nAL-1N-4UUs-Uld

A class of incomplete orthogonal factorization
methods. II: implementation and results’

Andreas T. Papadopoulos?, lain S. Duff®> and Andrew J. Wathen*

ABSTRACT

We present, implement and test several incomplete orthogonal factorization
methods based on Givens rotations for large sparse unsymmetric square and
rectangular matrices. The methods are applied to a variety of square systems
and their performance as preconditioners is tested against standard incomplete LU
factorization techniques. For rectangular matrices corresponding to least-squares
problems, the resulting incomplete factorizations are applied as preconditioners for
conjugate gradients for the system of normal equations. A comprehensive discussion
about the uses, advantages and shortcomings of these preconditioners is given.

Keywords: Preconditioning, sparse linear systems, sparse least-squares, iterative
methods, incomplete orthogonal factorizations, Givens rotations.

AMS(MOS) subject classifications: 65F10, 65F25, 65F50.

lCurrent reports available by anonymous ftp to ftp.numerical.rl.ac.uk in
directory pub/reports. This report is available in compressed postscript as file
padwRAL2002019.ps.gz or as the PDF file padwRAL2002019.pdf. The report is also
available through URL http://www.numerical.rl.ac.uk /reports/reports.html.

An earlier and more expanded version was published as Technical Report NA-02-07 from
OUCL. Submitted to BIT.

2andp@comlab.ox.ac.uk, Oxford University Computing Laboratory, Wolfson Building,
Parks Road, Oxford, OX1 3QD.

3i.s.duff@rl.ac.uk, the work of this author was supported in part by the EPSRC Grant
GR/R46441.

4wathen@comlab.ox.ac.uk, Oxford University Computing Laboratory, Wolfson Building,
Parks Road, Oxford, OX1 3QD.

Computational Science and Engineering Department
Atlas Centre

Rutherford Appleton Laboratory

Oxon OX11 0QX

May 29, 2002

Contents
1 Introduction.

2 Description of algorithms and observations.
2.1 column-Incomplete Givens Orthogonalization (cIGO) method.
2.2 column-Threshold IGO (cTIGO).
2.3 Row-wise elimination TIGO (rTIGO).
2.4 Computer implementation details.

3 Preconditioning Square Systems.
3.1 Description of experiments.
3.2 Examplesin brief. o L
3.3 The effect of preprocessing.
3.4 DISCuSsiOn. e e e e e e e e

4 Preconditioning least-squares systems.
4.1 Computer implementation. L.
4.2 Droppingrules. Lo
4.3 Numerical results. oo
4.4 DiIsCuSsSION.o e e e e e

5 Conclusions.

10
10
11
12
16

17
17
18
19
20

24

1 Introduction.

This paper is a sequel to the theoretical work on incomplete orthogonalization
methods by Bai, Duff and Wathen (2001) which describes and analyses a family
of incomplete QR factorizations using Givens rotations. Whereas their paper
was concerned only with theoretical aspects, we have efficiently implemented the
methods and have provided numerical results.

We consider three specific methods. The first two of these methods perform
the reduction using Givens rotations in a column-wise fashion: column-Incomplete
Givens Orthogonalization (cIGO-method) drops entries by position only, whereas
column-Threshold Incomplete Givens Orthogonalization (cTIGO-method) drops
entries dynamically by both their magnitudes and positions. The third method,
row-Threshold Incomplete Givens Orthogonalization (rTIGO-method), again drops
entries dynamically, but only the magnitude is now taken into account and reduction
is performed in a row-wise fashion. We give detailed accounts of how we code these
algorithms to ensure efficiency of computation and memory use.

The use of incomplete factorizations as preconditioners is widespread. In
particular, since the seminal paper of Meijerink and van der Vorst (1977), which
gave sufficient conditions for stability, incomplete LU factorizations have been
and continue to be employed in many application areas as a preconditioner for
the solution of square and sparse systems. Such factorizations compute a lower
triangular matrix L and an upper triangular matrix U which are approximate factors
of A in the sense of having a predefined or dynamically defined sparsity based on the
size of entries computed. That is, during the factorization process, certain entries in
the factors are set to be zero. The triangular factors are usually very sparse and can
be computed in a fraction of the time necessary for a complete factorization; most of
the computational work is simply by-passed through the use of dropping rules. If the
dropping rule is not too strict, one can usually achieve good convergence with such
preconditioners (Manteuffel 1980, Saad 1988, Saad 1996). More recently, research
has focused on ordering or preprocessing strategies for the system matrix to improve
the performance of ILU preconditioners (Benzi, Haws and Tama 2000, Benzi, Szyld
and van Duin 1999).

More recent research has introduced important innovations in the field of
incomplete factorization techniques, such as approximate inverse techniques (see for
example Benzi, Meyer and Ttuma (1996) or Saad (1996), ch. 10.5) and incomplete
QR type factorizations. In this paper, we will study a class of incomplete QR
methods.

It is well known that a square, nonsingular matrix A can be decomposed into
a product of an orthogonal matrix) and a nonsingular upper triangular matrix
R, such that A = QR. Obviously, one can use such a decomposition to solve
the linear system Az = b directly. However, complete QR factorizations are even
more expensive than their LU counterpart (Golub and Van Loan 1996). On the

other hand, incomplete variants of a ()R factorization can be used to precondition
iterations in a similar manner to incomplete LU preconditioning.

The question that arises naturally is how one should proceed to obtain this
incomplete QR type factorization. The most researched approach employs the
Incomplete Modified Gram-Schmidt technique (see Jennings and Ajiz (1984) or Saad
(1996), ch. 10.7), which uses a modified Gram-Schmidt orthogonalization process
coupled with dropping rules to compute the incomplete factors @;,. and R;,.. An
important difficulty with this approach is that ;. is in general not orthogonal and
hence difficult to invert; @);,. could even be singular if not enough fill-in is allowed,
making the incomplete factorization of uncertain value even as a preconditioner.
Also, the incomplete factors computed by this process may be of poor quality in
terms of speeding up convergence of the iteration unless a large number of fill-ins
(and consequently computational time) are allowed. Despite this, there have been
successful attempts to improve the robustness of this method (Wang 1993, Wang,
Gallivan and Bramley 1997).

The principal advantage of the use of Givens rotations for incomplete
orthogonalization purposes is that ();,. remains orthogonal. The use of Givens
rotations in this context is advocated by Bai et al. (2001). This is the starting
point of the work presented here, but is not the first attempt to use incomplete QR
factorization using Givens rotations for preconditioning purposes.

In his PhD thesis, James (1990) uses such a factorization for conjugate gradients
for the system of normal equations. His choice of a static sparsity pattern dropping
rule (the sparsity pattern of AT A) however, produced preconditioners of poor quality.
James also identified cases for which the incomplete triangular factor resulting from
this method is singular, even when A is not. The implementation of James closely
resembles the preconditioning technique of George and Heath (1980), developed for
the least-squares solution of rectangular systems.

Zlatev and Nielsen (1988) have also developed an incomplete orthogonalization
preconditioner for conjugate gradients. Zlatev (1991) discusses in detail incomplete
@R using Givens rotations. He appears to be the first to produce incomplete QR
factorizations using Givens rotations that also use some threshold dropping rule.
He uses a row-wise approach to the factorization process, that is, the reduction of
the system matrix A to upper triangular form is performed row by row (see Section
2.3).

Most of this limited literature preconditions the least-squares problems via the
normal equations. The case of square systems is largely ignored. Apparently, this
is due to the availability of effective ILU preconditioning techniques for square
matrices, whereas for rectangular matrices ILU is not a competitor.

