RAL-TR-2002-010

Numerical Analysis Group Progress Report
January 2000 - December 2001

Tain S. Duff (Editor)

ABSTRACT

We discuss the research activities of the Numerical Analysis Group in the Computational
Science and Engineering Department at the Rutherford Appleton Laboratory of CLRC for
the period January 2000 to December 2001. This work was supported by EPSRC grants
M78502, until October 2001, and R46441 thereafter.

Keywords: sparse matrices, frontal and multifrontal methods, numerical linear
algebra, large-scale eigenvalue computations, large-scale optimization, automatic

differentiation, Fortran, Harwell Subroutine Library, HSL

AMS(MOS) subject classifications: 65F05, 65F50.

Current reports available by anonymous ftp to ftp.numerical.rl.ac.uk in directory pub/reports.
This report is in file duffRAL2002010.ps.gz. Report also available through URL
http://www.numerical.rl.ac.uk/reports/reports.html.

Computational Science and Engineering Department
Atlas Centre

Rutherford Appleton Laboratory

Oxon OX11 0QX

March 22, 2002

Contents

1 Introduction (I. S. Duff) 1
2 Frontal and multifrontal methods 5
2.1 MUMPS - a distributed memory multifrontal solver (P. R. Amestoy,
I. S. Duff, J.-Y. L’Excellent and J. Koster) 5
2.2 Analysis and comparison of distributed memory sparse solvers
(P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent and X. Li) 8
2.3 Two-stage ordering for unsymmetric parallel row-by-row frontal solvers
(JoA.Scott) . . . oL 10
2.4 The design of a portable parallel frontal solver for highly unsymmetric linear
systems (J. A. Scott) 13
2.5 A multilevel wavefront and profile reduction algorithm (J. A. Scott and Y. Hu) 15
2.6 Implementing Hager’s exchange methods for matrix profile reduction
(J.K.Reidand J. A. Scott)o 17
2.7 A new symmetric indefinite sparse multifrontal solver (I. S. Duff) 20
3 Other numerical linear algebra 23
3.1 The Sparse BLAS (I. S. Duff, M. Heroux, R. Pozo, and C. Vémel) 23
3.2 A parallel version of MA48 for unsymmetric linear systems (I. S. Duff and
JoA Scott) ..o 24
3.3 Solving symmetric sparse systems of linear equations with zeros on the
diagonal (J. K. Reid)o o 25
3.4 Solving unsymmetric banded systems of linear equations (J. K. Reid) . . . 27
3.5 Use of orderings for large entries on the diagonal (I. S. Duff and J. Koster) 29
3.6 A stopping criterion for the conjugate gradient algorithm in a finite element
method framework (M. Arioli) 30
3.7 Robust preconditioning of dense problems from electromagnetics
(B. Carpentieri, I. S. Duff and L. Giraud) 33
3.8 Rank-revealing factorizations and incremental norm estimation
(I.S. Duff and C. Vomel) 37
3.9 Incomplete QR factorizations (Z.-Z. Bai, I. S. Duff, A. Papadopoulos, and
A.J. Wathen)o o Lo 38
3.10 EA16: a new block Lanczos code (K. Meerbergen and J.A. Scott) 39
4 Partial Differential Equations 41
4.1 Null space algorithms for mixed finite-element approximation of Darcy’s

equation (M. Arioli and G. Manzini) 41

5 Optimization 47

5.1 Quadratic Programming (N. I. M. Gould and Ph. L. Toint) 47
5.2 A backward error analysis of a null space algorithm in sparse quadratic

programming (M. Arioli and L. Baldini) 56

5.3 Use of MA57 in optimization packages (I. S. Duff) 58

5.4 Filter Methods (N. I. M. Gould and Ph. L. Toint) 63
5.5 CUTEr, an Optimization Testing Environment (N. I. M. Gould, D. Orban

and Ph. L. Toint) 64

5.6 GALAHAD (N. I. M. Gould, D. Orban and Ph. L. Toint) 66

5.7 Trust-region methods (A. R. Conn, N. I. M. Gould and Ph. L. Toint) . .. 68

6 Automatic Differentiation 69
6.1 Automatic differentiation for core calculations (S. A. Forth, J. D. Pryce,

J. K. Reid, and M. Tadjouddine) 69

6.2 Threadsafe automatic differentiation in Fortran 95 (J. K. Reid) 71

7 Miscellaneous Activities 73

7.1 CERFACS (I.S.Duff) 73

7.2 ERCIM (M. ArioliandI. S. Duff) 74

8 Computing and mathematical software 76

8.1 The computing environment within the Group 76

9 HSL (Harwell Subroutine Library) 76

9.1 Collaboration with AEA Technology 76

9.2 HSL 2000 and HSL Archive 7

9.3 HSL 2002 e 78

9.4 New HSL packages 78

10 Seminars 87

11 Reports issued in 2000-2001 88

12 External Publications in 2000-2001 91

i

rersonnel 11 iNurmerical Allalysls roup

Staff

lain Duff.

Group Leader. Sparse matrices and vector and parallel computers and computing.

Mario Arioli (from October 1st 2000).

Numerical linear algebra, numerical solution of PDEs, error analysis.

Nick Gould.

Optimization and nonlinear equations particularly for large systems.

Karl Meerbergen (until March 31st 2000).

Large-scale eigenvalue problems.

Jennifer Scott.

Sparse linear systems and sparse eigenvalue problems.

Kath Vann.

Administrative and secretarial support.

Consultants
Mike Hopper Support for Harwell Subroutine Library and for T'SSD.

John Reid HSL, sparse matrices, automatic differentiation, and Fortran.

Visitors

Richard Byrd (UC Boulder) Optimization.

Bob Gate (Dundee) Optimization.

Yifan Hu (CLRC Daresbury) Sparse linear systems.
David Kay (Sussex) Eigensystem calculations.

Erricos Kontoghiorghes (Neuchatel) ~ Optimization.
Gianmarco Manzini (CNR Pavia) Iterative methods.
Jorge Nocedal (Northwestern University) Optimization.
Daniel Ruiz (ENSEEIHT) Linear algebra.

Annick Sartenaer (Namur) Optimization.

Philippe Toint (University of Namur) Optimization.

1l

1 Introduction (I. S. Duff)

This report covers the period from January 2000 to December 2001 and describes work
performed by the Numerical Analysis Group within the Computational Science and
Engineering Department at the CLRC Rutherford Appleton Laboratory. This work was
supported by EPSRC grants M78502, until October 2001, and R46441 thereafter.

The details of our activities are documented in the following pages. These words of
introduction are intended merely to provide additional information on activities that are

not appropriate for the detailed reports.
The last two years have been amongst the most stable in the life of the Group. It would

be good to think that this state of affairs could continue. Our only change in personnel was
that Karl Meerbergen left to return to Belgium and we were delighted to be able to recruit
Mario Arioli from CNR Pavia, who had previously been a long term visitor of the Group
at Harwell and was a senior scientist in the Parallel Algorithms Team at CERFACS.

The hoops designed by EPSRC were successfully negotiated in March 2000 when we
heard that our grant had been extended from two years to four. However, as [write this, the
next set of hoops are being prepared for our rebid for continuation of funding from October
2003. In April 2001, Professor John Wood from the University of Nottingham became CEO
of CCLRC. We have since been able to meet with him and find him sympathetic both to
basic research and to the work of our Group. We believe and hope that this augurs well

for the future.

The support and development of HSL, formerly the Harwell Subroutine Library,
continues to be one of our major activities. There have been two releases of HSL during
the period of this report, one in October 2000 and the other at the end of 2001. The HSL
marketing effort from AEA Technology PLC has again seen changes of personnel, this
time apparently for the better. Without any prior consultation or warning, Nick Brealey
of the Electromagnetics Department at Culham Laboratory ceased handling the Library
at the end of 2000. Happily we were taken over within AEA by Lawrence Daniels and his
team from Hyprotech, who have a good knowledge of HSL and some marketing skills in
mathematical software. Most importantly, they also fully support the availability of HSL
to the UK academic community as originally agreed by Nick Brealey. We are still able
to employ John Reid as a consultant using HSL funds. We have benefited greatly from
the consultancy of Mike Hopper, who has helped us both in typesetting and the ongoing
commitment to higher software standards, including a recent exercise in making the whole

Library threadsafe.

We maintain our close links with the academic community in Britain and abroad.
lain and Nick continue as Visiting Professors at Strathclyde University and Edinburgh

University, respectively. All members of the Group gave presentations at the Dundee

1

Numerical Analysis meeting in 2001, with Nick giving an invited talk. We had several
visitors during the period, including Gianmarco Manzini who was funded by an EPSRC
visiting fellowship. Iain has helped Andy Wathen of Oxford in the supervision of
his student, Andreas Papadopoulos. Our CASE student with Oxford, Carsten Keller,
successfully defended his D Phil and Nick now has another CASE student, Bob Gate,
with the University of Dundee whose university supervisor is Roger Fletcher. Tain was on
the jury for the PhD thesis of Elisabeth Traviesas in Toulouse, for the cotutelle thesis of
Dominique Orban in Namur and Toulouse, for Pierre Ramet in Bordeaux, Wim Bomhof in
Utrecht, and for the habilitation theses of Valérie Frayssé and of Luc Giraud in Toulouse,
and Nick was the external examiner for the PhD thesis of Eric Chin from Dundee. Nick
is also an external assessor for the optimization MSc at the Open University and is on the
advisory board for the MSc in Bath. lain and Nick are both on the Mathematics College
of the EPSRC.

We continue our close association with Oxford University through the Joint
Computational Mathematics and Applications Seminar series and have hosted several
talks at RAL through that programme (see Section 10). Nick Trefethen, the professor
of Numerical Analysis at Oxford University, has made an office available to the Group
that has been used for visits by all Group members, significantly by Nick who visits on a
regular basis. Nick taught an MSc course on numerical optimization at Oxford in Trinity
term 2001 (see http://Www.numerical.rl.ac.uk/nimg/oumsc/), and lain and Jennifer
gave a series of four lectures on direct methods for sparse matrices in Michaelmas term of
2001.

Nick’s collaboration with Toint and others continues to expand the theory and practice
of large-scale optimization. During the period of this report, his 959 page book, co-authored
with Conn and Toint, on trust-region methods was published by STAM. In addition to the
book and closely related research, he has developed algorithms and codes for the solution
of large-scale quadratic programming problems, both using barrier-function methods and
active-set techniques. Both approaches will be used in the new nonlinearly constrained
optimization package GALAHAD, that will eventually supersede the well known and highly
successful augmented Lagrangian package LANCELOT. His work with Toint and others
has occasioned visits to CERFACS in Toulouse, Namur in Belgium, and Northwestern
in Illinois. Nick was an invited speaker at conferences at Atlanta, Delhi, Hans-sur-Leys,
Oxford, and Trier, and gave seminars in Daresbury, Edinburgh, Oxford, and Reading. He

was on the interview panel for an appointment at Oxford University.

Jennifer has continued with her national and international collaborations. Although
she has continued her short-hours working, she remains so productive that it is easy to
forget this fact. Much of her work in this period has been on enhancing the performance

of frontal solvers and using them in practical industrial problems. In particular, she has

used powerful partitioning techniques and MPI to enable frontal schemes to exploit low
level parallelism. She has developed very effective ordering techniques for use with frontal
methods both when the matrix is assembled and when it is held as a set of element matrices.
She has made a speciality of chemical engineering applications and has published several
papers in one of the main journals of that discipline. Jennifer presented an invited talk at

CERFACS and continues to coordinate our joint seminar series with Oxford University.

Mario was no stranger when he joined us in October 2000 and so it is no surprise that
he quickly became a fully integrated member of the Group. He gives us a far greater
knowledge of partial differential equations and has used this to good effect in designing
sophisticated techniques and preconditioners for problems in groundwater flow. He is also a
great asset in being not only very adept at but also enjoying the fine detail of error analysis.
He has recently established and become coordinator of a new ERCIM Working Group on
Mathematics. He has given seminars at Cambridge, CERFACS, and ENSEEIHT-IRIT in

Toulouse.

lain still leads a project at the European Centre for Research and Advanced Training
in Scientific Computation (CERFACS) at Toulouse in France (see Section 7.1). He was
the Principal Investigator for a grant from the France-Berkeley Fund for exchange visits
with NERSC in Berkeley. His research interests continue to be in all aspects of sparse
matrices, including more recently iterative methods as well as direct methods, and in
the exploitation of parallel computers. He is an Editor of the IMA Journal of Numerical
Analysis, an Honorary Secretary of the IMA, editor of the IMANA Newsletter, chairman of
the IMA Programme Committee, and IMA representative on the International Committee
that oversees the ICIAM international conferences on applied mathematics. In high
performance computing, he has given tutorials at VECPAR 2000 (Porto), EuroPar 2000
(Munich), SC 2000 (Dallas) and SC 2001 (Denver). He gave lectures at summer schools
in Porto and Lyngby in Denmark and was workshop coordinator for a meeting in Copper
Mountain, Colorado. He has been on the Programme and Organizing Committee for several
international meetings including a preconditioning meeting in Lake Tahoe, California
and the two EuroPar meetings. He also helped to edit the proceedings for the Copper
Mountain and Tahoe meetings. He has given invited talks at meetings in Maryland, Merida
(Mexico), and Rabat (Morocco), and has presented seminars in Cambridge, Lawrence
Livermore National Laboratory, NERSC, Oxford, Stanford, and Strathclyde. He was on
an international panel to evaluate Dutch supercomputing and to advise NWO about future

mechanisms for support of this activity.

We have tried to subdivide our activities to facilitate the reading of this report.
This is to some extent an arbitrary subdivision since much of our work spans these
subdivisions. Our main research areas and interests lie in numerical linear algebra,

and nonlinear systems and optimization. We are particularly concerned with large-scale

systems when the matrix or system is sparse or structured. We discuss the solution of
linear systems by frontal or multifrontal methods in Section 2 and other numerical linear
algebra activities in Section 3. Work on optimization is considered in Section 5. We
group some miscellaneous topics in Section 7. Much of our research and development
results in high quality advanced mathematical software, and we report on our computer
infrastructure and software developments in Section 8. Lists of seminars (in the joint series
with Oxford), technical reports, and publications are given in Sections 10, 11, and 12,
respectively. Current information on the activities of the Group and on Group members
can be found through page http://www.cse.clrc.ac.uk/Group/CSENAG of the World
Wide Web.

2 Frontal and multifrontal methods

2.1 MUMPS - a distributed memory multifrontal solver
(P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent and J. Koster)

MUMPS, a MUltifrontal Massively Parallel Solver was developed from the earlier MUPS
code (Amestoy and Duff 1993) with the support of the EU LTR project PARASOL.
Although the PARASOL project finished on June 30th 1999, work has continued on the
MUMPS solver and many of the original team are still involved in this project. Some
aspects of this work were supported until the middle of 2000 by a grant from the France-
Berkeley fund. Patrick Amestoy is still at ENSEEITHT-IRIT in Toulouse and continues to
supervise or co-supervise students and stagiaires working on aspects of MUMPS. Jean-Yves
L’Excellent was unable to get much time for research while at NAG but now is back in the
thick of things in his new post with INRIA in Lyon. Jacko Koster has now a confirmed
staff position at Parallab in Bergen and continues to develop some aspects of MUMPS, in

particular its use within the Parallab domain decomposition code DDM.

MUMPS is designed to solve symmetric positive-definite, general symmetric, and
unsymmetric linear systems whose coefficient matrices are possibly rank deficient. The
MUMPS package uses a multifrontal approach to factorise the matrix (Duff and Reid, 1983,
Duff and Reid, 1984). Similar to serial HSL solvers, the parallel MUMPS package solves
in three main steps: an analysis step, a factorization step and a solution step. MUMPS
is described in the two papers Amestoy, Duff and L’Excellent (2000) and Amestoy, Duff,
Koster and L’Excellent (2001).

MUMPS achieves high performance by exploiting two kinds of parallelism: tree
parallelism that comes from the sparsity of the problem and node parallelism from
dense matrix kernels. MUMPS uses dynamic data structures and dynamic scheduling
of computational tasks to accommodate extra fill-in in the factors due to numerical
considerations (not taken into account during the analysis step). This dynamic approach
also allows the parallel code to cope with load variations on the processors and we have
investigated and developed this over the last two years (see Section 2.1.2). MUMPS
overlaps computation with communication by using asynchronous communication and care
has to be taken in the MPI implementation (see Section 2.1.1).

The origins of MUMPS within a large EU project with many partners and many
demands means that it has a functionality quite unrivaled by any other sparse package. In
the last two years, the functionality has only been slightly extended with more emphasis
being put on improving the efficiency, particularly when using many processors.

The MUMPS software has been extensively tested on problems from the industrial
partners in the PARASOL project. Typical PARASOL test cases are from application

5

areas such as computational fluid dynamics, structural mechanics, modelling compound
devices, modelling ships and mobile offshore platforms, industrial processing of complex
non-Newtonian liquids, and modelling car bodies and engine components. The largest
problem we have solved to date is a model of an AUDI crankshaft. The corresponding
linear system is symmetric positive-definite and of order 943, 695 with more than 39 million
entries in its lower triangular part. With the best ordering of the unknowns that we tried,
MUMPS created 1.4 billion entries in the factors and required 5.9 x 10'? floating-point
operations for the factorization.

The MUMPS software is written in Fortran 90. It requires MPI for message passing
and makes use of BLAS, LAPACK, BLACS, and ScaLAPACK subroutines. It has been
ported to a wide range of computers including the top-line supercomputers from Compaq,
Cray, IBM, and SGI.

We discuss the performance of MUMPS further in Section 2.2.

References

P. R. Amestoy and I. S. Duff. Memory management issues in sparse multifrontal methods

on multiprocessors. Int. J. Supercomputer Applics, 7, 64-82, 1993.

P. R. Amestoy, I. S. Duff, and J.-Y. L’Excellent. Multifrontal parallel distributed symmetric
and unsymmetric solvers. Comput. Methods in Appl. Mech. Engng., 184, 501-520,
2000.

P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent. A fully asynchronous
multifrontal solver using distributed dynamic scheduling. SIAM J. Matriz Analysis
and Applications, 23(1), 15-41, 2001

I. S. Duff and J. K. Reid. The multifrontal solution of indefinite sparse symmetric linear
systems. ACM Trans. Math. Softw., 9, 302-325, 1983.

[. S. Duff and J. K. Reid. The multifrontal solution of unsymmetric sets of linear systems.
SIAM J. Scientific and Statistical Computing, 5, 633-641, 1984.

2.1.1 An analysis of MPI send/receive in the context of MUMPS (P. R. Amestoy,
I. S. Duff, J. Y. L’Excellent and X. S. Li)

This work was developed from the research performed as part of the France-Berkeley
project (Amestoy, Duff, L'Excellent and Li, 2000) and is intimately associated with the
tuning of the MUMPS and SuperLU sparse direct solvers on distributed memory computers

using MPI for message passing.

We examined the send and receive mechanisms of MPI in detail and considered how
to implement message passing robustly so that performance is not significantly affected
by changes to the MPI system. We discussed this within the context of two different
parallel algorithms for sparse Gaussian elimination: a multifrontal solver (MUMPS), and
a supernodal one (SuperLU). The performance of our initial strategies based on simple MPI
point-to-point communication primitives is very sensitive to the MPI system, particularly
the way MPI buffers are used. Using more sophisticated non-blocking communication
primitives improves the performance robustness and scalability, but at the cost of increased
code complexity.

We have submitted our report (Amestoy, Duff, L'Excellent and Li, 2001) to the journal
Parallel Computing.

References

P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and X. S. Li. Analysis, tuning and comparison
of two general sparse solvers for distributed memory computers. Technical Report
LBNL-45992, NERSC, Lawrence Berkeley National Laboratory, June 2000.

P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and X. S. Li. Impact of the implementation of
MPI point-to-point communications on the performance of two general sparse solvers.
Technical Report RT/APO/01/4, ENSEEIHT-IRIT, Toulouse, October 2001.

2.1.2 Candidate-based dynamic scheduling for a distributed direct linear
solver (P. R. Amestoy, I. S. Duff and C. Vémel)

The asynchronous distributed memory multifrontal solver MUMPS exploits two kinds of
parallelism when a sparse matrix is factorized. A first natural source of parallelism is
established by independent branches of the assembly tree. Furthermore, tree nodes with a
large enough contribution block can be updated in parallel by splitting the update between
several slaves of the master that is factorizing the block of fully summed variables, and the
root node can be treated in parallel if it is big enough.

While the master processor of each node in the tree (that is, the one that is responsible
for the factorization of the block of fully summed variables) is chosen during the analysis
phase, the slaves for the parallel update of large contribution blocks are only chosen during
the factorization phase. This dynamic task scheduling takes place in order to balance the
work load of the processors at run-time. Problems arise from offering too much freedom to
the dynamic scheduling. If every processor is a candidate for a slave then, on each processor,
enough workspace has to be reserved during the analysis phase for the corresponding
computational tasks. However, during the factorization, typically not all processors are

actually needed as slaves (and, on a large number of processors, only a very few are needed),

7

so the prediction of the required workspace will be overestimated. Thus the size of the
problems that can be solved is reduced unnecessarily because of this difference between
the prediction and allocation of memory in the analysis phase and the memory actually
used during the factorization.

With the concept of candidate processors it is possible to address this issue. The
concept originates in an algorithm presented by Pothen and Sun (1993) and extends
efficiently to MUMPS. For each node that requires slaves to be chosen dynamically during
the factorization because of the size of its contribution block, we introduce a limited set
of processors from which the slaves can be selected. While the master previously chose
slaves from among all less loaded processors, the freedom of the dynamic scheduling can be
reduced so that the slaves are only chosen from the candidates. This effectively allows us
to exclude all non-candidates from the estimation of workspace during the analysis phase
and leads to a more realistic prediction of workspace needed. Furthermore, the candidate
concept allows us to structure the computation better since we can explicitly restrict the
choice of the slaves to a certain group of processors and enforce a ‘subtree-to-subcube’
mapping principle.

Preliminary tests with a prototype version have shown the benefits of the concept that
is currently being integrated into a compact scheduling module for MUMPS. It unifies
static and dynamic mapping while at the same time taking account of tree modifications

by node amalgamation and splitting.

References

A. Pothen and C. Sun. A mapping algorithm for parallel sparse Cholesky factorization.
SIAM J. Scientific Computing, 14(5), 1253-1257, 1993. Timely Communication.

2.2 Analysis and comparison of distributed memory sparse
solvers (P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent and X.
Li)
We conducted an in depth analysis comparing the merits of a supernodal solver, SuperLU
(Demmel, Gilbert and Li, 1999), with MUMPS (see Section 2.1). This showed broadly
that MUMPS generally outperformed SuperLLU although the latter showed somewhat
better scalability and was competitive on a large number of processors. Many ideas for
improvements to both codes were generated during this investigation and both are being
enhanced as a result.

We show some of our comparisons in Table 2.1 to indicate the relative performance of

the codes. In Table 2.2, we show results from a sequence of 3D grids where the problem

sized is increased with the number of processors so that the operations per processor remain

close to constant. From these results we see the good scalability of both codes.

Matrix | Ordering | Solver Number of processors
1 4 8 16 32 64 | 128
BBMAT | AMD MUMPS — 44.8 | 23.6 | 15.7 | 12.6 | 10.1 9.5
SuperLU | — 64.7 | 36.6 | 21.3 | 12.8 9.2 7.2
ND MUMPS — 32.1 | 10.8 | 12.3 | 10.4 9.1 7.8
SuperLU | — | 132.9 | 72.5 | 39.8 | 23.5 | 15.6 | 11.1
ECL32 AMD MUMPS — 53.1 | 31.3 | 20.7 | 14.7 | 13.5 | 12.9
SuperLU | — | 106.8 | 56.7 | 31.2 | 18.3 | 12.3 8.2
ND MUMPS — 23.9 | 134 9.7 6.6 5.6 5.4
SuperLU | — 48.5 | 26.6 | 15.7 9.6 7.6 5.6

Table 2.1: Factorization time (in seconds) of large test matrices on the CRAY T3E. “—”"

indicates not enough memory.

