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Abstract

A simple, general model of the avalanche process in gas counters is described.
Applicable to all the common forms of gas avalanche detector – wire, microstrip,
point anode and parallel gap, the model describes the gain process in terms of two
pseudo-physical constants which are effectively invariant over the working range of
any given detector configuration. For counter operation over a wide range of
conditions (e.g. very different gas pressures) the model is extended so that four
parameters are required to model the gain. Applications of the model to the
characterisation, operation and design of a variety of counter types are given.
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1. Introduction

Since their invention in the early twentieth century gas counters have proved
extremely adaptable as detectors of ionising radiation, not only on account of the ease
with which the detecting medium may be changed (e.g. 3He for slow neutrons or
xenon for hard x-rays), but also due to the geometric flexibility of the sensitive
volume and the avalanche region. Thus planar (parallel gap) [1], linear (wire) [2] or
point (needle) [3] detectors have all been successfully used in a wide range of
applications, some with imaging capability and some without. Recent technological
advances associated with the electronics industry such as micro-lithography and
precision printed circuit manufacture have revolutionised one’s ability to fabricate the
small electrode structures required in many designs. The three geometries as
implemented by this new technology are exhibited in the Compteur a Trous (CAT)
[4], the Gas Microstrip Detector (GMSD) [5] and the MicroDot Detector (MDD) [6].

In the absence of a general model of the avalanche process, design and operation of
the devices is largely empirical. There is an extensive literature with models for the
gain of the standard single wire proportional counter [7-16], which however, in
general exhibit little practical utility for the design and operation of gas counters. This
report elaborates a simple model of the avalanche gain process which is applicable to
all detector geometries and which allows the behaviour of the gas gain to be explored
as a function of the geometry and the thermodynamic gas variables pressure (P) and
temperature (T). This provides useful assistance in the design, characterisation and
operation of the new families of gas avalanche detectors.

2. The Gain Model

In an electron avalanche process the controlling parameter is the specific ionisation
(α), the number of ion pairs being generated per unit length at any given point in the
high field region in which the amplification is occurring. In gases α is generally
known as the Townsend Coefficient. The total multiplication or gas gain (M)
achieved by an electron in the transit from cathode to anode is given by:
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where the integral is performed along the electron path from the cathode to the anode.

An electron drifting in a high electric field can acquire enough energy in the free path
between atomic interactions to (at lower field values) excite the gas atoms and (as the
field increases) ionise them, so contributing to the specific ionisation α. The excitation
processes absorb electron kinetic energy and so keep α low (although in binary gas
mixtures excited atoms can generate ionisation by secondary interactions such as
Penning processes and photo-ionisation by fluorescent photons). The simplest model
for α neglects these effects and considers only the collision ionisation process in
which an energetic electron directly ionises a gas atom. This is characterised by the
parameters - W the threshold energy for ionisation (the outer-most atomic electron
binding energy) and σ the cross-section for the ionisation process. Any electron of the
population (which is assumed to have a Maxwellian energy distribution) with a
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kinetic energy above this value is assumed to cause an ionisation event. This leads to
the following expression for α [17] :
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where λ is the electron mean free path and E is the local electric field strength. If σ is
the effective cross-section for the ionisation process we can write :
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where NL is Loschmidt’s Number, the number of atoms (molecules) per unit volume.
In turn the gas laws yield the relation :
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where NA is Avogadro’s Number and R is the Gas Constant. Since the ambient
variables P and T always appear as a ratio it is convenient to define :
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Combining equations (2) – (5) yields :
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in which we see that α/q is a simple function of E/q, including both the electric field
and the ambient dependencies. E/q is known as the reduced electric field. Comparing
equation (6) with equation (2) shows that the quantity λq = R/NAσ and equation (6)
can be written as:

�
�
�

�

�

�
�
�

�

�
−=

qq
E

W

qq λλ
α

exp
1

(6a)

where the parameters W and λq represent invariant physical parameters of the gas
filling.

In equation (6) the electric field is in general a function of position, i.e. E = E(r).
Substituting the appropriate function of E(r) for any given geometry of gas detector
and integrating equation (1) with the functional dependence of α given in equation (6)
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gives the equation describing the gas gain as a function of Vac (the anode-cathode
potential difference) and the ambient variable q.

2.1 The Single Wire Proportional Counter

The single wire proportional counter is generally taken as the canonical gas avalanche
detector and it is the subject of most modelling studies. It consists of a fine wire of
radius ra stretched down the axis of a cylindrical tube of radius rc which is filled with
the active gas. A potential difference Vac is applied between the electrodes with the
wire positive with respect to the cathode. The electric field is radially symmetric and
is described by:
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where r is the radial distance from the counter axis. Substituting this expression for E
and integrating equation (1) from the cathode (rc) to the anode surface (ra) gives the
gain formula. The rapid dependence of α on E(r) and the steep decline of E with r
makes the integral insensitive to the cathode limit which is set to infinity in order to
simplify the final expression:
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In this (the simplest) version of the model the gain is entirely determined by the two
parameters A and B with the gas thermodymamic dependence contained in B. Values
of A and B obtained by fitting an experimental gain curve give directly the basic
physical parameters W and λ by inversion of equations (9) and (10).

The gain of a single wire proportional counter consisting of a 20µm diameter gold-
plated tungsten wire mounted axially in a brass tube of 20mm inner diameter and
filled with a flowing argon + 7.5% methane gas mixture was studied. Figure 1 shows
the measured data for the gain (plotted as lnM) as a function of the anode-cathode
bias potential (Vac) at constant q. Here it can be seen that equation (8) provides an
excellent fit over a wide range of gain ( 70<M<17000) with fitted values: A =
75.367V and B = 13.788. Using the counter geometry and equations (9) and (10) we
find W = 10.9eV and λ = 0.725µm. These are plausible values for an argon-based gas
mixture at ambient conditions.

Equation (10) predicts that B should be a linear function of q. Figure 2 shows a plot
of lnM as a function of q at Vac = 1320V, taken over the range of q values accessible
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in a flow counter due to changes in the ambient pressure and temperature
(940mb<P<1030mb, 18C<T<24oC). The data fits satisfactorily to a straight line
function for the parameter AB/Vac. However, the presence of a significant offset in the
fitting function shows that the relationship predicted by equation (10) is not fulfilled
exactly, and the fit is simply the local tangent to a curve which is gently concave
down. This is an indication of the limitations of the model which will be discussed in
detail below.