In this paper, we have chosen to present results for both square and rectangular
(least-squares) systems, to present comparisons with ILU for the former and to
allow for comparison with other techniques which may be suggested for rectangular
systems.

The paper is organized as follows: in Section 2, we describe the three algorithms
(cIGO, cTIGO and rTIGO) which we have coded and tested. The first two, with
slight modifications, were presented by Bai et al. (2001), whereas the third one
uses the approach in James (1990) and George and Heath (1980), except that the
dropping strategy is different. Some preliminary observations about each of these
algorithms are also included, as is a brief discussion of the implementation issues for
each algorithm.

In Section 3, we present a number of numerical experiments involving these
factorizations as preconditioners for Krylov subspace methods for square systems,
and compare their performance to standard incomplete LU type factorizations.
Many brief examples are presented, as well as a short discussion on the effect
of reordering and preprocessing the system prior to computing the incomplete
factorization. Some brief relevant remarks can be found at the end of this section.

In Section 4, we switch our attention to preconditioning least-squares systems
where Q) R factorization seems a more ‘natural’ choice. After presenting test results,
we give a comprehensive discussion of the issues regarding Givens incomplete Q)R as
preconditioner which we encountered. This discussion offers insights into how one
could potentially improve the performance of these preconditioners.

Some overall concluding remarks can be found at the end of this paper.

2 Description of algorithms and observations.

A dropping rule (or dropping strategy, or nonzero strategy) tells us in which of the
entries of a matrix we allow fill-in during an incomplete factorization process.

We define a set of pairs of integers, which refer to the indices of the entries of a
particular matrix in which fill-in is allowed.

For example, the set of integer pairs

denotes the set of indices of the entries of A that are nonzero and above or on its
main diagonal. Similarly, P4 ; would denote the set of indices of nonzero entries in
the lower triangular part of A, and so on. Note that one generally includes all main
diagonal entries in the sparsity set, even if their initial value is zero.

The simplest non-trivial dropping rule ‘keep entries only in P4y and Py (i.e. in
P4) and drop the rest’ is what we implemented in the first of our three algorithms.

We can now present the three different algorithms for computing an incomplete
QR factorization using Givens rotations that we have implemented, and briefly
discuss some of their properties.

The first two of these algorithms (cIGO and cTIGO) are variants of those
presented by Bai et al. (2001). We have somewhat diverged from the actual
algorithms presented in that paper because it was more concerned with their

theoretical aspects. However, when it came to implementing them efficiently, we
discovered that certain details needed to be changed or omitted. Despite this, the
core idea of these methods, that is the order in which we perform rotations, remains
the same.

As for the third algorithm (rTIGO), although not presented by Bai et al. (2001),
we coded it and include here a short presentation, as it is another way to achieve
an incomplete Q) R factorization using Givens rotations.

No matter how one tries to organise the reduction of A to upper triangular form,
two rows of the matrix have to be updated for each entry rotated out. This is a
fundamental disadvantage of Givens () R when compared to LU decomposition and
its incomplete variants. In the incomplete LU decomposition, only a single row
changes for each entry we zero out.

2.1 column-Incomplete Givens Orthogonalization (cIGO)
method.

The corresponding algorithm is described in pseudocode in Bai et al. (2001). We
include a brief outline here:

For each column j, we successively annihilate, using Givens rotations, from the
bottom up to the first sub-diagonal, the nonzero entries located in the strictly lower
triangular part of the matrix whose incomplete factorization we are computing.
For each such elimination, both the %" row and the row where the nonzero just
eliminated was located are updated by the rotation angle but only if the respective
entries belong to the predetermined sparsity pattern set P. At the end of this
process, the upper triangular part of A will contain the incomplete triangular factor
R;,. whereas the incomplete orthogonal factor @);,. can be recreated as a product
of the Givens matrices corresponding to the rotations we have performed.

We observe that:

e A natural and convenient choice for the sparsity pattern P is the sparsity
pattern of the original matrix A, i.e. P = P4. If A has zeros on the main
diagonal, these will be included in the sparsity pattern in a preprocessing
step before IGO starts. Hence nz(R;,..) = nz(Ay), and Q. is a product
of nz(AL) — n rotation matrices. Another possible choice for P would be to
choose it as the sparsity pattern of the matrix A2, again including all entries
on the main diagonal.

¢ The incomplete orthogonal factor @);,.. is never explicitly computed nor are any
entries of @);,. explicitly dropped. It is, however, an incomplete factor in the
sense that not all the rotations that would be required for a complete Givens
QR factorization are performed during the cIGO process; we only rotate out
entries that belong to the set PN Ay.

In Bai et al. (2001) the incomplete orthogonal factor was actually computed
and updated explicitly after each rotation and entries could then be dropped.
However, we quickly realised that it is both easier, faster and cheaper both in
time and storage, to only store @);,. as a product of rotations.

Although incomplete, the factor @);,. is however always orthogonal as it
consists of a product of rotation matrices. A procedure for generating Q).
from the Givens rotation matrices it consists of can be found in Bai et al.
(2001). When preconditioning with the cIGO factorization, we actually require
the computation of matrix-vector products of the form Q% v. An algorithm for
this operation can be found in Section 3.4 of Papadopoulos, Duff and Wathen
(2002) or in Section 5.1 of Golub and Van Loan (1996).

The j-th row of R;,. is generated at step j of the procedure. Denote by @;; an
entry of the partially reduced form of the matrix A after a series of rotations.
Then, at the beginning of such a loop on j, we have the following situation:

— If @;; # 0 then R;,.(4,7) # 0;

— Else, if a;; = 0 but there is an entry a,; # 0 for some %, j < 7 < n, then
Rinc(J,7) # 0;

— Else R;,.(j,7) will be 0.

If, for some j, we encounter the third possibility mentioned above, then of
course R;,. will be a singular matrix. cIGO type factorizations of nonsingular
matrices can give rise to such singular incomplete upper triangular factors.
Two such examples can be found in the appendix of Papadopoulos et al. (2002)
and also in James (1990). The easy way to remedy such a situation is simply to
assign some arbitrary nonzero value to such a diagonal entry of R;,., but this
approach usually leads to preconditioners of poor quality convergence-wise.

column-Threshold IGO (cTIGO).

The cIGO process is very basic but yields a cheap preconditioner. However, in
practice, and for the choice of P we consider here, having such a basic preconditioner
is seldom effective. We need to produce incomplete factorizations that are closer to
the full QR factorization and we can achieve this by allowing some fill-in by means
of a threshold dropping strategy.

