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Abstract 
The Manipulation and Analysis Toolkit for Instrument Data (MANTID) [1] is an open source cross 

platform application that provides a framework for supporting computing and visualisation of 

scientific data, specialising in neutron and muon analysis. MANTID is currently used at multiple 

neutron facilities worldwide. 

This document aims to describe the development carried out between July 2015 to July 2016 across 

version 3.5, 3.6 and 3.7 of MANTID. 

Development during this period was focused on the full integration of support for the VESUVIO 

instrument at ISIS as well as improving the reliability and robustness of all graphical user interfaces 

(GUIs) and the supporting data reduction and analysis routines that these GUIs use. In addition, 

areas for future development are outlined at the end of this document. 
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1 Introduction 
MANTID is an open source, cross platform, scientific software package offering support for data 

reduction, analysis and visualisation [1]. MANTID is currently in use at many of the large neutron and 

muon sources across the world. The main partners of the project are ISIS (Rutherford Appleton 

Laboratory, UK), SNS (Oak Ridge National Laboratory, Tennessee, USA) and the European Spallation 

Source (Scandinavia) as well as a newly established team at the Institut Laue-Langevin (Grenoble, 

France).The majority of the development team is also distributed across the main partners however 

the MANTID project has also had notable contributions from the Paul Scherrer Institut (Villigen, 

Switzerland) and ANSTO (Sydney, Australia) have also contributed to the project. 

MANTID offers both user interface driven and python based scripting solutions for the manipulation 

of data. MANTID GUIs originally stemmed from the QtiPlot project [2] and have been further 

extended using the Qt library. MANTID uses the concept of workspaces (a matrix of x, y and error 

data) for handling data that is extracted from raw data files. Algorithms, which can be thought of as 

isolated routines or functions, perform operations on the data. These algorithms are written in 

either C++ or Python with the bulk of the MANTID framework written in C++.  

The indirect geometry section of MANTID is largely created with the original MODES [3] application 

as a template as well as the IRIS Data Analysis package [4]. VESUVIO functionality has been modelled 

on the VESUVIO analysis programs originally hosted on the VMS cluster. 

This document aims to describe the current state of Indirect geometry support within MANTID as 

well and the changes over the course of Release 3.5 to 3.7 that have been made. 

Much has been done to support the VESUVIO instrument at ISIS in terms of data reduction and 

analysis. The vast majority of the Vesuvio workflow has been fully incorporated into MANTID which 

includes up to date and fully automated tests for all VESUVIO algorithms and scripts (see section 6 

for details). 

The general consensus from feedback given to the MANTID team at the Scientific Steering 

Committee, held at the Oak Ridge National laboratory January 20th – 21st 2016 [5], was to ensure 

that a focus was given to robustness and stability of the software package over the addition of new 

features. As such, much of the focus with release 3.6 and 3.7 was put on improving the stability of 

the software through validation, testing and consistency.  

This document also includes a brief overview of further development task that can be carried out in 

future releases. This is not designed to be a task list but could act as guidance for future 

development.  
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2 Data Reduction 
In order to analyse data from an experiment, the data collected must be converted from the raw 

time of flight data to energy transfer. This can be done by using the parameters of the instrument. 

After the reduction of energy transfer data, it can then be converted to the instrument independent 

function which describes the proportion of incident neutrons scattered with a given momentum and 

energy transfer known as S(Q, ω). The full procedure for reducing data in this way is detailed in Ref 

[6]. 

MANTID already has facilities in place to perform data reduction which are outline in more detail in 

Ref [7]. The follow describes the additional changes made to the data reduction interfaces within 

MANTID (Interfaces ⇒ Indirect ⇒ Data Reduction). 

2.1 ISIS Energy Transfer 
In order to improve consistency throughout the indirect section of MANTID a new naming 

convention has been implemented that ensures that during the data reduction stage, all workspaces 

are appropriately named. The new naming convention is: 

 <Full instrument name><run number>_<analyser><reflection>_<red/res/sqw/iqt> 

Every character in the new naming convention is lower case. An example of this could be the IRIS run 

26176 which is reduced using the graphite analysers and 002 reflection. This would be given the 

name: 

 iris26176_graphite002_red 

At the end of the workspace names, the suffix red, res, sqw or iqt is used to represent the data in 

different formats. red is the reduced raw file, res is a resolution file, sqw being S(Q, ω) and iqt being 

