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Abstract

The fast and accurate solution of large sparse linear systems of equations is important in many problems

from computational science and engineering. HSL MA77 is a state-of-the-art high-performance, robust,

Fortran 95 software package that implements a multifrontal algorithm. It can be used to solve both

positive-definite and indefinite linear systems and, by holding the system matrix and its factors out-of-

core, it is able to solve very large problems. In this paper, we focus on features of the code that are

specifically designed for the more challenging indefinite case and present numerical results for indefinite

problems that arise from a range of practical applications.
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1 Introduction

Systems of sparse, symmetric linear equations arise naturally in a number of important engineering and

science applications. The size of the systems users want to solve is constantly increasing as mathematical

models become ever more complex and the requirement to solve three-dimensional problems becomes

commonplace. Our interest is in efficiently solving linear systems of the form

Ax = b (1.1)

where the n× n matrix A is sparse, symmetric and indefinite. Direct methods generally split the solution

process into three separate phases: analyse, factorize and solve. The analyse phase takes only the pattern

of the matrix and uses it to construct data structures in preparation for the numerical factorization. The

factorization phase forms the matrix decomposition

A = (PL)D(PL)T , (1.2)

where P is a permutation matrix, L is a unit lower triangular matrix, and D is a block diagonal matrix

with blocks of size 1×1 and 2×2. Finally, the solution phase uses the matrix factor to perform forward

eliminations where

PLy = b (1.3)

is solved for y, then the block diagonal system

Dz = y (1.4)

is solved for z, followed backward substitution where

(PL)T x = z (1.5)

is solved for x.

For sparse indefinite systems, direct methods are frequently the method of choice because, provided

numerical pivoting is properly incorporated, they are robust for a wide range of problems and so can be

used as “black-box” solvers. Furthermore, they are often preferred for systems with multiple right-hand

sides since the additional work required to solve for more than one right-hand side is normally much less

than is required to form the initial factorization. They can also be used (sometimes in modified form) to

provide preconditioners for iterative methods. However, one of the main limitations of direct methods is

that the amount of memory they require generally increases rapidly with problem size. Our interest is in

the case where the matrix A and its factor L are too large for the factorization to be performed and held

in main memory. Instead, A, D, L and some of the main work arrays are held in files. Such a solver is

termed an out-of-core solver.

The aim of this paper is to report on a new sparse symmetric out-of-core solver that has been developed

for the HSL mathematical software library HSL [16]. The code is designed to efficiently solve both positive-

definite and indefinite systems. In a previous paper [22], we described the first release of HSL MA77, which

was only for positive-definite problems; in this paper, we focus on the features of the solver that are

specifically for the indefinite case and present numerical results that illustrate its performance on a range

of indefinite systems that arise from practical applications.

2 Overview of HSL MA77

HSL MA77 is a Fortran 95 package that implements an out-of-core multifrontal algorithm. In this section,

we give a brief introduction to the out-of-core multifrontal algorithm implemented within HSL MA77 and

then discuss the design and user interface of HSL MA77.
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2.1 Introduction to the out-of-core multifrontal algorithm

The multifrontal method [8] is an important generalisation of the frontal method [17] that has been popular

since the mid 1980s. The factorization of A proceeds using a succession of assembly operations into small

dense matrices (the so-called frontal matrices), interleaved with partial factorizations of these matrices.

Each frontal matrix can be expressed in the form

F =

(

F11 F T
21

F21 F22

)

, (2.1)

where F11 and F21 are fully summed, that is, all the entries in the corresponding part of the overall matrix

have been assembled, while F22 is not yet fully summed. If F11 has order p and q pivots can be chosen

stably from F11, the partial factorization of F takes the form

F = Q

(

L1 0

L2 I

) (

D1 0

0 FS

) (

LT
1 LT

2

0 I

)

QT . (2.2)

where Q is a permutation matrix of the form

Q =

(

Q1 0

0 I

)

with Q1 having order p, L1 is a unit lower triangular matrix of order q, and D1 is a block diagonal matrix

of order q. The matrices Q1, L1, and D1 are not required again until the forward elimination and back

substitution phases and so may be stored elsewhere, while the Schur complement FS is treated as a new

element, called a generated element (or contribution block).

The assembly operations can be recorded as a tree, termed an assembly tree. The partial factorization

of the frontal matrix at a node v in the tree can be performed once the partial factorizations at all the nodes

belonging to the subtree rooted at v are complete. If the nodes of the tree are ordered using a depth-first

search, the generated elements required at each stage are the most recently generated ones of those so far

unused. This makes it convenient to use a stack (the so-called multifrontal stack) for temporary storage

during the factorization. This, of course, alters the pivot sequence, but the arithmetic is identical apart

from the round-off effects of reordering the assemblies and the knock-on effects of this.

During the depth-first search, the storage required by the factors always grows while the size of the

stack varies depending on the operations performed: when the partial factorization of a frontal matrix is

processed, the resulting generated element is stacked, increasing the stack size; on the other hand, when

the frontal matrix at node v is formed and assembled, the generated elements corresponding to children

of v are popped from the stack and its size decreases. The stack memory is thus very dependent on the

assembly tree topology, which in turn depends on the chosen elimination order. As the stack size can

become large, it is clear that, even if it is possible to hold the matrix A and its factor in memory, there

may be insufficient memory for the stack as well. As we have already observed, after a partial factorization

of a frontal matrix, the computed partial factor is not required again until the solve phase. Thus, the

simplest out-of-core multifrontal approach writes the partial factors as they are computed to file, and

reads them back as needed during the forward elimination and again during the back substitution. This

minimizes the number of input-output operations but, if the stack becomes very large, there may still be

insufficient memory and it is then necessary to write the stack to a file.

2.2 Input/output operations within HSL MA77

One of our main design goals for HSL MA77 was that it should be modular, that is, a number of the key

steps should be implemented by independent, standalone packages. Modularity not only aids us in the

development and maintenance of a complex code but also allows other software developers to exploit the

separate packages in other contexts.
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One of the standalone packages that we have developed is HSL OF01 [21]. This Fortran 95 package

performs all the input/output operations required by HSL MA77. The files used by HSL MA77 need to be

direct-access files to allow data to be read in an order that differs from the order in which they were

written. Records in a direct-access file are all the same length but, in the multifrontal algorithm, it is

necessary to read and write varying amounts of data at different stages of the computation. To achieve

this, HSL OF01 provides facilities for reading from and writing to direct-access files using a buffer that is a

work array held in main memory; careful handling of the buffer aims to minimise the actual input/output

operations. Each version of HSL OF01 has its own buffer (there are separate versions for real, complex and

integer data), and each buffer can be associated with more than one direct-access file. HSL MA77 uses one

integer superfile. In addition, when solving an indefinite system, three real files are used: the main file is

used to hold the original matrix and the computed factor, the stack file holds the multifrontal stack and

the delay file holds further temporary data during factorization (see Section 3.2). One buffer is associated

with the three files enabling the available memory to be dynamically shared amongst them according to

their needs at each stage of the computation.