The ¢TIGO-Method Algorithm

1. For j=1,...,n—1 Do: ! for each column of A

Define k,(j) :=max{i | i > j , aj; # 0} ! maz. row i with nonzero entry in
column j of A

3. If k.(j) = 7 Then Cycle ! no entries to be annihilated below diagonal on this
column
4. For i = k,(j) Down to j+ 1 Do: ! all nonzero subdiagonals in column j are

successwvely annihilated

ot

If (¢,7) € P or |a;;| > 7 Then: ! rotate out if entry in P or is a large enough
fill-in

6. Compute p := w/a]zj + a?j ! compute rotation angles

7. Compute ¢ :=a;j/p
8. Compute s := a;;/p
9. Set ajj :=p
10. Store rotation data j,7,c,s

11. Fork=j+1,...,n Do: ! compute updated ¢ and j row segments

12. Compute temp; := —sa;. + cay,

13. Compute temp; := cajj + sa;

14. If (j,k) € P or |tempj| > 7, Set aj, := temp;
15. Else, Set a;;, :=0 ! entry too small so drop it
16. If (i,k) € P or |temp;| > T, Set a;;, := temp;

17. Else, Set a;;, :=0 I entry too small so drop it
18. EndDo

19. Keep all entries in P plus the p largest fill-ins in the j-th row a;
20. Keep all entries in P plus the p largest fill-ins in the ¢-th row a;x
21. EndDo ! end of secondary loop

22. For k=j,...,n and a;; # 0 Do: I store final j-th row of R

23. Set 71, == ajj,
24. EndDo
25. EndDo

26. Set ryy, = apy,

The same remarks apply as for the cIGO algorithm, but we should also note the
following:

e In the case of cTIGO, we still work with a given sparsity pattern P, but, by
the use of a thresholding strategy, we allow additional fill-in on top of this in
order to generate preconditioners of potentially better quality. Hence, when
P = Py, the resulting incomplete factors will have nz(R;,.) > nz(Ay) and
Qine Will be a product of at least nz(AL) — n rotations.

e The drop tolerance 7 for the fill-ins may vary according to the row or column
we are working with. For example, the following set of dropping rules can be
used, assuming 7 is the user input value for the drop tolerance and we are
currently reducing column j of the matrix:

— When determining on which rows to rotate, and a@;; is a nonzero entry
not in P, choose row ¢ for rotation only if |a;;| > 7|a;;

— When updating the j-th and i-th rows, we keep a fill-in a;; (or @) that
is not in P only if |a;;| > 7|a;;| (respectively, if |@ix| > 7|a;;| for the i-th
row).

In fact, for square systems, this is exactly the thresholding strategy used in
our code, but other combinations may also provide interesting results. The
strategy used for rectangular (least-squares) systems is described in Section
4.2.

¢ The memory control tolerance p can also be adjusted for each row.

e Note again the combination of both column and row-oriented loops in the
cTIGO algorithm. It turns out that because of the order in which we rotate out
entries, accommodating and handling arbitrary fill-ins in the lower triangular
part of A is quite difficult to program. Hence we use a sparsity pattern P as a
basis on top of which we allow the extra fill-in, in the hope that we can obtain
preconditioners of good quality without too much of this difficult to handle
fill-in (see Sections 2.4 and 4.4).

2.3 Row-wise elimination TIGO (rTIGO).

This seems to be the traditional approach with respect to the order in which
we rotate out entries in order to reduce A to upper triangular form (see James

(1990), George and Heath (1980)). We will therefore limit ourselves to the following
observations:

o Therowsi,2=1,...,7 —1, used to rotate out entries in row j when reducing
it to upper triangular form, already have the required reduced form. Hence,
using them will alter their content but only in the columns from ¢ to n and
their upper triangular form will be preserved. As for the j-th row, such a
rotation will make the entry in position (j,7) zero but will not create any

fill-in in positions (j,k),k = 1,...,7 — 1. Hence, we achieve our objective of
reduction to upper triangular form.

e We now drop entries by magnitude only, without caring whether they belong
to a sparsity pattern P or not. Hence, much sparser incomplete factorizations
than in the case of ¢cTIGO can be obtained. Their quality as preconditioners
remains to be seen.

e The threshold drop tolerance 7 can again vary in a dynamic fashion. In our
implementation for square systems, and assuming we are currently reducing
row j to upper triangular form by rotating its nonzeros against main diagonal
entries in the previous 7 — 1 rows, we have chosen the following combination:

— To perform a rotation, the entry a;; we want to rotate out must satisfy
the criterion |a;;| > 7|a;;|, otherwise we drop it (skip the rotation).

— For row j which we are currently reducing, we drop entries a;;, unless they

satisfy |a;,| > 7 X % The dropping rule is therefore the weighted

I-norm of the j-th row of the original matrix. Similarly, for row ¢, we

drop entries a;;, not satisfying |a;| > 7 X JJ:‘(Z’{;‘U;).

Note that the rule applies to off-diagonal entries only. The entries on the
main diagonal of the matrix are always kept regardless of their magnitude in
order to increase the potential of R;,. to be nonsingular. This is also true for
the cIGO and ¢TIGO algorithms. The strategy used for rectangular (least-
squares) systems is described in Section 4.2.

2.4 Computer implementation details.

The methods of the previous section were coded in Fortran 77 using standard sparse
matrix and vector data structures, as well as routines for sparse matrix-vector or
vector-vector operations (Duff, Erisman and Reid 1986, Saad 1996).

We only briefly mention some of the issues related to coding these methods.
For the interested reader, a detailed presentation of the computer implementation
can be found in Papadopoulos et al. (2002). The source code is available from the
authors.

For the first two of these IGO methods, eliminations for reducing the matrix
to upper triangular form are performed in a column-wise fashion, but after each
such elimination two row segments of the matrix need to be updated. Hence, we
will naturally use Compressed Sparse Row (CSR) structures to accommodate our
matrix and any fill-in in a row-wise fashion. However, we have to keep track of the
column by column distribution of the original nonzeros and any fill-ins in the lower
triangular part of the matrix so that the next rotation in a particular column can
be found without requiring prohibitive searching.

For cIGO, where the sparsity pattern is predetermined and no other fill-in is
allowed during the reduction process, this is done once at the beginning: based
on the CSR structure for the nonzeros of the matrix, we build the associated CSC
structure, but with the real array substituted by an integer one containing pointers
to the position of the entry (and hence the value) in the CSR structure.

For ¢TIGO, things are more complicated as fill-in now can appear in a row after
a rotation. We have chosen to set up a linked list that keeps track of the column-
wise distribution of this fill-in. Any time a fill-in appears, we add the information
of its position to the end of the linked list and adjust the necessary links to account
for this new entry. This approach has two major drawbacks. Firstly, the length
of the linked list increases with each new fill-in and this structure will inevitably
develop ‘holes’ in it (‘dead’ links corresponding to entries that appeared as fill-ins
but were dropped at a subsequent rotation). Since for a linked list we do not have a
predetermined amount of space available for each column, we can afford to have such
holes. ‘Garbage collection’ operations to cover these holes were deemed too complex
and expensive, although they would limit the size of the list if implemented. The
most important drawback however seems to be the fact that information about fill-
ins in a particular column is in general scattered over the whole of the linked list,
thus eliminating any hope of efficient cacheing when accessing or altering entries
in this structure. An alternative to the linked list would be a CSC type structure.
This would keep information about each column together but, since the maximum
available space for each column has to be predetermined, it would require frequent
‘garbage collections’ to get rid of ‘holes’ (fill-ins that were dropped at a subsequent
rotation), or we would quickly run out of space.

The need to produce and update the column by column information on fill-ins is
the cause of bottlenecks in ¢TIGO. We can witness this by comparing numerical
results for ¢TIGO and rTIGO, as for r'TIGO only row-oriented structures are
necessary (see Papadopoulos et al. (2002), Section 3).

Regarding the application of these incomplete factorizations as preconditioners,
we briefly note that for non-symmetric Krylov subspace methods (for example,
GMRES, Bi-CGSTAB) we apply the preconditioner M = @Q;,.Ri... Right-
preconditioning for these methods then effectively consists of the solution of systems
of the form Mz = v. As Q;,. is available as a series of rts rotations and is
orthogonal by construction, these can be applied successively on the vector v to
compute the matrix-vector product Q7 v. The resulting vector then acts as a right-
hand side to a triangular solve involving R;,.. For CGNR, the method we used for
rectangular systems, the preconditioner is M’ = R R;,.. Hence, preconditioning
the CGNR iteration involves two successive triangular solves. The total number
of floating-point operations required to create the right-hand side of the system
Rinez = QF v is rts x (4 multiplications + 2 additions/subtractions). A triangular

solve involving either R;,. or its transpose, requires nz(R;,.) —n multiplications and

additions as well as n divisions. This is the total amount of extra work required for
preconditioning per iteration.