Processors Grid size LDLT factorization LU factorization
NX NY NZ MUMPS-SYM MUMPS-UNS SuperLU
flops time flops time flops time
x10° x10° x10°

Cubic grids (nested dissection)

1 29 3.6 18.9 7.2 24.0 7.2 56.3
2 33 8.0 21.2 16.0 29.0 15.9 61.8
4 36 13.4 20.3 26.8 27.6 26.8 52.0
8 41 30.1 18.3 60.1 32.8 60.0 60.2
16 46 59.1 19.5 118.1 32.6 117.9 59.8
32 51 112.7 21.3 225.3 41.2 224.9 64.7
64 57 222.7 28.4 445.1 57.5 444.7 67.3
128 64 444.2 48.3 887.8 95.7 886.4 71.1

Rectangular grids (nested dissection)

1 96 24 12 2.2 13.2 4.5 16.6 4.5 33.3
2 110 28 13 4.8 12.9 9.5 17.2 9.6 37.6
4 120 30 15 9.0 12.1 17.9 16.7 17.9 36.3
8 136 34 17 18.4 13.7 36.8 20.1 36.6 36.3
16 152 38 19 36.5 12.5 72.8 21.0 72.7 42.2
32 168 42 21 67.8 14.3 135.5 25.4 135.3 43.8
64 184 46 23 | 118.2 16.3 236.2 32.5 236.0 46.6
128 208 52 26 | 243.1 24.7 485.8 44.4 485.6 56.1

Table 2.2: Factorization time (in seconds) on Cray T3E. LU factorization is performed for
MUMPS-UNS and SuperLU, LDL” for MUMPS-SYM.

The France-Berkeley Fund, who supported lain’s travel to NERSC at Lawrence
Berkeley National Laboratory, accepted the main report (Amestoy et al., 2000) and a
shorter version has been published in the ACM Transactions on Mathematical Software
(Amestoy, Duff, L’Excellent and Li, 20015). The work was presented at the STAM Parallel
Processing Conference in March 2001 (Amestoy, Duff, L’Excellent and Li, 2001a).

9

References

P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and X. S. Li. Analysis, tuning and comparison
of two general sparse solvers for distributed memory computers. Technical Report

LBNL-45992, NERSC, Lawrence Berkeley National Laboratory, June 2000.

P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and X. S. Li. Performance and tuning of two
distributed memory sparse solvers. in ‘Proceedings of Tenth STAM Conference on
Parallel Processing for Scientific Computing, Portsmouth, Virginia, March 12th-14th,
2001, 2001 a.

P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and X. S. Li. Analysis and comparison of
two general sparse solvers for distributed memory computers. ACM Transactions on
Mathematical Software, 27(4), 388-421, December 20015b.

J. W. Demmel, J. R. Gilbert, and X. S. Li. An asynchronous parallel supernodal
algorithm for sparse Gaussian elimination. SIAM J. Matriz Analysis and Applications,
20(4), 915-952, 1999.

2.3 Two-stage ordering for unsymmetric parallel row-by-row
frontal solvers (J. A. Scott)

The row-by-row frontal method may be used to solve general large sparse linear systems
of equations. By partitioning the matrix into (nearly) independent blocks and applying
the frontal method to each block, a coarse-grained parallel frontal algorithm is obtained
(see Section 2.4). The success of this multiple front approach depends on preordering the
matrix. This can be done in two stages: (1) order the matrix to singly bordered block
diagonal form, and (2) order the rows within each block to minimise the size of each frontal
matrix. A number of recent papers have considered stage (1). In this study, we looked at
developing an algorithm for stage (2).
Consider the singly bordered block diagonal matrix

A11 Cl
A22 CQ (2 1)
ANN CN

where the rectangular diagonal blocks Aj; are m; X n; matrices with m; > n;, and the border

blocks C; are m; x k with & < n;. We want to order the rows within each submatrix

(Ay C,) (2.2)

10

so that, when the frontal method is applied to the submatrix, the frontsize is kept as small
as possible. The difficulty is that, as the rows of (2.2) are assembled, the k; nonzero columns
of C; do not become fully summed because they have entries in at least one other border
block C; (7 # [). Thus, once a variable corresponding to a column of C; enters the front,
it remains there. These variables are termed interface variables. A row ordering algorithm
is therefore needed that distinguishes between interface and non-interface variables and
which aims to delay introducing the former into the front.

Our algorithm generalises the MSRO row ordering algorithm that we developed for
ordering all the rows of an unsymmetric matrix A for use with a frontal solver (see Scott
(1999)). The MSRO algorithm selects a global ordering which it uses to guides the local
reordering. The local ordering is based on a priority function. The basic idea is to select
the next row in the ordering by choosing, from a set of eligible rows, a row with minimum

priority. The priority P; for row ¢ is given by
P, = —W; regain; — Ws g;, (2.3)

where W, and W, are positive weights, g; is the global priority for row ¢, and rcgain; is the
sum of the increases to the row and column frontsizes resulting from assembling (ordering)
row ¢ next. As each row is reordered, the priorities of the remaining (unordered) rows are
updated. In this way, a balance is maintained between a small frontsize and ordering early
on rows with a low global priority.

The MSRO algorithm assumes that when any variable appears for the last time it is fully
summed and so can be eliminated (removed from the front). To generalise the approach
to allow only the rows of a submatrix to be ordered, we flag the interface variables so that
once in the front they are not eliminated. In addition, we modify the priority function by

adding a third term
P, = —Wj rcgain; — Wy g; + W3 nold;, (2‘4)

where W3 is another (positive) weight and nold; is the number of non-interface variables
in row ¢ that have already been introduced into the front. As rows are assembled, nold;
increases, so that rows with a large number of non-interface variables already lying in
the front are given preference. The aim is to ensure non-interface variables become fully
summed and eliminated as soon as possible after entering the front.

The modified MSRO algorithm has been tested on problems from chemical process
engineering; results are presented by Scott (2001). To illustrate the performance, in
Figure 2.1 we show the sparsity pattern for problem bayer04: using the initially supplied
ordering, after it has been reordered to bordered block diagonal form using the HSL code
MC66, and after the modified MSRO algorithm has been used to reorder the rows within
the blocks.

11

Lol
Do+
(s, & 4
AN N
- g
L
o * 1
a% i ¢
) 1
K 4 q
‘. 3

?
> Pl . Ge PR JENes g0 o

Figure 2.1: Problem bayer04 with original ordering, in bordered block diagonal form, and
after reordering with modified MSRO.

12

The code MC62, which is available through HSL, has been modified so that it can be
used to order either all the rows of A or, for the multiple front method, the rows of a

submatrix.

References

J.A. Scott. A new row ordering strategy for frontal solvers. Numerical Linear Algebra and
Applications, 6, 1-23, 1999.

J.A. Scott. Two-stage ordering for unsymmetric parallel row-by-row frontal solvers.
Computers and Chemical Engineering, 25, 323-332, 2001.

2.4 The design of a portable parallel frontal solver for highly

unsymmetric linear systems (J. A. Scott)

The row-by-row frontal method is often used for solving the large sparse systems of linear
equations that arise in large-scale chemical process simulation and optimization problems.
However, for modern computers, a major deficiency of the frontal method lies in its lack
of scope for parallelism other than that which can be obtained within the high-level BLAS
that are used in the innermost loop of the factorization. The multiple front algorithm
aims to overcome this shortcoming by partitioning the problem into a number of nearly
independent subproblems and then applying the frontal method to each subproblem in
parallel.

We have designed and developed a package MP43 that implements the multiple front
algorithm for unsymmetric linear systems that have been preordered to the singly bordered
block diagonal form (2.1). A partial LU decomposition is performed on each of the

submatrices

(A @) (2.5)

using the frontal method. MP43 performs these decompositions in parallel. As the rows
of (2.5) are assembled, n; variables become fully summed and may be eliminated. These
variables correspond to the columns of Ay; the k; nonzero columns of C; do not become
fully summed because they have entries in at least one other border block C; (5 #).
Because the Ay are, in general, rectangular, at the end of the assembly and elimination
operations, for each block there will remain a frontal matrix F; of order (m; — n;) X k.
The variables that remain in the front are the interface variables and the sum F of these
remaining frontal matrices is the interface matriz. MP43 also factorizes the k X k interface
matrix using the frontal method. Once F has been factorized, block forward eliminations

and back-substitutions are performed (in parallel) to complete the solution.

13

MP43 is similar in design to the HSL parallel frontal solvers MP42 and MP62, which
implement the multiple front approach for finite-element problems (Scott, 20015). MP43
is written in Fortran 90 and uses MPI for message passing. It may be used on shared
or distributed memory machines and may be run on a single processor or on up to N
processors, where N is the number of submatrices in the block diagonal form. The interface
is designed to be straightforward, with the user required to specify a minimum number of
parameters. Essentially, he or she needs only to provide the partitioning of the matrix into
submatrices and to input the matrix data in a suitable format. All allocation of workspace,
division of work between processors, and ordering of the rows of the submatrices for the
frontal solver is done automatically. However, for flexibility, control parameters allow
a number of options to be specified. For example, the matrix factors may optionally
be held in files, enabling large problems to be solved using relatively small amounts of
main memory. Additionally, the user may choose how to divide the submatrices between
processors and how to order the rows. The wide range of options are intended to make
the code suitable for those with minimal knowledge of the multiple front method and for
experts with specific requirements.

Experiments have been performed on a set of test problems and comparisons have been
made with the serial frontal solver MA42 and the well known general sparse direct solver
MA48. The MC66 implementation of the MONET algorithm (Hu, Maguire and Blake, 2000)
was used to preorder the matrices to the form (2.1); in each case the number of submatrices

was N = 8. In Table 2.3, wallclock timings (in seconds) for MP43 run on p = 1, 2, 4 and

Identifier Order MA42 MA48 MP43 (N = 8)
p=1 2 4 8

10cols 29496 3.64 16.54 1.92 1.05 1.83 0.62 3.10 0.43 4.47
bayer01 57735 8.70 6.52 4.78 2.67 1.79 1.74 2.75 1.05 4.42
icomp 75724 7.61 0.88 4.51 2.45 1.8} 1.66 2.72 0.96 4.70
1lhr34c 35152 13.56 24.20 15.82 852 1.86 500 3.16 3.69 4.29
lhr7ic 70304 32.86 51.26 35.01 18.92 1.85 10.26 3.41 7.10 4.98
pesa 11738 2.47 1.90 1.22 0.69 1.77 0.44 2.77 0.32 3.81
poli_large 15575 1.87 0.06 0.90 0.53 1.70 036 2.50 0.21 4.28
Zhao?2 33861 67.54 656.5 45.35 28.89 1.57 20.56 2.21 18.12 2.50

Table 2.3: Timings MP43. The numbers in italics are the speedups for MP43 compared with

using a single process.

8 processors of a 12 processor SGI Origin2000 are presented, together with timings for
MA42 and MA48 run on a single processor. The timings are for factorizing the matrix and
then solving for a single right-hand side. We see that, even on one processor, MP43 can

be competitive with the serial codes and, as the number of processors in increased, good

14

speedups are achieved. More detailed performance results are included in Scott (2001a).

References

Y.F. Hu, K.C.F. Maguire, and R.J. Blake. A multilevel unsymmetric matrix ordering
for parallel process simulation. Computers in Chemical Engineering, 23, 1631-1647,
2000.

J.A. Scott. The design of a portable parallel frontal solver for chemical process engineering

problems. Computers in Chemical Engineering, 25, 1699-1709, 2001 a.

J.A. Scott. A parallel solver for finite element applications. Inter. Journal on Numerical
Methods in Engineering, 50, 1131-1141, 20015b.

2.5 A multilevel wavefront and profile reduction algorithm

(J. A. Scott and Y. Hu)

If Gaussian elimination is applied to a symmetric positive-definite matrix A of order n,
all zeros between the first entry of a row and the diagonal usually fill in (this happens
if rows 2, 3, ..., n all have at least one entry to the left of the diagonal). Therefore,
the total number of entries in each triangular factor is the sum of the lengths of the rows
of the original matrix, where each length is counted from the first entry to the diagonal.
This sum is also known as the profile. The sum of the squares of the lengths gives the
wavefront.

A variety of methods have been proposed for choosing a permutation of the matrix
to reduce the profile and wavefront, including the well known Reverse Cuthill-McKee and
Sloan algorithms. More recently, spectral orderings based on the Fiedler vector of the
Laplacian matrix associated with a matrix have been developed. Kumfert and Pothen
(1997) proposed combining an enhanced version of Sloan’s algorithm with the spectral
ordering. The resulting hybrid algorithm has been shown to give significantly better
orderings for large problems than either the spectral method or the Sloan method alone.
Its main disadvantage is that it requires the Fiedler vector to be computed, adding a
considerable computational overhead. Our aim was to develop a profile reduction algorithm
that produces profiles that are comparable with those obtained using the hybrid algorithm
but at substantially less cost.

Motivated by the success of the multilevel approach in graph partitioning, we decided
to look at whether a similar approach could be employed for profile reduction. The idea
is to generate, given the adjacency graph of the matrix, a series of graphs, each coarser
than the preceding one. The coarsest graph is then ordered. This ordering is recursively

prolonged to the next finer graph, local refinement is performed at each level, and the final

15

ordering on the finest graph gives an ordering for A. A full description of our multilevel
algorithm is given by Hu and Scott (2001).

T
Hybrid —+—
Sloan ---x---

1.4 Sloan(MIV,2) ---%--- A

Sloan(MIV,3) &

Sloan(MIV,4) —-m-~
Sloan(MIV,5) ---&---
Sloan(MIV,infinity) ----e---

1.3 + /,><"/‘ E

12 | i

RMS wavefront size (relative to Hybrid)

B % »
,,,,,,,,,,,,,,,,,,,, e
PR * .]
& o =) - .
. e i
D . I S
f A - -

Il Il Il Il Il
>37(101) >111(97) >333(88) >1K (72) >3K (44) >9K (32) >27K (19) >81K (9)
matrix order (number of matrices)

Figure 2.2: A comparison of the RMS wavefronts for the Sloan, the Hybrid and the
Sloan(M1V, K) algorithms.

Numerical experiments have been performed on a suite of 101 test problems, ranging in
order from n = 66 to 224,617. The experiments were carried out on a Compaq computer
with a 300 MHz Alpha EV5 processor, using the DIGITAL Fortran 90 V5.2 compiler. Full
details of the test problems and numerical results are provided by Hu and Scott (2000) and
Hu and Scott (2001). Figure 2.2 compares the RMS (root-mean-squared) wavefront for
the Sloan and the hybrid algorithms with Sloan(M1V, K). Here Sloan(M 1V, K) denotes
our multilevel algorithm that combines Sloan’s algorithm on the coarsest graph together
with a maximal independent vertex (MIV) set coarsening strategy on up to K levels.
Comparisons are given with respect to the hybrid algorithm so that the RMS wavefront
for each algorithm is divided by the corresponding RMS wavefront for the hybrid algorithm,
and geometrically averaged over the test cases to give a relative score for the algorithm. To
show the effect of matrix order, the scores for each algorithm for matrices of order greater
than 37 x 3¥(1 < k < 8) are plotted separately, with the number of matrices over the
threshold printed in brackets. A log scale is used for the z axis (matrix order n).

We observe that, relative to the hybrid algorithm, the RMS wavefront given by the Sloan
algorithm deteriorates as n increases. However, as K increases, the multilevel orderings
improve. In particular, the multilevel algorithm without a preset maximum number of
levels, Sloan(MIV,c0), produces orderings of comparable quality (within 3.5%) to the
hybrid algorithm and, in terms of CPU time (Figure 2.3), is substantially faster. Since

16

1.6

Hybrid —— |
Sloan ---%---
Sloan(MIV,2) ---%---
1.4 Sloan(MIV,3) & E
Sloan(MIV,4) —-m-
Sloan(MIV,5) ---&--
Sloan(MIV,infinity) ----e---
12 | 4
)
S
I 1r
]
Q
=
g o8 |
g
@
£
S o6 |
o
° 5 —]
S = o s . St S
0.4 - Q"'"-:T-‘TT%,TT?T;:‘jff SO - AENRNRIREE S X |
,,,,,,,, X
7777777777777777777777777 [v—
02" N U - x |
0 Il Il Il Il Il Il Il Il
>37 (101) >111(97) >333(88) >1K (72) >3K (44) >0K (32) >27K(19) >81K (9)

matrix order (number of matrices)

Figure 2.3: A comparison of the CPU times for the Sloan, the Hybrid and the
Sloan(M IV, K) algorithms.

Sloan(M IV, 00) is generally no more expensive in terms of CPU time than Sloan(M IV, K)
with K’ > 2 and it produces the smallest RMS wavefronts, we recommend not imposing a
maximum number of levels on the multilevel algorithm.

Thus, through our multilevel Sloan algorithm, we have achieved our goal of developing
a combinatorial algorithm for wavefront and profile reduction that performs as well as the

hybrid algorithm in significantly less time.

References

G. Kumfert and A. Pothen. Two improved algorithms for envelope and wavefront
reduction. BIT, 18, 559-590, 1997.

Y.F. Hu and J.A. Scott, A multilevel algorithm for wavefront reduction. Technical Report
RAL-TR-2000-031, Rutherford Appleton Laboratory, Oxfordshire, 2000.

Y.F. Hu and J.A. Scott, A multilevel algorithm for wavefront reduction. SIAM J. Scientific
Computing, 23, 1352-1375, 2001.

2.6 Implementing Hager’s exchange methods for matrix profile

reduction (J. K. Reid and J. A. Scott)

As we discussed in Section 2.5, a variety of methods have been developed for computing a

permutation of a symmetric matrix to reduce its profile. Recently, Hager (2000) introduced

17

two methods for improving any given permutation for profile reduction. His down exchange
algorithm involves a cyclic permutation, that is, the successive exchange of rows (k, k+1),
(k+1,k+2),...,(l—1,1) of the permuted matrix and interchanging the corresponding
columns. For a given k, Hager finds the value of [that most reduces the profile. He
performs a pass over the matrix with k taking the values n —1, n—2, ..., 1; he calculates

[for each k and, if this gives a profile reduction, applies the corresponding permutation.

Hager’s up exchange is similar, with the direction reversed. For a given k, he exchanges
rows and columns (k,k — 1), (k — 1,k — 2),...,(l + 1,1), finding the value of [that most
reduces the profile. He performs a pass over the matrix with k taking the values 2, 3, ... |

n.

Hager proposes using the down exchange and up exchange schemes in an iterative
fashion: the down exchange algorithm is first applied, followed by the up exchange

algorithm, followed by the down exchange algorithm, and so on.

In many practical applications, it is important that reordering the matrix to reduce the
profile is done as quickly and efficiently as possible. If a large number of matrices having
the same sparsity pattern are to be factorized or if storage restrictions require the smallest
possible profile, it may be worthwhile to spend a relatively large amount of time computing
a permutation that minimizes the profile. However, if the matrix needs to be factorized
only once, the cost of reducing the profile must be compared with that required for the
matrix factorization; in such circumstances, a slightly larger profile may be acceptable if it
can be computed cheaply. Hager presents timings for his exchange algorithms that show
they are expensive to run compared with algorithms such as the Sloan algorithm that
are used to produce the initial reordering. Hager also reports that, in general, he found
the down exchange algorithm to be significantly faster than the up exchange algorithm
(typically by a factor of between 4 and 10). We have considered carefully how the exchange
algorithms should be implemented. In particular, we have been able to implement the up
exchange algorithm so that it runs much faster than Hager reported. Full details of our

implementation of the exchange algorithms are given by Reid and Scott (2001).

In Table 2.4, we present the normalised profiles and CPU times for applying the
exchange algorithms to the orderings obtained using the HSL profile reduction code MC60
(MC60 implements an enhanced version of the Sloan algorithm). The test examples are
taken from the set used by Kumfert and Pothen (1997). The CPU timings are for a Compaq
DS20, using the Compaq Fortran 90 compiler V5.4A-1472 with the -O option. Results are
given for a single application of Hager down/up, for repeating the down/up exchanges 5
times, and for repeating the down/up exchanges without limit until there is no further
reduction in the profile. The greatest reductions result from the first application of the
exchange algorithm, although for a number of problems, including ford2 and tandem _dual,

useful further reductions are achieved by repeatedly applying the exchange algorithm.

18

Identifier MC60 +Hager +Hager +Hager
down/up (1) down/up (5) down/up (inf.)
Profile Time Profile Time Profile Time Profile Time

barthb 91.8 0.10 85.4 0.08 84.9 0.22 82.7 0.94
commanche dual 42.3.2 0.03 39.6 0.02 39.3 0.09 39.1 0.18
copter? 685.2 0.60 653.7 0.70 650.9 1.88 650.0 7.72
fordi 126.3 0.09 105.5 0.14 99.9 0.36 97.5 1.41
ford2 4079 0.71 349.3 2.71 334.2 5.14 3289 15.31
nasasrb 346.0 1.29 3443 0.55 3443 2.80 3443 2.80
onera _dual 1025.2 0.65 955.0 3.39 933.7 6.62 910.0 28.13
pds10 559.0 0.13 536.6 0.10 535.5 0.35 535.0 0.48
skirt 808.0 1.28 807.8 0.56 807.9 1.69 807.9 1.69
tandem dual 701.3 0.66 650.1 2.11 626.2 490 611.0 17.34

Table 2.4: Normalised profiles and CPU times for MC60 and for applying the Hager
exchange algorithm to the MC60 orderings. The numbers in parentheses are the number of

times the down/up exchange algorithms are applied; inf. indicates no limit.

For a number of problems, the cost of a single application of the exchange algorithms
is significantly greater than the initial MC60 ordering cost but, because of our efficient
implementation of the Hager up exchanges, we feel that most users would be unlikely to
find this cost prohibitive.

Based on our findings, we plan to include our codes in HSL as routine MC67. MC67 will
allow the user to apply the Hager down/up exchanges to any given ordering; in particular,
the user interface will be designed so that it will be straightforward for the user to run the
exchange algorithms to refine the ordering produced by the HSL code MC60. The limit on

the number of iterations will be a parameter under the user’s control.

References

W.W. Hager. Minimizing the profile of a matriz. Department of Mathematics, University
of Florida (www.math.ufl.edu/~hager/), 2000. To appear in SIAM J. Scientific
Computing.

G. Kumfert and A. Pothen. Two improved algorithms for envelope and wavefront

reduction. BIT, 18, 559-590, 1997.

J.K. Reid and J.A. Scott. Implementing Hager’s exchange methods for matrix profile
reduction. Technical Report RAL-TR-2001-039, Rutherford Appleton Laboratory,
Oxfordshire, 2001.

19

2.7 A new symmetric indefinite sparse multifrontal solver

(I. S. Duff)

There is a long history of sparse symmetric codes in HSL. The code MA17 was written by
Curtis and Reid (1971) and used an entry-tracking code implemented using linked lists.
Only 1 x 1 pivots were used so that the factorization could fail on indefinite systems. It
would continue if the pivots changed sign or were very small and would only terminate
with failure if a zero pivot was encountered.

Duff and Reid (1982) used pivots of order 1 and 2 in MA27 which was the first code
in a software library to use the multifrontal technique. MA27 was widely used by the

numerical optimization community and, for constrained problems, was often employed on

H A
(12) a0

so, in 1993, Duff and Reid developed another multifrontal code MA47 (Duff and Reid,

an augmented system of the form

0
1995) that used structured pivots of the form < 8 : or :) and used data
X X

structures to preserve the block structure during the factorization. At the same time,
several improvements were made to the implementation including the use of Level 3 BLAS
and the avoidance of COMMON blocks. However, although there were some notable
successes with this code (see Duff and Reid, 1996), the complexity often meant that it
performed worse than MA27, sometimes even on matrices of the form (2.6) for which it was
designed. Thus it never did replace or supersede MA27 in HSL.