2.2 The GMSD

The GMSD consists of a pattern of interleaved, parallel metallic strips laid down on a
semi-conducting glass surface [5]. A fine anode strip (typically 10µm wide(As)) is
flanked by cathode strips which are typically ≈100µm wide (Cs), in a pattern which
repeats every few hundred µm (i.e. pitch = Ps). In spite of the planar structure, the
basic geometry of the avalanche region is similar to that of the single wire counter so
it is not surprising that the gain of the GMSD fits well to equation (8). Figure 1 shows
such a fit to experimental data from a GMSD.

Experiment shows that the electric field in the region in which the avalanche occurs
near the GMSD anode strip is close to that of a cylindrical counter with ra = As/2 and
rc = (Ps-Cs)/2. Thus equations (9) and (10) can be used for A and B. If this is done
with the fit in figure 1, W is found to be 12.2eV and λ, 0.657µm, plausible values for
operation at ambient conditions and close to that found above for the single wire
counter.

The GMSD is usually operated as a three terminal device with a drift electrode placed
parallel to the glass plate at a suitable (≈10mm) distance to define the active detector
volume. As described in detail elsewhere [18], the drift electrode potential (Vd)
contributes to the field in the avalanche region above the anode strip so that the
correct bias for equation (8) is V’ = Vac + βVd, where β ≈0.01. Equation (8) generally
achieves an excellent fit to the experimentally measured gain whether Vac or V’ is
used (though, of course the fitted values of W and λ differ slightly).

It is noted in figure 1 that the bias potential required for GMSD operation is
approximately one half that required for the single wire counter. This is, of course,
simply a reflection of the difference of a factor of ≈50 in the anode-cathode gap of the
two devices.

2.3 The Point Anode Detector

The point anode detector takes many detailed forms [3]; however, the basic element is
a quasi-spherical anode structure near which the avalanches occur. For the purposes
of modelling, the electric field near the anode is assumed to be that between two
concentric spheres: the anode surface of radius ra and the cathode surface of radius rc.
Thus:
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The rapid dependence of E on r and the similarly rapid dependence of α on E
(equation (2)) mean that the positioning and shape of the cathode generally have a
weak effect on the gas gain and that the assumption of a spherically symmetric field
near the anode is valid.

The gas gain is evaluated by substituting equations (11) and (2) in equation (1) and
integrating. As in the wire counter case (and by the same justification), the integral is
simplified by setting rc to infinity. The result is :
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Rearranging equations (13) and (14) gives :
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erfc(x) is the complementary error function which requires a numerical integration for
each evaluation. In order to simplify the fitting process using equation (12), erfc(x) is
approximated by the expression:

erfc(x) ≈ exp(-0.9062 x2 – 0.8751 x) (17)

which gives a precision of a few % throughout the range 0 < x < 4, in which the value
of erfc(x) is significant.

Pin detectors use electronic connector pins to provide the quasi-spherical anodes of
the counters. Figure 3 shows the fits of equation (12) to two pin detector designs. The
right hand data set (squares) shows the gain curve of the imaging pin detector [19]
which consists of a 2mm diameter ball connector mounted in a gas enclosure with the
cathode readout structures at a distance of ≈30mm from the anode. It is operated in a
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gas mixture of argon + 20% methane. A potential of +Vac is applied to the pin anode
with the readout cathodes at earth potential.

Applying equations (15) and (16) to the fit parameters of the imaging pin detector
data in figure 3 yields W = 28.8eV and λ = 3.07µm.

The array pin detector [20] is fabricated from an electronic connector array of 100
pins with hemispherical ends which are spaced at 2.54mm intervals on a grid. The pin
tips are brought up close to a cathode plane with holes (aligned on the pins) through
which the ionisation released in an active gas space are drawn into the avalanche
region above each pin tip. The pins are held at earth potential and -Vac is applied to
the cathode plane. The pin diameter is 0.48mm and the average distance to the
cathode plane is ≈0.7mm (rc = 1.02mm). The gain curve for a pin in this detector is
shown as the open circles in figure 3 along with the fit to equation (12).

Applying equations (15) and (16) to the fit parameters of the array pin detector data in
figure 3 yields W = 19.33eV and λ = 1.83µm.

The explicit dependence of the gain on the ambient variable q can be obtained by
using equations (3) and (4) to substitute λ in equation (12).

2.4 The Parallel Gap Detector

In the parallel gap detector the avalanche takes place in the high electric field between
two accurately parallel planar electrodes, the first of which is a form of mesh through
which the x-ray generated ionisation may pass from the active volume of the detector
into the high field region. In this case the electric field is uniform and given by:

d

V
E ac= (18)

where d is the separation between the anode and cathode planes. Substitution of this
in equations (2) and (1) followed by integration leads to the relation:
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The parallel gap detector used to produce the gain curve in figure 3 (filled circles)
consisted of a 10mm deep conversion gap separated from a 1mm deep avalanche gap
by a stainless steel mesh plane. The mesh was used as the readout electrode (at earth
potential) and +Vac was applied to the rear foil electrode.
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Applying equations (20) and (21) to the fit parameters of the parallel gap detector data
in figure 3 yields W = 23.96eV and λ = 4.28µm.

3. Discussion of the Model

While the model clearly is capable of accurately fitting the gain curves of all the gas
counters studied, its limitations are clearly seen in the systematic variation seen in the
values of the two parameters W and λ, which should be invariant for a given gas.
(Admittedly a variety of argon-based mixtures are used above, but the systematic
variation clearly bears little relation to the changes in the gas mixture.) What is
dramatically different in the various detectors is the value of the electric field near the
anode (where the avalanche occurs). Table 1 shows λ and W tabulated against the
anode field for all the devices tested. A clear picture emerges with λ smoothly
increasing from 0.657µm (GMSD) to 4.28µm (parallel gap) as the reduced anode
electric field decreases from 140 VK/(cm-mb) to 4.52 VK/(cm-mb). W shows a more
erratic tendency to increase from ≈11eV to ≈25eV over the same range. This
behaviour is clarified by comparison of the functional dependence for α given by
equation (6a) with the experimental data for α available for argon [21].

Figure 4 shows that in the range of reduced field typical of wire and GMSD detectors
(>5x104VK/(cm-mb)) α/q is well approximated by equation (6a) with W = 15.26eV
and λq = 3.094x10-4, i.e. λ = 3.094/3.41 = 0.91µm, values similar to those observed
with these detectors. In the region of reduced field typical of the pin and the parallel
gap detectors (103 – 104 VK/(cm-mb)) the fit to the experimental data for α/q gives W
= 27.83eV and λ = 0.001599/3.41 = 4.69µm. (Note: q = 3.41mb/K at 20oC and
1000mb). Again these values tend to match to those obtained with the pin and parallel
gap detectors (table 1).