3 Preconditioning Square Systems.

3.1 Description of experiments.

In this chapter, we shall present a series of numerical results for matrices arising
from a variety of applications. The matrices are all available in the public domain,
either in the MatrixMarket (MatrixMarket 2000) database or in the collection of
sparse matrices at the University of Florida (Davis 2000). In these experiments,
we have used the IGO methods as preconditioners for either GMRES or Bi-
CGSTAB. We compare the performance of these methods with a variety of ILU type
preconditioners. These ILU factorizations were all obtained using Saad’s Sparskit2
package (Saad 1994), also written in Fortran77, so there is compatibility of programs
used and timings. All the experiments were run on a Sun Ultra 5 workstation.

The incomplete LU type preconditioners we tested are the following: ILU(0)
and modified ILU(0), two simple nonparametric factorization techniques that work
with the sparsity pattern of A only, ILUt, which uses a threshold dropping rule with
no sparsity pattern sets and ILUtp, which is the same as ILUt but allows column
pivoting. Extensive description of these methods can be found in Saad (1994) and
Saad (1996).

Since ILU methods generate very powerful preconditioners for matrices
possessing structure like bandedness or diagonal dominance, as can occur with
matrices arising from the discretization of partial differential equations, we have
concentrated on more general examples whose sparsity pattern or distribution of
values might cause difficulties for ILU methods.

For both iterative methods, the preconditioner is always applied on the right.
Again, for both methods, the stopping criterion for the iteration was

b — Az® ||, < ||b — Az|]5 x 1072,

with the null vector as the initial guess. The right-hand side vector, was taken to
be a random vector.

We should finally mention that, especially for ILUtp where column pivoting is
allowed, the choice of the pivoting parameter p was 0.01. This is the default value
in Sparskit2. Since the ILUtp rule for pivoting between columns ¢ and j at step ¢ is
|G;;| X p > |@;|, this value of p means that we do not pivot often.

Note also that, because of the way we coded Bi-CGSTAB in the experiments,
each iteration consists in fact of two matrix-vector products, that is, the Krylov
space is twice augmented per Bi-CGSTAB iteration. For GMRES, each iteration
corresponds to augmenting our Krylov space by one.

10

For GMRES, we always choose a restart value of 50. Hence, when we say that
GMRES has converged at iteration 123, we mean that it has restarted twice and at
the 23"¢ iteration after the second restart we achieve convergence.

3.2 Examples in brief.

In this section, we will list results for a variety of matrices. These are actually the
best results in terms of execution time we could obtain for each method for the
threshold parameter values (normally powers of 10) that we tested for each system.
The two tables in this section list the attributes and performance of ¢cTIGO (or
just cIGO when no fill-in was necessary), or r'TIGO respectively, against ILUtp
(or ILU(0)), ILUtp apparently being the most powerful and robust of the ILU
preconditioners we had at our disposal.

Each table should be read as follows; for each matrix, we have two rows of results,
the first shows attributes of the ¢cTIGO (or rTIGO) preconditioner, and the second
one shows the results for ILUtp (or ILU(0)) respectively, to facilitate comparison
between the observed performance of the best [GO and the best ILU method used.

Note that when, under the column marked ‘GMRES its’ and next to the
number of iterations, a B within brackets ([B]) appears, restarted GMRES was
not converging so we had to employ Bi-CGSTAB instead to achieve convergence.

The results in Table 3.1 show that cTIGO is a robust preconditioner, in the
sense that if enough fill-in is allowed it can eventually give preconditioners of good
quality. The time it takes to compute these preconditioners is usually much higher
than for ILUtp, although the density of the two resulting incomplete factorizations
is comparable.

Note that throughout the table there are matrices for which cIGO was enough
to give a fairly good preconditioner. For these same systems, ILU(0) or MILU(0)
did not achieve convergence, and we had to use the threshold method ILUtp. The
opposite was observed in the case of matrices arising from the streamline-upwinding
Petrov-Galerkin discretization of advection-diffusion problems (see Fischer, Ramage,
Silvester and Wathen (1999)), where for many tested cases ILU(0) preconditioning
is of good quality but cIGO gives no improvement.

Two matrices for which cIGO (and c¢TIGO with very little fill-in) performs
much better than the ILU methods are the garon matrices. These arise in the
discretization of 2-D Navier-Stokes problems and, as is usual for such systems, have
a small zero block in the bottom right corner. This is probably what causes difficulty
with ILU methods. On the other hand, even for cIGO, the zero entries on the main
diagonal of this block are covered with values during the incomplete factorization
process and the resulting preconditioned iterative method converges.

Going through the results, one also sees that things can easily go terribly wrong
for cTIGO. In order to get convergent preconditioners one has to lower the value for
7. But this results in large fill-in in the lower triangular part. This causes cTIGO

11

to slow down, and eventually, the timings we get do not reflect actual floating-
point operations, but rather updating and going through our various structures,
particularly the linked list. This issue is addressed in Section 4.4.

We have also identified some examples where we were unable to produce
convergent preconditioners using ¢TIGO. That is, lowering the threshold value
enough so that the preconditioner actually makes the method convergent rather
than stagnating, causes so much fill-in in the lower triangular part that we run
out of memory; the linked list grows with each insertion and quickly reaches the
maximum length we have allocated for it. Matrices for which we encountered such
problems include barth, barth4, besstk24, can_1054, fidapl4, fidap3b, finanb12,
graham, Ins_3937, nasa2910, plat1919. Of course, if enough memory (and time)
was available we would eventually reach a threshold value for which the ¢TIGO
preconditioner would converge.

The results for T'TIGO can be found in Table 3.2. Again, note that rTIGO
is almost always slower in computing the preconditioner than the best choice for
ILUtp. However, for some of the problems, r'TIGO is considerably faster than
cTIGO, despite the fact that the preconditioner it computes can be much denser
than that from cTIGO. This reinforces our belief that it is the need for keeping and
constantly accessing/updating a linked list structure that undermines ¢TIGO.

On the other hand, rTIGO fails to produce good preconditioners for quite a few
problems, especially matrices with zeros on the diagonal, before the limit of available
memory is reached. Such examples, apart from the garon matrices, are besstk24,
goodwin, grell07, lhr02, Ins_3937, plat1919, utm _5940.

3.3 The effect of preprocessing.

We present one example showing how preprocessing a matrix can improve the overall
performance of incomplete factorization preconditioning.

Preprocessing and reordering matrices for ILU has been the focus of some
attention recently (see Benzi et al. (2000), Benzi et al. (1999)). Since they only
involve computations with integers, reordering methods are usually quite cheap to
use. On the other hand, the advantages we get by preconditioning the reordered
matrix clearly outweigh the cost of applying a reordering scheme such as reverse
Cuthill-McKee or the HSL code MC64. The example we present here clearly shows
that reordering the matrix benefits both the IGO and the ILU methods.

We have chosen matrix bayer02 arising in chemical kinetics to illustrate this
(Figure 3.1). We first ran both ¢TIGO and ILUtp on the original system, and then
reordered it using the HSL 2000 code MC64 (using option 5) (Duff and Koster 2001).
cTIGO and ILUtp preconditioning was then applied to the reordered system. The
results are shown in Tables 3.3 and 3.4.