Each HSL OF01 buffer is divided into pages that are all of the same size, which is also the size of each

record in the associated files. All actual input/output is performed by transfers of whole pages between

the buffer and records of the file. The size and number of pages in the buffer are parameters that may

be set by the user. Numerical experiments that we reported in [21] were used to choose default values for

these parameters.

The data in a file are addressed as a virtual array of rank one. Any contiguous section of the virtual

array may be read or written without regard to page boundaries. HSL OF01 does this by first looking for

parts of the section that are in the buffer and performing a direct transfer for these. For any remaining

parts, there may have to be actual input and/or output of pages of the buffer. If room for a new page is

needed in the buffer, by default the page that was least recently accessed is written to its file (if necessary)

and is overwritten by the new page.

HSL OF01 has an option when writing data for ‘inactive’ access, which has the effect that the relevant

pages do not stay long in the buffer unless they contain other data that makes them do so. We use this

during the factorization phase of HSL MA77 when writing the columns of the factor since it is known that

most of them will not be needed for some time and it is more efficient to use the buffer for the stack.

There is also an option to specify that data read need not be retained thereafter. If no part of a page in

the buffer is required to be retained, the page may be overwritten without writing its data to an actual

file. This is used when reading data from the stack file since it is known that it will not be needed again.

Further details of HSL OF01 and the options it offers are included in [21] and in the user documentation.

A file is often limited in size to less than 232 bytes, so the virtual array may be too large to be

accommodated on a single file. If a file becomes full, HSL OF01 opens secondary files and treats the

primary file and all its secondaries as a single superfile. This is all done automatically within the code,

without the user needing to take any action, but to enable the secondary files to reside on different devices,

the user may provide an array of path names; the full name of a file is the concatenation of a path name

with the user-supplied file name.

If its buffer is big enough, HSL OF01 will avoid any actual input/output, but there remain the overheads

associated with copying data to and from the buffer. To avoid unnecessary copying in such a case, we have

included within HSL MA77 an option that allows the superfiles to be replaced by arrays. If this is used, we

refer to HSL MA77 as running in-core. This option is discussed further in [22] (see also Section 4.4).

2.3 Kernel code, HSL MA64

The partial factorization of the frontal matrix (equation (2.2)) and the corresponding partial solutions

needed later are performed by the kernel code HSL MA64. We use nf to denote the order of the frontal

matrix F .

To perform assembly operations efficiently, HSL MA77 packs the lower triangular part of each generated

element by columns and constructs each frontal matrix to have this form. It follows that this is the
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desirable form for F on input to HSL MA64 and for the generated element FS on return. Unfortunately,

this is not a good form for the partial factorization since it does not allow the BLAS-3 subroutine gemm

(and other BLAS) to be used.

We therefore require the user of HSL MA64 to choose a block size nb and the code begins the factorization

by rearranging the first p columns of the lower triangular part of F ,

(

F11

F21

)

, so that it is held by block

columns, with each block having nb columns (except the final block, which usually has fewer). The first

block is rectangular with nf rows, the next block is rectangular with nf − nb rows, etc. This format is a

little wasteful since the first j − 1 entries of the jth column of each block are not used, but the total waste

is no more than p(nb− 1)/2. Our reason for choosing this form rather than one in which the blocks on the

diagonal are packed is that it makes the code for interchanging rows and columns, needed for pivoting,

faster and less complicated.

We do not retain this format for

(

L1

L2

)

on return since that would significantly increase the file

space needed; our experience is that quite large values of nb are desirable, for example, 120 (see [20]).

Once the partial factorization is complete, this matrix is rearranged; it is still held by block columns, but

each consists of the diagonal block packed by columns followed by the off-diagonal part held by columns.

This form allows the partial solution operations for a single right-hand side to be performed with the

BLAS-2 subroutines gemv and tpsv and for multiple right-hand sides to be performed with the BLAS-3

subroutine gemm and repeated calls of tpsv.

If the number of chosen pivots q is less than p, we need to rearrange columns p + 1 to q back to be

packed by columns, ready for assembly operations in HSL MA77.

We found that there is also a need to subdivide the blocks, but defer explaining this until Section 2.3.2.

2.3.1 Factorization in the simple case

We begin by describing the case where the matrix is not found to be singular or nearly singular, and none

of the options described in subsections 2.3.4, 2.3.5, and 2.3.6 are requested.

We choose the pivots one by one by searching the first p columns in sequence, 1, 2, . . . We use the

notation fij to denote an element of the frontal matrix after it has been updated by all the pivot operations

so far. Our test for a 1×1 pivot is

|fkk| ≥ umax
j 6=k

|fkk|, (2.3)

where u is a user-set threshold in the range 0 ≤ u ≤ 0.5. Our test for a 2×2 pivot is

∣

∣

∣

∣

(

fkk fkl

fkl fll

)∣

∣

∣

∣

(

maxj 6=k,l |fkj |
maxj 6=k,l |flj |

)

≤
(

u−1

u−1

)

(2.4)

where u is the same user-set threshold.

Let us use m to denote the index of the column being searched and q to denote the number of pivotal

columns found so far. If we fail to find a pivot in column m, we leave the column in place, but keep it

updated as further pivots are found. If we find a stable 1×1 pivot in column m, we swap rows and columns

q+1 and m (unless m = q+1) then increment q by one. Otherwise, we look for a stable 2×2 pivot in

columns t and m with t < m (which have been kept updated); if one is found, we swap rows and columns

q+1 and t and rows and columns q+2 and m, then increment q by two.

Having chosen a pivot, we apply the pivotal operations to any previously rejected columns, that is,

columns q+1 to m. At this point, we have a factorization of the form (2.2) with L1 and D1 of order q but

only the first m − q columns of FS available.

We now increment m by one and apply all the pivot operations to column m, which becomes available

for the next pivot search. This continues until q has the value nb or nb + 1 (or p).
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Now we apply the first nb pivot operations to columns m+1 to p. In order that these operations can

be performed with the BLAS-3 subroutine gemm, we employ an array buf of size (nb + 1)×nf to hold

U = D1( LT
1 LT

2 ).

If a 2×2 pivot spans two block columns, U will have nb + 1 rows. In this case, we use only the first nb

entries of a column of U to update the corresponding column of F and use the remaining entry later when

doing the next block update.