One of the main reasons for the decision to develop MA57 was to keep to the relative
simplicity of the MA27 algorithm but provide a code with a better user interface, that was
threadsafe, and that uses higher level BLAS in both factorization and solve phases. In
addition, there were several new features that had been often requested by users of MA27
that we have added to the new code.

Some of these new features of MA57 include:

In the analysis phase:

1. Use of approximate minimum degree (Amestoy, Davis and Duff, 1996) instead of
minimum degree with a version that is efficient even if the input matrix has some

dense rows.
In the factorization phase:

1. Use of drop tolerances. Entries smaller than a predefined value are dropped from the

factorization.

20

2. A range of pivoting options.
e Numerical pivoting using the Bunch, Kaufman, Parlett decomposition (Bunch,
Kaufman and Parlett, 1976) with threshold pivoting
e 1 x 1 pivoting only, and error return if matrix is discovered to be non-definite
e 1 x 1 pivoting, and only exit if zero pivot is found

e 1 x 1 pivoting only but, if matrix is not definite, then modify pivots dynamically
using a variant of the Schnabel-Eskow scheme (Eskow and Schnabel, 1991) to

obtain a factorization of a bounded diagonal perturbation of the matrix.

3. The ability to restart the computation from where it stops if it runs out of storage. It
is also possible to discard the factors to provide more space so that the factorization
can continue and provide accurate information on the space required for a subsequent

factorization of the same matrix.
4. The option to return the pivots to the user and to alter them if desired.
In the solve phase:

1. A range of entries for error analysis and iterative refinement. This can either be

automatic, using the strategy of Arioli, Demmel and Duff (1989) with either

e No estimate of solution provided

or

¢ Estimate of solution provided

or can be left more to the control of the user when only one step of iterative refinement

is performed on each call. There are five possible options.

e Solve and return residual

e Solve, return residual, and perform one iterative correction

Estimate of solution provided. Compute residual and perform one iterative

correction

Estimate of solution and residual provided. Perform one iterative correction

Estimate of solution and residual provided. Perform one iterative correction

and return correction and new residual
2. The solution of multiple right-hand sides using Level 3 BLAS.

21

3. If the factorization is written as
A = PLDLTPT

then a partial solution facility offering the solution of equations with coefficient matrix

A, PLPT, PDPT, or PLTPT.

We show some performance statistics of our new code in Section 5.3 of this report.

References

P. R. Amestoy, T. A. Davis, and I. S. Duff. An approximate minimum degree ordering
algorithm. SIAM J. Matriz Analysis and Applications, 17(4), 886-905, 1996.

M. Arioli, J. W. Demmel, and I. S. Duff. Solving sparse linear systems with sparse backward
error. SIAM J. Matriz Analysis and Applications, 10, 165-190, 1989.

J. R. Bunch, L. Kaufman, and B. N. Parlett. Decomposition of a symmetric matrix.
Numerische Mathematik, 27, 95-110, 1976.

A. R. Curtis and J. K. Reid. Fortran subroutines for the solution of sparse sets of linear
equations. Technical Report AERE R 6844, Her Majesty’s Stationery Office, London,
1971.

[. S. Duff and J. K. Reid. MA27 — A set of Fortran subroutines for solving sparse symmetric
sets of linear equations. Technical Report AERE R10533, Her Majesty’s Stationery
Office, London, 1982.

I. S. Duff and J. K. Reid. MAA47, a Fortran code for direct solution of indefinite sparse
symmetric linear systems. Technical Report RAL 95-001, Rutherford Appleton
Laboratory, Oxfordshire, England, 1995.

I. S. Duff and J. K. Reid. Exploiting zeros on the diagonal in the direct solution of indefinite
sparse symmetric linear systems. ACM Trans. Math. Softw., 22(2), 227-257, 1996.

E. Eskow and R. B. Schnabel. Algorithm 695: Software for a new modified Cholesky
factorization. ACM Trans. Math. Softw., 17, 306-312, 1991.

22

3 Other numerical linear algebra

3.1 The Sparse BLAS (I. S. Duff, M. Heroux, R. Pozo, and C.
Vomel)

The effort by the BLAS Technical Forum to produce an updated version of the Basic
Linear Algebra Subprograms continued for many years and it was with some relief that
everything came to a conclusion in 2001. The standard itself (BLAS Technical Forum,
2001) should be appearing in two parts in the International Journal of High Performance
Computing Applications and an article on the standard (Blackford, Demmel, Dongarra,
Duff, Hammarling, Henry, Heroux, Kaufman, Lumsdaine, Petitet, Pozo, Remington and
Whaley, 2002) has been submitted to ACM Transactions on Mathematical Software. Major
extensions to the earlier BLAS include added functionality, mixed precision BLAS, and
sparse BLAS.

We have played a major part in the design of Basic Linear Algebra Subprograms
for Level 2 and Level 3 kernels for sparse matrices. It is envisaged that
these kernels will be widely used in the solution of sparse equations by iterative
methods. Some time ago, we wrote a paper on User Level codes (Duff, Marrone,
Radicati and Vittoli, 1997) and ideas from this paper influenced the design of
the kernels within the sparse BLAS developed by the BLAS Technical forum
(http://www.netlib.org/cgi-bin/checkout/blast/blast.pl). Recent work included
a radical redesign of the sparse BLAS to avoid explicit specification of the sparse data
structures. A key part of this design is the idea of matrix handles so that the user need
not be concerned with the details of the storage schemes for the sparse matrix. This design
makes it easy to add further functionality to the sparse BLAS in the future.

We illustrate, in our report (Duff, Heroux and Pozo, 2001), the use of the Sparse
BLAS with examples in the three supported programming languages, Fortran 95, Fortran
77, and C. In collaboration with a PhD student, Christof Vomel, and some stagiaires at
CERFACS, we have developed the Fortran 95 instantiation of the sparse BLAS for the
BLAS Technical forum project. The Fortran 95 implementation is described in the report
by Duff and V6mel (2001).

References

S. Blackford, J. Demmel, J. Dongarra, I. Duff, S. Hammarling, G. Henry, M. Heroux,
L. Kaufman, A. Lumsdaine, A. Petitet, R. Pozo, K. Remington, and R. C. Whaley.
An updated set of basic linear algebra subprograms (BLAS). Submitted to TOMS,
2002.

23

[. S. Duff and C. Vomel. The implementation of the Sparse BLAS in Fortran 95. Technical
Report TR/PA/01/27, CERFACS, Toulouse, France, 2000.

I. S. Duff, M. A. Heroux, and R. Pozo. The Sparse BLAS. Technical Report RAL-TR-
2001-032, Rutherford Appleton Laboratory, Oxfordshire, 2001.

I. S. Duff, M. Marrone, G. Radicati, and C. Vittoli. Level 3 Basic Linear Algebra
Subprograms for sparse matrices: a user level interface. ACM Trans. Math. Softw.,
23(3), 379-401, 1997.

BLAS Technical Forum. Basic Linear Algebra Technical (BLAST) Forum Standard. Int.
J. High Performance Computing Applications, 15 (6), 2001.

3.2 A parallel version of MA48 for unsymmetric linear systems

(I. S. Duff and J. A. Scott)

In Section 2.4, we discussed the design of a parallel frontal solver MP43 for unsymmetric
linear systems. MP43 required the system matrix A to be preordered to the singly bordered
block diagonal form (2.1); a frontal algorithm was then used to form the partial LU
decomposition of each block submatrix in parallel. Clearly, it is possible to use other
direct solvers in place of the frontal solver. In particular, our interest is in using the HSL
general purpose sparse direct solver MA48.

MA48 uses a sparse variant of Gaussian elimination to compute a decomposition of A
into its LU factors. It employs pivoting to preserve sparsity in the factors and controls
numerical stability using a threshold criterion. Numerical experimentation has shown MA48
to be ideally suited to solving problems that are highly unsymmetric and very sparse;
it is frequently used for solving the large sparse systems that arise in chemical process
engineering problems. It is also very efficient when there is a need to solve repeatedly for
different right-hand sides.

The heart of MA48 lies in a separate package called MA50. MA48 (optionally) permutes
A to block triangular form; MA50 then factorizes each block separately. MA50 may also
be called directly by the user, but offers a less convenient interface and performs no error
checking. MA50 (and MA48) may be used on rectangular systems.

Our aim is to develop a parallel solver in which a variant of MA50 is used to partially
factorize the submatrices (A, C;) of the partitioned matrix (2.1); MA48 will be used to
factorize the interface matrix that remains once the submatrix factorizations are complete.
Our new solver is called MP48. MP48 adopts many of the design principles used by the HSL
parallel frontal solvers MP42, MP43, and MP62. For portability, MP48 is written in Fortran

90 and uses MPI for message passing. Like the parallel frontal solvers, it may be used on

24

shared or distributed memory machines and may be run on a single process or on up to N
processes, where N is the number of submatrices in the block diagonal form.

A weakness of the serial code MA48 is that the matrix A and its factors are held in
main memory; this limits the size of problem that can be solved. To circumvent this,
MP48 allows the matrix data to be “shared” between the processes, with each process only
requiring access to the submatrices assigned to it. Furthermore, at the end of the submatrix
factorization, the user may optionally choose to write the matrix factors to unformatted
sequential files. This potentially increases the size of problem that can be solved, although
using files for the factors can, in some computing environments, add a significant overhead
and so should be avoided if there is sufficient main memory for the factors.

Preliminary results obtained for MP48 on a 12-processor SGI Origin2000 are
encouraging. In Table 3.1, wallclock timings (in seconds) for MP48 run on p = 1, 2,
and 4 processors are presented, together with timings for MA48 run on a single processor.
The timings are for factorizing the matrix and then solving for a single right-hand side. We
emphasise that the code is not yet finished but, nevertheless, good speedups are achieved
and, for some problems, MP48 is faster than MA48 on a single processor. Further tests are

currently underway and we plan to make MP48 available in the next release of HSL.

Identifier Order MA48 MP48 (N = 8)
p=1 2 4

4cols 11770 2.34 0.70 0.45 0.31
10cols 29496 16.54 2.70 1.50 0.93
bayer01 57735 6.52 4.09 2.89 1.47
icomp 75724 0.88 1.61 1.04 0.76
lhr34c 35152 24.20 33.40 18.94 11.18
1hr7ic 70304 51.26 72.05 39.53 26.19

Table 3.1: Timings for MP48 for chemical process engineering test problems.

3.3 Solving symmetric sparse systems of linear equations with
zeros on the diagonal (J. K. Reid)

We consider the direct solution of sparse symmetric sets of n linear equations
Ax =D,

when the matrix A is symmetric and has a significant number of zero diagonal entries.
An example of applications in which such linear systems arise is the equality-constrained
least-squares problem

miny||Bx — c||2

25

subject to
Cx =d.

This is equivalent to solving the sparse symmetric linear system

I B r c
0 C Al=1]d
BT CT o X 0

To take good advantage of the sparsity, we use block pivots of the forms

0 A1 0 Al
and ,
AT A, AT o0

which we call ‘tile’ and ‘oxo’ pivots, as well as ordinary block pivots that are treated as

full even if they have some zeros. These lead to Schur complements of the form

0 B, B;
szl‘ B; B,
BT BT 0

that have to be added to the reduced matrix. The zero blocks may be large, which is why
these kinds of pivots may be advantageous.

We have written a new HSL code MA67 that holds the matrix by blocks. It starts
by identifying columns of A with the same structure, and groups the corresponding
variables into supervariables. It then stores a copy of the matrix by blocks corresponding
to supervariables. Zero blocks are not stored and only one copy of each off-diagonal block
is held.

Each block pivot is chosen using the Markowitz criterion (see Duff and Reid, 1996),
based on the block sparsity pattern and the sizes of the blocks and a temporary copy of
the block row or rows is made. We refer to this copy as the ‘front’. For a full block pivot,

it is a full rectangular matrix. For an oxo pivot, it has the form

0 A; As; A O
AT 0 0 A; Ag

and for a tile pivot, it has the form

0 A; Ag O
AT A, A; Ag)
For a full block pivot, as many simple 1 X 1 pivots and full 2 x 2 pivots are chosen as the

stability criterion in Section 2.3 of Duff and Reid (1996) allows and the front is revised.

Similarly, for a block oxo or tile pivot, as many simple oxo or tile pivots as the stability

26

criterion permits are chosen and the front is revised. In all cases, the Schur complement
is formed and added back into the main data structure, which may need to be enlarged
to accommodate fill-in blocks. The chosen pivots rows are stored for the solution phase.
Any rows of the pivot block that are not chosen as pivots are returned to the main data
structure and are not considered again as potential pivots until modified by a later Schur
complement. If any set of the supervariables involved in the front now have identical
column structures, they are merged into a new bigger supervariable. With the aim of
efficiency, Level 3 BLAS are used for the operations of forming the Schur complement.

The HSL code MA47 uses the same kinds of block pivots, but has a separate analysis
phase that works with the sparsity pattern alone and constructs an assembly tree to
represent the factorization. Numerical factorization is performed separately using this tree.
If the stability criterion disallows the use of a pivot or part of a pivot, the uneliminated
part is passed to the parent node. The hope was that the volume of such passes would be
small, but unfortunately we found that the uneliminated parts may be passed up through
many levels of the tree and become so voluminous that much more work is performed than
was anticipated during the analysis phase. The intention of MA67 is to avoid these problems
by merging the phases and having the actual numerical values to hand when choosing the
pivots. After the rejection of pivots on stability grounds, the later choices of pivot take
into account the actual sparsity pattern that is a consequence of the rejections.

We have run preliminary tests on about 15 genuine test cases, which have shown that
further tuning of the code is needed. The current version often shows performance broadly
comparable with MA47, but in several cases it was about three times faster and in one case
it was 2.5 times slower. When compared with the new HSL code MA57 (see Section 2.7),
which does not use tile or oxo pivots, it was usually significantly slower, though in one case

it was about twice as fast.

References

I. S. Duff and J. K. Reid. Exploiting zeros on the diagonal in the direct solution of indefinite
sparse symmetric linear systems. ACM Trans. Math. Softw., 22(2), 227-257, 1996.

3.4 Solving unsymmetric banded systems of linear equations

(J. K. Reid)

Consider the solution of an unsymmetric banded system of n linear equations
Ax =D

where A is an unsymmetric band matrix with lower semibandwidth k! and upper
semibandwidth ku, that is, a;; = 0 for 7+ > 7 + kl or j > 4 + ku. If the matrix

27

is factorized using Gaussian elimination with row interchanges, fill-in is limited to kl
additional diagonals of the upper triangle and the computation may be performed within

an array of size n(2kl + ku + 1)

Conventionally, codes do not take advantage of any zeros within the original structure.
This is the case, for example, for the LAPACK code _GBTRF, though this does take account
of zeros at the end of the pivot row beyond the original limit if the interchanges are such

that they could not have caused fill-in.

Irregularities in the underlying geometry are likely to lead to many zeros within the
structure at the ends of the rows and the ends of the columns. We have written an HSL
code MA65 that takes advantage of this. At each pivotal step, operations are avoided on
any row with a zero in the pivot column and on any column beyond the last with an entry

in the pivot row.

We were motivated by the experience of a potential customer of our most commercially
successful sparse matrix solver MA48 who wanted to solve a large number of sparse systems
of quite modest order and reported that MA48 ‘is significantly slower than our own dedicated
solver for our test cases (typically by a factor 3 or 4)’. We thought perhaps that a band
solver might be applied after the matrix had been reordered for a small bandwidth, but

found that this was no better than MA48 because it was doing many operations on zeros.

We require the user of MA65 to supply arrays ROWEND and COLEND of size n holding the
indices of the last entries of the rows and columns. To simplify the logic, we always regard
the diagonal as nonzero even if it contains some zeros. To simplify the row exchanges,
we start by increasing COLEND(j) to max(COLEND(1 : j), 7 = 1,2,...,n), that is, making
COLEND monotonic. Corresponding explicit zeros are set in the array A that holds the

matrix. This ensures that all entries of each row from the first to the last are held explicitly.

Each pivot is found by searching the pivot column for its largest entry and exchanging
its row with the pivot row. For pivot j, the search can be confined to rows j to COLEND(j).
When rows are exchanged, the corresponding components of ROWEND must be exchanged.
This may cause the non-pivot row to end ahead of its diagonal. In this case, we insert

zeros explicitly as far as the diagonal and adjust ROWEND.

An example of the performance of MA65 is provided by one of the cases supplied by
our potential customer. This had order 208. After ordering by MC61 the semi-bandwidths
were both 19 and after ordering by MC62 they were 8 and 42. The actual time taken by
MA65 an a DEC Alpha machine with default optimization was 0.00023 and 0.00016 seconds,
respectively, whereas the factorize call of MA48 took 0.00059 seconds. Thus we achieve the
goal of providing a general purpose code with comparable performance to the potential

customer’s special purpose dedicated code.

28

3.5 Use of orderings for large entries on the diagonal (I. S. Duff
and J. Koster)

We have continued the development of several algorithms based on bipartite weighted
matching algorithms for permuting a matrix so that the entries on the diagonal of the
permuted matrix are large relative to the off-diagonal entries. We have also implemented
a scaling with one of the options which gives a unit diagonal with no off-diagonal entries
larger than one. This work is based on earlier work reported in Duff and Koster (1999)
and is described in detail in Duff and Koster (2001). A highly efficient Fortran code MC64
has been written to implement this algorithm and is included in HSL. The algorithm and
code have been used extensively over this reporting period by many people in the solution
of large sparse systems of equations and in preconditioning techniques for sparse matrices.

The routine can be very helpful when factorizing very unsymmetric systems, as has
been our own experience with MA41 and MUMPS (Amestoy et al., 2001). It has also proved
to be almost a necessary preprocessor for algorithms that use static pivoting strategies
as in SuperLU (Li and Demmel, 1999). More recently, Gupta (2001) has reaffirmed the
importance of such a permutation in his work on sparse direct solvers and Benzi and
his colleagues (Benzi, Haws and Tuma, 2000) have found that it is absolutely necessary
to use MC64 if preconditioning techniques are to be successful on highly indefinite and

nonsymmetric matrices.

References

P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent. A fully asynchronous
multifrontal solver using distributed dynamic scheduling. SIAM J. Matriz Analysis
and Applications, 23(1), 15-41, 2001.

M. Benzi, J. C. Haws, and M. Tuma. Preconditioning highly indefinite and nonsymmetric
matrices. SIAM J. Scientific Computing, 22(4), 1333-1353, 2000.

I. S. Duff and J. Koster. The design and use of algorithms for permuting large entries to the
diagonal of sparse matrices. SIAM J. Matriz Analysis and Applications, 20(4), 889—
901, 1999.

I. S. Duff and J. Koster. On algorithms for permuting large entries to the diagonal of a
sparse matrix. STAM J. Matriz Analysis and Applications, 22(4), 973-996, 2001.

A. Gupta. Improved symbolic and numerical factorization algorithms for unsymmetric
sparse matrices. Technical Report RC 22137 (99131), IBM T.J. Watson Research
Center, Yorktown Heights, NY, August 2001.

29

X. S. Li and J. W. Demmel. A scalable sparse direct solver using static pivoting. n
‘Proceedings of the Ninth SIAM Conference on Parallel Processing for Scientific
Computing’, San Antonio, Texas, March 22-24 1999.

3.6 A stopping criterion for the conjugate gradient algorithm in
a finite element method framework (M. Arioli)

Arioli (2000) combined linear algebra techniques with finite-element techniques to obtain

a reliable stopping criterion for the conjugate gradient algorithm. Although the conjugate

gradient method is very effective for solving finite-element equations, our experiments give

very good evidence that the usual stopping criterion based on the Euclidean norm of the

residual b — Ax can be totally unsatisfactory and frequently misleading.

When using an iterative method for solving the linear system
Au=b> (3.1)

where A € RM*Y is symmetric and positive-definite and b € RY, we normally incorporate
a stopping criterion based on the a posteriori componentwise or normwise backward errors
(Arioli, Duff and Ruiz, 1992, Higham, 1996). If we use the conjugate gradient method,
it is quite natural to have a stopping criterion that takes advantage of the minimization
property of this method. At each step k, the conjugate gradient method minimizes the

energy norm of the error Ju = u — u® on a Krylov space K, (Greenbaum, 1997):

min duTAdu.
ulk) efC

The space RY with the norm
Iylla = (yTAy)"/?

induces on its dual space the dual norm
[flla—s = (FTAT)2
Therefore, a u® that satisfies a stopping criterion of the form
IF ||Au®™ —b||ls-1 <7||bl|a-: THEN STOP , (3.2)

where 17 < 1 is a threshold parameter set by the user, is the solution of the perturbed linear

system

[t ®][a= < nlblla-.

(Arioli, Noulard and Russo, 2001).

The choice of 7 will depend on the properties of the problem that we want to solve,
and, in practice, 1 can be frequently much larger than ¢ , the roundoff unit of the computer
finite-precision arithmetic. When (3.1) is a linear system obtained from the finite-element
approximation of a partial differential equation, a reasonable choice for n would be n = h

or n = h?, where h = max diameter(7T") with 7;, a set of disjoint triangles {7} which covers
€7n

the domain © where the partial differential equation is defined (see Arioli (2000) for a
detailed analysis).

First of all we need to add, within the conjugate gradient algorithm, some tool for
estimating the value eff) = r®WTA-1r(®) at each step k. This can be achieved using a
Gauss quadrature rule as proposed by Golub and Meurant (1997).

In particular, this variant of the conjugate gradient produces a lower bound &, for eff).
As suggested by Golub and Meurant (1997) and Meurant (1999), the Gauss quadrature
based lower bound can be made reasonably close to the value of ef,f) at the price of d
additional steps of the conjugate gradient algorithm. Therefore, & will be the estimate of
efffd). In Golub and Meurant (1997), d = 10 is indicated as a successful compromise, and

numerical experiments support this conclusion.

Finally, we must estimate bT A~'b. Taking into account that

lIblla-s — [[u®|a | < /€Y,

we could replace ||b||s 1+ with [[u®||5 at step k if the current estimate & is less than or

equal to n?’bTb. Therefore, we can only use (3.2) after an additional check:

IF & <nl|bll. THEN
IF /& <nl|u®|s THEN STOP (3.3)
ENDIF

Moreover, using (3.3) we can avoid too many additional matrix-vector products.

Introducing a preconditioner to speed up the convergence rate of the conjugate gradient
method, we do not need to update the previous technique for the evaluation of eff).

We defined an elliptic problem with discontinuous coeflicients on an L-shaped domain.
We generated a mesh in which the largest triangle has an area of 5 x 107°; the resulting
linear system (3.1) has 34385 degrees of freedom. The symmetric and positive-definite
matrix A has an estimated condition number x(A) = |[|A||z||A7!|]2 ~ 10'° In the
preconditioned conjugate gradient algorithm, we chose n? = 5x 10>, the area of the largest
triangle. We used two preconditioners: the classical Jacobi diagonal matrix, M = diag(A),
and the incomplete Cholesky decomposition of A with zero fill-in (Greenbaum 1997).

0)

Finally, we chose u” = 0, and we assumed that the solution u computed by a direct

solver applied to (3.1) is exact.

31

The stopping criteria normally used are based on the values of ||[Au® — b||5/||b|2
and ||[Au® — b||o/(||All2][u®]|5 + ||b||2), (Arioli et al., 1992). In practice, the conjugate
gradient algorithm is stopped when ||[Au® — b||y/||b||2 < VE.

In Figures 3.4 and 3.5, we compare the behaviour of |[u — u®||5/|[ulla = [|[Au® —
b||a-1/||b||a-1, with the corresponding estimate &, and the values of ||Au® — b||,/||b]|
and [|Au® — bl|o/(||A]]2|[u®®]|2 + ||b|l2), for the Jacobi and the incomplete Cholesky
decomposition preconditioners, respectively.

