ/ψ), three changes

in parameterization were considered separately. MJ/ψ and Mψ(2S) were fixed to 3.097

and 3.686 GeV/c2 [2] respectively rather than being allowed to vary in the fit; the

error scaling, ασ, was removed (fixed to 1); and the hemiparabolic background term

(which gave the better fit to the data) was replaced with an exponential term. Only

the change to ασ had any significant effect: fJ/ψ changes from 73.3 to 69.1%. When

fed into the lifetime fit this causes an increase in Gψ to 10.2%.

The estimate of the number of misidentified muon candidates in the window is

improved by using a parameterization of the like-sign mass distribution. If the pa-

rameterization’s exponential term is replaced by a hemiparabola, Nw increases from

47.0 to 50.6. This yields a decrease in Gψ to 9.4%. If on the other hand we choose

to use the actual number of like-sign candidates in the window and allow for a 1σ

Poisson variation (Nw = 41 ± 6.4), Gψ varies from 9.6% to 10.6%.

Unlike Gψ, τB is relatively insensitive to the background fractions due to the

similarity of the fitted background and signal lifetimes.

An alternative parameterization for the cascade decay lifetime distribution was

also tested. This might be expected to be better described by the convolution of

two exponentials corresponding to the B decay following by the D decay (this is still

not an ideal description because the two resulting muons don’t come from a single

vertex). This function is E(x; τ1) − E(x; τ2), where the two lifetimes, τ1 and τ2, can

be fitted for (actually fit parameters τ1 and ξ = τ2/τ1 with 0 < ξ < 1 are preferable).

With this parameterization, a slightly altered Gψ = (9.4± 2.9)% was obtained (with

τc = (1.39 ± 0.11) ps, ξ = 0.20 ± 0.07, and ∆c = (−0.02+0.08
−0.02) ps), with only a small
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improvement in the quality of the fit. For this reason, and because the particular

values of τ1 and τ2 are not used, the simpler single exponential form was retained.

The pull distribution in figure 4.11 is far from perfect. A slightly better description

is a double Gaussian with common mean −0.021 ± 0.025, central Gaussian width

1.041±0.025, and (2.4±1.1)% in tails with width 2.76±0.36 (similar tails are seen in

the reconstructed masses). Using such a double Gaussian in the fit function decreases

τB to 1.41 ps.

There are two principal contributions to the correction factor, α. While the J/ψ

mass is a large fraction of that of the B, it nevertheless acquires a boost in the B rest

frame. This depends upon the particular decay mode. The second effect is due to

anisotropic or momentum-dependent inefficiencies in the lab frame, which can spoil

the averaging over all directions in the B rest frame.

The variation in the first effect can be estimated by comparing α for different

B parent masses in the absence of detector inefficiencies (i.e. for all generated B →
J/ψ): (α, σα) = (1.069, 0.235) (B0±), (1.076,0.249) (Bs), and (1.089,0.268) (ΛB).

The second effect is dominated by the pµµ ≥ 10 GeV/c cut. Data versus Monte

Carlo agree in the mean and rms momenta of selected candidates to roughly 0.4 GeV/c.

Changes in the momentum cut of this order have little effect on α. However, applying

the other J/ψ selection cuts changes (α, σα) from (1.086,0.231) to (1.094,0.232).

Taking these variations as conservative estimates, we obtain errors on α and σα of

0.02 and 0.03 respectively. Varying these two parameters together changes the fitted

τB by ±0.02 ps.