These results inspire the search for a suitable functional form for W and λq as a
function of the reduced field (X = E/q) so that the changes in the avalanche
mechanisms with X can be satisfactorily captured by the simple model for α. Figure 5
shows the argon data modelled with the parameterisations:

W = a + b/X (22)

λq = c + d/X. (23)

The resulting fit is excellent and the resulting functions W(X) and λq(X) are shown
in figure 6. Figure 7 shows the same data plotted as W(X) and λ(X) (at ambient
conditions: q = 3.41mb/K).

Bearing in mind that practical detectors always operate with variable fractions of
various quenchers in the argon (which modify the situation a little), the message of
figure 7 is that for most types of gas detectors which avalanche in reduced field values
>104 VK/(cm-mb), the variation in W and λ is quite restricted. Given that the total
avalanche process in a wire counter (for instance) occurs over at most a factor of three
in X, the assumption of constant W and λ is not unreasonable and the success of the
model is understandable.
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In certain detectors it is possible to force the field configuration beyond that
describable by the simple model. Figure 8 shows the gain curve of a GMSD design
capable of giving a very wide range of gain (As = 5µm, Cs = 250µm, Ps = 500µm) [22]
with the simple model not succeeding in fitting the data over the whole range. The
parameterisation of W and λ derived above indicates an obvious generalisation of the
basic gain formulae in equations (8)-(10). We now permit the gain constants A and B
to be functions of Vac of the form: A = a + b/Vac and B = 1/(c + d/Vac). As figure 8
shows, this simple generalisation produces an excellent fit over the whole operating
range of the detector.

4. The Extended Model

The success of the parameterisations for W and λq (specified in equations (22) and
(23)) in representing the argon experimental data for α/q as a function of X (figure 5)
points the way to an extended model for the avalanche gain process. The exact
solution would involve substituting the relations (22) and (23) in equation (6a) which
would be integrated according to equation (1). Such an integration could only be
performed numerically and thus is of little use as a general tool. A simpler
approximation to this process is indicated by the success of the fit to the GMSD gain
data in figure 8 of the parameterisation of W and λq in terms of Vac.

Noting that the avalanche takes place close to the anode and that the range of reduced
field (X) in the avalanche region is not too great, we accept the gain equation
calculated on the basis of constant W and λq and parameterise them in the gain
formula with the functions defined in equations (22) and (23) with the X value set to
that at the anode of the detector (Xa). Thus for the single wire proportional counter we
can write:
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Substituting relations (22) and (23) with X = Xa we get:
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This equation gives the explicit dependence of the gas gain on all the relevant
variables in terms of four parameters: a,b,c,d which (in turn) define the behaviour of
W and λq over a wide range of reduced field. While this formulation is still an
approximation, it is reasonable to expect that it will be useful over a wider range of
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operation than the simple model. The parameters a,b,c,d can be obtained by fitting
them to a plot of lnM versus q using equation (26). Using the data of figure 2 for this
purpose yields: W = 9.99 + 1.927x104/X (eV) and λq = 1.32x10-4 + 4.985/X
(mbcm/K).

Figure 9 compares the predictions of the extended model (equation (26)) and the
simple model (equations (8) to (10) with constant W =10.33eV and λq = 2.21x10-

4mbcm/K) for the gas gain of a single wire counter as a function of the wire radius
(Vac = 1320V). Both models produce a similar curve with good agreement in the
region of high X (small anode radii) in which the calibration was made. However, for
larger anode radii the two predictions diverge quite rapidly. This result simply
confirms the expectation that the fixed W and λq of the simple model can only give
accurate results when the range of X is restricted to the calibration region, though it
gives the general behaviour over a wider range.

The parameterisations of W and λq in terms of the reduced anode field can be
generated for the point anode and parallel gap counters in the same way as done
above for the single wire cylindrical counter. Substitution in the gain formulae of the
simple model then leads to the equivalent formulae to equation (26) for these cases.

5. The Ballistic Fraction

Gas avalanche counters (virtually without exception) are operated in pulse mode. In
order to achieve this, some form of pulse shaping is applied to the charge waveform
delivered by the detector; typically resistor-capacitor differentiation/integration (CR-
RC). In this case the counter waveform is effectively sampled at a time τ (=RC) after
the avalanche generated by the incident particle (e.g. x-ray). The formation of the
charge waveform is governed by the movement (in the electric field of the detector) of
the electrons and ions released in the avalanche. In devices which may be viewed as
simple two-terminal capacitors, the charge induced on the electrodes may be deduced
simply by considering the energy withdrawn by the drifting charges from the external
power supply. The situation can be further simplified by the fact that the avalanche
usually occurs very close to the anode so that the electrons have a very short distance
to travel and they also have velocities which are (on average) hundreds of times
greater than those of the ions. The problem thus reduces to consideration of the
movement of the avalanche ion cloud from the anode to the cathode. This analysis is
given in detail in reference [23].

The whole of the charge signal liberated in the avalanche is not available to the
detecting circuits until the ions reach the cathode. This period is called the positive ion
transit time (τI) and can range in value from µs to ms depending on the counter
geometry. For practical purposes the amplifier shaping time τ is kept to ≈1µs or less
and this generally means that only a fraction of the true avalanche gain is recorded.
This is known as the ballistic fraction. For the simpler counter geometries the energy
analysis permits the evaluation of the charge waveform from a fast event (such as an
x-ray) Q(t) to be calculated. (The waveform generated by a charged particle (which
can leave an extended trail of ionisation in the detector) is spread out by the drift of
the primary electrons to the avalanche zone and is slower and more complex.) The
results for three simplest cases are as follows:
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Where Q is the total charge in the avalanche event, d is the width of the avalanche
gap, µ the positive ion mobility and Vac the potential difference across the gap.
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and τR is the parameter which determines the fast part of the waveform. The
expression (29) attains unity at the ion collection time:
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In general rc >> ra, it follows that:
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These formulae can be used to estimate the charge waveforms of x-ray pulses in the
different detectors (of which the gain curves are presented in figures 1 and 3) with
varying degrees of precision as figure 10 shows. Within the limitation of the
assumption of the ion mobility of argon ions for all the different ions present
(≈1.7cm2/(Vsec)), the representation of the cylindrical wire counter, the parallel gap
counter and the imaging pin counter are essentially accurate on the time scale
presented in figure 10. (Vac is chosen at a typical operating point of each detector.) In
the pin array detector the ions are collected by both the cathode and the drift
electrode. However, since a low drift field is generally used, most go to the cathode
and the curve in figure 10 will be reliable in the first microsecond or so which
concerns us.