For our test problem, both criteria based on the Euclidean norm of the residual
give misleading information about the iterative process. Moreover, the final true error

fu—u®

2/|[u]]2 & 107° for both the preconditioners.
Finally, the estimate of the energy norm stops before the final iteration because we

chose d = 10 in the algorithm.

T T

PETETNATN
llA u=bll, /ibll,

10° F Estimate || du ||, / ||ull

1A u=bll, / (1AL llull, + lIbll,)

T

L

Residual norms
=
o
T
1

10’ 1 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180 200
Iterations

Figure 3.4: Behaviour of the norms of the residual for the Jacobi preconditioner.

References

M. Arioli. A stopping criterion for the conjugate gradient algorithm in a finite element
method framework. Technical Report Tech. Report IAN-1179, TAN, 2000.

M. Arioli, I. S. Duff, and D. Ruiz. Stopping criteria for iterative solvers. SIAM J. Matriz
Anal. Appl., 13(1), 138-144, 1992.

M. Arioli, E. Noulard, and A. Russo. Stopping criteria for iterative methods: Applications
to PDE’s. CALCOLO, 38, 97-112, 2001.

32

bkt

s Sully/lull,
10° L IIA u=bil, /lbll, 1
Estimate || Su [l / llull,

o llau=nbll, /(AL llull, + 11bll,)

Residual norms

+

+r +
10| AT e e
107 et - i + bR

+4#AjﬂthF+++++++ .
+

10 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80

Iterations

Figure 3.5: Behaviour of the norms of the residual for the incomplete Cholesky

preconditioner.

G. H. Golub and G. Meurant. Matrices, moments and quadrature ii; how to compute the
norm of the error in iterative methods. BIT, 37, 687-705, 1997.

A. Greenbaum. Iterative Methods for Solving Linear Systems. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 1997.

N. J. Higham. Accuracy and Stability of Numerical Algorithms. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 1996.

G. Meurant. Numerical experiments in computing bounds for the norm of the error in the
preconditioned conjugate gradient algorithm. Numerical Algorithms, 22, 353-365,
1999.

3.7 Robust preconditioning of dense problems from

electromagnetics (B. Carpentieri, I. S. Duff and L. Giraud)

In recent years, there has been a significant amount of work on the simulation of
electromagnetic wave propagation phenomena, addressing various topics ranging from
radar cross section to electromagnetic compatibility, to absorbing materials, and antenna
design. To address these problems the Maxwell equations are often solved in the frequency
domain leading to singular integral equations of the first kind. The discretization by the

boundary element method (BEM) results in linear systems with dense complex matrices

33

which are very challenging to solve. In this project we propose preconditioning strategies
for the iterative solution of these systems. In our first study (Carpentieri, Duff and
Giraud, 2000b), we compare different preconditioners of both implicit and explicit form
in connection with Krylov methods. We emphasize in particular sparse approximate
inverse techniques based on Frobenius norm minimization that use a static nonzero pattern
selection. The novelty of our approach comes from using a different nonzero pattern
selection for the original matrix from that for the preconditioner and from exploiting
geometric or topological information from the underlying meshes instead of using methods
based on the magnitude of the entries. An extract from this work was published in
a conference proceedings (Carpentieri, Duff and L.Giraud, 2000a). The results of our
numerical experiments suggest that the new strategies are viable approaches for the
solution of large-scale electromagnetic problems using preconditioned Krylov methods.
In particular, our strategies are applicable when fast multipole techniques are used
for the matrix-vector product on parallel distributed memory computers (see Section
3.7.1). A paper (Carpentieri, Duff and Giraud, 2000c) related to this research has
been accepted for publication. We are currently testing the numerical scalability of our
preconditioner on large problems in collaboration with AEDS, implemented in its FMM
code. In a second project (Carpentieri, Duff, Giraud and monga Made, 2001), we consider
implicit preconditioners based on incomplete factorization algorithms. Imaginary diagonal
perturbations are incorporated, which significantly improves the performance (see Section

3.7.3).

References

B. Carpentieri, I.S. Duff, and L.Giraud. Robust preconditioning of dense problems from
electromagnetics. in L. Vulkov, J. Wasniewski and P. Yalamov, eds, ‘Numerical
Analysis and Its Applications. Lecture Notes in Computer Science 1988’, pp. 170-
178. Springer-Verlag, 2000a.

B. Carpentieri, I. S. Duff, and L. Giraud. Experiments with sparse preconditioning of
dense problems from electromagnetic applications. Technical Report TR/PA/00/05,
Rutherford Appleton Laboratory, Oxfordshire, England, 20000.

B. Carpentieri, I. S. Duff, and L. Giraud. Sparse pattern selection strategies for robust
Frobenius-norm minimization preconditioners in electromagnetism. Numerical Linear
Algebra with Applications, 7(7-8), 667685, 2000c.

B. Carpentieri, 1.S. Duff, L. Giraud, and M. Magolu monga Made. Sparse symmetric
preconditioners for dense linear systems in electromagnetism. Technical Report

TR/PA/01/35, CERFACS, Toulouse, France, 2001.

34

3.7.1 Combining fast multipole techniques and approximate inverse
preconditioners for large calculations in electromagnetism
(B. Carpentieri, I. S. Duff, L. Giraud and G. Sylvand)

For large electromagnetic calculations that can involve a few million unknowns, the use
of fast multipole techniques is mandatory to evaluate the matrix-vector product. For
such simulations, we first investigate the numerical scalability of the approximate inverse
preconditioner (Carpentieri, Duff and Giraud, 2000) implemented in a parallel distributed
code (Sylvand, 2002). Because the preconditioner naturally becomes more local when
the size of the problem is increased, even though the Green functions decay rapidly, we
observe that the convergence rate deteriorates when the size of the linear system increases.
To overcome this drawback and improve the numerical robustness of the linear solver
we propose an embedded scheme; it consists of a FGMRES Krylov solver for the outer
iterations and a preconditioned GMRES inner scheme. For this outer solver, we use an
accurate fast multipole calculation for the matrix-vector evaluation, preconditioned by a
few inner preconditioned GMRES iterations. For the inner GMRES scheme, we use a less
accurate fast multipole calculation for the matrix-vector computation and our Frobenius
norm minimization approach as preconditioner. The efficiency of this numerical scheme
is demonstrated on large test problems. The benefit of the new scheme is highlighted
in Table 3.2, where we display the number of outer and inner fast multipole matrix-
vector products as well as the elapsed time to solve a problem with around one million
unknowns arising from a simulation on an Airbus aircraft. We consider GMRES(30) and
FGMRES(5)/GMRES(20) because both use the same amount of memory. The target

computer is a Compaq SC Alpha server.

Sphere with one million degrees of freedom

GMRES(30) FGMRES(5) + GMRES(20)
accurate FMM | Elapsed time # accurate FMM | # less accurate FMM | Elapsed time
1196 11 hours 17 260 1 hour 30 m

Airbus aircraft with 1.1 million degrees of freedom

GMRES(30) FGMRES(5) + GMRES(20)
accurate FMM | Elapsed time # accurate FMM | # less accurate FMM | Elapsed time
no convergence 19 300 4 hour 20 m

Table 3.2: Numerical behaviour observed on a 16 processor Alpha Compaq Server.

References

B. Carpentieri, I. S. Duff, and L. Giraud. Sparse pattern selection strategies for robust
Frobenius-norm minimization preconditioners in electromagnetism. Numerical Linear
Algebra with Applications, 7(7-8), 667685, 2000.

35

G. Sylvand. Résolution Itérative de Formulation Intégrale pour Helmholtz 3D : Applications
de la Méthode Multipole a des Problemes de Grande Taille. PhD thesis, Ecole
Nationale des Ponts et Chaussées, 2002.

3.7.2 Spectral two-level preconditioners (B. Carpentieri, I. S. Duff, L. Giraud
and J.-C. Rioual)

When solving the left preconditioned linear system M;Ax = M;b with a Krylov
method, the smallest eigenvalues of M;A often slow down the convergence. In the
symmetric positive-definite case this situation is well understood and arguments exist
for unsymmetric systems to explain the bad effect of the smallest eigenvalues on the
rate of convergence of the unsymmetric Krylov solver. We propose a class of spectral
two-level preconditioners based on a low-rank update that aims at shifting these smallest
eigenvalues of M; A to be close to one. Consequently the resulting two-level preconditioner
no longer suffers from the effect of those small eigenvalues. Our technique requires
the explicit computation of a few eigenvalues that makes it independent of the Krylov
solver being used. Symmetric and symmetric positive-definite variants can be derived
for symmetric and symmetric positive-definite linear systems. In that latter situation,
the resulting preconditioner is similar to those proposed by Carvalho, Giraud and Le
Tallec (2001) in the framework of domain decomposition for elliptic equations where the
shape of the smallest eigenvectors might be approximated a priori. The effectiveness of
the new preconditioners is demonstrated on symmetric non-Hermitian problems arising
from electromagnetism (Carpentieri, 2002) (similar problems to those considered in
Section 3.7.3) and on symmetric positive-definite and unsymmetric linear systems arising
in domain decomposition for the simulation of semiconductor devices (Rioual, 2002).
Although we use this technique for left preconditioners, this spectral two-level technique

is equally applicable for right preconditioners.

References

B. Carpentieri. Sparse preconditioners for dense linear systems in electromagnetic
applications. PhD thesis, CERFACS, Toulouse, France, 2002.

L. M. Carvalho, L. Giraud, and P. Le Tallec. Algebraic two-level preconditioners for the
Schur complement method. SIAM J. Scientific Computing, 22(6), 1987-2005, 2001.

J.-C. Rioual. Solving linear systems in semiconductor device modeling on parallel
distributed computers. PhD thesis, CERFACS, Toulouse, France, 2002.

36

3.7.3 Sparse symmetric preconditioners for dense linear systems in
electromagnetism (B. Carpentieri, I. S. Duff, L. Giraud and M. Magolu
monga Made)

In order to further develop the study of Carpentieri et al. (2000), we consider symmetric
preconditioning strategies for the iterative solution of dense complex symmetric non-
Hermitian systems arising in computational electromagnetics. In particular, we report
on the numerical behaviour of the classical Incomplete Cholesky factorization as well
as some of its recent variants and consider also well known factorized approximate
inverses. We illustrate the difficulties that these techniques encounter on the linear systems
under consideration and give some clues to explain their disappointing behaviour. We
propose two symmetric preconditioners based on Frobenius-norm minimization that use a
prescribed sparsity pattern. The numerical and computational efficiency of the proposed
preconditioners are illustrated on a set of model problems arising both from academic
and from industrial applications. More details on this work are available in the report of
Carpentieri et al. (2001).

References

B. Carpentieri, I. S. Duff, and L. Giraud. Sparse pattern selection strategies for robust
Frobenius-norm minimization preconditioners in electromagnetism. Numerical Linear

Algebra with Applications, 7(7-8), 667685, 2000.

B. Carpentieri, [.S. Duff, L. Giraud, and M. Magolu monga Made. Sparse symmetric
preconditioners for dense linear systems in electromagnetism. Technical Report

TR/PA/01/35, CERFACS, Toulouse, France, 2001.

3.8 Rank-revealing factorizations and incremental norm estimation

(I. S. Duff and C. Vomel)

We have developed an incremental approach to 2-norm estimation for triangular matrices
which is important for the detection of ill-conditioning, one of the basic problems arising in
the numerical solution of linear systems. Applications of our scheme include the calculation
of forward error bounds based on the condition number, robust pivot selection criteria and
rank-revealing factorizations, in particular, when inverse factors arise in the factorization.
Duff and V6mel (2001) introduced such a scheme applicable for both dense and sparse
matrices which can arise for example from a QR, a Cholesky or a LU factorization. If the
explicit inverse of a triangular factor is available, as in the case of an implicit version of
the LU factorization, we can relate our results to incremental condition estimation (ICE)

presented by Bischof (1990). Incremental norm estimation (INE) extends directly from

37

the dense to the sparse case without needing the modifications that are necessary for the
sparse version of ICE. INE can be applied to complement ICE, since the product of the two
estimates gives an estimate for the matrix condition number. Furthermore, when applied
to matrix inverses, INE can be used as the basis of a rank-revealing factorization. The
quality of our results on standard test cases is consistently high and demonstrates the
general reliability of our scheme. A revised version of the paper of Duff and Vémel (2001),

which also contains a theoretical analysis of our scheme, will appear in BIT.

References

C. H. Bischof. Incremental condition estimation. SIAM J. Matrix Analysis and
Applications, 11, 312-322, 1990.

[. S. Duff and C. Vomel. Incremental norm estimation for dense and sparse matrices.
Technical Report RAL-TR-2001-005, Rutherford Appleton Laboratory, Oxfordshire,
2001. Also Technical Report TR/PA/00/83 from CERFACS, Toulouse. To appear in
BIT.

3.9 Incomplete QR factorizations (Z.-Z. Bai, I. S. Duff, A.
Papadopoulos, and A. J. Wathen)

A paper on the theoretic work with Zhong-Zhi Bai was published by BIT in 2001
(Bai, Duff and Wathen, 2001) and for the last two years, Wathen and Duff have
been working with Andreas Papadopoulos to develop practical algorithms and codes
and test the efficiency of using the IQR factorization as a preconditioner. These
incomplete orthogonal factorization methods are based upon Givens rotations. The
methods implemented include two that perform the Givens reductions in a columnwise
fashion: column Incomplete Givens Orthogonalization (cIGO-method) that drops entries
by position only and column Threshold Incomplete Givens Orthogonalization (¢TIGO-
method) that drops entries dynamically by both their magnitude and positions, and a
third method, row Threshold Incomplete Givens Orthogonalization (rTIGO-method), that
again drops entries dynamically but only by magnitude with the reduction now performed
in a rowwise fashion. Our theoretical analyses showed that these methods can produce a
nonsingular sparse incomplete upper triangular factor and either a complete orthogonal
factor or a sparse nonsingular incomplete orthogonal factor for a general nonsingular
matrix. Therefore, these methods can potentially generate efficient preconditioners for
Krylov subspace iterations for solving large sparse systems of linear equations. Moreover,
the upper triangular factor is an incomplete Cholesky factorization preconditioner for the

normal equations from least-squares problems.

38

Our early experience with these implementations is that they sometimes outperform
ILU preconditioners in terms of reducing the number of iterations although they are roughly
twice as expensive to generate. Initial experiments with using our IQR preconditioners in
the solution of least-squares problems using CGNE do, however, look very promising. In
this case, the IQR preconditioner can be used because the incomplete Q) factor is still

orthogonal while the L factor from ILU clearly is not.

References

Z.-7. Bai, 1. S. Duff, and A. J. Wathen. A class of incomplete orthogonal factorization
methods. i: Methods and theories. BIT, 41(1), 53-70, 2001.

3.10 EA16: a new block Lanczos code (K. Meerbergen and J.A.
Scott)

EA16 is a new Fortran code that has been designed and developed for HSL 2002 for the
computation of selected eigenvalues and the corresponding eigenvectors of large sparse real

symmetric matrices. EA16 may be used for either the standard eigenvalue problem
Ax = Xx , (3.4)
where A is an n X n symmetric matrix, or for the generalized eigenvalue problem
Kx = AMx , (3.5)

where K and M are n X n symmetric matrices, and either M or K is positive-semidefinite. If
K is positive-semidefinite the generalized eigenvalue problem (3.5) is known as the buckling
problem. Applications of the form (3.4) arise in quantum physics and chemistry while (3.5)
arises in structural analysis, acoustics, and the stability analysis of Stokes problems.

Since the 1950s, the development of new eigensolvers, or the improvement of existing
ones, has been the subject of continuing research. We believe that there are a number of
key features that are desirable for a large-scale symmetric eigensolver. These include the
use of implicit restarting, automatic pole selection, and a block option. However, although
some well known software packages have been written over the years, each offers only a
subset of these features. Our aim in designing EA16 was thus to develop a state of the
art block Lanczos code for solving both the standard and generalized eigenvalue problems,
incorporating cheap orthogonalization, implicit restarting, and automatic pole selection.
In addition, to avoid throwing away the old subspace when the pole is changed, a key
design feature of EA16 is its use of rational Krylov.

Through the number of different options that it offers, EA16 is a flexible code. In

particular, it can be used for the computation of eigenvalues lying in different parts of the

39

spectrum. It can be used to compute the eigenvalues of largest or smallest modulus or
those lying furthest from a specified point. It will also compute the leftmost or rightmost
eigenvalues, or those lying to the left or right of a chosen point. In addition, the user may
specify the desired eigenvalues to be those lying inside an interval.

A key feature of EA16 is its use of reverse communication for the action of the matrices
A, K and M, as well as the spectral transformations (A — oI)™!, (K — ¢M)~'M, and
(K — eM) ™K, on sets of vectors. This makes EA16 particularly effective when the user
is able to provide an efficient code for the product of one or more of these matrices with a
number of vectors equal to the blocksize of the Lanczos method.

We illustrate the performance of EA16 for the buckling problem BCSST27 from the
Harwell Boeing Collection. This problem is of dimension 1224. The computed eigenvalues
and selected poles are shown in Figure 3.6. The order in which the poles are chosen is
given by the numbers 1 to 6. Note that the second and third poles are chosen too far away
from the wanted eigenvalues. The 50 eigenvalues lying in the trust interval [7.3 1075, 11.5]

were computed. Five factorizations and a total of 270 linear solves were needed.

Figure 3.6: Computed Ritz values (dots) and selected poles (ticks) for problem BCSST27.

! 4 56 3 2

0 11

Full details of EA16 as well as a number of numerical examples illustrating its

performance on a range of problems are given by Meerbergen and Scott (2000).

References

K. Meerbergen and J. Scott. Design and development of a block rational Lanczos method
with partial reorthogonalization and implicit restarting. Technical Report RAL-TR-
2000-011, Rutherford Appleton Laboratory, Oxfordshire, 2000.

40

4 Partial Differential Equations

4.1 Null space algorithms for mixed finite-element
approximation of Darcy’s equation (M. Arioli and G.
Manzini)

Let Q be a simply connected, bounded, polygonal domain in IR?, defined by a closed curve

I'. T is usually the union of two parts I'p and I'y, where different Dirichlet and Neumann

type boundary conditions are imposed, that is ' = T'p U I'y.

Darcy’s laws can be formulated as follows:

u(x) = —K(x)gradp(x), x € Q (4.1)
divu(x) = f(x), x € Q '
with a set of boundary conditions for both u and p:
p(x) = gp(x), xeTp 42
u-n = gy(x), x €Ty

using two regular functions gp and gy for Dirichlet and Neumann conditions, and where
n denotes the external normal to I'. In the following, we will assume that gy = 0.

Darcy’s law describes the relationship between the pressure p(x) (the total head) and
the velocity field u(x) (the visible effect) in ground-water flow. In system (4.1), K(x) is
the hydraulic conductivity tensor and f(x) is a source-sink term.

The former equation in (4.1) relates the vector field u to the scalar field p via the
permeability tensor K, which accounts for the soil characteristics. The latter equation
in (4.1) relates the divergence of u to the source-sink term f(x).

Let 7, be a family of triangulations of 2, i.e. each 7}, is a set of disjoint triangles
7 which cover €2 in such a way that no vertex of any triangle lies in the interior of an
edge of another triangle. Let h = max{diam (7) : 7 € 7,}. The mixed finite element
approximation of system (4.1) with the usual Raviart-Thomas space leads to the solution

of the following system of linear equations:

HA ﬂ[;]:[g] (1.3

where, denoting by n the number of edges and by m the number of triangles, we have
that M € R"*" is a symmetric and positive-definite matrix, and that A € R"*™ is a
submatrix of a totally unimodular matrix with m + 1 columns. Therefore, A is full rank
and its entries are equal to either 1, —1, or 0. Moreover, the augmented system (4.3) is
nonsingular because Ker(AT) N Ker(M) = 0.

41

The classical null space algorithm (see Gill, Murray and Wright, 1981), for the
minimisation of linearly constrained quadratic forms can be described as follows.
Let Y € R™™ and Z € R"*™ ™ be two matrices such that

YTA =1, and ZTA=0, .

Null Space Algorithm:

1. uy=Yb,

2. Z™IZw =7Z%q — ZTMu, = s,

3. u=uy+ Zw,

4. p=YTq—YT™™u.
The matrices Y and Z can be computed using either an orthogonal factorisation or a
Gaussian factorisation of the matrix A. In Step 2, we also need to solve a system involving
ZTMZ, the projected Hessian matrix. We have two alternative ways to proceed. If n —m
is small (the number of constraints is very close to the number of unknowns), or the
projected Hessian matrix is still sparse, we can explicitly compute ZTMZ, and then solve
the system ZTMZ w = s using the Cholesky factorisation. Otherwise, when the product
ZTMZ cannot be performed directly because both the complexity would be too high —
O(n3) - or the resulting matrix would be fairly dense, despite the sparsity of M, we can
solve the linear system ZTMZ w = s using a conjugate gradient algorithm, and implicitly
compute the matrix by vector products. Within the conjugate gradient algorithm, we use
the stopping criterion described by Arioli (2000) (see Section 3.6). At iteration j, this
stopping criterion estimates the energy norm of the error at step j — d, where d is an a
priori selected integer value. If the error is less than 7 times the energy norm of w(),
we stop. The choice of 1 will depend on the properties of the problem that we want to
solve, and, in practical cases n >> €, where € is the rounding unit. Following the results
described by Arioli (2000), we chose 7 equal to h.

References

M. Arioli. A stopping criterion for the conjugate gradient algorithm in a finite element
method framework. Technical Report Tech. Report IAN-1179, IAN, 2000.

P. E. Gill, W. Murray, and M. H. Wright. Practical Optimization. Academic Press, London,
1981.

4.1.1 The Householder approach

Arioli and Manzini (2002) have analysed the Householder approach. Amestoy, Duff and
Puglisi (1996) have shown that, by a sparse version of the Householder algorithm, the

42

matrix A can be factorized as

ol

where R is an m X m sparse, non singular, upper triangular matrix and H is an n X n
orthonormal matrix. The matrix H can be stored implicitly as the set of sparse vectors
that generate the elementary Householder transformations, see (Amestoy et al., 1996) for
details on the sparsity of R and on the sparse storage of H. With respect to the previous

choice, we have
Y = HE,R™” and Z = HE,.

The matrix Z is an orthonormal basis of the kernel of AT. It is very important to
observe that we never need to explicitly compute either Y or Z. Indeed the Householder
factorisation gives the possibility of using its sparse result for implicitly computing all the
matrix-vector products required by the algorithm. We can perform the product of the
projected Hessian matrix ZTMZ by a vector and the product of Y or YT by a vector in

the following ways:

Z™™Zw = ET(HT (M (H(E,w)))),
Y'y = R(Ef (H"y)),
Yx = H(E, (RfTX))-

This approach has the advantage of performing backward and forward substitutions
for sparse triangular matrices, and of using the sparse Householder elementary matrices to
perform matrix-vector products.

In Arioli and Manzini (2002), the experiments were performed on a SUN workstation
using the sparse HSL code MA49, described by Amestoy et al. (1996). Arioli and Manzini
(2002) used a L-shape domain 2 with a discontinuous K (x) which takes two values Ky = 1
and K;. In the test problems, the values of K; range from 10=2 to 10~8. We compared
the exact solution u and p of (4.3) with the values u* and p* computed by the null space
algorithm where, in step 2, we used the conjugate gradient method, and we chose w(¥) = 0.
We assume that the values computed by the HSL routine MA47 which implements a sparse
Gaussian factorisation applied to (4.3) are exact.

In Table 4.1, we show the values n, m (number of degrees of freedom of the problem),
and the number of nonzero entries in M and A for three meshes. Moreover, in Table 4.1,
we show the storage (measured in words) needed for H and R, and on the values of 7.

In Table 4.2, we summarise the numerical performance of the algorithm for each test
problem and each mesh when, before using MA49, we perform a symmetric scaling on the

problem. After the scaling, the diagonal entries of the scaled M are equal to 1.