Assuming all these errors are independent, and taking them as symmetric, we

obtain the systematic errors listed in table 4.5 and quoted below.
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Source Systematic Error
τB (ps) Gψ (%)

Opposite-sign mass parameterization (fJ/ψ) negligible 0.56
Like-sign mass parameterization (Nw) negligible 0.28
Like-sign background fraction (Nw) negligible 0.97
Cascade decay time parameterization negligible 0.26
Decay error parameterization (σα) 0.034 0.14
Uncertainty on α and σα 0.015 negligible
True B → J/ψ fit bias statistical error 0.037 –
True B → J/ψ fit bias variation 0.030 –

Total 0.060 1.19

Table 4.5: Summary of systematic errors on the B lifetime (τB) and prompt fraction
(Gψ) from sections 4.4.2 and 4.8. These do not include the effect (0.02 ps on τB and
1.4% on Gψ) of the statistical uncertainties in the background fractions (λs, λw, and
λc) which are added to the statistical error in section 4.7.1.

4.9 Results and Interpretation

The above measurement of the mean lifetime of B-hadrons produced from the Z0 and

decaying to J/ψs gives

τB = (1.53 ± 0.11 (stat.) ± 0.06 (syst.)) ps. (4.21)

This can be compared with previous lep B → J/ψ measurements [146, 150, 151] of

τB = (1.40 ± 0.13) ps.13

As noted in chapter 1, if this mean is to be compared or combined with measure-

ments in other channels, such as semileptonic or exclusive B decays, some account

should be taken of the composition of the sample. According to the lund ps Monte

Carlo, J/ψs come from 83.8% B0±, 7.3% Bs, 8.4% ΛB, and 0.5% Bc (similarly for se-

lected J/ψs). A comparison of different mean B-hadron lifetimes is given in table 4.6.

The measured prompt fraction of J/ψs is

N(Z0 → prompt J/ψX)

N(Z0 → J/ψX)
= (9.6 ± 3.2 (stat.) ± 1.2 (syst.))%. (4.22)

13Note that 28% (∼ 59 events) of the data that this average is based on is common with the 22%
of our sample that was taken in 1992.
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Sample τB (ps)

Mean B → J/ψ at lep 1.46 ±0.10
Mean Inclusive B decay at lep 1.576±0.016
Mean Semileptonic B decay at lep 1.537±0.020
Mean B → J/ψ at the Tevatron (pp̄) 1.533±0.036
B0 1.56 ±0.04
B± 1.65 ±0.04
Bs 1.54 ±0.07
ΛB 1.22 ±0.05

Table 4.6: Summary of different B lifetime measurements. The lep B → J/ψ lifetime
is an average of [150, 151] and the measurement made here. The other lifetimes are
world-averages given in [5].

This can be compared with previous measurements of (7.7+6.3
−5.4)% [146]14 and (4.8 ±

1.7 (stat.) ± 1.1 (syst.) ± 1.3 (theo.))% [6].

No attempt has been made here to calculate selection efficiencies, but an estimate

of the Z0 branching ratio to prompt J/ψ can be obtained using published values for the

branching ratio to all J/ψ. Using (4.22) and Br(Z0 → J/ψX) = (0.380 ± 0.027)% [2,

page 218]15 gives

Br(Z0 → prompt J/ψX) = (0.036 ± 0.013)%. (4.23)

Because of the pµµ ≥ 10 GeV/c cut, this number does not take into account the

expected larger Nprompt/NJ/ψ ratio at lower momenta (especially from the dominant

gluon fragmentation [11]).

This can be compared with the previous measurement of (0.0300±0.0078 (stat.)±
0.0030 (syst.) ± 0.0015 (theo.))% [153].

It should be noted that our measurement does not distinguish between J/ψs pro-

duced directly and those produced via the ψ(2S) (about half of which decay to J/ψ)

and other charmonium states. However [7] predicts a smaller rate for prompt ψ(2S)

production (∼ 1
3

the J/ψ rate).

1473% of its data is common with 22% of our sample.
1510% of its data is common with 22% of our sample. The average does not include the recent

L3 measurement [152] of Br(Z0 → JX) = (0.340± 0.023 (stat.) ± 0.027 (syst.))%, though perhaps J
and J/ψ measurements should not be combined!
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These numbers are consistent with the theoretical predictions summarized in chap-

ter 1. Summing the contributions from the two principal mechanisms (branching

fractions 1.2 and 1.3) gives

Br(Z0 → prompt J/ψX) = 0.027% (4.24)
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Appendix B

Track Parameterization

Several track parameterizations are used in delphi. During the track reconstruction,

ter and tkr forms are used (stored in the te and tk tanagra banks respectively).