In the GMSD, drift fields are generally high with a large proportion (>50%) of the
ions travelling to the drift electrode. The structure of the field pattern near the anodes
approximates to that of a cylindrical detector of cathode radius (Ps-Cs)/2 (see section
2.2 above) with a typical τI of a few hundred ns, and that in the drift section to a
parallel gap with a typical τI of a few hundred µs. Fortunately the electrode pattern on
the GMSD plate (with much more cathode area than anode area) functions as a Frisch
grid and ensures that the very slow component of Q(t) is very small indeed (a few
percent). The complex field structure of the GMSD means that a full numerical
solution (using Greens theorem) is required to calculate Q(t) and no simple formulae
are possible. The numerical solution of Bellazzini and Spezziga [24] for a typical
GMSD structure is shown in figure 10. It shows that there is a sharp rise to about 95%
in about 200ns followed by a very slowly rising plateau which is estimated to
terminate at 100µs. In fact the front edge can be fitted quite accurately with the form
of equation (29), but only up to t≈200ns.

Table 2 summarises the numerical values of τR and τI for all the detectors. Here we
see an important characteristic of gas avalanche counters, namely the very large ratio
which generally exists between the fast part of the pulse and the final ion collection
time. The build up of positive ion space charge in the long drift is one of the limiting
rate factors on the counter as it eventually distorts the counter electric field and
depresses the gain.

With amplifier shaping time constants (τ) of 1µs, the ballistic fraction (FB) for each
counter can be read off each plot as the value of Q(t)/Q at t = 1µs. In figure 10 FB

varies from 25% for the parallel gap counter to 96% for the GMSD, showing what a
significant effect that it has on the gain calibration. Further, τR is a linear function of
Vac so that FB can change significantly over the operational bias range. In order to
produce corrected gain curves, the data of figures 1 and 3 were divided by the
function Q(1)/Q as a function of Vac (of the corresponding counter) and the new gain
curves fitted as described in section 2 above to generate new values of W and λ. Table
3 shows the resulting values which demonstrate a systematic increase in both
parameters for all detectors, the smaller FB, the larger the change. Only the GMSD
which has FB close to unity shows negligible change. (Because no formulae is
available for Q(t)/Q in this case and the correction is very small, a constant value of
FB was used throughout the range of Vac.)

Figure 11 shows these corrected values of W and λ plotted against the anode reduced
field for all the detectors. The λ values fit reasonably well to the expected function
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(equation (23), but the W values fall into two groups depending on the quencher
concentration. Thus the two points taken with 7.5% methane can be seen to be
consistent with a different curve (equation (22)) to that for the curves with 20-25% of
quencher. The increase of W with the quencher concentration is a reflection of the
large inelastic scattering cross-section of the quencher compared with argon.

The dependence of τR on the ion mobility (µ) makes FB sensitive to changes in the
pressure (P) and (absolute) temperature (T) of the gas. Elementary kinetic theory
shows that this dependence is:

P

T 2/1

∝µ (37).

If the amplifier time constant τ is below the knees of the Q(t) curves (figure 10) (or τI

in the case of the parallel gap) then the apparent gain of a gas counter will decrease
with increasing gas pressure rather faster than indicated by the basic gain model.

Figure 10 also shows the flexibility of point and line anode designs, in that there is
always a relatively fast (sub µs) rise to the charge pulse over a wide range of anode
dimensions so that a reasonable fraction of the charge signal is available (≈50%).
With parallel gap counters the gap dimension is critical and must be sub-millimetre if
microsecond pulses are to be used.

6. Applications of the Model

It is clear from the above discussion that the pulse gain available from any gas
avalanche detector is accurately described by the simple models developed in section
2 only if the ballistic fraction FB remains roughly constant and the reduced anode
electric field Xa does not vary by a large factor over the range of study. The first
condition can be met by ensuring that the amplifier shaping time constant τ is long
enough that the peak sampling time is above the knee of the Q(t)/Q0 curve throughout
the study range. If the range of Xa is large (decades) then the extended model must be
used and the parameters a,b,c,d evaluated for accurate modelling. However, as figure
9 shows, the simple model is capable of representing the general behaviour of the gain
over 3 decades of Xa with the main caveat being that it systematically underestimates
it at the lowest reduced field values (largest radii in figure 9).

6.1 Gain as a Function of Anode Dimension

Accepting the limitations noted above, the simple model can be used to compare the
gain of the three types of avalanche counters as a function of their anode dimension.
Using the fit parameters W and λ derived from the experimental data of figures 1 and
3, the gain formulae (8), (12) and (19) are used to plot the gain of the wire counter,
pin detector and parallel gap as a function of the wire radius, pin radius and gap width
– figure 12. All the detectors display the same characteristic behaviour with the gain
peaking at a wire radius of 0.9µm, a pin radius of 36µm and a gap width of 111µm.
The bias potential has been chosen so as to give a gain of ≈10000 in each case.
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The plots of figure 12 imply that there is an optimal design for each type of detector,
if for no other reason than the fact that at the peak of the gain curve each detector is
maximally insensitive to dimensional irregularities in the gain-determining structure.
Since it is easy to generate GMSD anodes of various widths using the lithographic
process, the gain of GMSD anodes of width 2,3,4,5 and 10µm was measured. Figure
13 shows the result with the gain peaking at an anode width of 3µm (radius = 1.5µm)
and the gain curve fitting reasonably well to the approximate wire formula given in
section 2.2. The optimal radius from the GMSD data (1.5µm) is larger than the
prediction of figure 12 (0.9µm); however, as noted above, precise agreement is not to
be expected and the order of magnitude is satisfactory.