I(Q, t). These suffixes are used to help restrict where this data can be used within the interfaces 

which acts as an additional form of validation as well as helping to guide users with file input. Other 

suffixes are also used in indirect but those mentioned above are the most common. 
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2.2 ISIS Calibration 
Many of the interfaces in the indirect geometry section of MANTID have preview plots that display 

the input and, after a successful run of the algorithm, output data. In order to aid users to visualise 

the input parameters for algorithms relative to the data, many preview plots also have range bars 

that define the FWHM, background contribution or fitting range for the data. These range bars can 

be changed by clicking and dragging them to a new location or updating the corresponding value in 

the property table. Figure 1 shows an example of property table and corresponding range bars.  

In an effort to make MANTID more user friendly, range bars were changed to be automated in many 

cases where a good guess can be made. In the case of the ISIS Calibration Interface, the peak range 

and background can be approximated for each instrument. These approximations are based on the 

resolution of the instrument and correlate to the background and peak range values as shown in 

Table 1. 

Table 1 is true for experimental data, with units of energy, as the elastic peak is at 0meV. In order to 

translate this data to be correct for time of flight, these values are added to a workspace with 

instrument data also being loaded into that workspace. The instrument data includes replacing the 

spectrum number of the workspace to match the first non-monitor spectrum for spectroscopy data 

(For the IRIS instrument, this is spectrum number 3). After this data is loaded, the data is then 

converted to time of flight using the ConvertUnits algorithm. 

During the development period leading up to release 3.7, a bug was discovered that was causing 

these values to be incorrect for OSIRIS data. This was tracked down to the spectrum number being 

incorrectly set for OSIRIS data.  Where, as described above, the first IRIS spectrum number of 

interest is 3, for OSIRIS this is 963. This lead to the spectrum number being for a diffraction detector 

on ORISIS causing an offset in the approximation for the range bar locations for OSIRIS data. Figure 1 

shows the correct range bars in the interface. 

 

Approximate 
parameter for 

spectra 

Peak 
minimum 
boundary 

Peak centre 
position 

Peak 
maximum 
boundary 

Background 
start 

boundary 

Background 
end boundary 

Resolution 
scale factor 

-2 0 2 5 6 

Table 1: Shows the scale factor used in product with the instrument resolution to obtain 

approximate parameters for a single spectrum in the ISIS Calibration interface 
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Figure 1: ISIS Calibration interface showing the preview plot range bars, and corresponding values, 

for OSIRIS data approximated by the process described in section 2.2. 
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3 Corrections 
Before data is analysed, corrections should be applied to better model the data and to account for 

attributes such as sample shape and the contribution to the spectra from the container. Currently 

MANTID supports absorption correction using the method formalised by Paalman and Pings to 

describe attenuation factors of a sample and container [8]. Additionally, a basic method for 

Container Subtraction is supported in the interface, see section 3.1. 

The changes described below have been made to the corrections interface (Interfaces ⇒ Indirect ⇒ 

Corrections). 

3.1 Container Subtraction 
The Container Subtraction interface enables the user to mathematically subtract the contribution of 

a container from an experimental run of the sample. This will ensure that further operations and 

visualisation of the data will performed on the observations of the sample alone.  

This interface uses the ApplyPaalmanPingsCorrection algorithm which, in this case, is only used to 

perform the container scale and subtraction. In this simple mode of operation the algorithm takes 

sample workspace, container (can) workspace and a Container Scale Factor as inputs. The 

ApplyPaalmanPingsCorrection algorithm then applies the Scale Factor to the container and then uses 

the Minus algorithm to remove the container contributions from the sample workspace, see Figure 

2.  

Further to the scaling of the container, the ability to shift the container in the X axis was also added 

to account for a potential shift in peak centre. This uses the ScaleX algorithm and is currently 

handled by the interface code as opposed to the ApplyPaalmanPingsCorrection algorithm which is a 

planned development for the future. In addition to enabling a shift in the X axis in the Container 

Subtraction interface, this functionality has also been implemented in the Apply Paalman Pings 

interface. 

The GUI allows the visualisation of the sample relative to the container as well as the magnitude of 

the shift and scale. This is with an aim to aid in the selection of inputs for the algorithm. The 

interface provides a preview plot which shows curves that represent the sample (black) and 

container (red). The subtracted (green) is displayed after the algorithm has completed, see Figure 3.  