U is calculated row by row with each pivot operation, so that gemv (or gemm for a 2× 2 pivot) can be

employed to update the rejected columns and to apply all the outstanding operations at once to the next

column to be searched.

Once the first nb pivot operations have been applied, we perform a similar set of operations on the

reduced matrix, except that we may start after the second half of a 2 × 2 pivot. This continues until

column p has been searched, that is, m = p, after which a fresh search of the rejected columns is made,

that is, m is reset to q + 1.

The whole process continues until q = p or all the remaining columns have failed to provide a pivot. At

this point, we update columns p + 1 to nf . In order to use gemm here, we group the columns into blocks

of size nb/2 (or less for the final block). This allows us to rearrange the block column to the format used

for the first p columns into free space within the array, apply gemm, and then rearrange back to packed

format. The choice of nb/2 here is based on requiring the array to have size at least nf(nf + nb + 1)/2,

which is needed in the case p = nf .

Note that if nf and p are large, most of the work is done within gemm and so the execution should be

fast; and almost all the rest is done within gemv. If p is small, almost all the work is done within gemv.

2.3.2 The need for inner blocks

A disadvantage of the scheme described in the previous subsection is that a large block size nb is needed for

rapid gemm updating of the trailing blocks, but this results in a large number of gemv updates of columns

within the pivotal block column. Jonathan Hogg (private communication) suggested to us that we should

have an inner block size nbi and perform gemm updates on the trailing part of the pivotal block column

as soon as nbi pivots have been chosen. For efficiency and to make the code simpler, we require that

mod(nb, nbi) = 0, so that all the inner blocks are of size exactly nbi. We found that choosing nbi = nb/3,

which leads to about 2/3 of the gemv updates being grouped into gemm updates, gave a worthwhile gain.

2.3.3 Factorization in the singular case

When a column is searched, if its largest element is found to be less than a user-set tolerance cntl%small,

the diagonal entry is accepted as a zero 1×1 pivot and no corresponding pivotal operations are applied to

the rest of the matrix. To accommodate this, we hold the inverse of D1, and set the element corresponding

to the zero pivot to zero. This avoids the need for special action in subsequent BLAS-2 and BLAS-3 calls

later in the factorization and during the solution. It leads to the correct result when the given set of

equations is consistent and avoids the solution having a large norm if the equations are not consistent.

The number of zero pivots is returned to the user.

2.3.4 Factorization with delayed columns present

If one or more of the generated elements contributing to F have delayed pivots (Section 3.2), the

corresponding columns will be leading columns of F and will not have changed since their prior rejection.

It is therefore desirable to delay looking at these since they are likely to be rejected again. HSL MA64 has

an optional argument s whose presence indicates that the first s columns are of this nature.

If s is present, swaps are made between columns j and p + 1 − j for j = 1 to min(s, p − s) before the

search for pivots starts, unless this would involve splitting a recommended 2× 2 pivot which may happen
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if s < p − s. In the case that would cause a split, the swaps are made only for j = 1 to s− 1. Following

this, the leading s columns (s− 1 in the exceptional case) will have been moved to the back of the set of

columns 1 : p.

2.3.5 Requesting particular 2 × 2 pivots

HSL MA64 allows its user to specify that particular pairs in the pivot sequence should be used as 2 × 2

pivots. If m indexes the first half of such a pair, the largest entry in column m is determined, but the

diagonal entry of the column is not accepted as a 1 × 1 pivot. Processing continues to column m + 1 and

now the recommended pivot can be tested for acceptance as a 2 × 2 pivot. Either it is accepted or the

recommendation is cancelled and normal processing is resumed.

2.3.6 Static pivoting

HSL MA64 has an option for static pivoting, that is, forcing pivots that do not satisfy the stability test to be

chosen, perhaps after modification. The intention is to reduce fill-in, probably at the expense of iterative

refinement of each solution to get good accuracy.

If static pivoting is requested, the following procedure is followed whenever no 1× 1 or 2× 2 candidate

pivot satisfies the relative threshold test (2.3) or (2.4). The 1 × 1 pivot that is nearest to satisfying (2.3)

is chosen. If its absolute value is less than cntl%static, it is given the value that has the same sign but

absolute value cntl%static. If no diagonal entry is changed in this way, the value of u that would have

resulted in all pivots satisfying the test is returned to the user, together with a count of the number of

pivots that did not satisfy (2.3) with the user-set value of u.

2.3.7 Partial solutions

HSL MA64 provides subroutines for the following partial solutions

(

L1 0

L2 I

)

X = B,

(

D1 0

0 I

)

X = B,

(

D1 0

0 I

) (

LT
1 LT

2

0 I

)

X = B,

(

LT
1 LT

2

0 I

)

X = B.

where X and B have the same shape. There are separate subroutines for the special case where X and B

have just one column.

2.4 Selective use of 64-bit integers

To allow HSL MA77 to be used to solve very large problems, we selectively make use of long (64-bit)

integers, declared in Fortran 95 with the syntax selected int kind(18) and supported by all the Fortran

95 compilers to which we have access. These long integers are used for addresses within the frontal matrix,

within the files and for operation counts. We assume that the order of A is less than 231, so that long

integers are not needed for its row and column indices. We have chosen not to make all integers within

the code long integers since to do so would increase the amount of data stored and moved around within

the solver, and there is no long integer version of the BLAS kernels that are used within HSL MA64 to

efficiently compute the partial factorizations of the dense frontal matrices.
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2.4.1 32-bit and 64-bit architectures

As 64-bit architectures are becoming increasing commonplace, we have designed HSL MA77 so that it can be

run on both 32-bit and 64-bit architectures. In particular, HSL MA77 has a control parameter control%bits

that the user should set to 64 if running on a 64-bit architecture. On a 32-bit architecture, the maximum

size of a rank-1 real array that can be allocated is taken to be huge(0 short)/4 in the single precision

version and huge(0 short)/8 in the double precision version, where huge is the Fortran inquiry function.

On a 64-bit architecture, it is taken to be huge(0 long)/4 and huge(0 long)/8, respectively. Since the

frontal matrices are held in-core, we have to allocate a real array of size maxfront*(maxfront+nb+1)/2,

where maxfront is the largest frontsize and nb is the block size. Thus, using a 64-bit architecture, allows

us to factorize much larger problems than is possible on a 32-bit machine.