6.2 Counter Spark Stability

The high gain of gas counters means that sparking is inevitable if any positive
feedback processes arise. Typically these are electron photo-emission, field emission
and electron emission from neutralising ions at the cathode. These processes are
sensitive to the electric field strength (Ec) at the cathode and it is generally found that
this parameter is a good diagnostic of the maximum gain from a detector (when other
things such as the gas mixture are equal). In figure 14 the simple model for the wire
counter is used to calculate Vac and thence Ec using the relation:

)/ln( acc

ac
c rrr

V
E = (38)

in the case that a constant gain of M=5000 is demanded. (Since formula (8) cannot be
inverted simply, this is done numerically.) Figure 14 shows that the cathode field
decreases monotonically with the anode radius and, at the maximum of the gain curve
in figure 12, Ec is below 100V/cm. This behaviour illustrates the well-known design
criterion that high gain wire counters should have very small anode wire diameters.

In the GMSD the effective rc decreases to fractions of a millimetre and the stability
correspondingly decreases. The different geometry means that Ec is determined as
much by the width of the cathode strip as the anode-cathode gap. This behaviour is
demonstrated in the results presented in reference [22]. However, as the data in figure
13 shows, the maximum gain rises steadily as the anode width decreases.

As an aside we note that the parameters determining the ballistic fraction τR and τI

(equations (30) and (31)) both vary as ra
2 ln(rc/ra) and so FB also increases as the anode

radius decreases.

The same argument holds a fortiori for the pin detector since the electric field in the
anode-cathode space falls off as 1/r2, making Ec very low. The pin array reduces this
stability somewhat by bringing the intermediate cathode to within ≈1mm of the pin
tips.

The situation is very different in the parallel gap detector in which the full anode field
strength required for the avalanche is present at the cathode electrode. Equation (19)
may be simply inverted to get Vac as a function of M and hence the gap field Eg

(=Vac/d). Explicitly this is:
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Mqqdq

Wq
Eg −

=
λλ

(39).

Figure 15 shows a plot of Eg as a function of the gap width d at a constant gain of
M=5000. In this case the gap field increases monotonically as the gap width
decreases and at the maximum of the gain curve in figure 12, has a value of 6 x104

V/cm. This graph shows why it is, in general, difficult to get stable, high gains from
parallel gap detectors. The high cathode field strengths impose very limiting
conditions on the quality of the electrodes and the quenching capacity of the gas.

6.3 Design Criteria for Micromegas.

Micromegas is a parallel gap detector with an avalanche gap of dimensions less than
1mm [25]. The simple model is useful for evaluating some of the important operating
parameters of the device. Figure 12 shows that using the parameters derived from the
detector with a gap of 1mm, there is a maximum in the gain versus gap curve at
d=111µm (for a gain of 9000) and it is interesting to look at the properties of the
device around the gain maximum. From equation (19) we can write explicitly:
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where the explicit product λq is retained as an approximate invariant, and V is the
potential difference across the avalanche gap. Differentiating with respect to d we get:
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(41)

The gain maximum in figure 12 is now identified by setting 0
1 =

∂
∂

d

M

M
, giving the

position of the maximum:

Wq

qV
d

λ=max (42)

i.e. the gap required for the gain maximum varies linearly with the operating potential.
Thus in order to sit on the maximum, a unique potential and thus gain is determined.
It also follows from equation (42) that the electric field in the gap is the same
whenever a gap is operated on the peak: i.e. Eg = Wq/λq. Using the experimental
parameters from the 1mm gap this evaluates to Eg = 5.33x104V/cm.

By eliminating V from equation (41) by substituting from equation (40) we can
quantify the gain stability as a function of the gap width at a given operating gain:
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(43)

This function is plotted in figure 16 with M = 5000, q = 3.41mb/K and
λq = 1.529x10-3cmmb/K. As expected, the differential is zero at the gain maximum.
However, the very asymmetric behaviour either side of the peak means that if a
variable gain is desired from the detector it is clearly preferable to choose the gap so
that the operating region lies (effectively) on the upper side of the gain maximum on
this plot. In the gap range 100µm to 1mm the relative differential is moderately
uniform with a maximum of 300cm-1. This translates into a gain variation of 3% per
µm of change in d. Since x-ray pulse height spectra in gas counters generally have a
spread of ≈10% FWHM or greater, this means that fluctuations of a few µm are
tolerable in the gap so operation exactly on the gain maximum is not necessary if this
tolerance can be achieved.

It is often desirable to operate gas counters with flowing gas. In this case the gain
becomes sensitive to the ambient variable q. In order to quantify this we differentiate
Equation (40) with respect to q:
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M λ
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It is immediately obvious that substituting dmax from equation (42) into equation (44)
makes the differential zero, so that by operating at the gain maximum, one can obtain
complete immunity from q shifts. Eliminating V from equation (44) in favour of lnM
gives the behaviour of this differential as a function of the gap width:
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(45)

Figure 17 shows the plot of this function with the gain fixed at M = 5000 and the
same experimental parameters as before. In this case the obvious operating point is as
close to the gain maximum as possible. Allowing for a reasonable operating range in
gain and for the sensitivity of the gain maximum to q, it should be possible to keep the
relative differential to the order of 1K/mb which is the level of stability achieved by a
wire counter. This gives a gain shift of ≈0.3% per K and 0.1% per mb.

The maximum of the gain curve in figure (12) represents a triple point characterised
by the variable values (Vmax, dmax, Mmax) which are all uniquely determined by the gas
and ambient variables (W,λq,q). Combining equations (40) and (42) gives the
complete specification:

)ln()1exp( maxmax MWV = (46)

and,
q

Mq
d

)ln(
)1exp( max

max

λ
= (47)
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Since the practical design situation requires a specified gas gain, the gain is used as
the independent parameter. If equation (47) is inverted, it is obvious that Mmax is an
exponential function of dmax. Thus reducing the gap width rapidly reduces the gain
available at the desirable triple point operating conditions.

6.4 Gain Stabilisation of Flowing-gas Counters

In the case of the wire counter, writing out equation (8) explicitly we have:

( )
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V
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λ
)/ln(

exp
)/ln(

ln (48)

where λq is again retained as an approximate invariant.

Equation (48) shows that M is a function of Vac and q so that an excursion in M is
given by :

dq
q

M
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∂= (49)

Since the term on the left of equation (48) is ln M, it is more appropriate to write (49)
as:

dq
q

M
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(50)

The servo condition for using Vac to stabilise the changes in q is:

0=
M

dM
(51)

Or :
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giving us the differential equation :

ac

ac

V

M

M

q

M

M

dq

dV

∂
∂
∂
∂

−=
1

1

(53)

For convenience we write :
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(54)

And so integrating equation (53) we get the servo relation :

Vac = V0 + S(q – q0) (55)

Where V0 and q0 are operating bias and ambient conditions to which we wish to servo
the gain. This is a particularly simple (linear) correction function provided the
function S is effectively constant over the range of Vac and q met with in practice. The
following analysis shows that this is in fact the case and experiment confirms it also.