In order to alter the shift or scale of the container, the options (“Scale Container by factor” and Shift 

x-values of container by adding”, see Figure 4) must be checked in the interface and then the 

spinners allow the user to change the value by typing or clicking the up and down arrows. After 

loading a container workspace into the interface, changing values for shift and scale will 

automatically update the curve in the preview plot. Currently the maximum values for container 

shift are bound by the x range of the sample. Additional validation that has been added to interface 

to ensure the input workspaces should be end in ‘_red.nxs’ or ‘_sqw.nxs’.  
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Figure 2: ApplyPaalmanPingsCorrection Container Scale and Subtraction Workflow 

A full size version of this diagram and additional information regarding the algorithm can be found at 

http://docs.mantidproject.org/nightly/algorithms/ApplyPaalmanPingsCorrection-v1.html  

 
Figure 3: Container Subtraction interface post run with shift and scale for IRIS data 

http://docs.mantidproject.org/nightly/algorithms/ApplyPaalmanPingsCorrection-v1.html
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Figure 4: Scale Container and Shift x-value options in the ContainerSubtraction interface  
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4 Data Analysis 
The Indirect Data Analysis interface (Interfaces > Indirect > Data Analysis) in MANTID allows users to 

easily perform common processes and fitting to reduced data. The Elwin and I(Q, t) interfaces 

perform transformations of the data whilst the MSD fit, I(Q, t) Fit, ConvFit and JumpFit tabs act as a 

wrapper to the Fit algorithm in MANTID. The interfaces designed for fitting, offer the users many 

commonly used fit functions in an easy to manipulate format. More detailed descriptions of these 

can be found in Ref [7]. 

The indirect data analysis interfaces allows processing of both energy transfer reduction workspaces 

(suffixed with _red) as well as S(Q, ω) workspaces (suffixed with _sqw). 

4.1 I(Q, t)  
The I(Q, t) interface uses the TransformToIqt workflow algorithm which, in brief, by means of a 

Fourier transform, converts reduced spectrum data into the intermediate scattering function I(Q, t). 

A more detailed description of the algorithm can be found in the MANTID documentation online at 

http://docs.mantidproject.org/nightly/algorithms/TransformToIqt-v1.html  

The interface is designed to take input of a sample and resolution workspace as well as an energy 

range and binning preference for the data in order to create a _iqt output workspace. Each spectra 

in the sample workspace is treated independently and therefore the I(Q, t) workspace will contain 

the same number of spectra as the sample. 

To obtain a quick overview of the data to ensure it is of good quality, a tiled plot has been 

introduced which enables a user to see all the spectra in the output workspace in a single window. 

This option exists as a checkbox in the I(Q, t) interface, see Figure 5, and should be checked before 

running the algorithm. Once the algorithm concludes, a plotting window similar to Figure 6 will be 

displayed showing the plots for all spectra in the workspace. A scroll bar on the right hand side of 

the window gives access to the remaining plots not shown in Figure 6. The legend details the 

spectrum number using the notation iris26176_graphite002_iqt_tiled-sp-1 where “sp-1” denotes 

spectrum number 1.  

  

http://docs.mantidproject.org/nightly/algorithms/TransformToIqt-v1.html
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Figure 5: I(Q, t) interface Output section Tiled Plot option 

 

Figure 6: I(Q, t) interface Tiled Plot produced at the end of run in the I(Q, t) interface if the option is 

checked (see Figure 5). The data above is iris26176_graphite002_red. 

  



 
 

Elliot Oram  15 

4.2 ConvFit 

4.2.1 Quasi Elastic Fit Function 

The ConvFit interface provides a simple way to fit a convolution of the resolution and a model to 

reduced data. This action can be mirror in the fit wizard, but the interface offers an easier way to fit 

commonly used models as well as a define ties, constraints and temperature correction. 

Four QuasiElastic models have been added to both the underlying algorithm and the interface: 

 Inelastic Diffusion Sphere (InelasticDiffSphere) 

 Inelastic Diffusion Rotation Discrete Circle (InelasticDiffRotCircle) 

 Elastic Diffusion Sphere (ElasticDiffSphere) 

 Elastic Diffusion Rotation Discrete Circle (ElasticDiffRotCircle) 

These fit functions are available from the Fit Type drop down menu in the interface, see Figure 7.  