MC64 preprocessing of the matrix not only altered the sparsity pattern for the
better, in the sense that the reordered matrix diagonal entries are nonzero and most

12

Table 1: Best results: ¢TIGO vs ILUtp.

matrix cTIGO 7 nz(Rine) rots c¢TIGO time GMRES GMRES
ILUtp 7 nz(U) nz(L) ILUtp time its. time

memplus cIGO 71954 50073 11.6 189 [B] 57.5
ILU(0) 71954 54197 1.3 200 [B] 51.7

rdistl 1073 353622 146555 52.3 20 5.3
10~8 161766 480445 9.5 29 5.2

garonl cIGO 46051 39416 1.7 206 17.9
103 162758 306347 26.8 42 8.2

garon?2 cIGO 202071 173080 7.7 218 [B] 156.1
102 218430 494309 13.9 469 [B] 324.2

meg4 cIGO 26378 10462 0.6 2 0.1
106 6202 463 0.2 2 0.1

add32 101 22030 9058 2.6 10 0.6
1073 28216 19364 0.21 4 0.16

b_dyn 10°8 21586 11123 1.6 8 0.15
10-6 10897 7980 0.1 8 0.1

bp_800 102 24624 28902 19.2 33 0.9
102 14085 9265 0.2 36 0.4

dwt_2680 102 183860 194045 160.5 300 49.5
103 275282 298096 19.9 33 4.8

fidap3 10°8 254415 85776 51.4 14 2.3
108 90406 61372 1.9 17 1.3

fidap24 1073 223508 118814 69.5 18 2.3
1072 69901 91570 2.0 29 1.7

fidap37 cIGO 67591 32013 1.9 11 0.7
0.1 5973 22143 0.2 13 0.5

gematll 0.50 44315 211489 125.1 514 97.2
1074 115037 99766 3.6 13 1.0

grell07 102 52700 53201 37.2 90 4.3
103 86816 90134 4.1 22 1.0

lhr01 1073 188102 221994 195.5 51 12.7
106 71993 51633 1.8 4 0.2

mahindas 0.1 13615 42360 18.0 341 13.7
102 24414 11419 0.4 44 0.9

orani6b78 1010 45373 95161 83.4 519 55.3
102 330246 135776 41.0 25 4.0

orsirr_1 102 5926 3158 0.46 30 0.34
1074 9515 7642 0.11 9 0.09

qh1484 1010 66531 39189 20.1 69 3.2
1010 24026 17857 0.5 62 1.4

poli_large 1.0 33494 1048 5.4 20 2.0
102 44270 26819 0.4 6 0.5

raef skyb 1010 86975 81428 8.0 26 3.6
1072 57863 62439 0.5 5 0.5

thermal cIGO 34992 31536 1.1 7 0.9
1072 21100 22989 0.2 6 0.25

Table 2: Best results: r'TIGO vs ILUtp.

matrix rTIGO 7 nz(Rin.) F#rots rTIGO time GMRES GMRES
ILUtp 7 nz(U) nz(L) ILUtp time its. time
memplus 102 76142 54089 11.3 33 [B] 4.7
1072 72619 55321 1.0 14 [B] 3.6
rdistl 1074 331769 127197 28.6 25 4.4
108 161766 480445 9.5 29 5.2
meg4 106 25226 342 1.0 2 0.1
106 6202 463 0.2 2 0.1
bp_800 103 44163 14535 4.4 30 0.7
1072 14085 9265 0.2 36 0.4
can_1054 102 196366 116026 56.2 196 21.4
1072 248320 250526 37.0 34 5.4
dwt_2680 102 237770 137368 38.2 247 36.4
1073 275282 298096 19.9 33 4.8
fidap24 1073 271764 121090 36.6 15 2.1
102 69901 91570 2.0 29 1.7
fidap35 10-10 1251839 616062 20.8 10 2.9
1079 064113 516668 3.5 8 1.4
fidap37 0.1 28449 2504 0.14 13 0.16
0.1 5973 22143 0.2 13 0.5
gematll 103 300681 153308 39.7 144 28.4
+mc64/5 1073 55897 55983 0.9 32 2.2
mahindas | 1072 23827 10867 1.4 36 0.8
102 24414 11419 0.4 44 0.9
oraniB78 102 200882 117335 100.5 286 53.9
102 330246 135776 41.0 25 4.0
qh1484 108 44066 14082 2.8 16 0.4
10710 24026 17857 0.5 62 1.4
Table 3: bayer02: ¢cTIGO vs ILUtp.
T 10 100" 10712 10% 101 10"
nz(Rinc) 461108 468881 470406 | nz(U) | 123374 131919 140328
Hrots 205364 205842 206374 || nz(L) | 168517 191947 210069
cTIGO time 59.2 59.4 60.0 ILUtp 2.0 2.6 3.2
GMRES(50) its stagn 3 3 stagn 4 3
GMRES(50) time | n/a 1.3 1.4 n/a 1.2 0.9

14

2000

4000 -

6000 -

8000 -

10000

12000

2000 -

4000 -

6000 -

8000 -

1 10000 (-
1

1 12000 [

y
0 2000 4000

L
6000

L L L
8000 10000 12000

nz = 63307

0

L L
2000 4000

L L L N
6000 8000 10000 12000

nz = 63307

Figure 1: Matrix bayer02, original: n = 13935, nz(Ay) = 36518, nz(A) = 2
condest(A4) = 2.3 x 10, and after applying MC64 (JOB=5 option): n = 13935,
nz(Ay) = 33676, nz(A) = 30003, condest(A) = 3.6 x 103.

Table 4: bayer02, MC64/5: ¢TIGO vs ILUtp.

7161,

T 1.0 10! 107 1.0 10! 107

n2(Rinc) 38247 82668 143441 || nz(U) | 13935 33568 52432

F#rots 29415 39199 63709 || nz(L) | 5353 20924 37849
cTIGO time 7.1 7.6 14.4 ILUtp 0.2 0.2 0.3
GMRES(50) its | stagn 38 10 stagn 9 5
GMRES(50) time | n/a 6.2 2.2 n/a 0.8 0.5

entries are within a small band around the diagonal, but it also greatly improved
the condition number.

This improvement is reflected in the performance of the preconditioners. For
the reordered matrix, the incomplete factors, required to achieve convergence in a
similar number of iterations as for the original matrix, are sparser and cheaper to
compute. This is true for both ¢TIGO and ILUtp. Hence, although ¢TIGO benefits
from such a preprocessing of the matrix, so does ILUtp, so that the overall ratio by
which ILUtp outperforms ¢TIGO does not change. The same observation applies
for ’'TIGO. Note also that, beneficial as it may be for many problems, preprocessing
or reordering is not a panacea. For example, MC64 preprocessing has no discernible
effect if applied to the garon matrices. The diagonal of the zero block on the bottom
right corner gets covered with nonzeros, but the incomplete factorization methods
still struggle to produce a preconditioner with good convergence properties.

15

3.4 Discussion.

The numerical experiments show that IGO methods can provide robust and accurate
preconditioners for Krylov subspace iterations for solving large sparse systems of
linear equations.

We have tested the performance of these methods against a wide range of
standard incomplete LU factorization techniques.

In the case of the non-parametric preconditioners of either type (cIGO with
P = P4 and ILU(0)), we have identified cases where cIGO outperforms ILU(0),
cases where the opposite happens, as well as cases where either preconditioner will
work. Hence, if a simple preconditioner is required, one could use cIGO rather than
ILU(0) and achieve better convergence rates at a similar cost for the computation
of the preconditioner.

The situation changes, however, if more powerful preconditioning is required,
either through thresholding or through extended sparsity pattern sets.

With few exceptions, the time required to compute factorizations of similar
preconditioning quality (sparsity of factors, convergence rate of iteration) using
either of our methods can be much larger than the corresponding time using one of
the available ILU methods.