Differentiating equation (48) with respect to q gives :

M
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and with respect to Vac gives :
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Substituting relations (56) and (57) into (54) yields :
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In order to evaluate S an actual case must be considered. In the Wide Angle X-ray
Scattering (WAXS) detector [26] operating with 17% dimethylether (DME) in argon

at a gain of M = 1080, Vac = 500V and fitting to equation (48) gives
q

qrrrW aac

λ
)/ln(

=

174V. Since the second term in the denominator of equation (58) is < 1 (0.348), the
effect of the small changes in q and Vac involved in the process are attenuated and,
further, the sense of change of Vac in the servo process follows that of q so
minimising any change in S throughout the parameter range required by the servo
process.

Thus, the simple linear relation of equation (55) can be used to perform the
stabilisation of the gain against the effect of changes in ambient conditions, using only
a single constant S, which can be evaluated by the following simple calibration.
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In order to evaluate the key servo parameter S it is necessary to evaluate the two

parameters
q

M

M ∂
∂1

and
acV

M

M ∂
∂1

near the desired operating point q0. The simplest

way to do this is to note that if a fit of the form M = a exp(bx) is made to any gain

function M(x) then
x

M

M ∂
∂1

is simply the parameter b in the exponential fit. In view

of the approximate constancy of S, it is not necessary to be excessively precise about
the reference values of the second variable in each data set. It is also clear that in
measuring b, the units of the ordinate are immaterial and there is no need to calibrate
the gain. However, when working directly in PHA channels it is important to ensure
that any digital offset has been measured and removed from the peak channel data.

The b parameters of the fits obtained from the WAXS detector data [27] allow us to
evaluate S = 0.767/0.0189 = 40.58VK/mB and a servo function of:

Vc = 490 + 40.58(q – 3.411)V (59)

Where q0 is set arbitrarily to P = 1000mb and T = 20oC.

Figure 18 shows how the counter gain (circles) is controlled against changes in the
ambient variable (q) when this condition is applied. The RMS error on the controlled
mean gas gain of 754.56 is 4.64 giving a fractional error of 0.62%. This is achieved
over a range of q corresponding to 986<P<1017mbar and 16.4<T<26.4oC. The
unstabilised gain (squares) at Vc=490V is also shown for comparison.

6.5 Operating Gas Counters away from Ambient Conditions.

One of the outstanding advantages of gas counters is their ability to function with a
wide range of gas fillings at ambient, hyperbaric (above ambient) or hypobaric (below
ambient) pressures. Hyperbaric operation is often used to enhance the detection
efficiency for high energy x-rays and neutrons, while hypobaric operation is often
used for the detection of ultra-violet light. Potential uses of the gain model are the
analysis of gain data over a wide range of q and prediction of the gain outside the
calibration range when required. Suitable data is available for analysis from the work
of Shekhtman and his collaborators [28] who tested a GMSD with a hyperbaric xenon
filling.

Figure 19 shows the avalanche gain curves presented in reference [28] for a GMSD
with a pattern pitch (Ps) of 200µm, an anode width (As) of (3µm) and a cathode width
of 60µm, operated with a filling of xenon + 20%CO2 at pressures of 1.2, 2, 3, 4, 5, 6
bars. The analysis uses the simple version of the model to provide smooth fits to the
sparse data (figure (19)) so that interpolated gain values can be obtained at a fixed Vac

(630.5V) to provide a plot of lnM versus q over the operating range. This plot is
shown in figure 20. This data can now be used to fit lnM to q using equation (26) (the
extended model) and so obtain the constants a,b,c,d. (The GMSD approximations for
ra and rc of section 2.2 are used.) Before attempting the fit, equation (26) is simplified
as follows:
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where:

α = a ln(rc/ra), β = bra (ln(rc/ra))
2, γ = c / ra, δ = d ln(rc/ra).

For practical purposes, there is no need to unscramble the variables, a,b,c,d unless
explicit representations are required for W and λq. The fit of equation (60) is shown in
figure 20. The fitted values of α,β,γ,δ can now be used to predict the gain curves as a
function of Vac for the different pressures. Figure 21 shows the predictions
superimposed on the experimental data.

As figure 21 indicates, the agreement of the model with the data is good up to a
pressure of 3bar, but consistently overestimates the gain at the higher pressures. One
reason for this is the fact that the fitting process (lnM versus q) was only carried out at
a single value of Vac at the low end of the data set so there is every reason to expect
the extrapolation to drift away at the other extreme of the set. Ideally the fit of lnM to
q would be carried out by optimising over both Vac and q simultaneously over the full
range of both variables.

A further consideration is the effect of the gas pressure on the ion mobility and hence
the charge pulse risetime τr (equation (30)). The risetime τr is proportional to P/Vac

and inspecting figure 21 we see that at the maximum gain used τr increases by a factor
of just over three between P = 1.2bar and P = 6bar. The amplifier shaping time
constant is not known, but as the GMSD is designed for fast counting, it may be
assumed to be short and in this case could lead to a significant decrease in the ballistic
fraction FB at the higher gas pressures. This would reproduce the type of disagreement
seen in figure 21 at the higher pressures.

The necessity of the extended model when covering a large range of q is seen if one
considers the prediction of equation (57) for Vac in the WAXS GMSD for operation at
a pressure of 6bars (remember this relation is only calibrated for use close to ambient
pressure). It predicts a rise of a factor of 2.4 in Vac. As we see from figure 21, the
increase in Vac observed in the xenon GMSD is only a factor of 1.6. This difference is
caused by the dependence of W and λq on the reduced anode electric field (equations
(22) and (23)).

As seen in figure 12, all detector types have an optimum anode dimension at which
the gain maximises at a fixed Vac, and the various operating parameters tend to
optimise. The simpler mathematics of the parallel gap case shows that this condition
is in fact a triple point at which the three parameters Vmax, dmax and Mmax are locked
together. Equation (47) shows that dmax is inversely proportional to q. Although
similar simple explicit relations cannot be produced for the wire (GMSD) and
spherical anode devices, their behaviour is inevitably parallel. Thus, in general we
expect that the optimum anode structure will decrease in size as q increases. In figure
22 the parameter fits to equation (26) from the data of figure 2 are used to predict the
behaviour of the gas gain of a wire counter with rc = 1cm operated at Vac = 1320V in
argon + 7.5% methane at a range of gas pressures as the anode radius is varied.
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Typically, the optimum anode radius decreases to sub-micron values as the pressure
rises above ambient. Conversely, in hypobaric operation, the anode dimension should
be increased.