For track extrapolation and fitting, the exx form is used. The perigee parameters

define the track at its point of closest approach to a reference point (usually the

origin). Because the reference point is implicit, only five parameters are required.

The other parameterizations also define the distance from the origin (in either R or

z) at which they apply. It is the perigee parameters and their weight matrix (inverse

covariance matrix) that are stored on the dst and used in most of the subsequent

analysis.

ter (R,RΦ, z, θ, φ,−q/pxy) or (x, y, z, θ, φ,−q/pxy)
tkr (R,RΦ, z, θ, φ,−q/p) or (x, y, z, θ, φ,−q/p)
exx (R,Φ, z, θ, β, κ) or (z, x, y, θ, φ, κ) [sic]
Perigee (ε, z, θ, φ, κ)

The parameters (R,Φ, z) are the cylindrical position coordinates and (x, y, z) are

the Cartesian position coordinates (in cm). The cylindrical forms are used mostly in

the barrel and the Cartesians mostly in the endcaps. θ and φ are, respectively, the

polar and azimuthal track directions at the specified point. β is the azimuthal angle,

relative to a radial track (β ≡ φ− Φ). All angles are in radians.
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The particle’s momentum components are given by

px = p sin θ cosφ (0 ≤ φ < 2π)

py = p sin θ sinφ (0 ≤ θ < π) (B.1)

pz = p cos θ pxy = p sin θ

p is the momentum (in GeV/c), q the charge (relative to that of the proton), and κ

the track curvature (in cm−1), i.e. in the central region, where the magnetic field is

parallel to the z-axis,

κ ≡ 1/ρ = −qB/pxy , (B.2)

where |ρ| is the track’s radius of curvature in the xy plane, and B is the magnetic

field (1.2 tesla = 0.0036 GeV/c/cm).

ε is the geometric impact parameter, whose magnitude gives the distance from

the origin (or other reference point) to the perigee, the point of the track’s closest

approach in the xy plane. The sign of ε is positive if the track passes to the right of

the origin, when looking along −z (see figure B.1).1 Formally,

ε = (x0 × p̂) · ẑ (B.3)

where x0 is the vector from the origin to the perigee, p̂ is a unit vector along the

track direction there, and ẑ is a unit vector along the z-axis. The position of the

perigee is thus given by

(x0, y0, z0) = (ε sinφ,−ε cosφ, 0) (B.4)

For lifetime studies, it is often convenient to use another signing convention: the

lifetime-signed impact parameter. In this case, a positive sign is assigned if

1It is common (eg. [66]) to define the sign of ε in terms of the track curvature (whether the
origin is enclosed by the track), with an additional sign for a positively charged particle. Although
equivalent to the one given above, such a definition engenders the incorrect implication that the
track’s charge plays a rôle, whereas in fact ε is equally applicable to neutral tracks.
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→

→

Particle
trajectory

φ
ε

p̂

x

y

Figure B.1: Illustration of the track impact parameter. In this case, the impact
parameter, ε, and curvature, κ, are positive. Since delphi’s magnetic field is parallel
to the z-axis (pointing out of the paper), κ > 0 corresponds to a negatively charged
particle.

the track intersects the direction vector (often estimated from the thrust axis) of a

presumed decaying particle in front of the reference point (usually the beamspot or

reconstructed primary vertex). For a large boost, the average lifetime-signed impact

parameter is proportional to the decay lifetime [154]. Since we can reconstruct the

J/ψ vertex directly, this method and the lifetime signing convention are not used in

this thesis.