The programming issues related to why our methods can get swamped during the
computation of the incomplete factorization have been addressed. The main issue
seems to be the fill-in in the lower triangular part of the matrix and, consequently, the
number of rotations performed during the incomplete reduction process. In some
cases, one can limit these without affecting the quality of the preconditioner by
using a standard reordering or preprocessing scheme applied to the matrix before
the incomplete factorization process begins. On the other hand, applying such
a reordering scheme to the matrix a priori, will also benefit the incomplete LU
method. Hence, when we compare the performance of these two classes of incomplete
factorizations for the reordered system, the situation will remain unchanged in favour
of the ILU methods.

With respect to this problem, we could use different combinations of threshold
dropping rules than those used in our earlier experiments. A detailed discussion
follows in Section 4.4.

To sum up, it seems that incomplete Givens orthogonalization methods cannot
compete with incomplete LU factorization techniques in general. With very few
notable exceptions, we have not been able to find examples for which some type of
incomplete LU factorization with a good choice of parameters could not perform at
least as well as the best of our methods.

On the other hand, the algorithms presented here can be adapted for use with
rectangular matrices, and, as we shall see in the next section, it is in this area of
preconditioning least-squares problems that they prove more successful.

16

4 Preconditioning least-squares systems.

Since a QR factorization is well-defined for rectangular systems one can naturally
extend the Givens algorithms presented above to produce incomplete factorizations
of such systems. More precisely, we will deal with least-squares problems, namely

min||Az — b||s, A€ R™",be R™,z € R", with m > n.

Assuming that an incomplete Givens factorization Q;neRine, Qine € R™™,
R;n. € R™*" has been computed, one can use it to precondition conjugate gradients
for the associated system of normal equations ATAx = ATb. Since Q. is
orthogonal, the natural preconditioner to use is M = R} R;,., which is positive
definite if R;,. is nonsingular.

Note also that, for this choice of preconditioner, and since by construction all
the rows of R;,. below the n** are zero, one can disregard them from the start and
use the truncated incomplete triangular factor R;,. € R"*". The truncated factor is
exactly R;,. but with these last zero rows omitted. To simplify notation, from now
on R;,. will refer to this truncated factor.

Below, we shall address particular issues concerning the construction, efficient
implementation and performance of this preconditioner.

4.1 Computer implementation.

Extending our incomplete Givens factorization code to handle such rectangular
systems requires only simple alterations, mainly to account for the fact that there is
no main diagonal entry for the rows of A after the n'*, and hence no natural cut-off
point between the upper and lower triangular part of the matrix undergoing Givens
reduction to upper triangular form. The setup and data structures required for the
IGO variants presented previously remain the same. Some auxiliary routines also
had to be modified to handle rectangular matrices.

Despite the fact that we are using the normal equations, there is no need to
compute AT A explicitly, but instead we apply two successive matrix-vector products
where necessary within the conjugate gradient algorithm. Indeed, this is implicitly
done in the LSQR algorithm (Paige and Saunders 1982).

Similarly, for preconditioning this iteration, there is no need to form RI R;,.
explicitly, an approach which would be too expensive both in computation and
storage. Instead, and since it is legitimate to use the square truncated triangular
factors, we apply a lower followed by an upper triangular solve to precondition each
CGNR iteration. Hence, there is no need to store the series of rotations that form
Qine, as Was necessary in the square case.

17

4.2 Dropping rules.

The fact that there is no main diagonal entry in the last rows of A and for the rows
where there is such an entry its value may well be zero, call for some modifications
in the threshold dropping rules.

The memory control dropping rules remain the same as in the square case.

The threshold dropping rules for cTIGO were chosen to be

PyU{a(k,j) s.t. a(k,j) > a(f,j)«7, m>k>j},

when determining which entries to rotate out in column j. This is the same dropping
rule that we employed in the square case.
When j is a pivot row, the dropping rule now becomes

PyU{a(j, k) st. a(j, k) > ||A(G,)||lax T, n >k > 4},

where the norm notation refers to the 2-norm of the j* row of the original matrix
A before any reduction using Givens rotations has begun.
For row z, in which an entry to be rotated out belongs, the dropping rule becomes

Py UA{a(i k) s.t. a(iyk) > [|A@G)||ox7, n >k >} j+1<i<m.

Note that, for cTIGO, we have now removed the dependence of the threshold on
the diagonal entry when updating the two rows involved in a rotation.

For rTIGO, when determining the next entry to be rotated out in row 5, 1 < 5 <
m that is reduced to upper triangular form (or to zero if j > n), we check whether

a(j, k) > alk, k)7, k=1,...,min(j — 1,n),

where this k™ row has already been reduced to upper triangular form.
After the rotation has been performed, we retain the entries a(j, k) in this row
j undergoing reduction if they satisfy

a(j, k) > 7 ||A(F,)||2, k=1,...,min(j — 1,n).

Similarly, for row 7, + = 1,...,n whose main diagonal entry will act as pivot for
the rotation performed on row j, after each rotation we will retain entries a(i, k)
that satisfy

a(i, k) > 7= ||A(t,)|z, k=1,...,n.

For both cTIGO and rTIGO, we have removed as much as possible the
dependence of the dropping rule on values of main diagonal entries that might well
be zero. In doing so, however, the dropping rule becomes less adaptive as it depends
on two fixed quantities, namely 7 and a norm of a row of the original matrix. In
Section 4.4, we discuss why this change actually improves performance.

18

Table 1: Matrix attributes.

matrix size nz(A) initial zero | vanilla CGNR | cIGO CGNR
diags. its. time its.
1llc 1033 1033 x 320 5047 315 3470 4.7 6023
tllc_1850 1850 x 712 9463 705 2114 6.6 > 3000
jimenez_4 385 x 361 2013 352 9752 6.6 > 10000
jimenez_b 574 x 526 3886 521 22636 26.7 > 50000
well 1033 1033 x 320 5047 315 170 0.22 453
well 1850 1850 x 712 9463 705 447 1.39 960
prgs_sl 3140 x 1988 9525 1015 555 2.63 843
pLgs_s2 6280 x 3976 27560 2030 1107 13.3 2168
pigs-ml 9397 x 6119 31131 6118 745 11.5 1464
prgs-m2 18794 x 12238 87275 12236 1553 63.6 3241
pigsll 28254 x 17264 92282 17264 1169 59.02 2368
pigs 12 56508 x 34528 259582 34528 2346 304.6 3574
jordache 24708 x 23937 218568 23292 | > 3000 n/a > 1000

4.3 Numerical results.

In all the tests presented below we follow the same basic guidelines outlined in
the square systems case. Again, we allow enough space for the memory control
parameter to be rendered ineffective, so only threshold dropping applies. The right-
hand-side is a vector of ones of appropriate size. The initial guess for the iterative
method (CGNR) is always the zero vector. Convergence is assumed once the initial
residual has been reduced by nine orders of magnitude in the Euclidean norm. This
set of results was obtained on a Pentium III at 800 MHz.

The online repositories of sparse matrices that supplied us with test matrices for
square systems are curiously lacking in least-squares systems. This is quite possibly
due to the fact that such systems, although arising quite frequently in scientific
computing, are not at the focus of research in preconditioning methods.

We present here results for most of the least-squares matrices available in
Matrix Market and the Rutherford-Boeing collection. Some matrices we left out;
the smallest ones from the jimenez collection as they were considered too small
(dimensions ranging from 100 to 300), as well as the largest one of the pigs matrices
(pigs.l), as it was too large for our available resources.

The fundamental attributes of our test set of matrices can be found in Table 4.1.