2.5 The elimination order

One of the early design decisions made for HSL MA77 was that the user should supply the elimination

order on the call to MA77 analyse. The performance of the multifrontal method is highly dependent

upon the elimination order but, unfortunately, there is no single approach that always produces a good

ordering. Variants of the minimum degree algorithm generally work well on problems that are either not

too large (typically, those of order less than 50,000) or are highly sparse, and recently work has gone

into improving performance of these orderings for matrices that have some (almost) dense rows [1, 3].

However, for larger problems, algorithms based on nested dissection, although more costly, usually yield

higher quality orderings. In the HSL library, there are a number of packages available that can be used

to compute minimum degree based orderings. These have been brought together within HSL MC68. If a

nested dissection ordering is wanted, the generalized multilevel nested-dissection routine METIS NodeND

from the METIS graph partitioning package of Karypis and Kumar [18, 19]) may be employed.

The analyse phase of HSL MA77 returns statistics on the predicted number of entries in the factors, the

maximum size of a frontal matrix, and the number of flops required to perform the factorization. The

user may experiment with passing different orderings to MA77 analyse and then select the best on the

basis of these statistics before calling the factorization phase. Since the factorization phase is significantly

more expensive than the analyse phase (this is illustrated in Section 4), it can be worthwhile to try out

different orderings. In particular, if the user wants to solve a series of linear systems in which the system

matrices have the same (or similar) sparsity patterns, the savings from having a good ordering will more

than offset the cost of several calls to MA77 analyse.

2.6 User interface

HSL MA77 is designed to solve systems where the system matrix A is either an assembled matrix or is a sum

of square symmetric elements (such as in a finite-element calculation). In both cases, A may be expressed

in the form

A =
m

∑

k=1

A(k).

In the element case, the summation is over elements and A(k) is nonzero only in those rows and columns

that correspond to variables in the kth element, while in the assembled case, the summation is over rows

and A(k) is nonzero only in row k. Many widely used direct solvers (including, for example, the HSL

solvers MA57 [4] and MA48 [9]) require the matrix to be assembled and to be passed to the code using a

single call. Since one of the main goals for HSL MA77 is to limit the amount of main memory needed, we

want to avoid having to hold the the whole of A in main memory and, instead, we follow the design used

by, for example, the out-of-core frontal solver MA42 [11] and employ a reverse communication interface,

with control being returned to the calling program for the user to supply each element or row.

The main routines that may be called by the user are:
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• MA77 input varsmust be called once for each element or row to specify which variables are associated

with it. The elements (or rows) may be entered in any order. HSL OF01 is called to write the index

lists to the integer superfile.

• MA77 analyse must be called after all calls to MA77 input vars are complete. The integer data

and user-supplied elimination order is used to construct the assembly tree and other data structures

needed for the factorization. These data structures are held in the integer superfile.

• MA77 input reals must be called for each element or row to specify the entries of A(k). HSL OF01

is called to write the read data to the main real superfile.

• MA77 factormay be called after all the reals of A have been input and after the call to MA77 analyse.

A is factorized using the assembly tree and data structures constructed on the call to MA77 analyse.

The factor is stored in the main real superfile.

• MA77 solve uses the stored factor data to solve systems AX = B. Any number of calls to MA77 solve

with different numbers of right-hand sides may follow a call to MA77 factor.

In addition, there is a routine MA77 resid that may be used to compute the residual matrix B − AX .

There is also a restart facility that, after a successful factorization, allows the user to save the factor

and the data structures used by HSL MA77 to solve for further right-hand sides at a later time, or to

factorize another matrix with the same sparsity pattern without repeating the calls to MA77 input vars

and MA77 analyse.

Derived types are used to pass data between the different routines. In particular, MA77 control

has components that control the action within the package and MA77 info has components that return

information from subroutine calls. The control components are given default values when a variable of

type MA77 control is declared and may be altered thereafter. The information returned to the user

includes a flag to indicate error and warning conditions, the determinant of A (its sign and the logarithm

of its absolute value), the maximum frontsize, the number of entries in the factor L, the computed rank,

information on the pivot sequence, and the number of floating-point operations. In addition, data is

returned on the number of integer and real records that are read from and written to the superfiles using

HSL OF01. Note that the use of derived types to hold data for a problem makes it possible to have more

than one problem active at the same time.

If the buffer used by HSL OF01 is big enough, actual input/output will be avoided, but there remain

the overheads associated with copying data to and from the buffer. Within HSL MA77, we are particularly

anxious to avoid this during the solve phase for a single right-hand side. HSL MA77 therefore offers an

option that allows the superfiles to be replaced by arrays in memory.

Full details of the user interface and the options available to the user are provided in the documentation

that accompanies the code.

3 HSL MA77 for indefinite systems

In this section, we discuss features of the different phases of HSL MA77 that are specific to the solution of

indefinite systems.

3.1 The analyse phase

In the indefinite case, the elimination order computed by a minimum degree or nested dissection algorithm

based on the sparsity pattern of the matrix provides only a tentative pivot order and the statistics returned

by MA77 analyse are lower bounds on the factor size, flop count, etc. This is because numerical stability

considerations during the factorization may lead to the elimination order being modified and pivots may

be delayed (that is, used later than expected in the elimination order). These changes to the elimination

ordering usually resulted in more fill in the factor, more flops, and (occasionally) a larger maximum front
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size. Results in the literature illustrate that the difference between the predicted and actual statistics can

be significant (see, for example, [5]). This is particularly likely to happen if the matrix A has zeros on

the diagonal and no allowance is made for this when choosing the elimination ordering. Most ordering

algorithms implicitly assume that the diagonal is present. In the early 1990s, Duff, Gould, Reid, Scott

and Turner [5] investigated taking the zeros on the diagonal of A into account when computing the

elimination order and they proposed allowing the tentative pivot sequence to include 1×1 and 2×2 pivots.

This study involved a special way of storing the frontal matrices and generated elements. It led to the

development of the HSL package MA47 [10] for the solution of indefinite problems in which the matrix A

has a significant number of zero diagonal entries (note that MA47 is now available from the HSL Archive,

see http://hsl.rl.ac.uk/archive/hslarchive.html). The MA47 ordering is one of the options available

within the package HSL MC68.

The pivot sequence (including any suggested 2×2 pivots) must be passed to MA77 analyse. If the input

pivot sequence contains any 2×2 pivots, care has to be taken to ensure both entries are kept together so

that a variable that is part of a 2×2 pivot is only marked as fully summed if both it and its partner are

fully summed.

3.2 The numerical factorization

Consider again the frontal matrix (2.1) and assume that F11 is of order p and that q < p pivots are chosen

by MA64 factor. In this case, p − q pivots are delayed and the generated element that is passed to the

parent node will be larger than anticipated on the basis of the sparsity pattern alone. This larger generated

element may be expressed as

FG =

(

FG1 F T
G2

FG2 FS1

)

, (3.1)

where the order of the leading submatrix FG1 is p− q and FS1 has the same order as the matrix FS in the

partial factorization (2.2).