Appendix C

G64 crates and Elementary

Processes

Part- G64 ep Channels Function
ition s/w name s/w # type m/c
vd S FB S 6 digital m/c Fastbus crate power supplies

PWON S 1 digital c Bias voltage control

VOLT S 576 analog m Bias voltages and leakage currents

S TEMP S 16 analog m Temperatures. A high temperature
interlocks the power supplies.

id – HV_FS M 13 ‘caen’ m/c
– HV_JT∗ M 34 ‘caen’ m/c

Field shaping and jet/trigger chamber
high voltages supplied by Lecroy units.
These are controlled via RS232–C by
special processes on the vax, which
emulate G64s controlling caen power
supplies, allowing standard eps with
minimal changes to be used.

S HV_DVM S 24 analog m Field shaping high voltages monitored via
a digital voltmeter

FB S 21 digital m/c Fastbus crate power supplies

LV S 9 analog m Low voltages

TEMP S 16 analog m Temperatures

(PTO)
Table C.1: G64 crates and Elementary Processes used by each detector partition in 1994
(the 1995 configuration, despite the new Inner Detector, was practically identical). A
brief description of each detector partition’s slow controls is given in section 3.2. The
Elementary Process names are used as object names for smi. If they are marked with an
asterisk (∗), then the ep controls high voltages which must be lowered during lep filling
and high background conditions. The detector-monitoring G64 and vax Elementary Process
software is indicated as being a Standard, Modified, or Partition-specific program in the
s/w columns. Elementary Processes that perform monitoring only (m), control only (c), or
both monitoring and control (m/c) are indicated in the m/c column.
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Part- G64 ep Channels Function
ition s/w name s/w # type m/c
tpc P CAEN∗ P 89 caen m/c Sense wire high voltages and drift field

very high voltages. The high voltages
are automatically reduced if the
currents are too high.

TEMP P 98 analog m Temperatures and pressures

P PREAMP_B P 21 digital c
42 analog m

Wire and B-side pad preamplifiers

FB_B P 138 digital m/c
230 analog m

B-side fastbus crate power supplies

P PREAMP_D P 15 digital c
30 analog m

D-side pad preamplifiers

FB_D P 99 digital m/c
165 analog m

D-side fastbus crate power supplies

P GATES P 38 digital m/c Gating grid

CALGEN P 36 digital m/c Calibration generators

od S HVAN∗ S 26 caen m/c Anode high voltages

FBUS S 18 digital m/c Fastbus crate power supplies

S CRTE S 78 analog m Crate voltages and temperatures

PLNK S 196 analog m Plank positions and temperatures

fca M HV_B∗ M 24 caen m/c High voltages with automatic trip
recovery and grouped ramping

FB S 12 digital m/c Fastbus crate power supplies

fcb M HV_A∗ M 24 caen m/c A-side high voltages with automatic
trip recovery and grouped ramping

FB_A S 12 digital m/c A-side fastbus crate power supplies

LV S 2 analog m Low voltage supplies

M HV_C∗ M 20 caen m/c C-side high voltages (similar to HV_A)

FB_C S 12 digital m/c C-side fastbus crate power supplies

hpc S HV∗ P 144 caen m/c
144 analog m

3 digital c

Proportional chamber and drift field
high voltages

S TEMP S 144 analog m Temperatures

P LV P 168 analog m Preamplifier and shaper low voltages

FB P 24 analog m Fastbus crate power supplies

DV P 49 analog m
PH P 49 analog m

Gas test chamber drift velocity and
pulse heights

sci –1 THV P 170 caen m/c Phototube high voltages

(PTO)
Table C.1 (cont.)