43

| n | m | nnz(A) | nnz(M) | nnz(R) | stg(H) | n
Mesh 1 237 147 416 1119 940 3023 0.16
Mesh 2 | 2309 1497 4396 11291 16058 47120 5.81072
Mesh 3 | 22919 | 15136 | 45084 113735 | 250944 | 649793 | 1.921072

Table 4.1: Parameters of the runs.

Mesh K1 =10"2 | K; =10-* | K; =10~¢ | K; = 10—%
Niter 6 6 6 6

1 ”Tﬁuﬁg"z 11103 4.010-6 2.010—¢ 1.910-6
7”@1"*'“2”2 441077 1.510-6 1.610—6 1.610—6
Niter 7 7 7 7

2 W 14106 5.4106 451076 451076
7”1['—:"'2”2 2.810-6 1.010-6 1.110-6 1.110-6
Niter 8 8 8 8

3 W 45106 44106 4.410-6 4.410-6
7H1|’|—ppl*|2”2 1.810-8 1.910-8 1.910-8 1.910-8

Table 4.2: Stopping iteration and final residual using symmetric scaling (d = 5)

We can see from the numerical experiments that the null space algorithm based on the
Householder factorisation gives a projected Hessian matrix asymptotically independent of
n and m and, thus, of the parameter h. We point out that, for 3D problems, the computer

memory requirement for storing H can become prohibitive.

References

P.R. Amestoy, I.S. Duff, and C. Puglisi. Multifrontal QR factorization in a multiprocessor
environment. Numerical Linear Algebra with Appl., 3, 275-300, 1996.

M. Arioli and G. Manzini. A null space algorithm for mixed finite-element approximations
of Darcy’s equation. Commun. Numer. Meth. Engng, 18, 2002.
4.1.2 The network programming approach

Arioli and Manzini (2001) have carefully analysed the structure of the matrix A in

equation (4.3). A is the nonsingular submatrix of a totally unimodular matrix, and its

44

LU factorization can be computed by identifying a spanning tree of a graph built using
the mesh structure. Moreover, the LU factorization can be computed without fill-in by
permuting the rows and the columns of the matrix. As for the orthogonal factorization
approach, we do not need to compute explicitly the matrices Z = L TE; and Y = L TE,,
and we can perform the product ZTMZ by a vector and the product of Y or YT by a
vector by means of solving lower and upper triangular systems.

The test problem has a unit square domain and K(x) has a random distribution. The
values of K (x) range from 1 to 107!2. In Table 4.3, we report on the values n, m (number
of degrees of freedom of the problem), and the number of nonzero entries in M and A for
four meshes. In Table 4.4, we show some of the results from Arioli and Manzini (2001).
In the test runs, we compare the performance of our approach with the performance of
the HSL code MA47. The package MA47 implements a version of the LDLT decomposition
for symmetric indefinite matrices that takes advantage of the structure of the augmented
system. The package is divided into three parts corresponding to the symbolic analysis
where the reordering of the matrix is computed, the factorization phase, and the final
solution using the triangular matrices.

Similarly, the null space algorithm can be subdivided into three phases: a first symbolic
phase where the shortest path tree and the quotient tree are computed, a second phase
where the projected Hessian system is solved by the conjugate gradient algorithm, and a
final third phase where we compute the pressure. This enables us to compare the direct
solver MA47 with the null space approach in each single phase.

Generally, in the test runs that we will present, we fix the parameter d in the stopping

criterion to the value of 10.

Mesh 1 | Mesh 2 | Mesh 3 | Mesh 4

m 153 1567 | 15304 | 155746

n 246 2406 | 23130 | 234128
nnz(M) 1164 | 11808 | 114954 | 1168604
nnz(A) 429 4599 | 45601 | 466319
h 0.2090 | 0.0649 | 0.0225 0.0069

Table 4.3: Data relative to the meshes for a boxed domain with random permeability.

Even if our implementation can be 10 times slower than the direct solver, the absence of
fill-in makes our code competitive for large problems. In particular, we want to highlight
that the absence of fill-in is promising when we need to solve Darcy’s equations in 3D
domains. One might expect that the fill-in and complexity of a direct solver, applied to
the augmented systems related to the approximation of Darcy’s equations in 3D domains,

will grow as O(m??3) and O(m?) respectively. Our algorithm will instead have no fill-

45

Mesh MA47 null space algorithm
Symb. | Fact. | Sol. | Stor. | Symb. | CG(#Iterations) | Sol.

1 0.008 | 0.013 | 0.001 | 0.048 | 0.002 0.013 (12) 0.002
2 0.088 | 0.173 | 0.006 | 0.634 | 0.017 0.145 (19) 0.018
3 1.058 | 3.028 | 0.114 | 9.15 | 0.911 4.681 (41) 0.290
4 14.63 | 264.6 | 1.543 | 132.32 | 7.8 210.6 (176) 2.941

Table 4.4: MA47 vs null space algorithm: CPU times (in seconds) and storage (in MBytes).

in and its complexity will only depend on the condition number of the scaled projected
Hessian matrix ZTMZ. We can reasonably assume that this condition number will not
change with the dimension of the domain €2, analogous to the behaviour of the classical
finite-element method. Therefore, the stopping criterion will stop the conjugate gradient

algorithm after a number of steps which will not depend on the dimension of the domain

Q.

References

M. Arioli and G. Manzini. A network programming approach in solving Darcy’s equations
by mixed finite-element methods. Technical Report RAL-TR-2001-037, Rutherford
Appleton Laboratory, Oxfordshire, 2001.

4.1.3 Mixed-Hybrid approximation

Finally, in Arioli, Maryska, Rozloznik and Tama (2001), we compare the orthogonal
and Gaussian approaches, when we approximate Darcy’s equation by mixed-hybrid finite-
element method. In Arioli et al. (2001), we use a set of 3D test problems coming from

underground water flow modelling in the Straz pod Ralskem uranium mine.

References

M. Arioli, J. Maryska, M. Rozloznik, and M. Tama. Dual variable methods for
mixed-hybrid finite element approximation of the potential fluid flow problem in
porous media. Technical Report RAL-TR-2001-023, Rutherford Appleton Laboratory,
Oxfordshire, 2001.

46

5 Optimization

5.1 Quadratic Programming (N. I. M. Gould and Ph. L. Toint)

We have now finished developing two new quadratic programming (QP) methods, both of
which lie at the heart of our forthcoming nonlinear programming library GALAHAD (see
Section 5.6), and which are also available as part of HSL. Both algorithms are designed
to handle large, sparse, nonconvex problems, the ultimate aim being to solve problems in
hundreds of thousands of unknowns.

The quadratic programmaing problem is to

minimize ¢(x) = xTHx + g’x (5.1)
x€lR"
subject to the general linear constraints
! T U .
¢ <a;x<c!, i=1,...,m, (5.2)
and the simple bound constraints
1 u .
o <z;<zj, j=1,...,n (5.3)

l 1

for given vectors g, a;, ¢, ¢, x', x* and a given symmetric (but not necessarily definite)

matrix H. The required solution x to (5.1)—(5.3) necessarily satisfies the primal optimality

conditions
Ax =c (5.4)
and
cd<e<ced, x<x<xY (5.5)
the dual optimality conditions
Hx+g=ATy+z y=y' +y* and z =72 +27", (5.6)
and
y' >0, y*<0, 22 >0 and z* <0, (5.7)

and the complementary slackness conditions
(Ax —c)Ty' =0, (Ax —c")Ty* =0, (x—x')Tz' =0 and (x —x“)Tz* =0, (5.8)

where the vectors y and z are known as the Lagrange multipliers for the general linear
constraints, and the dual variables for the bounds, respectively, and where the vector

inequalities hold componentwise.

47

5.1.1 An Interior-Point Approach

Our first method is based on a feasible interior-point trust-region approach. Primal-dual
interior point methods iterate towards a point that satisfies the optimality conditions (5.4)—
(5.8) by ultimately aiming to satisfy (5.4), (5.6) and (5.8), while ensuring that (5.5) and
(5.7) are satisfied as strict inequalities at each stage. Appropriate norms of the amounts by
which (5.4), (5.6) and (5.8) fail to be satisfied are known as the primal and dual infeasibility,
and the violation of complementary slackness, respectively. The fact that (5.5) and (5.7)
are satisfied as strict inequalities gives such methods their name, interior-point methods.

The problem is solved in two phases. The goal of the first “initial feasible point” phase
is to find a strictly interior point which is primal feasible, that is that (5.4) is satisfied.
The HSL package VE13 (or LSQP in GALAHAD) is used for this purpose, and offers the
options of either accepting the first strictly feasible point found, or preferably of aiming
for the so-called “analytic centre” of the feasible region. Having found such a suitable
initial feasible point, the second “optimality” phase ensures that (5.4) remains satisfied
while iterating to satisfy dual feasibility (5.6) and complementary slackness (5.8). The

optimality phase proceeds by approximately minimizing a sequence of barrier functions
q(x) — p Zlog(ci —)+ Z log(c —¢;) + Z log(z; — xi) + Zlog(;v;f —z)|,
=1 =1 7j=1 7=1

for an appropriate sequence of positive barrier parameters p converging to zero while
ensuring that (5.4) remain satisfied and that x and c are strictly interior points for (5.5).
Note that terms in the above summations corresponding to infinite bounds are ignored,
and that equality constraints are treated specially.

Each of the barrier subproblems is solved using a trust-region method. Such a method
generates a trial correction step A(X,c) to the current iterate (x,c) by replacing the
nonlinear barrier function locally by a suitable quadratic model, and approximately
minimizing this model in the intersection of (5.4) and a trust region [|A(x,c)|| < A
for some appropriate strictly positive trust-region radius A and norm || - |[|. The step
is accepted/rejected and the radius adjusted on the basis of how accurately the model
reproduces the value of barrier function at the trial step. If the step proves to be
unacceptable, a linesearch is performed along the step to obtain an acceptable new iterate.
In practice, the natural primal “Newton” model of the barrier function is frequently less
successful than an alternative primal-dual model, and consequently the primal-dual model
is usually to be preferred.

The trust-region subproblem is approximately solved using the combined conjugate-
gradient /Lanczos method (see Gould, Hribar and Nocedal, 2001 and Gould, Lucidi, Roma
and Toint, 1999a) implemented in the HSL code VF05 (GLTR in GALAHAD). Such a method

requires a suitable preconditioner, and in our case, the only flexibility we have is in

48

approximating the model of the Hessian. Although using a fixed form of preconditioning
is sometimes effective, we have provided the option of an automatic choice, that aims to
balance the cost of applying the preconditioner against the needs for an accurate solution
of the trust-region subproblem. The preconditioner is applied using the HSL factorization
packages MA27 or MA5S7, but options at this stage are to factorize the preconditioner as
a whole (the so-called “augmented system” approach), or to perform a block elimination
first (the “Schur-complement” approach). The latter is usually to be preferred when a
(nonsingular) diagonal preconditioner is used, but may be inefficient if any of the columns

of A is too dense.

The theoretical justification of the overall scheme, for problems with general objectives
and inequality constraints, is given by Conn, Gould, Orban and Toint (2000b), in which
we also present numerical results that suggest that it is indeed able to solve some problems
of the size we had been aiming for. More recently, we investigated the ultimate rate
of convergence of such schemes, and have shown that, under fairly general conditions,
a componentwise superlinear rate is achievable both for quadratic and general nonlinear
programs (see Gould, Orban, Sartenaer and Toint, 19995).

The method has been implemented as a Fortran 90 module HSL_VE12 in HSL, while an
updated version will shortly be available as QPB in the GALAHAD library. Full advantage is
taken of any zero coefficients in the matrix H or the vectors a;, while any of the constraint

bounds ¢, ¢¥, z4

u P
i Ci'» ¥; and z7 may be infinite.

References

A. R. Conn, N. I. M. Gould, D. Orban, and Ph. L. Toint. A primal-dual trust-
region algorithm for non-convex nonlinear programming. Mathematical Programming,

87(2), 215-249, 2000.

N. I. M. Gould, M. E. Hribar, and J. Nocedal. On the solution of equality constrained
quadratic problems arising in optimization. SIAM Journal on Scientific Computing,
23(4), 1375-1394, 2001.

N. I. M. Gould, S. Lucidi, M. Roma, and Ph. L. Toint. Solving the trust-region subproblem
using the Lanczos method. SIAM Journal on Optimization, 9(2), 504-525, 1999a.

N. I. M. Gould, D. Orban, A. Sartenaer, and Ph. L. Toint. Superlinear convergence of
primal-dual interior-point algorithms for nonlinear programming. SIAM Journal on
Optimization, 11(4), 974-1002, 19996.

49

5.1.2 An Active-Set Approach

Our second method (Gould and Toint, 2001) is of the active-set variety, and, although
general in scope, is intended within GALAHAD to deal with the case where a good estimate
of the optimal active set has been determined (and thus that relatively few iterations will
be required). The method is actually more general in scope, and is geared towards solving

4y quadratic programming problems of the form

minimize g(x) + pyvy(x) + ppvp(x) (5.9)
x€IR"

involving the quadratic objective ¢(x) and the infeasibilities
vy(x) = i max(cl —alx,0) + i max(a x — c¥,0)
i=1 i=1
and
vp(x) = i:ma,x(a:é —z;,0) + imax(:cj —z},0).
j=1 j=1

At the k-th iteration of the method, an improvement to the value of the merit function

m(X, pg, 1) = (%) + pyvy(x) + pyup(x) at x = x¥
computing a search direction s*, and then setting x**V = x® 4 o* s where the

is sought. This is achieved by first

stepsize a!¥) is chosen as the first local minimizer of ¢(a) = m(x® + as® p,, pp) as o
increases from zero. The stepsize calculation is straightforward, and exploits the fact that
#(a) is a piecewise quadratic function of a.

The search direction is defined by a subset of the “active” terms in v(x), i.e., those for

which alx = ¢, or ¢} (fori =1,... ,m) or z; = 2 or «¥ (for j=1, ... ;n). The “working”
set W is chosen from the active terms, and is such that its members have linearly
(k

independent gradients. The search direction s is chosen as an approximate solution of

the equality-constrained quadratic program

minimize ¢(x® +s) + pgl!(]k) (s) + pbl,()k) (s), (5.10)
sclR"
subject to
als =0, ic{l,..., m}nW® and z; =0, ic{1,... ,.n}nW®, (5.11)
where

lg(lk)(s) =— i als + i als
=1 1=1

aZTx<c£ a;-rx>c}‘

50

and

n

ll()k)(S) = — Z Sj —+ En: S]'.

Ljig @ >}

The equality-constrained quadratic program (5.10)—(5.11) is solved by a projected
preconditioned conjugate gradient method (see Gould, Hribar and Nocedal, 2001). The
method terminates either after a prespecified number of iterations, or if the solution is
found, or if a direction of infinite descent, along which q(x® +s) + pglék) (s) + polt?(s)
decreases without bound within the feasible region (5.11), is located. Successively more
accurate approximations are required as suspected solutions of (5.9) are approached.

Preconditioning of the conjugate gradient iteration requires the solution of one or more

linear systems of the form

e) ()= (8) 513

where M® is a “suitable” approximation to H and the rows of A*) comprise the gradients
of the terms in the current working set. Rather than recomputing a factorization of the
preconditioner at every iteration, a Schur complement method is used, recognising the fact
that gradual changes occur to successive working sets. The main iteration is divided into
a sequence of “major” iterations. At the start of each major iteration (say, the overall

iteration [), a factorization of the current “reference” matrix, that is the matrix

MO ADT
(5.13)

is obtained using the HSL matrix factorization package MA57 (in the GALAHAD version, the
older HSL code MA27 is used instead). This reference matrix may be factorized as a whole,
using the augmented system approach, or by performing a block elimination first, using the
“Schur-complement” approach. The latter is usually to be preferred when a (nonsingular)
diagonal preconditioner is used, but may be inefficient if any of the columns of A® is too
dense. Subsequent iterations within the current major iteration obtain solutions to (5.12)
via the factors of (5.13) and an appropriate (dense) Schur complement, obtained from the
HSL package MA69 (SCU in GALAHAD). The major iteration terminates once the space
required to hold the factors of the (growing) Schur complement exceeds a given threshold.

The working set changes by (a) adding an active term encountered during the
determination of the stepsize, or (b) the removal of a term if s = 0 solves (5.10)—(5.11). The
decision on which to remove in the latter case is based upon the expected decrease upon
the removal of an individual term, and this information is available from the magnitude

and sign of the components of the auxiliary vector u computed in (5.12). At optimality, the

51

components of u for a; terms will all lie between 0 and p,—and those for the other terms
between 0 and p,—and any violation of this rule indicates further progress is possible.

To solve quadratic programs of the form (5.1)—(5.3), a sequence of problems of the form
(5.9) are solved, each with a larger value of p, and/or p, than its predecessor. The required
solution has been found once the infeasibilities v,(x) and v,(x) have been reduced to zero
at the solution of (5.9) for the given p, and p.

The method has been implemented as a Fortran 90 module HSL_VE19 in HSL, while,
again, an updated version will shortly be available, as QPA, in the GALAHAD library.

References

N. I. M. Gould, M. E. Hribar, and J. Nocedal. On the solution of equality constrained
quadratic problems arising in optimization. SIAM Journal on Scientific Computing,
23(4), 1375-1394, 2001.

N.I. M. Gould and Ph. L. Toint. An iterative working-set method for large-scale non-convex
quadratic programming. Technical Report RAL-TR-2001-026, Rutherford Appleton
Laboratory, Oxfordshire, 2001.

5.1.3 Comparing the two approaches

Having proposed and implemented two very different quadratic programming methods, an
obvious question is: how do the methods compare? We examined this question in Gould
and Toint (2001) by comparing QPA and QPB on the CUTE QP test set.

While for modest sized problems, started from “random” points, the two methods
are roughly comparable, the advantages of the interior-point approach become quite clear
when problem dimensions increase. For problems involving tens of thousands of unknowns
and/or constraints, our active set approach simply takes too many iterations, while the
number of iterations required by the interior point approach seems relatively insensitive
to dimension size. For general problems involving hundreds of thousands or even millions
of unknowns/constraints, the active set approach is impractical, while we illustrate in
Table 5.1 that QPB is able to solve problems of this size.

While such figures might seem to indicate that QPB should always be preferred to QPA,
this is not the case. In particular, if a good estimate of the solution—more particularly,
the optimal active set— is known, active-set methods may exploit this, while interior-point
methods are (currently) less able to do so. In particular, Gould and Toint (2001) illustrate
that QPA often outperforms QPB on warm-started problems unless the problem is (close to)

degenerate or very ill conditioned. Thus, since nonlinear optimization (SQP) algorithms

52

Name n m type | its time
QPBAND 100000 50000 C 13 157
QPBAND 200000 100000 C 17 1138
QPBAND 400000 200000 C 17 2304
QPBAND 500000 250000 C 17 2909
QPNBAND 100000 50000 NC 12 32
QPNBAND 200000 100000 NC 13 71
QPNBAND 400000 200000 NC 14 156
QPNBAND 500000 250000 NC 13 181
PORTSQP 10 1 C 11 0.02
PORTSQP 100 1 C 15 0.03
PORTSQP 1000 1 C 26 0.09
PORTSQP 10000 1 C 37 1.26
PORTSQP 100000 1 C 20 9.48
PORTSQP 1000000 1 C 11 7231
PORTSNQP 10 2 NC 21 0.03
PORTSNQP 100 2 NC 30 0.04
PORTSNQP 1000 2 NC 39 0.17
PORTSNQP 10000 2 NC 32 1.70
PORTSNQP 100000 2 NC [107 58.69
PORTSNQP 1000000 2 NC | 22 209.53

Table 5.1: GALAHAD QPB on large QP examples.

AlphaServer DS20 (3.5 Gbytes RAM), time in CPU seconds. 7 is the number of unknowns,

and m is the number of general constraints. C indicates a convex problem, while NC is a

non-convex one.

often solve a sequence of related problems for which the optimal active sets are almost or
actually identical, there is good reason to maintain both QPA and QPB in GALAHAD.

References

N. I. M. Gould and Ph. L. Toint. Numerical methods for large-scale non-convex quadratic
programming. Technical Report RAL-TR-2001-017, Rutherford Appleton Laboratory,

Oxfordshire, 2001.

53

Runs performed on a Compaq

5.1.4 Preprocessing

The purpose of preprocessing (or presolving) quadratic programming problems is to exploit
the optimality equations (5.4)—(5.8) so as to both simplify the problem and reduce the
problem to a standard form (that makes subsequent manipulation easier), defined as

follows:

e The variables are ordered so that their bounds appear in the order

free T
non-negativity 0 < z;
lower xé < z
range :cé < z; < ;‘
upper z; <
non-positivity z; < 0

Fixed variables are removed. Within each category, the variables are further ordered

so that those with non-zero diagonal Hessian entries occur before the remainder.

e The constraints are ordered so that their bounds appear in the order

non-negativity 0 < (Ax);
equality d = (Ax);

lower d < (Ax);

range d o< (Ax) < o
upper (Ax); < ¢
non-positivity (Ax);, <

Free constraints are removed.

e In addition, constraints may be removed or bounds tightened, to reduce the size of
the feasible region or simplify the problem if this is possible, and bounds may be

tightened on the dual variables and the multipliers associated with the problem.

The presolving algorithm (see Gould and Toint, 2002) proceeds by applying a
(potentially long) series of simple transformations to the problem, each transformation
introducing a further simplification of the problem. These involve the removal of empty
and singleton rows, the removal of redundant and forcing primal constraints, the tightening
of primal and dual bounds, the exploitation of linear singleton, linear doubleton and
linearly unconstrained columns, merging of dependent variables, row sparsification and
splitting equalities. Transformations are applied in successive passes, each pass involving

the following actions:

54

1. remove empty and singletons rows,
2. try to eliminate variables that are linearly unconstrained,
3. attempt to exploit the presence of linear singleton columns,
4. attempt to exploit the presence of linear doubleton columns,
5. complete the analysis of the dual constraints,
6. remove empty and singletons rows,
7. possibly remove dependent variables,
8. analyse the primal constraints,
9. try to make A sparser by combining its rows,
10. check the current status of the variables, dual variables and multipliers.

All these transformations are applied on the structure of the original problem, which is only
permuted to standard form after all transformations are completed. The reduced problem
may then solved by a quadratic or linear programming solver. Finally, the solution of
the simplified problem is re-translated to the variables/constraints/format of the original
problem in a “restoration” phase.

At the overall level, the presolving process follows one of the following two sequences:

initialize | — | |apply transformations| — (solve problem) —] —

or

read solve
initialize | — — apply — (
proble

specfile transformations

) — ‘restore ‘} — ‘terminate|
m

where the procedure’s control parameter may be modified by reading an external “specfile”,
and where (solve problem) indicates that the reduced problem is solved. Each of the
“boxed” steps in these sequences corresponds to calling a specific routine of the package.
In the above diagrams, bracketed subsequences of steps means that they can be repeated
with problems having the same structure.

An implementation will shortly be available as PRESOLVE in the GALAHAD library.
Gould and Toint (2002) indicate that, when considering all 178 linear and quadratic
programming problems in the CUTE test set, an average reduction of roughly 20% in both
the number of unknowns and the number of constraints results from applying PRESOLVE.
When applying our interior point QP solver QPA, an overall average reduction of roughly
10% in CPU time results. In some cases, the gain is dramatic. For example, for the
problems GMNCASE4, STNPQ1, STNQP2 and SOSQP1, PRESOLVE removes all the variables and

35

constraints, and thus reveals the complete solution to the problem without resorting to a
QP solver.

References

N. I. M. Gould and Ph. L. Toint. Preprocessing for quadratic programming. Technical
Report RAL-TR-2002-001, Rutherford Appleton Laboratory, Oxfordshire, 2002.