The GMSD is a technology which can realise such narrow anode widths. However, as
the gas pressure rises, the destructive potential of sparks increases and the low mass
of metal in the track makes it extremely vulnerable to spark damage. Using the same
modelling data as used in figure 14 to predict the cathode electric field we find that
for a fixed gain, Vac minimises at the gain maximum. The stored energy available to
the spark is ½CVac

2 where C is the total stray capacity of the anode structure. Thus,
provided the value of C is kept to a minimum operation at the triple point is
favourable. A further protective mechanism is available in the choice of the metal of
the anode strip; a resistive metal such as chromium can be used to limit the spark
currents.

The optimal operating conditions of a parallel gap counter under hyperbaric operation
are predicted by the simple model in equations (46) and (47). The simple model
predicts a linear decrease in dmax as the pressure (i.e. q) is increased. The effect of the
increase in λq with q (as predicted by the extended model) can be seen to cancel out
some of this decrease, so that the effect of pressure change is not as extreme as this.
However, for typical avalanche gains (M≈5000) the parallel gap will decrease to
much less than 100µm for significant over-pressures. As noted in section 6.3, the gap
electric field Eg = Wq/λq and so increases approximately linearly with q (W and λq
vary in the same sense with q – see figure 6). Thus values of Eg > 105 V/cm are easily
exceeded and the stored energy per unit area of gap (½ε0Eg

2dmax) rises
proportionately. Thus, while the grids of the parallel gap structure may be more robust
than the anode strips of the GMSD, the immunity to spark damage may not be any
better and the stability of the counter against sparking is liable to be considerably
poorer in hyperbaric operation.

6.6 Gain Variation with Gas Composition.

It was noted in section 3 that W and λq are pseudo-physical parameters, and that, in
combination they represent the behaviour of the competing inelastic electron
scattering processes in the gas. The presence of a quencher component in the counter
gas is essential for stable avalanche operation at useful gas gains. However, the
quencher, by its very nature, introduces a series of inelastic scattering processes,
which result in the gain of the counter being sensitive to the fraction of quencher in
the gas mixture. Figure 23 shows a series of gain curves obtained from a GMSD as
the fraction of isobutane quencher in argon is increased from 5% to 100%. Using the
simple model, gain fits to all the data sets are made and the values of W and λq
extracted using the relations (8), (9), (10) with the GMSD approximations of section
2.2. Figure 24 plots the derived values of W and λ as a function of the quencher
fraction.

In figure 24 we note that as the quencher fraction tends to zero W tends to ≈14ev
which is close to the ionisation potential of argon. However, in pure isobutane, W =
24.5eV which is many times the ionisation potential of isobutane. This behaviour
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reflects the large number of dissipative inelastic interactions possible in isobutane
(e.g. vibrational and rotational modes).

The results shown in figures 23 and 24 have obvious practical implications for
counter operation: The highest gain data point in each curve represents the highest
stable gain obtainable with that gas mixture. Inspection shows that the maximum gain
is available at an isobutane fraction of 75%. Since the UV absorption of the quencher
is proportional to its density, it follows that for hyperbaric operation the fraction can
be reduced in proportion to the pressure (i.e. the partial pressure of the quencher is
kept constant). Thus if operation is required at 5bar, the fraction of isobutane need
only be 5% instead of the usual 25%. As figure 23 shows, this adjusts W and λq in
such a way as to achieve a gain of 1000 at a bias potential of 476V instead of 630V,
reducing the stored energy by almost a factor of two. The reduction in the maximum
gain available is usually not a problem as the neutrons or high energy x-rays being
detected give large pulse heights.

7. Conclusions.

Mathematical models of the avalanche gain process have been developed for all the
typical gas counter geometries. Based on the pseudo-physical parameters W (the
notional ionisation threshold energy) and λq (proportional to the inelastic electron
scattering cross-section) the simple models have been shown to work well for typical
counter operation around ambient conditions when W and λq may be assumed to be
constant. Comparison of the Townsend coefficient of argon with the form used in the
model shows that W and λq can be represented as simple functions of the reduced
electric field X, (equations (22),(23)). Since the avalanche takes place in the electric
field close to the cathode the corrected values of W and λq can simply be represented
in terms of the anode potential, Vac, q and four new constants. Incorporating these
formulations of W and λq into the simple models leads to the extended models, of
which equation (26) is an example. The extended models can now be used to
characterise the gain performance of the various counter types over the widest range
of operating conditions, examples of which have been given.

Careful consideration has been given to the effect of the finite charge collection times
(ballistic fraction) on the evaluated parameters (W and λq). For reliable use of the
gain models it is necessary to ensure that the pulse amplifier shaping time is long
enough to ensure that the sampling time is above the knee of the charge delivery time
curve Q(t) throughout the operational range (figure (10)).

Application of the models to the design of gas counters shows that (for fixed gas
conditions) all possess an optimal anode dimension (figure (12)). This is a triple point
with the gain, operating potential and anode dimension locked together. In ambient
conditions, the typical optimal anode dimensions are ≈1µm radius for a wire
(microstrip) detector, ≈40µm radius for a point anode detector and ≈100µm for a
parallel gap detector. The optimal dimension varies inversely with the gas pressure
(i.e. q) (equation (47)). At the triple point the differential sensitivity to dimensional
and ambient changes tend to be minimised, and, in the case of wire, strip and point
detectors, the electric fields minimised.
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Throughout the analysis the gas ambient variable q (=P/T) has been used. This
ensures that the formulations may be applied equally to sealed counters (when the
density, and hence λ are temperature invariant) and flow counters when the
temperature must also be taken into account.
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Figure Captions

1. The gas gain curves (lnM versus Vac) for a single wire cylindrical proportional
counter and a gas microstrip detector (GMSD) with the corresponding fits of the
simple gain model.

2. A plot of the logarithm of the gas gain of the wire counter as a function of the gas
ambient variable q (=P/T) over the range experienced by a flow counter due to
ambient changes in P (pressure) and T (absolute temperature).

3. A plot of the gain curves (lnM versus Vac) for a parallel gap counter, the 10x10
pin array [20] and the imaging pin detector [19] with the corresponding simple
model fits.