1sci uses hpc low voltage G64 crate.
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Part- G64 ep Channels Function
ition s/w name s/w # type m/c
emf P HV_A P 4 digital c

1280 analog m
A-side High voltages

LV_A P 64 digital m A-side Low voltages

FB_A P 16 digital m/c
8 analog m

A-side Fastbus crate power supplies

TEMP_A P 128 analog m A-side Temperatures

P HV_C P 4 digital c
1280 analog m

C-side High voltages

LV_C P 64 digital m C-side Low voltages

FB_C P 16 digital m/c
8 analog m

C-side Fastbus crate power supplies

TEMP_C P 128 analog m C-side Temperatures

hac M HVBA S 24 caen m/c Barrel A-side high voltages with
automatic trip recovery

PLBA M 480 analog m
digital c

Barrel A-side high voltage current
monitoring. Individual Planes can be
switched off by the G64 if too much
current is drawn. Analog and digital
channels combined in the G64.

HVBC S 24 caen m/c Barrel C-side high voltages with
automatic trip recovery

PLBC M 480 analog m
digital c

Barrel C-side high voltage current
monitoring (similar to PLBA)

M HVFA S 24 caen m/c Endcap A-side high voltages with
automatic trip recovery

PLFA M 480 analog m
digital c

Endcap A-side high voltage current
monitoring (similar to PLBA)

HVFC S 24 caen m/c Endcap C-side high voltages with
automatic trip recovery

PLFC M 480 analog m
digital c

Endcap C-side high voltage current
monitoring (similar to PLBA)

S LVBA S 6 digital m/c Barrel A-side low voltage supplies

LVFA S 6 digital m/c Endcap A-side Low voltage supplies

LVBC S 6 digital m/c Barrel C-side low voltage supplies

LVFC S 6 digital m/c Endcap C-side Low voltage supplies

FBUS S 3 digital m/c Fastbus crate power supplies

P STR_A P 2 analog m Endcap A-side gas test streamer tubes

STR_B P 4 analog m Barrel gas test streamer tubes

STR_C P 2 analog m Endcap C-side gas test streamer tubes

(PTO)
Table C.1 (cont.)
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Part- G64 ep Channels Function
ition s/w name s/w # type m/c
rib S HV_A∗ M 108 caen m/c

1 digital c
A-side mwpc high voltages. Ramping
triggered by hardwired signal directly
from G64 to caen.

CRAT S 52 digital m/c Fastbus crate power supplies

S HV_C∗ M 108 caen m/c
1 digital c

C-side mwpc high voltages (similar to
HV_A)

M VHV P 9 digital m/c
P 81 analog m

Drift cage currents. Heinzinger very high
voltage unit is controlled via gpib bus.

P HEATING P 64 digital m/c
118 analog m

P 118 analog m

Barrel heating and temperatures

P 32 digital c
102 analog m

Heating of gas pipes, racks, and other
devices outside the barrel

P2 DRI P 117 digital m/c
24 analog m

Drift gas flow, pressures, temperatures,
and tmae

P2 MON P 52 digital m/c
8 analog m/c

Drift gas quality

P2 GAS P 70 digital m
34 analog m

Gas radiator

P2 LIQ P 130 digital m/c
11 analog m

Liquid radiator

rif S HV_A∗ S 52 caen m/c A-side mwpc high voltages and drift
field very high voltages

UV_A S 12 caen m/c A-side calibration ultraviolet lamps

M TV_A S 42 analog m
1 digital c

A-side vessel temperatures with interlock
to stop tmae flow if too cool

FB_A S 48 analog m
27 digital m/c

A-side fastbus crate power supplies and
preamplifier temperatures. Crates
switched off from G64 if too hot.

S HV_C∗ S 52 caen m/c C-side mwpc high voltages and drift
field very high voltages

UV_C S 12 caen m/c C-side calibration ultraviolet lamps

M TV_C S 42 analog m
1 digital c

C-side vessel temperatures (similar to
TV_A)

FB_C S 48 analog m
27 digital m/c

C-side fastbus crate power supplies and
preamplifier temperatures (similar to
FB_A)

P2 DRI P 123 digital m/c
35 analog m

Drift gas

(PTO)
Table C.1 (cont.)