After each partial factorization of a frontal matrix, HSL OF01 is used to store the permuted indices in

the integer superfile. The analyse data is preserved so that the user can factorize more than one matrix

with the same sparsity pattern but different numerical values without recalling MA77 analyse. Each list

starts with the indices of the chosen pivots, and is followed by the indices of the delayed pivots. The delay

superfile is used to hold (in a stack) the remaining columns that are fully summed but, for numerical

reasons, could not be pivoted on. That is, the lower triangular part of FS1 is stacked in the stack superfile

while the lower triangular part of FG1 together with FG2 are placed on a separate stack that is held in

the delay superfile. Once all the contributions FS1 at the parent node have been assembled into its frontal

matrix Fp, the contributions corresponding to the delayed pivots for each of its child nodes are assembled

into the leading columns of Fp. Thus, at each non-leaf node v, the frontal matrix takes the form

Fp =

(

Fp1 F T
p2

Fp2 F

)

,

where the order of F is the anticipated order of the frontal matrix and Fp1, Fp2 correspond to the delayed

pivots passed to v from its children. We note that it is not necessary to hold integer information on the

delayed pivots in a stack since this data can be retrieved from the integer lists stored in the main integer

superfile. Moreover, we only hold the lower triangular part of Fp. It is held in packed form within a rank-1

array that is allocated at the start of the factorization. If the number of delayed pivots increases so that

size of this array is insufficient, the contents are temporarily written to the stack superfile, the array is

reallocated with a larger size and the data read back in. This reallocation process may have to be repeated

more than once because the new array may still be too small if there are many more delayed pivots later

in the factorization. A control parameter allows the user to determine the amount of extra space that is

allocated to accommodate delayed pivots. This is particularly useful if a series of similar problems are to

factorized.
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3.3 The solve phase

The forward eliminations and back substitutions are performed by calling MA77 solve. This in turn

calls subroutines from the package HSL MA64. The user may solve for any number of right-hand sides

in a single call and repeated calls may be made. On each call, the factor data must be read from file

twice: once for the forward elimination and once for the back substitution. As can be seen from the

numerical experiments reported on in Section 4, this is expensive. It is more efficient to perform the

forward elimination operations at the same time as the factorization so that the factor data only has to

be read once for the back substitution. The user-callable routine MA77 factor solve is provided to allow

for this. Note that the amount of data that must be read is independent of the number of right-hand sides

and so it is significantly more efficient to solve for several right-hand sides at once than to make repeated

calls to MA77 solve with one right-hand side.

The argument list for MA77 solve includes an optional integer argument job, that may be used to

indicate whether the complete solution is required (that is, AX = B is to be solved) or only a partial

solution (see (1.3), (1.4), and (1.5)). An example where partial solutions are required is the HSL package

HSL VF06. Given a real symmetric matrix H , a real vector c and a positive radius δ, HSL VF06 computes a

global minimizer of the quadratic objective function 1
2xT Hx+cT x, where x is required to satisfy the norm

constraint ||x||M ≤ δ with ||x||M =
√

xT Mx. Such problems commonly occur as trust-region subproblems

in nonlinear optimization calculations. Details may be found in [14].

3.4 Additional features for indefinite problems

In some applications, it is important to have access to the entries of the block diagonal matrix D and to

be able to alter one or more of these entries. For example, it may be desirable to modify D to D̂ so that

the matrix Â = (PL)D̂(PL)T is positive definite. This is discussed in [12, 15]. To facilitate this, HSL MA77

includes two routines, MA77 enquire indef and MA77 alter. A call to MA77 enquire indef returns the

actual pivot sequence used by the numerical factorization phase (with 2×2 pivots identified using negative

flags on both entries) together with the entries in D, which are returned in a rank-2 array d. The diagonal

entries and the off-diagonal entries of D are held in d(1,1:n) and d(2,1:n-1), respectively. Note that,

if the user wishes to solve a series of problems having the same sparsity pattern but different numerical

values, it may be advantageous to recall MA77 analyse using the pivot sequence from MA77 enquire indef

because, if the numerical values have not changed significantly, this will reduce the amount of searching

for suitable pivots that is needed within the subsequent factorization.

If the user wishes to modify the entries of D, MA77 alter may be called with the new diagonal entries

placed in d(1,1:n) and the off-diagonal entries in d(2,1:n-1). Note that the new values will overwrite

the original values so that the factorization of A is no longer available.

4 Numerical experiments

To illustrate the performance of HSL MA77, we have selected all the large real square symmetric matrices

from the University of Florida Sparse Matrix Collection [2] for which the values of the matrix entries are

supplied and that are not flagged as positive definite. Our definition of large is that the matrix is of order

at least 104 and the analyse phase of HSL MA77 predicts at least 1.5 ∗ 106 entries in the matrix factor L.

Table 7.1 in the Appendix lists our set of 59 indefinite test problems in increasingly order of the predicted

number nz(L) of entries in L (this gives the problem indices used in the figues in this section). Here nz(A)

denotes the millions of entries in A (upper and lower triangular parts).

All reported experiments were performed using double precision reals on a Dell Precision T5400 with

two Intel E5420 quad core processors running at 2.5GHz backed by 8GB of RAM. We used the Goto BLAS

[13] and ifort compiler with the -fast option.

Unless stated otherwise, all control parameters are used with their default settings. The only exceptions

are that control%bits is set to 64 since our test machine has 64-bit architecture and, in addition, we
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use a file size of 225 scalars (in tests on very large problems, the default of 221 was insufficient). Version

4.0.0 of HSL MA77 is used, together with version 3.0.0 of HSL OF01 and version 3.0.0 of HSL MA64. In our

experiments, the test matrices are scaled using a symmetrized version of the HSL package MC64 [6, 7].

Throughout this section, the complete solution time for HSL MA77 refers to the total time for inputting

the matrix data, computing the pivot sequence (the analyse phase of the MA57 package [4] is used for this),

and calling the analyse, factorize and solve phases. Where appropriate, timings for HSL MA77 include all

input/output costs involved in holding the data in superfiles. All reported times are wall clock times in

seconds.

4.1 The effects of node amalgamation

During the construction of the assembly tree by the analyse phase of HSL MA77, a node is amalgamated

with its parent if both involve less than a given number, nemin, of eliminations. This is explained in more

detail in [22]. We show, in Tables 4.1 and 4.2, a few of our results on the effect of varying nemin. The

subset of problems used here was chosen to illustrate the range of results we observed for the whole set.