Note that the preconditioner resulting from applying the simple cIGO algorithm

is bad in all cases. In fact, it takes approximately twice the number of iterations
for CGNR preconditioned with cIGO to achieve the same residual reduction as the

19

simple CGNR iteration without any preconditioning. On the other hand, and for
the larger examples in particular, the need for an efficient preconditioner for CGNR
is self-evident.

As in the square case, for each matrix, we performed a number of runs, each
time varying the dropping threshold value 7. We present here the result for that
value of 7 for which the total solution time (incomplete factorization followed by
one preconditioned iterative solution of the system) was minimized. We realise that
this reflects the basic difficulty of selecting parameters in a parameter dependent
method such as ¢TIGO, rTIGO or ILUt, ILUtp. For each matrix, we present the
best such run for cTIGO versus rTIGO in Table 4.2.

As was the case for square systems, fine-tuned rTIGO will be about three to
four times faster in generating the preconditioner than its column-based counterpart
cTIGO. r'TIGO computes a preconditioner that is qualitatively better than ¢TIGO,
although sometimes significantly denser.

In all cases, the preconditioners significantly reduce the number of iterations
when compared to simple CGNR, and there are large savings in terms of total
solution time despite the extra time necessary to compute the preconditioner or the
added work for each iteration due to the triangular solves.

The preconditioners in all cases have one to two times the number of nonzero
entries as the system coefficient matrix, so they can be considered very effective in
terms of required storage. Note that this does not apply to the intermediate storage
space necessary when performing the IGO type reduction; in fact, both ¢TIGO and
rTIGO fail to produce convergent preconditioners for the jordache matrix and for
the lowest value of the dropping threshold 7 we could try before we ran out of
memory during the incomplete factorization phase.

4.4 Discussion.

The numerical results presented in the previous section show the fine-tuned
performance of the IGO methods, but we feel some further insights and comments
should be made.

Variation of performance with 7: In Table 4.2, only the results for the
experimentally optimal value for 7 for each IGO variant and matrix were listed.
They showed the savings one can have over simple CGNR iterations if a TIGO
preconditioner is used.

In fact, for each problem, the threshold value 7 can vary over a whole interval
and still produce a preconditioner that will benefit the iterative solution. We have
chosen one of the smaller test matrices, so that 7 can be taken very small without
encountering memory overflow because of fill-in, to illustrate this (see Figure 4.1
which is plotted on a log—log scale).

We clearly see that a choice of 7 between 107° and 10! for ¢TIGO or less

20

Table 2: Best results: ¢TIGO vs r'TIGO.

matrix cTIGO 7 nz(Rjn.) cTIGO time pCGNR pCGNR
rTIGO 7 nz(Rin.) rTIGO time its. time

tllc 1033 1073 3919 0.76 80 0.19
102 2550 0.12 198 0.37

illc_1850 1072 9945 1.23 83 0.45
1072 13581 0.98 75 0.47

jimenez_4 10-° 29157 3.0 16 0.13
106 30241 0.38 11 0.09

jimenez_5 10°° 71339 11.07 44 0.8
107° 81304 6.87 111 2.2

well_1033 0.05 2825 0.27 76 0.15
1071 2551 0.06 66 0.12

well_1850 0.05 6469 0.41 71 0.33
0.05 8181 0.30 52 0.27

pigs_sl 1071 8385 0.36 99 0.63
1071 11851 0.17 59 0.42

pigs_s2 0.05 27374 1.55 114 2.05
0.1 35644 0.53 113 2.27

pigs-ml 101 33965 1.45 103 2.43
1071 37311 0.59 65 1.56

pigs_m2 101 82746 5.15 182 11.23
1071 112365 1.81 132 8.76

pigs il 101 104457 8.35 121 9.24
1071 109915 1.75 78 5.85

pigs 12 0.05 314433 51.6 158 31.5
0.05 436328 13.50 138 31.1

jordache 10.0 171614 8.83 > 1000 n/a
0.05 614266 6.18 > 1000 n/a

21

[vanilla CGNR

solution time (s)

10° t

10‘1 P | N | N | N | AN
10 107 107 107 107 10
preconditioner drop tolerance t

Figure 1: Total solution time (incomplete factorization followed by solution using
preconditioned CGNR) for ¢cTIGO & rTIGO CGNR preconditioning for various 7,
versus simple CGNR iteration, for the matrix ¢llc_1033. log—log scale.

than 10~ for rTIGO, improves solution time when compared to the simple CGNR
iteration.

Since we cannot know a prior: the best value for 7, we see that a sensible choice
can give good savings.

Finally, note the roughly convex shape of the total solution time curves for both
methods. The explanation for this behaviour is quite simple. When 7 is large, the
preconditioner is cheap to compute but qualitatively poor, so the preconditioned
iteration converges slowly. Hence, total solution time is high and dominated by the
preconditioned iteration. On the other hand, for 7 small, the preconditioner is of
very good quality, so the preconditioned iteration converges fast, but is expensive to
compute. Hence, total solution time is again high, but now dominated by the time it
takes to generate the preconditioner. The value(s) of 7 for which the total solution
time is lowest are exactly those for which a balance between these two extremes is
achieved: the preconditioner is relatively cheap to compute and it has a fairly good
convergence behaviour.

cTIGO dependence on linked list length: We have already pointed out our
observation that the computation of ¢cTIGO is heavily dependent on the length of

22

the linked list structure which holds column-wise information on the fill-ins in the
lower triangular part of the matrix.

We illustrate this observation with the example presented in Figure 4.2 (plotted
on a log—log scale). The chosen matrix (pigs-s2) is small, but exhibits this
fundamental disadvantage of the linked list.

6
10° F————— . e e——— . —

linked listlength

102 L PCGNR its.]

10? _~ ?

factorization time

107 ST TR -
10 10 10 10

preconditioner drop tolerance t

Figure 2: Evolution of preconditioner fundamental data sizes and CGNR iterations
over T, log—log scale. Test problem is pigs_s2.

Note that, for 7 less than 107!, the length of the linked list and the number of
rotations performed increase at a higher rate than the number of nonzeros in the
incomplete triangular factor. This increased rate is reflected in the time it takes to
compute the incomplete factorization. However, the usefulness of this extra amount
of work when producing the incomplete factorization is not evident in the number
of iterations that pCGNR needs for convergence: they keep decreasing at the same
rate. Hence, for 7 less than 107! in this example, cTIGO performs many unnecessary
rotations, in the sense that they do not have a compensating impact on the quality
of the resulting preconditioner.

This is a vicious circle, as the more such unnecessary rotations we have, the
longer the linked list becomes, so not only does it eat up resources but it becomes
very time consuming to update. More unnecessary fill-in will appear particularly

23

in the lower triangular part of the matrix, which in turn generally leads to more
rotations being performed to get rid of this fill-in.

The necessity of keeping the size of the linked list short also justifies our choice
of always keeping all entries in the original sparsity pattern P4 of the matrix A. We
aim to produce qualitatively good preconditioners with only a little of this difficult
to accommodate fill-in on top of the nonzeros in the sparsity pattern.

Threshold strategy dependence on main diagonal entry: For systems
arising from least-squares problems, most (all) the entries on the main diagonal are
usually zero. This means that for a threshold rule that depends on main diagonal
values much fill-in will appear, at least for the first rotation involving such a row
with a zero initial main diagonal entry. This fill-in will in many cases accumulate
during the factorization phase and kill performance (see Papadopoulos et al. (2002),
Section 5.4).

It is however our experience that such a preconditioner will only start helping
convergence once most (or in some cases, all) the main diagonal entries of R;,,. have
been filled with some value. Just filling those zero diagonal entries with an arbitrary
value (in our code we choose 1) is simply not enough.