2The rich fluid systems are controlled by Siemens systems which perform a function analagous to that
of the G64s.
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Part- G64 ep Channels Function
ition s/w name s/w # type m/c
mub S HV_B M 52 caen m/c B-side high voltages with automatic trip

recovery and conditioning of
frequently-tripping channels. Ramping is
done in steps with continuous monitoring.
Volts are lowered if gas problems.

LV_B S 31 analog m B-side low voltages

FB_B S 1 analog m
1 digital c

B-side fastbus crate power supply

S HV_D M 48 caen m/c D-side high voltages (similar to HV_B)

LV_D S 31 analog m D-side low voltages

FB_D S 1 analog m
1 digital c

D-side fastbus crate power supply

muf M HV_A∗ M 16 caen m/c
50 digital m/c
2 analog m

A-side high voltages. Anode voltages
supplied by caen. ep provides automatic
trip recovery, and adjusts voltage levels
according to the atmospheric pressure. Field
grading supply status controlled and
monitored; voltage values monitored.

LV_A S 8 digital m A-side low voltage power supply status

FB_A S 4 digital m/c A-side fastbus crate power supplies

M HV_C∗ M 16 caen m/c
50 digital m/c
2 analog m

C-side high voltages (similar to HV_A)

LV_C S 8 digital m C-side low voltage power supply status

FB_C S 4 digital m/c C-side fastbus crate power supplies

hof –3 HV_A M 16 caen m/c A-side high voltages

–3 HV_C M 16 caen m/c C-side high voltages

mus S HV_A S 16 caen m/c A-side high voltages

HV_C S 16 caen m/c C-side high voltages

tof S VOLT S 88 caen m/c Photomultiplier high voltages

FB S 9 digital m/c Fastbus crate power supplies

(PTO)
Table C.1 (cont.)

3hof uses muf G64/caen crates.
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Part- G64 ep Channels Function
ition s/w name s/w # type m/c
sat4 M BIAS M 4 analog m/c Calorimeter bias voltages and currents

SWST S 1 digital m Bias supply status

FB S 4 digital m/c Fastbus crate power supplies

TEMP S 10 analog m Temperatures

stic M HV_C∗ S 2 ‘caen’ m/c Calorimeter high voltages. G64 emulates a
caen high voltage unit controlling voltages
and currents for each endcap.

HV_E S 370 analog m
21 digital m

Individual calorimeter phototetrode
currents and statuses

–5 BIAS M 6 analog m/c
2 digital m/c

Bias voltages, currents, and status

HV_V∗ S 3 digital m/c Veto counter photomultiplier high voltages

POSI S 22 analog m Positions

TEMP S 96 analog m Temperatures

FB S 6 digital m/c Fastbus crate power supplies

vsat –5 BIAS M 20 analog m/c Bias voltages and currents

SWST S 3 digital m Bias supply statuses

FB S 2 digital m/c Fastbus crate power supply

(PTO)
Table C.1 (cont.)

4The sat was replaced by the stic in 1994.
5The vsat and stic (BIAS and FB) use G64 hardware and software originally developed for the sat.
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Part- G64 ep Channels Function
ition s/w name s/w # type m/c
D16 S AIR S 4 analog m Air conditions

BTEM S 32 analog m Barrel temperatures

H2OM S 3 analog m Cooling water

FBD1 S 48 digital m/c
150 analog m

Central data acquisition fastbus
crate power supplies

tp –7 FB S 6 digital m/c Trigger partition fastbus crate
power supplies

Gas8 P9 GAS_ALARM P 730 analog m/c
563 digital m/c

Accepts messages from 28 of the
gas-system G64s and sets smi
states and injects emu messages
based on the conditions in each
partition

gss8 – G_TO_D P ∼ 400 – m Transfers gss-detected conditions
to delphi (smi and emu)

Sol8 P SELTEK_ P 60 Seltek m
RECEIVE
and LOG

Solenoid temperatures, currents,
strains, and field measured using a
Seltek data logger

P NMR P 5 analog m nmr field measurements

P SOL_ALARM P 103 – m Power supply and vacuum system
alarm handling. Control reserved
for separate interactive programs.