4. A comparison of the reduced (first) Townsend coefficient of argon with the simple
model with two sets of fixed values of W and λq corresponding to the typical
reduced electric field X (=E/q) in the wire counter and the parallel gap counter.

5. A fit of the argon Townsend coefficient over the whole range of X with the
parameterisations of W(X) and λq(X) used in the extended gain model (equations
(22), (23).

6. A plot of the fits of W(X) and λq(X) to the argon data.

7. A plot of the fits of W(X) and λ(X) to the argon data in ambient conditions.

8. The gain versus bias (Vac) data for a GMSD operating over a very wide gain range
[22] with a simple model fit (dashed line) and a simple parameterisation of A and
B in terms of Vac suggested by the W(X), λ(X) functions.

9. A comparison of the gain versus anode radius plots derived from the simple model
and the extended model for a wire counter at constant Vac.

10. A comparison of the charge delivery waveforms Q(t) / Q0 of the various types of
gas avalanche detectors, each at their typical operating conditions.

11. Here the values of W and λ derived from the data of figures 1 and 3 (after they
have been corrected for the ballistic fraction) are plotted against the reduced anode
electric field in each detector. W is seen to be more sensitive to the gas
composition than λ so that the points measured in argon + 7.5% methane clearly
lie on a different curve (dashed) from those with 20-25% quencher.

12. A comparison of the behaviour of the gain of the wire, pin and parallel gap
counters as a function of the anode dimension at constant Vac, as predicted by the
simple model in ambient conditions.

13. Experimental data showing the gain maximum in a GMSD counter as a function
of the anode width [18]. The wire counter fit uses the approximations developed
for the GMSD dimensions in section 2.2.
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14. This plot shows the electric field strength at the cathode of a wire counter (rc =
10mm) as the anode radius varies as predicted by the simple model when the gain
is held constant at M = 5000.

15. The electric field strength in a parallel gap counter as the gap width varies as
predicted by the simple model when the gain is held constant at M = 5000.

16. The relative sensitivity of the gain of a parallel gap counter operated at constant
gain (M = 5000) to changes in the gap width (d) as a function of the gap width –
as predicted by the simple model.

17. The relative sensitivity of the gain of a parallel gap counter operated at constant
gain (M = 5000) to changes in the gas ambient variable (q) as a function of the
gap width – as predicted by the simple model.

18. The gas gain of a GMSD detector with flowing gas measured over a period of 3
weeks, plotted as a function of q. The squares represent the gain at constant Vac

and the circles the gain when Vac is adjusted in accord with the calibrated servo
relation (55).

19. The gain data curves from a GMSD operated with a xenon + 20% CO2 mixture at
a series of hyperbaric gas pressures. (From reference [28].) Simple model fits are
also shown.

20. A plot of lnM versus q at Vac = 630.5V extracted from the data of figure 19 using
the simple model fits to interpolate. A fit to the extended model is shown from
which its parameters are deduced.

21. A comparison of the experimental gain data of figure 19 with the predictions of
the extended model using the parameters obtained from figure 20.

22. A plot showing the predicted variation of the optimum wire radius in the wire
counter as the gas pressure is varied over a large range. The parameters of the
extended fit are derived from a fit to the data of figure 2.

23. The sequence of gain curves obtained with a GMSD as the fraction of isobutane
quencher in argon is varied from 5% to 100% [18] with simple model fits.

24. The values of W and λ for the GMSD gas, as a function of the quencher fraction
as derived from the simple model fits to the data of figure 23.



27

TABLE 1

Gas
Microstrip
Detector

Cylindrical
Wire

Detector

Pin
Array

Detector

Imaging
Pin

Detector

Parallel
Gap

Detector
Reduced
Anode

Electric Field
Xa / 103

(VK/(cm-mb))

140.0 56.4 26.0 10.9 4.52

Mean Free
Path λ
(µm)

0.657 0.725 1.83 3.07 4.28

Ionisation
Threshold

W
(eV)

12.2 10.9 19.33 28.8 23.96

The values of W and λ obtained from the simple model fits for all the detector types
(figures 1 and 3) shown with the corresponding anode reduced electric field.

TABLE 2

Gas
Microstrip
Detector

Cylindrical
Wire

Detector

Pin
Array

Detector

Imaging
Pin

Detector

Parallel
Gap

Detector
Charge Pulse
“Risetime”

(τR)
0.103ns 1.45ns 66.4ns 0.412µs ----

Positive Ion
Collection
Time (τI)

100µs* 1.45ms 2.94ms* 11.12ms 3.92µs

The charge pulse waveform parameters τR and τI for the various types of gas detector
(at their appropriate operating biases and ambient gas conditions). The asterisk
indicates the ion transit time to the drift electrode; otherwise it is to the nearest
cathode. The small proportion of positive ions which penetrate the grid of the parallel
gap counter (≈5%) will experience a transit time of ≈5ms.
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TABLE 3

Gas
Microstrip
Detector

Cylindrical
Wire

Detector

Pin
Array

Detector

Imaging
Pin

Detector

Parallel
Gap

Detector
Reduced
Anode

Electric Field
Xa / 103

(VK/(cm-mb))

140.0 56.4 26.0 10.9 4.52

Mean Free
Path λ
(µm)

0.672 1.06 2.06 3.07 4.28

Ionisation
Threshold

W
(eV)

12.22 12.06 20.45 32.5 30.9

The values of W and λ obtained from the simple model fits for all the detector types
(figures 1 and 3) after correction had been made to the gain data for the ballistic
fraction of each detector. Also shown is the corresponding anode reduced electric
field.
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FIGURE 3
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FIGURE 5
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FIGURE 7
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FIGURE 9
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FIGURE 11
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FIGURE 13
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FIGURE 15
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FIGURE 17

-5

0

5

0.001 0.01 0.1

M = 5000, Argon +7.5% methane

Parallel Gap Width (d) (cm)

1/
M

∂M
/∂

q
(

K
/m

b)

FIGURE 18

720

760

800

3.30 3.35 3.40 3.45 3.50

V
c
= 490V (Unstabilised)

y = a*exp(-b*x), std-err:5.1 a=9916.6, b=0.75557

V
c
= 490 +40.58(q-3.411)V (Stabilised)

y = 754.564

mean: 754.564
sdev: 4.6385 (0.62%)

q (mbar/K)

G
as

G
ai

n



38

FIGURE 19
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FIGURE 21
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FIGURE 23
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