Further information on all fit function available in the ConvFit interface can be found online at 

http://docs.mantidproject.org/nightly/interfaces/Indirect_DataAnalysis.html#fitting-model  

 

Figure 7: ConvFit interface Fit Type drop down menu displaying all currently implemented models 

http://docs.mantidproject.org/nightly/interfaces/Indirect_DataAnalysis.html#fitting-model
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4.2.2 Interface parameter table  

Each model has its own initial starting parameters that should be set in order to obtain a better fit 

for data. The parameter table on the left of the interface, see Figure 8, allows for entry of these 

values and these are then parsed into a function string which is given to the Fit algorithm along with 

the data.  

The parameter table automatically updates to display the relevant parameters for the desired model 

when it is changed in the drop down menu. Furthermore, when the interface is run, the parameters 

values in the table are updated with the output parameters calculated by the Fit algorithm. 

In the more specific case, after a single Lorentzian fit is completed, which will cause the values in the 

parameter table to update automatically, if the user then selects the Two Lorentzian model in the 

interface, the parameters from the one Lorentzian fit are passed as the input for the Two Lorentzian 

fit.  

 

Figure 8: ConvFit interface parameter table showing required parameters for Inelastic Diffusion 

Sphere (InelasticDiffSphere) 

 

4.2.3 Delta Function centre and height 

Some data sets used in the ConvFit interface have an additional contribution from the container that 

should be represented in model. This contribution can be modelled as a single delta function in the 

elastic window. 

The functionality to allow the delta function centre and height to be adjusted has been added. This 

enables a better guess for the peak height to improve the output from the fit. Furthermore, the peak 

centre of the delta function can now be shifted along the x axis which is required if the peak from 

the container contribution is off centre (possibly due to experimental inaccuracies). This option is 

shown in Figure 9. 

 

Figure 9: Delta Function centre and height options in ConvFit interface 
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4.4 Conversion of Python Scripts 
The origin of many of the data analysis programs was the MODES package [3] the IRIS data analysis 

package [4], therefore, some of the functionality still remains in the form of python scripts. In order 

to improve maintainability and consistency throughout MANTID many of these scripts have been 

converted to MANTID algorithms. 

Conversion of these scripts gives the advantage of progress tracking (see section 7.1), automatically 

generated dialogue box allowing the algorithm to be run separately from the interface more easily. 

In addition, logging, workspace handling and being consistent with MANTID architecture are also 

benefits of this change. 

The largest script that has been converted in this periods is the IndirectDataAnalysis.py script which 

contained the functionality for the ConvFit and I(Q, t) Fit interfaces. 

The core algorithm that has been created from this change is the ProcessIndirectFitParameters 

algorithm. This is used by all of the algorithms created from the script (See below for description of 

other algorithms). This algorithm is designed to turn the output of the PlotPeakByLogValue 

algorithm to a MatrixWorkspace in the form expected by the post processing stages of the parent 

algorithm. The algorithm allows for the definition of the column containing the x axis values, names 

of the parameters that should be put into the output workspace and the target unit for the 

workspace. The full documentation including a usage example for this algorithm can be found online 

at http://docs.mantidproject.org/v3.7.1/algorithms/ProcessIndirectFitParameters-v1.html  

ConvolutionFitSequential is a C++ algorithm that controls the fitting performed in the ConvFit 

interface. The algorithm performs a sequential fit, given a model, for a convolution workspace. This 

algorithm also offers the ability to change the fitting range, spectra to be fitted, the minimizer and 

max iterations of the underlying call to PlotPeakByLogValue. The full documentation including a 

usage example for this algorithm can be found online at 

http://docs.mantidproject.org/v3.7.1/algorithms/ConvolutionFitSequential-v1.html  

IqtFitSequential and IqtFitMultiple are python algorithms that perform the data analysis in the I(Q, t) 

Fit interface. These algorithms, originally part of the MODES package [3], are designed to take the 

*_iqt workspace produced from the I(Q, t) interface and perform a fit using a model of either one or 

two exponentials, a stretched exponential or a combination of an exponential and a stretched 

exponential. The full documentation including a usage example for this algorithm can be found 

online at http://docs.mantidproject.org/v3.7.1/algorithms/IqtFitSequential-v1.html and 

http://docs.mantidproject.org/v3.7.1/algorithms/IqtFitMultiple-v1.html  

All the algorithms listed above are accompanied by automated unit tests to ensure robustness. 