P PRESSURE_ P 16 analog m
LOG

Cryostat pressures

Table C.1 (cont.)

Notes

1. Apart from the sat, the configuration described here was in operation from the start of 1994 datatak-
ing.

2. Table 3.2 lists the numbers of G64 crates used by each detector partition. Here we specify the software
running in each, and so G64 crates whose backplanes are chained together using a single cpu are
counted together.

3. Processes have only been included in this table if they perform an action analagous to the standard
Elementary Processes, ie. each is the lowest-level vax process for interpretation of the hardware in
terms of an smi object. Thus a few partition-specific software monitoring processes (eg. jobs to check
that other jobs are running) and interface programs have been excluded, even if they have associated
smi objects.

4. Elementary Processes are marked as modified (M ) only for instances that actually make use of the
modification. For example the vsat FB and SWST eps run the same program as the BIAS, but the
modifications to the standard ep that this has only apply to bias channels.

5. The number of channels given are as seen by the Elementary Processes, where each channel performs
independent monitoring or control of a specific piece of hardware. Thus, most notably, the two pia
channels used to switch on and off a fastbus crate power supply’s dc are counted as one, since the
G64 Skeleton controls both channels based on ep commands for a single channel.

6The G64 crate in barrack D1 is used to monitor general environmental conditions.
7The trigger partition uses the fca G64 crate.
8The gas, gss, and Solenoid systems are described in section 3.9.
9There are 34 G64s in the gas-system, though the 6 supervisors do not communicate with GAS_ALARM.
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Fitting Methods

We fit f(x;p) to be proportional to the probability density function for N measure-

ments xi, . . . , xN in the range x0 ≤ xi < xh. The fit parameters are p. f(x;p) is

normalized such that
∫ xh
x0
f(x;p)dx ≡ A(p).

D.1 Unbinned Extended Maximum Likelihood Fit

The normalized likelihood of each event is f(xi;p)/A(p). We can assume a Poisson

variation for the measured number of events, N , about some true mean value, which

we require our fitted function to be normalized to by taking as A(p). The likelihood

of obtaining this set of events is thus

Lu(p) =
A(p)Ne−A(p)

N !

N∏
i=1

f(xi;p)

A(p)
. (D.1)

It is more convenient to work with the negative log-likelihood

Fu(p) ≡ − lnLu(p) = −
N∑
i=1

ln

(
f(xi;p)

A(p)

)
−N lnA(p) + A(p) + lnN ! (D.2)

which has its minimum at the same parameter values, p, as the maximum of the

likelihood, Lu. Dropping the constant term, lnN !, and cancelling the N lnA(p)
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terms, we have

Fu(p) = −
N∑
i=1

ln f(xi;p) + A(p) (D.3)

as our function to minimize with respect to p.

D.2 Unbinned Maximum Likelihood Fit

If we now define f ′(x;p) ≡ f(x;p)/A(p), so that f ′(x;p) is normalized to 1, we

obtain the standard Maximum Likelihood function

F ′
u(p) = −

N∑
i=1

ln f ′(xi;p) . (D.4)

This is the desired function if the experiment is performed such that a fixed number

of events are taken (and hence we do not use the Poisson factor in equation D.1) rather

than taking everything that comes within the time interval allotted.

The normalization of f ′(x;p) can be any constant (with respect to p), not just 1,

since this would merely introduce an additive constant which will not change the fit

results, just the value of F ′
u(p) at the minimum.

Computationally, if F ′
u(p) cannot be minimized analytically, the standard Max-

imum likelihood method is usually more difficult, since here we must calculate the

normalization, A(p), for every set of values, p, that we visit.