5.2 A backward error analysis of a null space algorithm in sparse

quadratic programming (M. Arioli and L. Baldini)

Let M € R"*" be a symmetric and positive-semidefinite matrix, and let A € R"*™, m <
n, be a real full rank matrix, g € R" and b € R™. The quadratic programming problem

with equality constraints

1 3 T
—x~Mx x 5.14
ATxob 2 +a (5.14)

has a unique solution X if and only if Ker(AT) N Ker(M) = {0}. Introducing the vector
u € R™ of the Lagrangian parameters, the problem (5.14) is equivalent to the augmented

BRI

The augmented matrix is invertible, and the solution [xT, 1

system

71T is composed of the solution
of problem (5.14) and the Lagrangian parameters of the gradient of the objective function
at x.

Arioli and Baldini (2001) present a roundoff error analysis of a null space method

which uses a mixture of direct and iterative solvers. In the following, we will denote the

Om‘n—m
In—m '

Given an n X m matrix B of entries b;; and an n-vector v of entries v;, we will denote by

augmented matrix by 2, and by E; and E; the matrices

E, =

L.
] and E, =

On—m,m

|B| and |v| the matrix and the vector whose entries are the absolute values of the entries
of B and v.
Arioli and Baldini (2001) chose a formulation of the null space algorithm based on the

factorization of the augmented matrix. The matrix A can be factorized as

[l

56

U
PAQ:L[O

where U € R™*™ is an upper triangular matrix, . € R"*" is a nonsingular lower triangular
matrix generated by the Gaussian algorithm applied to PAQ, and P, Q are permutation
matrices that cope with numerical pivoting and sparsity (Duff, Erisman and Reid 1986).
For the sake of simplicity, we will omit P, Q in the following, assuming that M, A, q, and

b have been consistently permuted. Let
M =L'MLT.
The augmented matrix 2 can then be factorized as
Mu M L,
L 0 MlTl 1\7[12 oo
0 UT 12 o U |’
L. 0 0

A =

Moreover, the matrix Z = L~ TE, is a nonorthonormal basis of the kernel of AT.

In the null space algorithm, we also need to solve 1\~/[22x2 = E2Tl\~/IE2x2 = p. We have
two alternative ways of proceeding. If n — m is small (the number of constraints is very
close to the number of unknowns) or M, is still sparse, we can explicitly compute M, and
then solve the system using the Cholesky factorization. Otherwise, we can solve the linear
system Mooxs = p using the conjugate gradient algorithm without explicitly computing

M, and perform the matrix by vector products using the formula

Mijy = E?L_l(M(L_TEjY)) with (7’7.7) = (1’2)'

This approach has the advantage of performing backward and forward substitution for
triangular matrices.

Arioli and Baldini (2001) analysed several variants of the null space algorithm. In
particular, they used, within the conjugate gradient method, a stopping criterion similar

to the one described in Section 3.6, viz.

IF |[My%y — hllg: < nl[bllgz-: THEN STOP, (5.15)

where L and U are the computed factor L and U, and ﬁgz = EszEQ with M =
L'ML™T. In practical applications, the threshold 7 is chosen such that ¢ < 7, with
€ the unit roundoff.

Arioli and Baldini (2001) proved the following theorem, where ¢;, @ = 1,2 are constants.

Theorem 1 Let X and G be the values of X and u, solutions of (2), computed with the
null space algorithm. If ¢||L7Y||| L]l < 1, then there exist matrices SM € R"*" and
0A,, 6A, € R"™™ and a vector 8q € R" such that

M+d6M A+ 68A, x| | —(qa+4éq)
(A +8A,)T 0 B b '

s

a7

Furthermore,

0A:] < cme(|A| +|LIE[U]) + O(?),
6A,] < came(|A| + [LIE[T)) + O().

If we use an iterative solver with (5.15) and a threshold n,

16M| < coeH(IM]| + |L|[M||L|T)HT + O(c?),

16allg, 55 < %5, + O,

where H = 1 + E,ET|LYE,ET.

In the numerical experiments, Arioli and Baldini (2001) used augmented systems
obtained from the modelling of electrical networks and the numerical results agree with

the theory.

References

M. Arioli and L. Baldini. A backward error analysis of a null space algorithm in sparse
quadratic programming. SIAM J. Matrix Anal. and Applics., 23, 425-442, 2001.

[. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Matrices. Oxford
University Press, 1986.

5.3 Use of MA57 in optimization packages (I. S. Duff)

In interior point methods for the solution of nonlinear programming problems, a vital

subproblem is
1
min §XTHX + gTx, subject to Ax =0 (5.16)

for which the coefficient matrix is of the form

(o) -
A 0

where D is a positive-semidefinite matrix used to penalize inequality constraints.

A common solution scheme is to perform conjugate gradient iterations respecting the

B AT
(= 5) .

58

constraint Ax = 0 and to use

as a preconditioner that is factorized by a sparse direct code.

Nick Gould uses this approach and our software in both his interior point code VE12,
and in VE19, an active set code with a Schur complement update (Gould and Toint, 2001).
Both Jorge Nocedal (Northwestern) and Steve Wright (Wisconsin) have used MA57 as a
linear solver in their optimization packages, KNITRO (Byrd, Hribar and Nocedal, 1999)
and OOQP (Gertz and Wright, 2001), respectively.

This application of a sparse direct solver is a particularly rich one for testing the
linear code. Obviously any matrix of the form (5.18), with B symmetric, is symmetric
and indefinite. In addition, the matrix B is often not positive-definite and may even be
singular, so that really quite evil linear systems can result. A solution to the linear system
is sometimes only possible because the right-hand side lies in a subspace for which the
projection of the augmented matrix is nonsingular. Additionally, the matrices A and B
can have a very wide range of sparsity patterns depending on the original source of the
optimization problem. Such matrices, and the sophistication of the optimization codes
which call the linear solver, result in a varied and severe test for all three phases of the
direct solution. Although we will concentrate on the normally most costly factorization

phase in the remainder of this section, we comment first on the other phases.

For the analysis phase, we are using the approximate minimum degree algorithm
of Amestoy et al. (1996). In common with most minimum degree approaches, a
straightforward implementation of this algorithm can be rather slow when the matrix has
one or more very dense rows. Although these dense rows will not be chosen for pivoting
until near the end of the symbolic factorization, they are connected to most other rows
and will be repeatedly accessed during the symbolic factorization. In some of the test
cases, there were very dense rows. For example, in a matrix of order 30007 supplied by
Gould, the analysis phase for a version of the algorithm that did not take special account
of dense rows, required 214 seconds on a DEC Alpha DS20 workstation, contrasting with
2.47 and 0.26 seconds for factorization and solve phases, respectively. When we developed
a modified version of our approximate minimum degree code to deal more explicitly with
dense rows, the analysis time dropped to 1.4 seconds and the quality of the ordering was

essentially unaffected.

Often, in the solution of sparse linear systems, less attention is placed on the solve
phase because it is usually more than an order of magnitude faster than the factorization.
However, in the context of these optimization codes, there are many more calls to the solve
routines than to the factorization (for example, in a typical run of KNITRO, there were
34,174 calls to the solve routines but only 125 matrix factorizations) primarily because the
solution is used as a preconditioner for an iterative method. Thus the overall time can be
significantly affected by the solve times. Indeed, on early runs using the new MA57 code, we

were dismayed to find that, although the factorization times were less than half that of the

59

earlier MA27 code, the overall times for many of the optimization runs were much longer
when MA57 was used in place of MA27. This early problem was traced to a slower solve
time for MA57 which, on further investigation, was found to be caused by the overhead of
the loop on the number of right-hand sides in the case when there was only one right-hand
side. We have now written separate code for the case of one right-hand side that is in
general faster than the MA27 solve phase and, in these cases, the optimization code with
MA57 included then outperformed the version with MA27.

Analyse Factorize Solve
1 RHS 10 RHS
MA27 0.99 12.78 0.148 1.48
MA57 0.43 5.72 0.070 0.40

Table 5.2: Times (in seconds on a Sun ULTRA 5) for all phases of MA27 and MA57 on
example STCQP1 from CUTE. Matrix of order 5036 with 38045 entries.

In Table 5.2, we show the results of a typical run of our two sparse symmetric
multifrontal codes on a system of linear equations obtained from test problem STCQP1
from the CUTE collection (Bongartz, Conn, Gould and Toint, 1995). We see that MA57 is
significantly superior to MA27 in all phases. This is true for all the linear systems that we
have tested, and we have observed larger cases on which the MA57 factorize is ten times
faster than that of MA27, largely because of the use of the Level 3 BLAS. Note also that
the use of Level 3 BLAS when solving for a block of right-hand sides gives a superlinear

speedup in terms of number of right-hand sides.

Identifier # vars # inequalities | MA27 MA57
AUG3DCQP | 27543 8000 | 95.8 54.9
AUG3DQP 27543 8000 | 95.8 56.9
BLOWEYA 20002 10002 18.3 359
DEGENQP 50 125025 | 49.1 19.2
CvXQPr1 15000 7500 | 906.5 2.9
STCQP1 8193 4095 | 107.8 161.3
STCQP2 8193 4095 | 108.1 48.3

Table 5.3: Total times to solution of CUTE problems in seconds on a DEC alpha workstation.

When we look, in Table 5.3, at times for complete runs of a prototype primal-dual
interior point method of Gould (HSL_VE12), using both the codes, we would naturally

expect the performance to mirror that in Table 5.2.

optimization package with the new code are faster, sometimes significantly so.

60

In nearly all cases, runs of the

There

are, however, a few cases that cause us concern (for example BLOWEYA and STCQP1 in
Table 5.3). Of course, the times for the solution of the nonlinear problem will be affected
strongly by convergence rates and the convergence path taken by the algorithm and even
a small change in the solution provided by the linear solver may influence this. One
important issue is that the systems (5.17) become very ill conditioned, particularly near
the solution of the optimization problem which is exactly when an accurate solution to
the linear problem is required. Additionally, if we look at the results shown in Table 5.4,
we see it is important from an efficiency point of view to keep the threshold very low but
then there is significant risk of obtaining a poor solution, as happens when the threshold
is reduced to 107'2 in this example. Because of this risk and because the solution must
satisfy the Ax = O constraints to high accuracy, the optimization codes have built in a
facility for iterative refinement. Because of differences in pivoting strategies of MA27 and
MA57, on some examples it would appear that MA57 required far more iterative refinements
causing the overall time for the optimization to increase.

We investigated the apparent paradox between the relative times for problem STCQP1
in Tables 5.2 and 5.3 further. The two runs of the optimization code required about the
same number of function evaluations and conjugate gradient iterations but the run with
MA57 required far more iterative refinements. On further examination, we found that, for
the same linear equations with the same threshold value of 107!°, MA57 returned a scaled
residual of 1076 while the scaled residual using MA27 was 107!°. The MA57 value triggered
the iterative refinement option. We then studied both solvers more closely to see why the
residuals were so different and found that the MA57 code had inherited a pivoting strategy
from MA47 whereby, if the candidate 2 x 2 pivot fails the threshold test

—1
—1
ALk Qk k+1 max |Qr; U
ap41 & Q41 k+1 maX|ak+1 j| U

the (2,2) entry is immediately tested as a possible 1 x 1 pivot. If it satisfies the test, then
the modified (1,1) entry is then tested and if it passes the test, the 2 X 2 pivot is accepted.

This was a reasonable strategy for MA47 since there is a high premium on being able to

0 x
choose pivots of the form . However, the resulting 2 x 2 pivot is potentially less
X X

stable than the normal test would allow. In fact, although the pivot has been accepted,
the bound on the growth for the 2 x 2 pivot is now 1/u? rather than 1/u. This was
certainly not intended for MA57 and when this was removed, the resulting scaled residual
was the same as for MA27 and the optimization code ran faster with MA57 than with MA27.
Now, although this was all caused by effectively a bug in an early version of MA57, we
have discussed this in some detail to illustrate the sensitivity of the optimization code to

seemingly small changes to the linear equation pivoting strategy.

61

Threshold Factorization
U Reals Integers Time
Analysis 250005 66252
10-8 6117748 274287 444
10710 512262 38225 3.84
10712 494956 37504 3.72

Table 5.4: Effect of changing threshold. Times in seconds on a DEC alpha workstation.

Of course, some of the sensitivity to the threshold parameter that we see most
dramatically in Table 5.4, might be significantly affected by scaling the matrix prior to
numerical pivoting. When we used the HSL routine MC30 to scale the matrix of this table,
we were able to factorize the matrix with a threshold of 1078 in under 3 seconds with
the number of reals and integers in the factors 464934 and 36259, respectively. Although
scaling works extremely well in this case, Gould (private communication) suggests there
are other problems on which the reverse is true and we await test matrices from him to
study this phenomenon further.

Some of these preliminary results were discussed at a meeting in Morocco (Duff, 2002).

References

P. R. Amestoy, T. A. Davis, and I. S. Duff. An approximate minimum degree ordering
algorithm. SIAM J. Matriz Analysis and Applications, 17(4), 886-905, 1996.

I. Bongartz, A. R. Conn, N. I. M. Gould, and Ph. L. Toint. CUTE: Constrained and
Unconstrained Testing Environment. ACM Trans. Math. Softw., 21(1), 123-160,
1995.

R.H. Byrd, M.E. Hribar, and J. Nocedal. An interior point algorithm for large scale
nonlinear programming. SIAM J. Optimization, 9(4), 877-900, 1999.

I. S. Duff. Direct methods for the solution of large sparse systems. in ‘Proceedings of the
Conference Algebre Linéaire et Arithmétique Calcul Numérique et Parallele, held in
Rabat, Morocco, 28-31 May, 2001’, 2002.

E. M. Gertz and S. J. Wright. OOQP User Guide: Object-Oriented Software for Quadratic
Programming. Argonne National Laboratory, October 2001.

N. I. M. Gould and Ph. L. Toint. Numerical methods for large-scale non-convex quadratic
programming. Technical Report RAL-TR-2001-017, Rutherford Appleton Laboratory,
Oxfordshire, 2001.

62

5.4 Filter Methods (N. I. M. Gould and Ph. L. Toint)

Although we have recently concentrated on QP methods, we have not neglected
our ultimate aim, that of embedding such methods within the sequential quadratic
programming (SQP) framework for solving large-scale nonlinear programming problems.
Our research in this area has been restricted to investigating the convergence properties

of the newly emerging class of SQP Filter methods.

Most current methods for constrained optimization cope with the conflicting
requirements of feasibility and optimality by combining the objective function and a

“merit” function. Filter methods

measure of the constraint infeasibility within a single
were first proposed by Fletcher and Leyffer (2002) as a means of assessing the suitability
of steps computed by SQP methods. Their primary aim is to avoid the use of merit
functions, since it is far from obvious how best to combine the objective and constraints.
Filter methods instead treat the objective and constraints as independent objects, and
essentially assess the suitability of an SQP step by rejecting it only if neither the objective
nor constraint violation improves following the step. Although a general purpose SQP
Filter method is necessarily far more complicated than this simple idea, there is strong
evidence that the approach is worthwhile, and offers more flexibility than other merit-

function based approaches.

Unfortunately, convergence of the basic SQP Filter method depends upon being able to
solve the step-finding QP subproblem. Since in general this is a non-convex optimization
problem, it is unreasonable in practice to hope to be able to do so in every case. Thus
our research was based on alternatives that do not require the exact solution of the QP
subproblem.

One way to do this is to relax the requirements on the step, but to insist that the
step is constructed as the sum of two components, one of which aims towards (linearized)
feasibility, and the other towards objective-function decrease. Both components have to
be chosen to ensure “Cauchy-like” decrease conditions so familiar in trust-region methods,
but fortunately there are good methods to guarantee this. The global convergence of just
such a scheme was established in Fletcher, Gould, Leyffer, Toint and Waechter (2002).

An alternative in which the SQP step is attempted first, but in which the Fletcher et
al. (2002) method is used as a fall-back is also possible, and has been analysed by Gould
and Toint (2001).

References

R. Fletcher and S. Leyffer. Nonlinear programming without a penalty function.
Mathematical Programming, 91(2), 239-269, 2002.

63

R. Fletcher, N. I. M. Gould, S. Leyffer, Ph. L. Toint, and A. Waechter. Global convergence
of a trust-region SQP-filter algorithm for nonlinear programming. SIAM Journal on

Optimization, (to appear), 2002.

N. I. M. Gould and Ph. L. Toint. Global convergence of a hybrid trust-region SQP-filter
algorithm for general nonlinear programming. Technical Report RAL-TR-2001-033,
Rutherford Appleton Laboratory, Oxfordshire, 2001.

5.5 CUTEr, an Optimization Testing Environment (N. I. M.
Gould, D. Orban and Ph. L. Toint)

The CUTE testing environment for optimization software and the associated test problem
collection originated from the need to perform extensive and documented testing on the
LANCELOT package (Conn, Gould and Toint, 1992). Because the large set of test problems
and testing facilities produced in this context were useful in their own right, they were
extended to provide easy interfaces with other commonly used optimization packages,
gathered in a coherent multi-platform framework and made available, via anonymous ftp,
to the research community. Bongartz, Conn, Gould and Toint (1995) provide an overview
of the environment, and a full documentation of the tools and interfaces available at the
time.

Since 1993, the CUTE environment and test problems have been widely used by the
community of optimization software developers. However, this continued success inevitably
led to a clearer awareness of the deficiencies of the original design, and also created a
demand for new tools and new interfaces. The environment has evolved over time by the
addition of new test problems and minor updates to a number of tools. Consequently, we
believe that it is now time for its next major evolution: CUTEr, in which the ideas behind

CUTE are revisited and revised. This new release is characterized by

a set of new tools, including a unified facility to report the performance of the various

optimization packages being tested,

a set of new interfaces to additional optimization packages,

extra, larger test examples, and

some Fortran 90/95 support.

The SIF optimization test-problem decoder, which used to be a constituent part of the
CUTE environment, has been isolated into a separate package named SifDec. Any software
which could require the decoding of a SIF file may now rely on it, as a package in its own

right. It is characterized by

64

e the definition and support of an extension to SIF (the Standard Input Format)
allowing for easier input of quadratic programs and for casting the problem against

a selection of parameters, such as the problem size, and

¢ the ability to generate input files suited to automatic differentiation tools, such as
the HSL ADO1 and ADO2 packages (Pryce and Reid, 1998).

Both CUTEr and SifDec have the following features:

e Completely new organization of the various files that make up the environment, now
allowing concurrent installations on a single machine and shared installations on a

network, and
¢ a new simplified and automated installation procedure, but
e the restriction of the environment to UNIX systems.

Although CUTEr has not yet been released, its release is imminent, and much time over
the previous two years has been spent in developing and testing the new environment. On

release, CUTEr will be freely downloadable from its Web page,
http://cuter.rl.ac.uk/cuter-www .

The full scope of the package(s) is described in Gould, Orban and Toint (2002).

References

I. Bongartz, A. R. Conn, N. I. M. Gould, and Ph. L. Toint. CUTE: Constrained and
Unconstrained Testing Environment. ACM Transactions on Mathematical Software,
21(1), 123-160, 1995.

A. R. Conn, N. I. M. Gould, and Ph. L. Toint. LANCELOT: a Fortran package for
Large-scale Nonlinear Optimization (Release A). Springer Series in Computational
Mathematics. Springer Verlag, Heidelberg, Berlin, New York, 1992.

N. I. M. Gould, D. Orban, and Ph. L. Toint. CUTEr (and SifDec), a constrained
and unconstrained testing environment, revisited. Technical Report in preparation,
Rutherford Appleton Laboratory, Chilton, Oxfordshire, England, 2002.

J. D. Pryce and J. K. Reid. ADO1, a Fortran 90 code for automatic differentiation. Technical
Report RAL-TR-1998-057, Rutherford Appleton Laboratory, Oxfordshire, 1998.

65

5.6 GALAHAD (N. I. M. Gould, D. Orban and Ph. L. Toint)

As we reported in the previous progress report, our well known, large-scale optimization
package LANCELOT (Conn, Gould and Toint, 1992) is showing its age. Our intention is
to produce a successor (or more likely two), within the next couple of years, and we are
currently preparing the ground for this.

Rather than providing a single nonlinear programming package, we have decided instead
to produce a library, GALAHAD, of optimization-related packages. We are currently

preparing for the first release, and the key components will be
e QPA, see Section 5.1.2,
e (PB, see Section 5.1.1,

e LSQP, an interior-point method for minimizing a linear or separable convex quadratic

function over a polyhedral region,
e PRESOLVE, see Section 5.1.4,
e LANCELOT B, an updated version of the old dinosaur,

¢ GLTR, a method for minimizing a quadratic function within or on a (scaled) ball (the
¢y trust-region subproblem) based on Gould, Lucidi, Roma and Toint (1999)), and

e a variety of sparse-matrix manipulation tools.

The enlivened LANCELOT B offers a number of improvements over its predecessor, but is

still far from the state-of-the-art. New features include
e the automatic allocation of workspace,
e a non-monotone descent strategy to be used by default,

e the optional use of Moré and Toraldo (1991)-type projections during the subproblem

solution phase,

e an interface to Lin and Moré’s (1999) public domain incomplete Cholesky

factorization package ICFS for use as a preconditioner, and

e the optional use of structured trust regions to better model structured problems (see
Conn, Gould, Sartenaer and Toint, 1996).

The main reason for extending LANCELOT’s life is as a prototype for what may be achieved
using Fortran 90 in preparation for future GALAHAD SQP solvers, since the problem data

structure is unlikely to change.

66

Much as for CUTEr, the library will be fully documented, and capable of supporting
multi-platform, simultaneous use (within a Unix-like environment). The library is coded

entirely in Fortran 90, and is threadsafe.

On release, GALAHAD will be freely downloadable from its Web page,
http://galahad.rl.ac.uk/galahad-www .

The full scope of the package(s) is described in Gould, Orban and Toint (2002).

References

A. R. Conn, N. I. M. Gould, A. Sartenaer, and Ph. L. Toint. Convergence properties of
minimization algorithms for convex constraints using a structured trust region. SIAM

Journal on Optimization, 6(4), 1059-1086, 1996.

A. R. Conn, N. I. M. Gould, and Ph. L. Toint. LANCELOT: a Fortran package for

Large-scale Nonlinear Optimization (Release A). Springer Series in Computational
Mathematics. Springer Verlag, Heidelberg, Berlin, New York, 1992.

N. I. M. Gould, S. Lucidi, M. Roma, and Ph. L. Toint. Solving the trust-region subproblem
using the Lanczos method. SIAM Journal on Optimization, 9(2), 504-525, 1999.

N. I. M. Gould, D. Orban, and Ph. L. Toint. GALAHAD—a library of thread-safe Fortran
90 packages for large-scale nonlinear optimization. Technical Report in preparation,
Rutherford Appleton Laboratory, Chilton, Oxfordshire, England, 2002.

C. Lin and J. J. Moré. Newton’s method for large bound-constrained optimization
problems. SIAM Journal on Optimization, 9(4), 1100-1127, 1999.

J. J. Moré and G. Toraldo. On the solution of large quadratic programming problems with
bound constraints. SIAM Journal on Optimization, 1(1), 93-113, 1991.

67

5.7 Trust-region methods (A. R. Conn, N. I. M. Gould and
Ph. L. Toint)

Trust-region methods are one of the most

popular techniques for solving nonlinear

TRUST-REGION optimization problems. Our book on the
METHODS

subject was published by SIAM in time for

E 1 : b the Mathematical Programming Society’s
N it . '
.

triennial symposium in Atlanta, Georgia in
August, 2000.

References

A. R. Conn, N. I. M. Gould, and Ph. L.
Toint. Trust-region methods. 966+xvii
pages, SIAM, Philadelphia, USA, 2000.

68

6 Automatic Differentiation

6.1 Automatic differentiation for core calculations (S. A. Forth,

J. D. Pryce, J. K. Reid, and M. Tadjouddine)

John Reid collaborated with Shaun Forth, John Pryce and Mohamed Tadjouddine of

RMCS Shrivenham over applying source translation techniques to calculate Jacobians for

key calculations that are executed many thousands of times in a typical computer run.
Automatic differentiation is a means of computing the derivatives of a function specified

by a computer code for a given set of values of the independent variables. If the independent

variables are =1, o, ... ,,, we may write the calculation as the sequence of operations
z; = fiz1,z0,... 1)), 1(i) =min(i —1,m — k), i =n+1,n+2,... ,m, (6.1)
where the output variables are f; = z,,, 14, 0 =1,2,... , k.