For nemin greater than 1 and less than about 32, we found that for many of our problems (including 6 and

37), the factor and solve times are not very sensitive to the precise choice of nemin (although the number

of entries in L always increases with nemin, with a larger proportion of explicit zeros being stored). We

also show in Table 4.1 the number of nodes that the HSL multifrontal solver MA57 finds from the same

pivot sequence with its default nemin value of 16 as well as the resulting number of entries in L. We note

that MA57 uses a different node amalgamation algorithm that generally performs far fewer amalgamations

(see [22]).

Table 4.1: Comparison of the number of non-leaf nodes and the number of entries in L for different values

of the node amalgamation parameter nemin.

Number of nodes (∗103) Number of entries in L (∗106)

MA57 HSL MA77 MA57 HSL MA77

nemin 16 1 4 8 12 16 24 16 1 4 8 12 16 24

6. c-73 83 143 81 77 75 72 68 2.23 1.76 2.69 3.24 3.72 4.22 5.24

20. darcy003 157 312 104 46 26 19 13 9.61 6.94 7.77 9.28 10.8 12.3 14.9

35. Si10H16 1.5 6.2 2.0 1.1 0.7 0.6 0.4 31.2 30.7 31.0 31.4 31.7 32.0 32.6

37. t3dh 4.9 12 0.5 0.3 0.2 0.2 0.1 47.9 47.2 47.6 48.1 48.4 48.9 50.2

47. sparsine 4.3 17 6.0 3.3 2.2 1.8 1.2 201 200 200 202 202 204 206

Table 4.2: Comparison of the factorization phase and solve phase times (single right-hand side) for different

values of the node amalgamation parameter nemin.

Factorize times Solve times

nemin 1 4 8 12 16 24 1 4 8 12 16 24

6. c-73 0.80 0.73 0.75 0.76 0.77 0.80 0.23 0.18 0.18 0.18 0.19 0.20

20. darcy003 2.19 1.46 1.25 1.91 1.84 1.25 0.52 0.39 0.35 0.36 0.36 0.39

35. Si10H16 50.1 32.3 26.8 24.1 22.5 20.8 0.80 0.71 0.71 0.70 0.70 0.71

37. t3dh 14.4 13.8 13.8 13.7 13.6 13.8 2.23 1.07 1.08 1.08 1.09 1.10

46. sparsine 781 519 417 372 349 319 5.53 5.07 4.97 4.97 4.96 5.03

In Figure 4.1, we compare the HSL MA77 factorize time for nemin set to 8 and to 16. We see that, for

many of the smaller problems 8 slightly outperforms 16. Since for some examples (including problems

6 and 20) nz(L) grows rapidly with nemin, we have chosen the default to be 8. However, for the larger
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Figure 4.1: The ratios of the factorize times for nemin = 16 to the factorize times for nemin = 8.

test examples, on our test machine it can be advantageous in terms of time to use nemin = 16 (or, as

seen in Table 4.2, nemin = 24). It should be noted that the largest problems in our test set come from

the same subset (PARSEC) of the University of Florida Sparse Matrix Collection and so they may share

characteristics that result in nemin = 16 outperforming nemin = 8. This illustrates the importance of

experimenting with different nemin if the factorization speed is the user’s prime concern and a number of

problems with the same (or similar) sparsity patterns are to be factorized. We remark that, if the number

of entries in L increases slowly with nemin, it can be better to use an even larger nemin. For instance,

we ran problem sparsine with nemin = 64 and found the factorization time reduced from 349 seconds

with nemin = 16 to 276 seconds, while the number of entries in L increased only slightly from 204 ∗ 106

to 213 ∗ 106 (so that there was almost no increase in the solve time).

In Figure 4.2, we compare the number of entries in the matrix factor computed using HSL MA77 with

the number for MA57, each with its default value of nemin. We see that the MA57 factor is sparser than the

HSL MA77 factor in about a quarter of the problems and is sometimes significantly so, notably for problems

2, 6 and 21. Problem 6 was included in Tables 4.1 and 4.2. We looked at problem 2 in more detail and

found that for MA57 the maximum frontsize is 7 whereas for HSL MA77 it is 14. This is much smaller than

for the other problems in our test set (see Table 7.1), which suggests that a smaller value of nemin should

be used in this case, illustrating the potential advantage of experimenting with different settings.

4.2 Times for each phase

In Table 4.3, we report the times for each phase of HSL MA77 for some of our largest test problems. The input

time is the time taken to input the matrix data (using calls to MA77 input vars and MA77 input reals),

and the ordering time is the time for MA57 to compute the pivot sequence. The solve time is for a single

right-hand side. We see that the solution time is, as expected, dominated by the factorization time.

Another way to judge the performance is to look at the number of records actually read from or written

to files using HSL OF01; this is reported for the same test problems in Table 4.4. We see that the largest

problems have to perform significantly more input/output operations.

We can also assess the overall performance using gigaflop rates. On our test machine, a typical speed

for dgemm multiplying two square matrices of order 1 is about 9 Gflops. In Table 4.5 the gigaflop rates

corresponding to the results in Table 4.3 are presented (these are computed using the wall clock times).
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Figure 4.2: The ratio of the number of entries in L for HSL MA77 to the number for MA57, each with its

default value of nemin.

Table 4.3: Times for the different phases of HSL MA77.

Problem 46 47 48 54 55 56 57 58

Phase

Input 0.06 1.09 1.75 0.50 0.69 0.35 0.50 1.02

Ordering 3.61 28.0 9.38 12.9 18.0 20.2 23.0 29.9

MA77 analyse 5.28 11.1 2.21 19.3 27.3 33.0 36.8 48.9

MA77 factor 347 255 104 2891 4551 6666 7435 10478

MA77 solve 5.00 7.11 15.1 122 198 254 308 389

Table 4.4: Records read from and written to files (in thousands) for the factorization and solve phases of

HSL MA77.

Problem 46 47 48 54 55 56 57 58

Phase

MA77 factor read 99.3 977 31.4 411 564 738 881 1048

write 111 439 110 507 684 887 1021 1222

MA77 solve read 99.4 134 239 510 694 906 1006 1231

Table 4.5: Gflop rates for the factorization and solve phases of HSL MA77.

Problem 46 47 48 54 55 56 57 58

Phase

MA77 factor 3.96 2.60 3.79 4.59 4.43 4.54 4.68 4.51

MA77 solve 0.204 0.197 0.128 0.43 0.036 0.036 0.033 0.032
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During the factorization rate, we achieve approximately half the peak rate for problems 54 to 59. The low

rates for the solve phase indicates the cost of reading in the factor data dominates the total cost of the

solve phase and this is particularly true for the largest problems that perform the most input/output.