D.3 Binned Maximum Likelihood Fit

If we have M bins with a constant bin-width of h ≡ xh−x0

M
, then the measured contents

of bin b (b = 1 . . .M) will be

nb =

∫ x0+hb

x0+h(b−1)

N∑
i=1

δ(x− xi)dx , (D.5)
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while the fitted bin contents will be

fb(p) =

∫ x0+hb

x0+h(b−1)

f(x;p)dx . (D.6)

In this case we do not have to normalize f(x;p). This is because it is now simply

a parameterization of the shape — and height — of the histogram, and need not be

interpreted as a probability density function.

If we assume a Poisson distribution for the number of events in each bin, nb, the

histogram likelihood is

Lb(p) =

M∏
b=1

fnbb e
−fb

nb!
(D.7)

(taking fb ≡ fb(p)), giving

Fb(p) ≡ − lnLb(p) = −
M∑
b=1

(nb ln fb − fb − lnnb!) . (D.8)

∑M
b=1 fb is simply A(p) (the fitted contents of all bins).

∑M
b=1 lnnb! is independent of

p, and does not alter the fit result. Ignoring this constant, we obtain the function to

minimize

Fb(p) = −
M∑
b=1

nb ln fb + A(p) . (D.9)

The final term may be dropped if, as in the standard Maximum Likelihood fit, the

function normalization is independent of the fit parameters.

We now see how this is related to the unbinned case by expanding the definitions

of nb and fb (equations D.5 and D.6)

Fb(p) = −
M∑
b=1

[∫ x0+hb

x0+h(b−1)

N∑
i=1

δ(x− xi)dx

][
ln

(∫ x0+hb

x0+h(b−1)

f(x;p)dx

)]
+ A(p) .

(D.10)

If f(x;p) is approximately constant over a bin, then we can replace
∫ x0+hb

x0+h(b−1)
f(x;p)dx

by hf(x0 +h(b− 1
2
);p) which, being a constant, can be moved inside the first integral.
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But those limits are the same, so we can replace x0 + h(b− 1
2
) by x again.

Fb(p) ≈ −
M∑
b=1

∫ x0+hb

x0+h(b−1)

N∑
i=1

δ(x− xi) ln[hf(x;p)]dx+ A(p) (D.11)

= −
N∑
i=1

∫ xh

x0

δ(x− xi) ln[hf(x;p)]dx+ A(p) (D.12)

= −
N∑
i=1

ln[hf(xi;p)] + A(p) (D.13)

= −
N∑
i=1

ln f(xi;p) + A(p) −N lnh (D.14)

and dropping the final constant term we obtain the same expression as for the un-

binned extended log-likelihood, Fu(p), in equation D.3.

Hence, when the function does not vary much over a bin, we have shown that the

binned Maximum Likelihood fit gives us the same results as the unbinned Extended

Maximum Likelihood fit. Note that in this approximation, the definition of fb(p)

(equation D.6) becomes f(x0 + h(b− 1
2
);p) and A(p) its sum over all the bins which,

for simplicity, is what is often used in a binned fit.

D.4 Binned χ2 Fit

If the expected number of events in each bin is large, then we may approximate the

Poisson distribution in equation D.7 by a Gaussian with mean fb and variance fb [155,

page 40].

Lχ2(p) =
M∏
b=1

1√
2πfb

e−(nb−fb)2/2fb (D.15)

giving

Fχ2(p) ≡ − lnLχ2(p) = −
M∑
b=1

ln
1√
2πfb

+
1

2

M∑
b=1

(nb − fb)
2

fb
. (D.16)

If the fitted bin contents, fb, is large enough, then it may be approximated by

the measured bin contents, nb, in the first term which is then independent of the fit
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parameters, and we obtain the well-known χ2 formula1

χ2 ≡ −2 lnLχ2(p) =

M∑
b=1

(nb − fb)
2

fb
. (D.17)

Thus the χ2 fit to a histogram assumes that the fitted number of events in each

bin is large.

1[156, page III.36, equation 2.9] gives this incorrectly as χ2 ≡ − 1
2 lnLχ2(p), so maybe it isn’t all

that well known! (It is corrected in [157, equation 17.10].)
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