By differentiating equation (6.1), we find that the derivatives are related thus

1(1)
Oz, fz awk ,
— =12,...,n. 6.2
k=1
If we suppose that the intermediate variables are y; = z,,44, 1 = 1,2,... ,m — k — n, we
can rewrite equation (6.2) as
-1 Vx —1
F L Vy | = 0 (6.3)
G H -1 \% 0

where L is lower triangular with diagonal entries —1 and the elements of F, G, H, and

the lower triangle of L are the ‘local derivatives’ g{k of equation (6.2).
If Gaussian elimination is applied to equation (6.3), pivoting only on the diagonal

entries of L., we find the equation

—1I Vx —1I
F L Vy | =] o (6.4)
J 0 -1 A\ § 0

and we see that the Jacobian J has been calculated. Note that each pivotal operation
preserves the form, that is, the matrix remains lower triangular with all diagonal entries
of value —1. All the pivots are —1, regardless of the pivot order.

The forward method corresponds to the forward order n +1¢, 2 =1,2,... ,m —k —n

and the backward method corresponds to the backward order n +1¢, ¢t = m — k — n,m —

69

k—mn—1,...,1. Other pivotal orders, sometimes called ‘cross-country’ ordering, may be
better than either.

A typical application is the Roe flux routine. This computes the numerical fluxes
of mass, energy and momentum across a cell face in a finite-volume compressible flow
calculation. Roe’s flux takes as input 10 variables describing the flow either side of a cell
face and returns as output the 5 variables for the numerical flux (200 lines of code). On the
platforms shown in Table 6.1, we have compared our code (VE), with several elimination
strategies, with finite differences (FD) and two of the established packages, Adifor and
TAMC. We obtained the results shown in Table 6.2. We see that on the SGI and ALP
platforms, our approach is about twice as fast as both conventional AD tools and finite
differences. On the SUN, NAG and FUJ platforms the times are less straightforward, but
the fastest is always one of our variants, so we are encouraged. Tests on other problems is

in progress.

Platform Processor Compiler

Processor CPU L1-Cache | L2-Cache Compiler Options
SGI R12000 300MHz 64KB 8MB 90 MIPSPro 7.3 -Ofast
ALP EV6 667TMHz | 128KB 8MB Compaq 95 5.4 -05
SUN UltralO 440MHz 32KB 2MB Workshop f90 6.0 -fast
NAG UltralO 440MHz 32KB 2MB Nagware 95 4.0a | -O3 -native
FUJ Ultral 143MHz 32KB 0.5 Fujitsu 90 5.0 -Mfrt, Am

Table 6.1: Platforms (Processors and Compilers)

Method SGI | ALP | SUN | NAG | FUJ
FD (1-sided) || 12.1 | 12.6 | 12.6 | 13.3 | 11.9
VE Forward 7.5 bbb | 13.2] 12.2|10.2
VE Reverse 6.5 4.6 8.8 88| 6.9

VE Mark 64| 51| 98| 104 | 6.7
VE Mark 6.6 | 50| 14.1| 10.2| 6.6
VE VLR 6.0 45| 89 91| 6.1
VEVLRRB | 62| 46| 9.0 9.6 | 6.0
Adifor 159 | 98| 314 | 50.5| 144

TAMC-ftl 14.4 | 10.2 | 11.9 | 56.7 | 14.9
TAMC-ad 122 | 8.5 | 13.2 | 42.0 | 10.0

Table 6.2: Ratios of Jacobian to function CPU timings on various platforms.

70

6.2 Threadsafe automatic differentiation in Fortran 95

(J. K. Reid)

The HSL automatic differentiation package ADO1 is seriously thread-unsafe because it relies
extensively on arrays in modules and there can only be one copy of each such array. The
decision that HSL 2002 should be threadsafe, see Section 9.3, forced us to make significant
changes. We decided to take the opportunity to make further improvements by using the
additional language features of Fortran 95. We know of no Fortran 90 compiler that is
being actively maintained and marketed that does not now conform to Fortran 95. The

new package is called AD02.
The big advantage of Fortran 95 for this application is that derived types can be

specified to have initial values for components. Wherever an object of such a type is
created, these components are given their initial values. This means that all active variables
(variables whose value depends on the independent variables), declared by the user of
ADO2 to be of type ADO2_REAL, have an initial value that can be tested. This is very
important since an assignment to an active variable should free the memory associated
with the previous value to avoid serious memory leakage. It is therefore essential to know
whether there is a previous value. In ADO1, we relied on the user explicitly setting a special
undefined value for each active variable; this is tedious for the user and it is very easy for

some variables to be overlooked.

ADO1 holds information about each calculation as module data and there are facilities
for saving and restoring this data to allow for subsidiary calculations. In AD02, we have
extended this idea to have information about every calculation held in a structure of type
ADO2 DATA, which means that any number of calculations may be active at any one time
and the need for facilities for saving and restoring disappears. When a calculation is
commenced, we need to specify the structure within which the calculation is to be held.
We allow such a structure to be reused because often an old calculation will no longer be
needed once the new one has started. We therefore introduced separate subroutines for

initializing and finalizing such a structure.

Every object of type ADO2_REAL has a pointer component that is associated with an
ADO2 DATA structure when it is active. Unfortunately, there is no easy way to make all the
pointers associated with a calculation become disassociated when the ADO2_DATA structure
is reused or finalized. We have therefore decided to hold an integer component CASE to
label the calculation in both the ADO2_REAL variable and the ADO2 _DATA structure. Also,
the finalize subroutine does not actually deallocate the structure; instead, it deallocates
its array components and sets a special value in the component CASE. Any active variable
that is associated with this structure is now regarded as undefined and we can test for this

status.

71

Automatic initialization of components and the introduction of CASE components allows
us to test any active variable that is involved in an operation for being undefined. It also
allow us to check that two active variables involved in a binary operation belong to the
same calculation.

There is a difficulty with respect to the assignment of a constant or an inactive variable
to an active variable. The only possible place for a pointer to the calculation is within
the left-hand side variable, and we use this provided it is associated with an ADO2_DATA
structure that has been initialized and has not been finalized. Whether the left-hand side is
defined is not relevant and it is quite likely to be undefined solely as a result of belonging
to an earlier calculation for a structure that has been reused. We therefore introduce
the concept of a ‘data-undefined’ value and provide a subroutine to set this value in an
ADO2_REAL variable.

Our final difficulty is associated with where to place error messages when things go
wrong. We have decided to hold an integer array for error and warning flags in each
ADO2 DATA structure for calculations associated with it and directly in the module for
computations not associated with a calculation.

As a result of all these changes, AD0O2 is far safer, more convenient, and more powerful
than ADO1. A disadvantage, however, is that our tests for the validity of each operation
are necessarily more complicated and will slow the execution. We feel that these tests are
essential for the development phase of a program since it is so easy to make a mistake. We

plan, however, to consider providing a version for production use that omits these tests.

72

7 Miscellaneous Activities

7.1 CERFACS (I. S. Duff)

[ain has continued to lead a project at CERFACS on Parallel Algorithms and several of

the contributions to this report reflect interactions with that team.

The main areas of research in the Parallel Algorithms Project are the development
and tuning of kernels for numerical linear algebra, the solution of sparse systems using
direct methods or iterative methods or a combination of the two, heterogeneous computing
including the use of PVM and MPI, large eigensystem calculations, optimization, and
the reliability of computations. Other activities of the Project include advanced training
by both courses and research. A major initiative of the Team is in the study of inner-
outer iterations where they have shown a radically different performance for Newton-type
iterations from cases where a Krylov method is user in the outer iteration. In the latter
case, as is well known, increasing accuracy is normally required in the inner iterations as
the outer converges. However, as is not so well known, the reverse has been shown to
be true in the latter case. Four short international meetings were hosted by the Parallel
Algorithms Project during the period of this report, and were attended by members of the
Group.

During the reporting period, five students completed their PhDs at CERFACS. Iain
was a jury member for the thesis defence of two of them, Dominique Orban and Elisabeth
Traviesas. He was also on the jury for two habilitation theses by Valérie Frayssé and Luc

Giraud both seniors at CERFACS.
Nick visited CERFACS to collaborate with Annick and a PhD student, Dominique
Orban, and to work on his book with Philippe Toint, visiting CERFACS from Belgium.
The home page for CERFACS is http://www.cerfacs.fr and current information on
the Parallel Algorithms Project can be found on page http://www.cerfacs.fr/algor/.
Full details on the activities of the Parallel Algorithms Team for the last two years can be
found in the reports (Project 2001a, Project 20015).

References

The Parallel Algorithms Project. Scientific Activity Report for 2000. Technical Report
TR/PA/01/23, CERFACS, Toulouse, France, 2001 a.

The Parallel Algorithms Project. Scientific Activity Report for 2001. Technical Report
TR/PA/01/105, CERFACS, Toulouse, France, 2001b.

73

7.2 ERCIM (M. Arioli and I. S. Duff)

As stated in each ERCIM News, The European Research Consortium for Informatics and
Mathematics (ERCIM) is an organisation dedicated to the advancement of European
research and development, in information technology and applied mathematics. Its
national member institutions aim to foster collaborative work within the European research
community and to increase co-operation with European industry.

ERCIM started in 1989 with the three Laboratories CWI (Amsterdam), GMD
(Germany), and INRIA (France) and were joined by RAL in the following year. There are
now members from 13 countries in the EU and Eastern Europe.

In the early days there were quite active groups and ERCIM meetings in mathematics,
but we have been concerned in recent years that the M of ERCIM was becoming neglected.
Thus there were two initiatives launched in 2001 to rectify this.

One was an ERCIM Working Group on Numerical Linear Algebra and Statistics
coordinated by Erricos Kontoghiorghes (Université de Neuchatel, Switzerland) and
Bernard Philippe (IRISA, France) to which both Mario and Iain belong and which has
had two meetings in 2001, one of which was attended by Mario.

The other ERCIM Group is coordinated by Mario and has a wider mathematical remit
involving several ERCIM institutions interested in Applications of Numerical Mathematics
in Science. Although we anticipate that many application areas will benefit from the results

and activities of the working group, it will focus on the following four areas:
e Numerical Linear Algebra.
e Numerical Solution of Differential Equations.
¢ Continuous Optimization and Optimal Control.
e Large Scale Scientific Computing.

It is planned to hold the inaugural meeting of this Group in the Czech Republic in
August. The Working Group looks forward to broadening the scope of it main research
topics into additional numerical areas. The Group strongly believes that the best way to
build stronger links between the ERCIM laboratories is to encourage young scientists to
act as intermediaries, and we plan to promote the ERCIM fellowship programme among
young scientists. The potential recruitment of young scientists justifies the involvement of
several Universities in our initiative.

In Table 7.2, we summarize our current information on the interest of each organization
in each topic.

Finally, the Working Group will promote through its members all possible initiatives

within the European Programmes for Research. We will encourage grant applications

74

and involvement in the research, technological development and

framework programmes of the EU.
The web site for the Working Group is

http://www.numerical.rl.ac.uk/ercim/WGanms.html.

demonstration (RTD)

Numerical
. . . . Large Scale

L. Numerical Linear | Solution of | Continuous .
Organization . . L. Scientific
Algebra Differential Optimization .

. Computing
Equations
CLRC X X X X
CNR X X X X
CWI X X X
DTU X X
FO.R.T.H./IACM X X X
FhG X X
ICS CAS X X X
INRIA-IRISA X X X X
SARIT X X X
SINTEF X X X
Trinity College X X
Univ. Patras X X

Univ. Utrecht X X
Univ. of Wales-Cardiff X X

Table 7.1: Institutions involved in the ERCIM Working Group

75

8 Computing and mathematical software

8.1 The computing environment within the Group

Our policy of upgrading the Group’s workstations has continued over the past two
years. Although the Group’s “high-performance” machine remains a Compaq Alpha DS20
dual EV6-processor server, we have taken the opportunity to upgrade one of our SUN
workstations, and to evaluate a couple of Linux-based Dell PCs. We are delighted with
the Dell machines, and our policy is likely to move from Sun machines to PCs over the
next year or so. In addition, we now have four Dell Latitude laptop computers of varying
configurations, and have currently replaced the eldest of these with a Dell Precision M40.

The responsibility for SUN software support continues to be delegated to other parts of
the Laboratory, although group members have still found it more convenient to get their
hands dirty for simple tasks—in particular, we maintain our own Linux systems on the
laptops and PCs. The Group continues to support a series of Web pages describing its
activities, and we have recently replaced our IBM RS/6000 by one of the PCs as a Web
server. In addition, we now allow restricted (and recorded) access to HSL codes via the
same PC.

We still benefit from other public RAL machines, in particular the Compaq
multiprocessor systems. The Group’s files continue to reside on a central UNIX data
store, which is backed up daily by the Information Technology Department. We continue
to have access to a number of Fortran 95 compilers, some on our own machines, and have
recently introduced our first Fortran 95 codes into HSL. We have also made use of MPI,
and associated parallel language support systems, on both our own machines and on those
provided by ITD.

In combination with our Grant application, we obtained computing time on national
facilities: namely on Columbus at RAL, and the CSAR machines (SGI Origin 2000 and
CRAY T3E) at Manchester.

9 HSL (Harwell Subroutine Library)

9.1 Collaboration with AEA Technology

The year 2000 was a dramatic one in respect of our collaboration with AEA Technology. It
began with the sale of the part of AEA Technology for which Nick Brealey worked and the
passing of responsibility for HSL to a management trainee Katie North with no experience
of mathematical software. After only a few months, an internal sale to Hyprotech took
place, and we began to collaborate with Lawrence Daniels, Iain Strachan, and Lesley

Vernon.

76

The collaboration with Hyprotech continued thereafter and has been happy and
successful. They bought the AEAT rights in HSL because they value its software and
want to use it in their products. They have agreed to pay a fixed annual fee for rights
to incorporate the software in their packages and this is enough to support John Reid’s
consultancy. Lesley Vernon embraced the marketing tasks associated with HSL with
enthusiasm and brought her experience with other Hyprotech software to bear. We were
very sorry that family reasons led her to resign, but the reigns have been ably taken up by
Pascale Hicklin.

9.2 HSL 2000 and HSL Archive

We intended that a new release of HSL would take place early in 2000, but the uncertainties
of our collaboration with AEA Technology (see previous subsection) caused it to be delayed
until October.

Many of the older HSL packages have gradually been superseded by newer versions,
with increases in functionality, improved interfaces, or speed of execution. We decided
that the time had come to separate HSL into two parts, the main library, HSL 2000; and
an archive, HSL Archive. The HSL Archive comprises older packages that were part of
previous releases of HSL, many of which have been superseded by more modern codes.
The HSL Archive packages are not completely frozen since we aim to correct any errors

that come to light, but it is not our intention to develop any of its packages further.

The split allows us to focus our attention in the packages of HSL 2000. While this is a
commercial product, it is also available without charge to UK academics for teaching and
academic research purposes. This innovation is a direct result of much of our core funding

being provided by a grant from the Engineering and Physical Science Research Council

(GR/R46441).

The HSL Archive may be licenced without charge to anyone (in the UK and elsewhere),
so long as the packages are not then supplied to a third party as part of another software
package. Access to the HSL Archive is by way of the HSL web page
http://www.cse.clrc.ac.uk/Activity/HSL

Reorganizing HSL into two parts and arranging separate catalogues for the two parts
was a significant undertaking and we would like to express our thanks to Mike Hopper
for his assistance as a consultant for these tasks. He was also invaluable in altering the
electronic representations of the changed AEAT logos to a compact form, suitable for

inclusion in each specification document.

77

9.3 HSL 2002

We prepared a new release of HSL during 2001 and completed this at the very end of
the year. The significant new packages in this release were ADO2, EA16, HSL_MA48, MA65,
HSL_MC65, HSL_MC66, ME57, HSL_VE19, HSL_KB12, and HSL_MA69. More details are given in
the next section.

A further significant change is that we decided that all packages in HSL 2002 should be
threadsafe. This is clearly desirable anyway as parallel processing becomes more pervasive,
but our motivation was also to prepare for a DLL (Dynamic Linked Library) version in the
future. It was also seen as very desirable by our Hyprotech colleagues for their software.
All reliance on SAVE, COMMON, and module variables has been removed. Unfortunately, in
many cases this could not be done without altering the argument list. In such a case, the
new routine is not compatible with the old one, so we felt obliged to change its name.
Once again, we were indebted to Mike Hopper, for assisting us in this task as a consultant.
This was a major program of work and we would like to thank Hyprotech for funding this
part of Mike’s work.

HSL 2002 is also available without charge to members of the UK academic community.

9.4 New HSL packages

The following new packages were added to the Library during the reporting period.

9.4.1 ADO02 Automatic differentiation (J. K. Reid)

This Fortran 95 package provides automatic differentiation facilities for variables specified
by Fortran code. Each independent variable and each variable whose value depends on
the value of any independent variable must be declared to be of type ADO2_REAL instead
of default REAL (double precision REAL in the DOUBLE version). Note that Fortran
variables of type default REAL (double precision REAL in the DOUBLE version) and
default INTEGER may enter the computation provided their values do not vary with
the values of the independent variables. Both the backward and the forward method are
available.

First and second derivatives are available with both the forward and backward methods.
Derivatives of any order are available with the forward method. They are stored in a hyper-
triangular format so that only one copy of identical derivatives is held.

Unlike HSL_ADO1, this code allows several independent calculations to be performed at
the same time. Each calculation is stored in a structure to which each of its variables has
access through a pointer.

A record is kept of the number of occurrences of errors. By default, execution continues

after an error in a ‘motoring’ mode where each operation is executed as an immediate

78

return. Alternatively, an immediate stop may be requested.

9.4.2 EA16 Eigenvalues and eigenvectors of real symmetric matrices
(K. Meerbergen and J. A. Scott)

This package uses an implicitly restarted block Lanczos method or rational Lanczos method
to compute selected eigenpairs of Ax = Ax where A is a large real symmetric matrix or
Ax = AMx, with A and M large real symmetric matrices and either A or M positive-
semidefinite.

The computed approximate eigenvalues are called Ritz values and the corresponding
approximate eigenvectors are Ritz vectors. If we denote by O P the operator that is applied
to the vectors in the Lanczos process, EA16 may be used to compute Ritz pairs for one of

the following problems:

1. Standard eigenvalue problem : Ax = Ax , A symmetric. This is solved using one of

the following modes:

la. Regular mode. Here OP = A.

1b. Shift-invert mode. Here OP = (A — oI)~! with o not an eigenvalue of A.

The computed Ritz vectors are orthogonal with respect to the standard inner product

<x,y >=xTy.

2. Generalised eigenvalue problem : Ax = AMx, A symmetric, M symmetric positive-

semidefinite. This is solved using one of the following modes:

2a. Regular inverse mode. Here OP = M~'A with M nonsingular.

2b. Shift-invert mode. Here OP = (A — cM)™'M with o not an eigenvalue of
Ax = AMx.

The computed Ritz vectors are orthogonal with respect to the M inner product
<X,y >=xTMy.

3. Buckling problem : Ax = AMx, A symmetric positive-semidefinite, M symmetric.

This is solved using the following mode:

3a. Buckling mode. Here OP = (A — cM) 'A with ¢ not equal to zero or to an
eigenvalue of Ax = AMx.

The computed Ritz vectors are orthogonal with respect to the A inner product
<X,y >=xTAy.

79

In the shift-invert and buckling modes, o is called the pole.
The method is described in detail by Meerbergen and Scott (2000), The design

of a block rational Lanczos code with partial reorthogonalization and implicit restarting,
Rutherford Technical Report RAL-TR-2000-011.

Note that EA16 is designed for computing a limited number of eigenvalues and
eigenvectors. EA16 cannot be used for computing all the eigenpairs of Ax = Ax or

Ax = AMx. The matrices A and M need not be available in an explicit form.

9.4.3 HSL_KBI12 Sorting reals using the Heapsort method (N. I. M. Gould)

HSL_KB12 is a suite of Fortran 90 procedures for successively arranging a set of real numbers,
{a1, a9, ...,a,}, in order of increasing size using the Heapsort method of J. W. J. Williams.
At the k-th stage of the method the k-th smallest member of the set is found. The method
is particularly appropriate if it is not known in advance how many smallest members of
the set will be required as the Heapsort method is able to calculate the k£ + 1st smallest
member of the set efficiently once it has determined the first k£ smallest members. The
method is guaranteed to sort all n numbers in O(nlogn) operations. If a complete sort is

required, the Quicksort algorithm, KBO5, may be preferred.

9.4.4 HSL_MAA48 Solve a sparse unsymmetric system: driver for conventional
direct method (I. S. Duff)

This solves a sparse unsymmetric system of linear equations. Given a sparse matrix A =
{aij}mxn and an n-vector b, this subroutine solves the system Ax = b or the system
ATx = b. The matrix A can be rectangular. There is an option for iterative refinement
and return of error estimates.

HSL._MA48 is a Fortran 95 encapsulation of MA48 and offers some additional facilities to

the Fortran 77 version.

9.4.5 MAS57 Solve a sparse symmetric system: multifrontal method
(I. S. Duff)

This solves a sparse symmetric system of linear equations. Given a sparse symmetric matrix
A = {a;j}nxn and an n-vector b, this subroutine solves the system Ax = b (AX = b).
The matrix A need not be definite.

The multifrontal method is used. It is a direct method based on a sparse variant of

Gaussian elimination and supersedes MA27.

80

9.4.6 HSL_MAS57 Solve a sparse symmetric system: multifrontal method
(I. S. Duff)

This solves a sparse symmetric system of linear equations. Given a sparse symmetric matrix
A = {a;;},xn and an n-vector b, this subroutine solves the system Ax = b (AX = b).
The matrix A need not be definite.

The multifrontal method is used. It is a direct method based on a sparse variant of

Gaussian elimination.

HSL_MA57 is a Fortran 90 version of MA57.

9.4.7 MAG65 Solve an unsymmetric banded system of linear equations
(J. K. Reid)

This solves an unsymmetric banded system of linear equations. Given a unsymmetric band

matrix A = {aij }nxn and an n-vector b, this subroutine solves the system Ax = b.

The matrix is factorized using Gaussian elimination with row interchanges. If the lower
semibandwidth is k! and the upper semibandwidth is ku, that is, if a;; = 0 for ¢« > j + ki
or j > t+ ku, fill-in is limited to k!l additional diagonals of the upper triangle and the
computation is performed within an array of size n(2kl + ku + 1). At each pivotal step,
operations are avoided on any row with a zero in the pivot column and on any column

beyond the last with an entry in the pivot row.

9.4.8 MAG67 Solve a sparse symmetric system with some zeros on the diagonal
(J. K. Reid)

This solves a sparse symmetric indefinite system of linear equations. Given a sparse
symmetric matrix A = {a;j}nxn and an n-vector b, this subroutine solves the system

Ax =Db.

The method used is a direct method using an LDLT factorization, where L is unit
lower triangular and D is block diagonal with blocks of order 1 and 2. Advantage is taken
of the extra sparsity available with 2 x 2 pivots (blocks of D) with one or both diagonal
entries of value zero. The numerical values of the entries are taken in account during the

first choice of pivots.

81

9.4.9 HSL_MA69 Unsymmetric system whose leading subsystem is easy to
solve (N. I. M. Gould)

HSL_MA69 is a suite of Fortran 90 procedures for computing the the solution to an extended

system of n + m sparse real linear equations in n + m unknowns,

A B X1 N b1
CD xy /] \by)
in the case where the n by n matrix A is nonsingular and solutions to the systems

Ax=b and ATy =c¢

may be obtained from an external source, such as an existing factorization. The subroutine
uses reverse communication to obtain the solution to such smaller systems. The method

makes use of the Schur complement matrix
S=D - CA 'B.