4.3 Performance on positive-definite examples

HSL MA77 is designed to efficiently solve both positive-definite and indefinite systems. If the user knows that

the matrix is positive definite, the parameter pos def should be set to .true. on the call to MA77 factor.

The partial factorization of the dense frontal matrices is then performed by the HSL module HSL MA54;

no numerical pivoting is performed by HSL MA54, allowing the pivot sequence from MA77 analyse to be

used without modification. Details of HSL MA54 and the positive-definite version of HSL MA77 are given in

[22]. Since there is no searching and checking of pivots and no delayed pivots and thus no unexpected

fill in, we anticipate that, as well as producing sparser factors, the positive-definite version will be faster

than the indefinite version when run on a positive-definite system. One way of assessing how well the

indefinite version of HSL MA77 is performing is to run it on positive-definite problems and compare the times

and the factor sizes when run with pos def = .true. and pos def = .false. (with the default threshold

parameter 0.01). Our set of positive-definite problems is taken from [22] and are listed in Table 7.2 in

the Appendix. Our tests use Version 1.3.0 of HSL MA54. Comparing the size of the factor, when run with

pos def = .false., problem 1 was the only one for which the number of entries in L was greater than

the number predicted by the analyse phase. In this case, nz(L) increased from 24 ∗ 106 to 27 ∗ 106. In

Figure 4.3, we show the ratios of the positive-definite and indefinite factorization times. These are CPU

times for running in core (in-core working is discussed further in the next section). For all but problem

1, the indefinite time is within 20% of the positive-definite time. In all cases, the size of the residual was

comparable.
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Figure 4.3: The factorization CPU time with pos def = .false. divided by the CPU time with

pos def = .true. when the matrix is positive definite.

4.4 Comparisons with in-core working and with MA57

Finally, we compare the performance of HSL MA77 out of core with its performance in core and with the

well-known HSL package MA57 [4]. This is also a multifrontal code but it does not offer out-of-core options.
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There is currently no 64-bit version of MA57 and so it is restricted to problems for which the factor (which

is held as a rank-one array) can be addressed using a 32-bit integer. We have run Version 3.2.0 of MA57

on our test set using the default settings for all control parameters. In particular, as for HSL MA77, the

threshold parameter for partial pivoting is u = 0.01. If the size of the arrays for holding the factors that

are passed to the factorization phase of MA57 are found to be insufficient, we use the subroutine MA57ED

to move the computed factor data into larger arrays and then continue the factorization from this point.

The final 5 problems in Table 7.1 could not be solved using MA57 and so are omitted.

When running HSL MA77 in core, the code attempts to use arrays in place of superfiles. To run in

core, the user has to set the control parameter control%maxstore to hold the maximum number of

Fortran storage units (4 bytes) to be used for the arrays. Initial sizes for the superfiles are provided by

the user or selected by the code from the value of control%maxstore. Should an array subsequently

be found to be too small, an attempt is made to reallocate it with a larger size. If this either fails

or violates control%maxstore, a file is used instead (thus a mixture of superfiles and arrays may be

used). In our experiments, we first ran HSL MA77 out-of-core and used the information returned on

the maximum number of integers and reals stored in the superfiles together with the reported total

amount of storage used by the superfiles to set the controls for the in-core run. However, on our test

machine, we also imposed the restriction that control%maxstore should not exceed 109 (about half the

actual memory). Experimentation showed that, if much larger values were permitted, the performance

deteriorated because of page swapping. For example, when problem 53 was run in core without the above

limit on control%maxstore, the elapsed time for the solve phase was more than 50% greater than for

the out-of-core run. In our experiments with control%maxstore = 109, we found that problems 49 to

53 used a combination of arrays and superfiles. In particular, problem 49 used stack and delay superfiles

(and held the integer data and the factor data in arrays), while problems 50 to 53 used a superfile for the

factor data. We include these cases in our Figures and Tables for in-core runs, since at least some of their

data are held in memory.

In Figures 4.4 to 4.6, we compare the factorize, solve (single right hand side) and total solution times

for MA57 and for HSL MA77 in-core (using arrays in place of superfiles) with those for HSL MA77 out-of-core

(using default settings). The complete solution time for MA57 is the total time for calling the analyse,

factorize and solve phases of MA57. The figures show the ratios of the MA57 and HSL MA77 in-core times to

the HSL MA77 out-of-core times. To ensure we are comparing like with like, the HSL MA77 factorize and total

solution times include the time for prescaling using MC64 (scaling is performed within the factorization

phase of MA57 and hence any timings for the this phase include the MC64 time).

From Figure 4.4, we see that the HSL MA77 out-of-core factorization time is less than the MA57

factorization time for about 70% of the problems. For 10 of the problems, it is more than twice as

fast as MA57. For those problems that can be run using arrays in place of files, in-core working usually

increases the speed of HSL MA77 by between 5 and 25%. The only problem for which the MA57 factorization

is faster than HSL MA77 run in core is problem 2, where the maximum front size is very small (see end of

Section 4.1). We believe that the main reason for the strong performance of HSL MA77 is its use of the

carefully designed kernel code HSL MA64 (see Section 2.3).

For the solution phase with a single right-hand side, the penalty for working out-of-core is much greater

than for the factorization phase because the ratio of data movement to arithmetic operations is significantly

higher. This is evident in Figure 4.5. We also observe that the solve phase of MA57 is faster than the solve

phase of HSL MA77 run in core. This is partly because the MA57 factors are sparser than those for HSL MA77.

A comparison with the results in Figure 4.2 shows that, if we exclude problems 50 to 53 that hold the

factor data in files, the problems for which the difference between the MA57 and HSL MA77 in-core solve

times is most significant correspond to those for which the ratio of the number entries in L for HSL MA77

to those for MA57 is largest (see, for example, problems 2, 6 and 21).

The ratios of the total solution times are presented in Figure 4.6. Here we see that for many of the

problems, HSL MA77 out of core is less than 20% slower than HSL MA77 in core. Furthermore, for more than

75% of the problems, HSL MA77 in core is as fast or faster than MA57. We note that HSL MA77 includes
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Figure 4.4: The ratios of the MA57 and HSL MA77 in-core factorize times to the HSL MA77 out-of-core

factorize times.
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Figure 4.5: The ratios of the MA57 and HSL MA77 in-core solve times to the HSL MA77 out-of-core solve

times (single right-hand side).
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Figure 4.6: The ratios of the MA57 and HSL MA77 in-core complete solution times to the HSL MA77 out-of-

core complete solution times (single right-hand side).

an option to solve at the same time as the factorization. If used, the factor data has to be read in only

once, reducing the total solution time. However, as MA57 does not offer this option, our reported complete

solution times for both packages are the total time for separate calls to the analyse, factorize and solve

phases.