This is exactly the reason why we choose to keep the dependence on diagonal
entries when determining the next rotation but not for updating the two rows
involved in the rotation. We want to have enough fill-in to at least create the
potential of all the main diagonals becoming nonzero at one stage or another during
the factorization phase by the simple expedient of rotating any such fill-in against
a zero main diagonal entry.

On the other hand, such a strategy leads to dropping rules that are not adaptive,
but rather based on a rigid threshold value determined by the initial matrix and user
input. It would be interesting to see whether other choices for the dropping rules,
fully adaptive but still independent of the value of main diagonal entries, produce
better results.

A more systematic approach would be to try and minimize the number
of rotations during the reduction process itself. Algorithms such as those in
Duff (1974), Gillespie and Olesky (1995) and Robey and Sulsky (1994) can
sometimes achieve a significant reduction in rotations by reordering rows during
the factorization process. They are therefore worth considering, given the apparent
sensitivity of the IGO methods to the order in which rotations are applied (column-
wise reduction in cTIGO versus row-wise reduction for rTIGO).

5 Conclusions.

We have implemented and tested a series of incomplete orthogonal factorization
methods for general nonsingular and unsymmetric matrices as well as rectangular
overdetermined systems. These factorizations are obtained from the Givens
orthogonalization process by dropping fill-in according to either position or

24

magnitude and by limiting the number of entries according to available storage. The
process of reducing the initial matrix to upper triangular form using a succession of
Givens rotations was implemented in both column-wise and row-wise fashion.

We have performed extensive comparisons for both square and rectangular (least-
squares) systems for these methods. These test results show that, for the square
system case, a fine-tuned ILU preconditioner will almost always outperform any of
our IGO methods. This is due to the fact that LU factorizations are not only cheaper
to compute in terms of floating-point operations but, more significantly perhaps,
the sparse data structures required for an ILU factorization are less complex and
expensive to use and update than Givens incomplete () R ones.

For the least-squares case, although we did not have any direct competitor as in
the square case, the results we presented, coupled with our subsequent observations,
show that IGO factorizations can be powerful preconditioning tools. For least-
squares problems there does not appear to be software for competing general
preconditioning methods currently available. If and when methods are proposed,
we hope that they will be compared with the results presented here.

References

7.-7. Bai, 1. S. Duff, and A. J. Wathen. A class of incomplete orthogonal factorization
methods. I: Methods and theories. BIT, 41(1), 53-70, 2001.

M. Benzi, J. C. Haws, and M. Tuma. Preconditioning highly indefinite and
nonsymmetric matrices. SIAM J. Scientific Computing, 22(4), 1333-1353,
2000.

M. Benzi, C. D. Meyer, and M. Tuma. A sparse approximate inverse preconditioner
for the conjugate gradient method. SIAM J. Scientific Computing, 17(5), 1135—
1149, 1996.

M. Benzi, D.B. Szyld, and A. C. N. van Duin. Orderings for incomplete factorization
preconditioning of nonsymmetric problems. SIAM J. Scientific Computing,
20(5), 1652-1670, 1999.

T. A. Davis. University of Florida sparse matrix collection. Available from
http://www.cise.ufl.edu/research/sparse /matrices, 2000.

I. S. Duff. Pivot selection and row ordering in Givens reduction on sparse matrices.
Computing, 13, 239-248, 1974.

[. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Matrices.
Oxford University Press, Oxford, England, 1986.

I. S. Duff and J. Koster. On algorithms for permuting large entries to the diagonal
of a sparse matrix. SIAM J. Matriz Analysis and Applications, 22(4), 973-996,
2001.

25

B. Fischer, A. Ramage, D. J. Silvester, and A. J. Wathen. On parameter choice
and iterative convergence for stabilised discretisations of advection-diffusion
problems. Comput. Methods in Appl. Mech. Eng., 179(3), 185-202, 1999.

A. George and M. T. Heath. Solution of sparse linear least squares problems using
Givens rotations. Linear Algebra and its Applications, 34, 69-83, 1980.

M. I. Gillespie and D. D. Olesky. Ordering Givens rotations for sparse QR
factorization. STAM J. Matriz Analysis and Applications, 16, 1024-1041, 1995.

G. H. Golub and C. F. Van Loan. Matrix Computations. The John Hopkins
University Press, Baltimore, Maryland, Third Edition, 1996.

D. James. Appendiz: The breakdown of incomplete QR factorizations. PhD thesis,
Department of Mathematics and Computer Science, North Carolina State

University, Raleigh, NC, 1990.

A. Jennings and M. A. Ajiz. Incomplete methods for solving A’Az = b. SIAM J.
Scientific and Statistical Computing, 5(4), 978-987, 1984.

T. A. Manteuffel. An incomplete factorization technique for positive-definite linear
systems. Mathematics of Computation, 34, 473-498, 1980.

MatrixMarket. Matrix Market, NIST, Gaithersburg, MD. Available from
http://math.nist.gov /MatrixMarket /data/, 2000.

J. A. Meijerink and H. A. van der Vorst. An iterative solution method for linear
systems of which the coefficient matrix is a symmetric M-matrix. Mathematics

of Computation, 31(137), 148-162, 1977.

C. C. Paige and M. A. Saunders. LSQR: an algorithm for sparse linear equations
and sparse least squares. ACM Trans. Math. Softw., 8, 43-71, 1982.

A. T. Papadopoulos, 1. S. Duff, and A. J. Wathen. Incomplete orthogonal
factorization methods using Givens rotations II: Implementation and results.
Technical Report NA-02-07, Oxford University Computing Laboratory, Parks
Road, Oxford, 2002.

T. H. Robey and D. L. Sulsky. Row ordering for a sparse QR decomposition. STAM
J. Matriz Analysis and Applications, 15, 1208-1225, 1994.

Y. Saad. Preconditioning techniques for nonsymmetric and indefinite linear systems.

J. Comput. Appl. Math., 24, 89-105, 1988.

Y. Saad. SPARSKIT: a basic tool kit for sparse matrix computations. Version
2. Technical report, Computer Science Department, University of Minnesota,

1994.

Y. Saad. [terative methods for sparse linear systems. PWS Publishing, New York,
NY, 1996.

26

X. Wang. Incomplete factorization preconditioning for least squares problems. PhD
thesis, Department of Mathematics, University of Illinois, Urbana, Ilinois,

USA, 1993.

X. Wang, K. A. Gallivan, and R. Bramley. CIMGS: an incomplete orthogonal
factorization preconditioner. SIAM J. Scientific Computing, 18(2), 516-536,
1997.

7. Zlatev. Computational Methods for General Sparse Matrices. Kluwer Academic
Publishers, 1991.

7. Zlatev and H. B. Nielsen. Solving large and sparse linear least-squares problems
by conjugate gradient algorithms. Computers Math. Applic., 15, 185-202, 1988.

27

	ABSTRACT
	 1 Introduction
	 2 Description of algorithms and observations
	 2.1 column-Incomplete Givens Orthogonalization (cIGO) method
	 2.2 column-Threshold IGO (cTIGO)
	 2.3 Row-wise elimination TIGO (rTIGO)
	 2.4 Computer implementation details
	 3 Preconditioning Square Systems
	 3.1 Description of experiments
	 3.2 Examples in brief
	 3.3 The effect of preprocessing
	 3.4 Discussion
	 4 Preconditioning least squares systems
	 4.1 Computer implementation
	 4.2 Dropping rules
	 4.3 Numerical results
	 4.4 Discussion
	 5 Conclusions
	References