The Schur complement is stored and factorized as a dense matrix and the subroutine
is thus appropriate only if there is sufficient storage for this matrix. Special advantage
is taken of symmetry and definiteness in the coefficient matrices. Provision is made for
introducing additional rows and columns to, and removing existing rows and columns from,

the extended matrix.

9.4.10 MC54 Write a sparse matrix in Rutherford-Boeing format (I. S. Duff)

This writes a sparse matrix in Rutherford-Boeing format. The matrix can be input as
an assembled matrix in either column-oriented or coordinate form, or as an unassembled

finite-element matrix.

9.4.11 MC55 Write a supplementary file in Rutherford-Boeing format
(I. S. Duff)

This writes a supplementary file in Rutherford-Boeing format. There are many types of
supplementary file for which the user should read the documentation on the Rutherford-
Boeing Sparse Matrix Collection (RAL Report RAL-TR-97-031). These include right-hand

sides, solution vectors, orderings, eigenvalues etc.

9.4.12 MC56 Read a file or a supplementary file held in Rutherford-Boeing
format (I. S. Duff)

This reads a file held in Rutherford-Boeing format. It may contain either a sparse matrix

or supplementary data. There are many types of supplementary data for which the user

82

should read the documentation on the Rutherford-Boeing Sparse Matrix Collection (RAL
Report RAL-TR-97-031). These include right-hand sides, solution vectors, orderings,

eigenvalues etc.

9.4.13 MC59 Sort a sparse matrix to an ordering by columns (I.S. Duff and
J.A. Scott)

This subroutine performs an in-place sort on a sparse matrix to an ordering by columns.
There is an option for ordering the entries within each column by increasing row indices
and an option for checking for indices that are out of range or duplicated.

This subroutine supersedes MC20, MC39, MC49, ME20, and MF49.

9.4.14 HSL_MC65 Construct and manipulate matrices in compressed sparse
row format (Y. F. Hu)

For a general sparse matrix, the compressed sparse row format consists of three arrays, PTR,
COL and VAL. PTR holds the starting positions of the rows in the COL and VAL arrays. The
indices of the entries of row I are held in COL(PTR(I) :PTR(I+1)-1) and the corresponding
values are held in VAL(PTR(I):PTR(I+1)-1). However, the user should not need to deal
with these arrays individually; HSL_MC65 encapsulates them in a sparse matrix object of the
derived type HSL_ZDO1_TYPE. HSL_MC65 provides procedures that perform basic operations,
such as sparse matrix summation and multiplication, on these sparse matrix objects. There

is an option for omitting VAL, that is, for a pattern-only matrix.

9.4.15 HSL_MC66 Order an unsymmetric matrix into singly bordered blocked
diagonal form (Y. F. Hu)

This orders an unsymmetric matrix A into singly bordered blocked diagonal (SBBD) form.
Given the sparsity pattern of a matrix, this routine generates a row and column ordering

that can be used to reorder the matrix into the following SBBD form

A11 Sl
AQQ SZ

AKK SK

Here K is the user-defined number of blocks. The aim is to minimize the size of the
border in the above matrix, also known as the net-cut, and to achieve load balance by
ensuring that the rectangular matrices A;; are of similar sizes.

The HSL_MC66 algorithm uses a multilevel approach combined with a Kernighan-Lin
type refinement algorithm. Full details are discussed in Hu, Maguire and Blake, Computers

83

and Chemical Engng. 21 (2000), pp.1631-1647.

HSL_MC66 may be used to preorder an unsymmetric matrix for use with the sparse
matrix solver HSL_MP43.

9.4.16 ME38 Sparse unsymmetric system: multifrontal method (T. A. Davis
and I. S. Duff)

This package solves a sparse unsymmetric complex system of n linear equations in n
unknowns using an unsymmetric multifrontal variant of Gaussian elimination. There are
facilities for choosing a good pivot order, factorizing another matrix with a nonzero pattern
identical to that of a previously factorized matrix, and solving a system of equations using
the factorized matrix. An option exists for solving triangular systems using the factors

from the Gaussian elimination.

9.4.17 MES57 Sparse complex symmetric system: multifrontal method
(I. S. Duff)

This solves a sparse complex symmetric system of linear equations. Given a sparse complex
symmetric matrix A = {a;; }»x» and an n-vector b (or an n X s matrix B), this subroutine
solves the system Ax = b (AX = B). Later versions of this package will allow A to be

Hermitian or complex skew-symmetric.

9.4.18 HSL_MP43 Solve sparse unsymmetric system: multiple-front method,
equation entry (J. A. Scott)

The module HSL_MP43 uses the multiple front method to solve sets of linear equations
Ax = b (or AX = B) where A has been preordered to singly-bordered block-diagonal

form

A11 Cl
A22 CZ

Ann Cn
The HSL routines MA42 and MA52 are used with MPI for message passing.

In the multiple front method, a partial frontal decomposition is performed on each of the
submatrices (Ay C;) separately. Thus, on each submatrix, L and U factors are computed.
Once all possible eliminations have performed, for each submatrix there remains a frontal
matrix F;. The variables that remain in the front are called interface variables and the
interface matrix F is formed by summing the matrices F;. The interface matrix F is also

factorized using the frontal method. Block back-substitution completes the solution.

84

The matrix data and/or the matrix factors are optionally held in direct-access files.

9.4.19 HSL_VE19 Quadratic programming problem: working-set method
(N. I. M. Gould)

This package uses a working-set method to solve the ¢; quadratic programming
problem
minimize ¢(x) + pyv,(X) + ppvp(x) (9.1)
xelR"

involving the quadratic objective
q(x) = 1 x"Hx +g'x + f

and the infeasibilities
vy(x) = i max(c, — alx,0) + i max(alx — c¥,0)
i=1 i=1
and
vp(x) = zn:max(:rg —z;,0) + En:max(:vj —z%,0),
j=1 j=1

! !

where the n by n symmetric matrix H, the vectors g, a;, ¢, ¢*, x*, x* and the scalars f,

pqg and p; are given. Full advantage is taken of any zero coefficients in the matrix H or the
1
J
The package may also be used to solve the quadratic programming problem

vectors a;. Any of the constraint bounds ¢, ¢, 2} and z7 may be infinite.

minimize ¢(x), (9.2)
x€lR"

subject to the general linear constraints
d<alx<cl, i=1,...,m, (9.3)

and the simple bound constraints

U
70

.ré.gmjga: j=1,...,n, (9.4)

by automatically adjusting the parameters p, and p; in (9.1). Similarly, the package is
capable of solving the bound-constrained /; quadratic programming problem
minimize ¢(X) + pyv, (%), (9.5)
xcIR"
subject to the simple bound constraints (9.4), by automatically adjusting py in (9.1).
If the matrix H is positive-semidefinite, a global solution is found. However, if H is
indefinite, the procedure may find a (weak second-order) critical point that is not the

global solution to the given problem.

85

9.4.20 YMI11 Generate a random sparse matrix (I. S. Duff)

These subroutines generate an m by n random sparse matrix with user-specified options
such as structural nonsingularity and bandedness. The matrix is held in a packed form in
a standard sparse matrix format, and there is an option to write it to a file in Rutherford
Boeing format (Report RAL-TR-97-031).

YM11 is a threadsafe version of YMO1 and includes entries for generating complex valued

and integer valued matrices.

86

10 Seminars

20 January 2000

18 February 2000

4 May 2000

15 June 2000

23 November 2000

8 February 2001

1 March 2001

17 May 2001

7 June 2001

22 November 2001

Dr Bruce Christianson (Hertfordshire) Cheap Newton steps for discrete
time optimal control problems: automatic differentiation and Pantoja’s

algorithm.

Dr Kurt Lust (Warwick) Continuation and bifurcation analysis of

periodic solutions of partial differential equations.

Professor Nick Higham (Manchester) Analysis of the Cholesky method
with iterative refinement for solving the symmetric definite generalized

eigenproblem.

Dr Steven Benbow (Quintessa Ltd) Augmented linear systems -

methods and observations.

Dr Mario Arioli (Rutherford Appleton Laboratory) A stopping
criterion for the conjugate gradient algorithm in a finite-element

method framework.

Dr Colin Campbell (Bristol) Support vector machines and related

kernel methods.

Professor Mark Stadtherr (Notre Dame, Indiana) Reliable process

modelling and optimization using interval analysis.

Dr Lawrence Daniels and Dr Iain Strachan (Hyprotech) On the robust

solution of process simulation problems.

Professor M.J.D. Powell (Cambridge) Some properties of thin plate

spline interpolation.

Dr Milan Mihajlovic (Manchester) A new preconditioning technique

for the solution of the biharmonic problem.

87

11 Reports issued in 2000-2001

We give a full listing of Rutherford Technical Reports issued during the period of this
Progress Report. The other report listings, from organizations with which we collaborate,

only include reports not already included as RAL reports. All of our current technical

reports are publicly accessible via the internet from

http://www.numerical.rl.ac.uk/reports/reports.html.

Rutherford Reports

RAL-TR-2000-001

RAL-TR-2000-009

RAL-TR-2000-010
RAL-TR-2000-011

RAL-TR-2000-014

RAL-TR-2000-030

RAL-TR-2000-031

RAL-TR-2000-040

RAL-TR-2001-003

RAL-TR-2001-004

Numerical Analysis Group Progress Report. January 1998 -
December 1999. I. S. Duff (Editor).

Some sparse pattern selection strategies for robust Frobenius
norm minimization preconditioners in electromagnetism.
B. Carpentieri, 1. S. Duff, and L. Giraud.

The Lanczos method with semi-inner product. K. Meerbergen.
The design of a block rational Lanczos code with partial
reorthogonalization and implicit restarting. K. Meerbergen and
J. Scott.

Superlinear convergence of primal-dual interior point algorithms
for nonlinear programming. N. I. M. Gould, D. Orban,
A. Sartenaer, and Ph. L. Toint.

Two-stage ordering for unsymmetric parallel row-by-row frontal
solvers. J. A. Scott.

Multilevel algorithms for wavefront reduction. Y. F. Hu and
J. A. Scott.

Componentwise fast convergence in the solution of full-rank
systems of nonlinear equations. N. I. M. Gould, D. Orban,
A. Sartenaer, and Ph. L. Toint.

Analysis and comparison of two general sparse solvers for
distributed memory computers. P. R. Amestoy, I. S. Duff,
J.-Y. L’Excellent and X. S. Li.

Performance and tuning of two distributed memory sparse
solvers. P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent and
X. S. Li.

88

RAL-TR-2001-005

RAL-TR-2001-006

RAL-TR-2001-011

RAL-TR-2001-017

RAL-TR-2001-023

RAL-TR-2001-026

RAL-TR-2001-032

RAL-TR-2001-033

RAL-TR-2001-034

RAL-TR-2001-037

RAL-TR-2001-039

Incremental norm estimation for dense and sparse matrices.
[. S. Duff and C. Vomel.

A null space algorithm for mixed finite element approximation
of Darcy’s equation. M. Arioli and G. Manzini.

The design of a portable parallel frontal solver for chemical
process engineering problems. J. A. Scott.

Numerical methods
programming. N. I. M. Gould and Ph. L. Toint.
mixed-hybrid finite
approximation of the potential fluid flow problem in porous
media. M. Arioli, J. Maryska, M. Rozloznik, and M. Tuma.

An iterative working set method for large-scale non-convex

for large-scale non-convex quadratic

Dual variable methods for element

quadratic programming. N. . M. Gould and Ph. L. Toint.
The Sparse BLAS. 1. S. Duff, M. A. Heroux, and R. Pozo.
Global convergence of a hybrid trust-region SQP-filter algorithm
for general nonlinear programming. N. I. M. Gould and Ph. L.
Toint.

A scaling algorithm to equilibrate both row and column norms
in matrices. D. Ruiz.

A network programming approach in solving Darcy’s equations
by mixed finite-element methods. M. Arioli and G. Manzini.
Implementing Hager’s exchange methods for matrix profile
reduction. J.K. Reid and J.A. Scott.

89

CERFACS Reports

TR/PA/00/04

TR/PA/00/18

TR/PA/00/72

TR/PA/00/82
TR/PA/01/27

TR/PA/01/35

Experiments with sparse preconditioning of dense problems from
electromagnetic applications. B. Carpentieri, I. S. Duff, and
L. Giraud.

Level 2 and Level 3 Basic Linear Algebra Subprograms for
Sparse Matrices: A Fortran 95 instantiation. I. S. Duff and
C. Vomel.

Analysis, tuning and comparison of two general sparse solvers
for distributed memory computers. P. R. Amestoy, I. S. Duff,
J.-Y. L’Excellent and X. S. Li.

Implementing the Sparse BLAS in Fortran 95. 1. S. Dulff,
C. Vomel, and M. Youan.

The implementation of the Sparse BLAS in Fortran 95. 1. S. Duff
and C. Vomel.

Sparse symmetric preconditioners for dense linear systems in
electromagnetism. B. Carpentieri, 1.S. Duff, L. Giraud, and

M. Magolu monga Made.

ENSEEIHT-IRIT Reports

RT/APO/01/4 Impact of the implementation of MPI point-to-point

communications on the performance of two general sparse
solvers. P.R. Amestoy, 1.S. Duff, J.-Y. L’Excellent, and X. Li.

TAN-CNR Reports

TAN-1179 A stopping criterion for the conjugate gradient algorithm in a

finite element method framework. M. Arioli.

90

12 External Publications in 2000-2001

P. R. Amestoy, 1. S. Duff, and J.-Y. L’Excellent. Multifrontal parallel distributed symmetric
and unsymmetric solvers. Comput. Methods in Appl. Mech. Engng., 184, 501-520,
2000.

P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent. A fully asynchronous
multifrontal solver using distributed dynamic scheduling. SIAM J. Matriz Analysis
and Applications, 23(1), 15-41, 2001.

P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and J. Koster. MUMPS: a general purpose
distributed memory sparse solver. in A. H. Gebremedhin, F. Manne, R. Moe and
T. Sgrevik, eds, ‘Proceedings of PARA2000, the Fifth International Workshop on
Applied Parallel Computing, Bergen, June 18-21. Lecture Notes in Computer Science
1947, pp. 122-131. Springer-Verlag, 2000.

P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and X. S. Li. Analysis and comparison of
two general sparse solvers for distributed memory computers. ACM Transactions on
Mathematical Software, 27(4), 388—-421, December 2001.

P. R. Amestoy, 1. S. Duff, J.-Y. L’Excellent, and X. S. Li. Performance and tuning of two
distributed memory sparse solvers. in ‘Proceedings of Tenth SIAM Conference on

Parallel Processing for Scientific Computing, Portsmouth, Virginia, March 12th-14th,
2001, 2001.

M. Arioli. The use of QR factorization in sparse quadratic programming and backward
error issues. SIAM J. Matriz Anal. and Applics., 21, 825-839, 2000.

M. Arioli and L. Baldini. A backward error analysis of a null space algorithm in sparse
quadratic programming. SIAM J. Matriz Analysis and Applications, 23, 425—-442,
2001.

M. Arioli, E. Noulard, and A. Russo. Stopping criteria for iterative methods: Applications
to PDE’s. CALCOLO, 38, 97-112, 2001.

Z.-7. Bai, 1. S. Duff, and A. J. Wathen. A class of incomplete orthogonal factorization
methods. I: Methods and theories. BIT, 41(1), 53-70, 2001.

B. Carpentieri, I. S. Duff, and L. Giraud. Robust preconditioning of dense problems
from electromagnetics. in L. Vulkov, J. Wasniewski and P. Yalamov, eds, ‘Numerical
Analysis and Its Applications. Lecture Notes in Computer Science 1988’ pp. 170-178.
Springer-Verlag, 2000.

91

B. Carpentieri, I. S. Duff, and L. Giraud. Sparse pattern selection strategies for robust
Frobenius-norm minimization preconditioners in electromagnetism. Numerical Linear

Algebra with Applications, 7(7-8), 667685, 2000.

A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Trust-region methods. SIAM, Philadelphia,
2000.

A. R. Conn, N. I. M. Gould, D. Orban, and Ph. L. Toint. A primal-dual trust-
region algorithm for non-convex nonlinear programming. Mathematical Programming,

87(2), 215249, 2000.

I. S. Duff. The impact of high performance computing in the solution of linear systems:
trends and problems. J. Computational and Applied Mathematics, 123, 515-530,
2000.

I. S. Duff and J. Koster. On algorithms for permuting large entries to the diagonal of a
sparse matrix. SIAM J. Matriz Analysis and Applications, 22(4), 973-996, 2001.

N. I. M. Gould and Ph. L. Toint. SQP methods for large-scale nonlinear programming. in
M. J. D. Powell and S. Scholtes, eds, ‘System Modelling and Optimization, Methods,
Theory and Applications’, pp. 149-178, Kluwer Academic Publishers, Dordrecht, The
Netherlands, 2000.

N. I. M. Gould, M. E. Hribar, and J. Nocedal. On the solution of equality constrained

quadratic problems arising in optimization. SIAM Journal on Scientific Computing,

23(4), 1375-1394, 2001.

N. I. M. Gould, S. Lucidi, M. Roma, and Ph. L. Toint. Exploiting negative curvature
directions in linesearch methods for unconstrained optimization. Optimization
Methods and Software, 14(1-2), 75-98, 2000.

N. I. M. Gould, D. Orban, A. Sartenaer, and Ph. L. Toint. Superlinear convergence of
primal-dual interior point algorithms for nonlinear programming. SIAM Journal on
Optimization, 11(4), 974-1002, 2001.

Y.F. Hu and J.A. Scott. A multilevel algorithm for wavefront reduction. SIAM Journal
on Scientific Computing, 23, 1352-1375, 2001.

C. Keller, N. I. M. Gould, and A. J. Wathen. Constraint preconditioning for indefinite
linear systems. SIAM Journal on Matriz Analysis and Applications, 21(4), 1300-1317,
2000.

J. K. Reid. Implicit scaling of linear least squares problems. BIT, 40(1), 146-157, 2000.

92

J.

K. Reid, J. M. Rasmussen, and P. C. Hansen. The LINPACK

Benchmark in Co-Array Fortran. in ‘Proceedings of Sixth European
SGI/Cray MPP Workshop, Manchester, 7-8 September 2000’, 2000.
http://mrccs.man.ac.uk/mpp-workshop6/proc/index.htm.

J.K. Reid and J.A. Scott. Reversing the row order for the row-by-row frontal method.

Numerical Linear Algebra with Applications, 8, 1-6, 2001.

Y. Saad, O. Axelsson, I. Duff, W.-P. Tang, H. van der Vorst, and A. Wathen,

J.A.

J.A.

J.A.

J.A.

editors. Special Issue: Preconditioning Techniques for Large Sparse Matrix Problems
in Industrial Applications, SPARSE’99, Vol. 7. Numerical Linear Algebra with
Applications, 2000.

Scott. Row ordering for frontal solvers in chemical process engineering. Computers
in Chemical Engineering, 24, 1865-1880, 2000.

Scott. The design of a portable parallel frontal solver for chemical process engineering
problems. Computers in Chemical Engineering, 25, 1699-1709, 2001.

Scott. A parallel solver for finite element applications. Int. Journal on Numerical
Methods in Engineering, 50, 1131-1141, 2001.

Scott. Two-stage ordering for unsymmetric parallel row-by-row frontal solvers.
Computers in Chemical Engineering, 25, 323-332, 2001.

93

	Abstract
	Contents
	1 Introductio (I.S.Duff)
	2 Frontal and multifrontal methods
	2.1 MUMPS
	2.1.1 An analysis of MPI send/receive in the context of MUMPS
	2.1.2 Candidate-based dynamic scheduling for a distributed direct linear solver
	2.2 Analysis and comparison of distributed memory sparse solvers
	2.3.Two-stage ordering for unsymmetric parallel row-by-row frontal solvers
	2.4 The design of a portable parallel frontal solver for highly unsymmetric linear systems
	2.5 A multilevel wavefront and profile reduction algorithm
	2.6 Implementing Hager's exchange methods for matrix profile reduction
	2.7 A new symmetric indefinite sparse multifrontal solver
	3 Other numerical linear algebra
	3.1 The sparse BLAS
	3.2 A parallel version of MA48 for unsymmetric linear systems
	3.3. Solving symmetric sparse systems of linear equations with zeros on the diagonal
	3.4 Solving unsymmetric banded systems of linear equations
	3.5 Use of orderings for large entries on the diagonal
	3.6 A stopping criterion for the conjugate gradient algorithm in a finite element method framework
	3.7 Robust preconditioning of dense problems from electromagnetics
	3.7.1 Combiningfast multipole techniques and approximate inverse preconditioners for large calculations in electromagnetism
	3.7.2 Spectral two-level preconditioners
	3.7.3 Sparse symmetric preconditioners for dense linear systems in electromagnetism
	3.8 Rank-revealing factorizations and incremental norm estimation
	3.9 Incomplete QR factorization
	3.10 EA16: a new block Lanczos code
	4 Partial differential equations
	4.1 Null space algorithms for mixed finite-element approximation of Darcy's equation
	4.1.1 The Householder approach
	4.1.2 The network programming approach
	4.1.3 Mixed-hybrid approximation
	5 Optimization
	5.1 Quadratic programming
	5.1.1 An interior-point approach
	5.1.2.An Active-Set approach
	5.1.3 Comparing the two approaches
	5.1.4 Preprocessing
	5.2 A backward error analysis of a null space algorithm in sparse quadratic programming
	5.3 Use of MA57 in optimization packages
	5.4 Filter methods
	5.5 CUTEr, an Optimization Testing Environment
	5.6 GALAHAD
	5.7 Trust-region methods
	6 Automatic differentiation
	6.1 Automatic differentiation for core calculations
	6.2 Threadsafe automatic differentiation in Fortran 95
	7 Miscellaneous activities
	7.1 CERFACS
	7.2 ERCIM
	8 Computing and mathematical software
	8.1 The computing environment within the Group
	9 HSL (Harwell Subroutine Library)
	9.1 Collaboration with AEA Technology
	9.2 HSL 2000 and HSL Archive
	9.3 HSL 2002
	9.4 New HSL packages
	9.4.1 ADOC Automatic differentiation
	9.4.2 EA16 Eigenvalues and eigenvectors of real symmetric matrices
	9.4.3 HSL-KB12 Sorting reals using the Haaport method
	9.4.4 HSL-MA4A Solve a sparse unsymmetric system driver for conventional direct method
	9.4.5 MA57 Solve a sparse symmetric systems multifrontal methods
	9.4.6 HSL-MA57 Solve a sparse symmetric systems multifrontal method
	9.4.7 MA65 Solve an unsymmetric banded system of linear equations
	9.4.8 MA67 Solve a sparse symmetric system with some zeros on the diagonal
	9.4.9 HSL-MA69 Unsymmetric system leading subsystem is easy to solve
	9.4.10 MC54 Write a sparse matrix in Rutherford-Boeing format
	9.4.11 MC55 Write a supplementary file in Rutheerford-Boeing format
	9.4.12 MC56 Read a file or a supplementary file held in Rutherford-Boeing format
	9.4.13 MC20 Sort a sparse matrix to an ordering by columns
	9.4.14 HSL-MC65 Construct and manipulate matrices in compressed sparse row format
	9.4.15 HSL-MC66 Order an unsymmetric matrix into singly bordered blocked diagonal form
	9.4.16 ME38 Sparse unsymmetric systems multifrontal method
	9.4.17 ME57 Sparse complex symmetric systems multifrontal method
	9.4.18 HSL-MP43 Solve sparse unsymmetric systems multiple-front method, equation entry
	9.4.19 HSL-ME19 Quadratic programming problems working-set methods
	9.4.20 YM11 Generate a random sparse matrix
	10 Seminars
	11 Reports issued in 2000-2001
	12 External publications in 2000-2001