5 Concluding remarks

In this paper, we have discussed the design of a new multifrontal code HSL MA77 for solving large-scale

sparse symmetric linear systems. A key feature of the code is that it can hold the matrix and its factor,

as well as its main work array, in files. The use of files is handled by a separate packge HSL OF01 [21].

Numerical results have shown that, while working out-of-core adds an overhead, in our tests this was

usually not prohibitive (although it may be if a large number of repeated calls to the solve phase are

required). Moreover, it enabled us to solve problems that would otherwise be too large for a conventional

sparse direct solver working only in main memory.

Another important aspect of HSL MA77 is its use of a specially designed dense linear algebra kernel

HSL MA64. In the indefinite case, this performs the partial factorization of the frontal matrices and offers

users a number of pivoting options, including threshold pivoting (using 1× 1 and 2× 2 pivots) and static

pivoting.

HSL MA77, together with the subsidiary packages HSL MA64 and HSL OF01, are included in the 2007

release of HSL. All use of HSL requires a licence. Licences are available without charge to individual

academic users for their personal (non-commercial) research and for teaching; for other users, a fee is

normally charged. Details of how to obtain a licence and further details of all HSL packages are available

at www.cse.clrc.ac.uk/nag/hsl/.
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7 Appendix

Table 7.1: Indefinite test matrices and their characteristics. nz(A) and

nz(L) denote the number of entries in A and the predicted number of

entries in L, respectively, in millions. The problems are listed in order

of increasing nz(L). front denotes the predicted maximum order of the

frontal matrix. ∗ indicates problem cannot be solved by MA57 on our test

machine.

Identifier n nz(A) nz(L) front

1. ncvxqp1 12111 0.07 1.68 912

2. boyd2 466316 1.50 2.59 14

3. rail 79841 79841 0.55 2.62 389

4. bcsstk35 30237 1.45 2.92 390

5. stokes128 49666 0.56 2.93 424

6. c-73 169422 1.28 2.94 604

7. cvxqp3 17500 0.12 3.13 1165

8. c-63 44234 0.43 3.28 823

9. crystk02 13965 0.97 4.39 777

10. olesnik0 88263 0.74 4.58 615

11. cont-201 80595 0.44 4.64 628

12. c-59 41282 0.48 5.11 1606

13. c-72 84064 0.71 5.12 1294

14. dawson5 51537 1.01 5.13 816

15. t3dl 20360 0.51 5.28 1092

16. helm3d01 32226 0.43 5.60 1192

17. bratu3d 27792 0.17 6.28 1521

18. bcsstk39 46772 2.09 6.88 515

19. c-62 41731 0.56 8.21 1750

20. darcy003 389874 2.10 8.31 618

21. c-68 64810 0.57 8.88 1984

22. crystk03 24696 1.75 9.82 1296

23. copter2 55476 0.76 10.44 1246

24. cont-300 180895 0.99 11.75 940

25. ncvxqp5 62500 0.42 12.05 1858

26. turon m 189924 1.69 13.71 1045

27. d pretok 182730 1.64 14.56 1139

28. c-71 76638 0.86 17.18 2542

29. ncvxqp3 75000 0.50 18.99 2443

30. filter3D 106437 2.71 20.10 945
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Table 7.1: (continued)

Identifier n nz(A) nz(L) front

31. F2 71505 5.29 21.50 1236

32. helm2d03 392257 2.74 22.91 1024

33. qa8fk 66127 1.66 24.26 2075

34. ncvxqp7 87500 0.57 24.71 2734

35. Si10H16 17077 0.88 31.34 4383

36. Si5H12 19896 0.74 45.00 5551

37. t3dh 79171 4.35 48.13 3250

38. bmw3 2 227362 11.29 48.63 2090

39. c-big 345241 2.34 51.93 4277

40. ecology1 1000000 5.00 56.78 1649

41. halfb 224617 12.39 67.67 3240

42. SiO 33401 1.32 88.21 6914

43. af shell9 504855 17.59 97.71 2205

44. Lin 256000 1.77 113.61 4761

45. schroeder k 478788 23.62 114.32 3341

46. sparsine 50000 1.55 201.56 11459

47. kkt power 2063494 14.61 213.69 6325

48. af shell10 1508065 52.67 363.96 4355

49. Si34H36 97569 5.16 485.54 14490

50. Ge87H76 112985 7.89 642.64 16810

51. Ge99H100 112985 8.45 654.20 19250

52. Ga10As10H30 113081 6.12 674.25 16967

53. Ga19As19H42 133123 8.88 806.08 18675

54. SiO2
∗ 155331 11.28 1037.07 21406

55. Si41Ge41H72
∗ 185639 15.01 1410.90 23982

56. CO
∗ 221119 7.67 1843.63 26380

57. Si87H76
∗ 240369 10.66 2047.70 28326

58. Ga41As41H72
∗ 268096 18.49 2507.06 30571
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Table 7.2: Positive definite test matrices and their characteristics. nz(A)

and nz(L) denote the number of entries in A and the number of entries

in the Cholesky factor L, respectively, in millions. The problems are

listed in order of increasing nz(L). front denotes the maximum order

of the frontal matrix.

Identifier n nz(A) nz(L) front

1. thread 29,736 2.250 23.731 2994

2. pkustk11 87,804 2.653 28.517 2064

3. pkustk13 94,893 3.356 30.573 2145

4. crankseg 1 52,804 5.334 33.714 2124

5. gearbox 153,746 4.617 39.253 2215

6. nd6k 18,000 6.897 40.737 4430

7. cfd2 123,440 1.606 40.863 2522

8. crankseg 2 63,838 7.106 43.195 2205

9. pwtk 217,918 5.926 50.449 1128

10. ship 003 121,728 4.104 62.228 3336

11. thermal2 1,228,045 4.904 63.036 1413

12. bmwcra 1 148,770 5.396 71.230 2238

13. af shell3 504,855 17.562 97.715 2205

14. pkustk14 151,926 7.494 108.931 3066

15. g3 circuit 1,585,478 4.623 118.476 2890

16. nd12k 36,000 14.221 118.492 7685

17. ldoor 952,203 23.737 154.742 2436

18. inline 1 503,712 18.660 179.269 3261

19. bones10 914,898 28.192 287.557 4695

20. nd24k 72,000 28.716 321.334 11363

21. bone010 986,703 36.326 1089.104 10722

22. audikw 1 943,695 39.298 1264.854 11223
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