The implementation of these algorithms has allowed for the removal of the IndirectDataAnalysis.py 

script from the MANTID package and this will no longer be shipped with MANTID as of release 3.8. 

  

http://docs.mantidproject.org/v3.7.1/algorithms/ProcessIndirectFitParameters-v1.html
http://docs.mantidproject.org/v3.7.1/algorithms/ConvolutionFitSequential-v1.html
http://docs.mantidproject.org/v3.7.1/algorithms/IqtFitSequential-v1.html
http://docs.mantidproject.org/v3.7.1/algorithms/IqtFitMultiple-v1.html
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5 Bayesian Analysis 
The Bayesian analysis tools have proven to be popular within MANTID. Currently housed in the 

Bayes interface (Interfaces ⇒  Indirect ⇒ Bayes), the analysis tools exist in three tabs: ResNorm, 

Quasi and Stretch. All of these tools, via use of probability theory, aid in the assessment of the 

likelihood of 1-3 quasi elastic components in the data. Bayesian analysis also gives the advantage of 

providing an optimal estimate for the parameters of these components [9]. 

ResNorm provides a facility to normalise the input data by fitting the resolution. This fitted data from 

the ResNorm algorithm, namely the ResNorm group, see Figure 10, can then be used as input for the 

BayesQuasi algorithm (see section 5.1)  

BayesQuasi, takes a sample, resolution and optional ResNorm file, see Figure 10, and through 

Bayesian analysis assesses the likelihood of 1-3 peaks being present in the data [9]. This algorithm 

does not require input parameters as these are instead optimised by the algorithm itself. After the 

algorithm the _Result workspace displays the parameters for 1-3 quasi elastic peaks, see Figure 11. 

BayesQuasi was originaly called Q Lines in the MODES package [3].  

Stretch, originally Quest in the MODES package [3], operates in an almost identical manner to that of 

BayesQuasi with the exception of using Stretched Exponentials rather than lorentzians. This 

algorithm, like BayesQuasi, is also a wrapper for the underlying FORTRAN code (see section 5.1 for 

more detail). 

 

Figure 10: ResNorm group for the iris26173_graphite002 reduction and resolution files  

 

Figure 11: Shows the optimal parameters for the iris26176_graphite002 data set with the resolution 

iris26173_graphite002. The initial fx number in the parameter name refers to the peak the 

parameter references. Height is highlighted here for peaks 1 to 3. 
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5.1 Quasi 
The algorithm BayesQuasi has been created from the QLines script (which has since been removed). 

For information on why this script has been changed, see the advantages listed in section 4.4. 

This particular script is slightly more complex than those mentioned in section 4.4 as it contains code 

originally written in the FORTRAN coding language. To allow this to run in MANTID, a pre-compiled 

(.pyc) python module is built and shipped with MANTID that performs the same operations as the 

FORTRAN routines but as a python implementation. This is a temporary solution and not ideal as the 

implementation of the FORTRAN routine (and its compiled python counterpart) is relatively 

unknown. However, there are replacements for this that can be introduced in future releases (see 

section 11.3). 

In addition to the algorithm implementation, there have also been updates to the validation to 

ensure the FORTRAN routine is given data in an acceptable format. 

A problem was observed when performing Bayesian analysis (using the Bayes interface) with a data 

set produced from the instrument IRIS. The dataset in question contained a single peak at 0 energy, 

as expected from IRIS, but also had a large number of 0 count values at the extremities of the range. 

Using this data over the full fitting range produced a crash in MANTID. This crash was tracked down 

to the underlying FORTRAN code. Due to the unsustainability of the code (see above), additional 

validation was added to ensure data does not contain zeros. This validation does not prevent the 

algorithm from running or producing a result but instead will update the fitting range of the data if it 

contains zeros in the fitting range specified by the user. If this value is updated, the change will be 

displayed in the results log while the algorithm is running, see Figure 12.  

 

Figure 12: Updated fitting range in results log of Bayes > Quasi for data containing zeros  
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5.2 FABADA 
The FABADA minimiser (Fitting Algorithm for Bayesian Analysis of Data) is a powerful tool adapted 

from the Markov chain Monte Carlo method to perform fitting of experimental data [10]. It is 

currently implemented in MANTID and is being propagated through the interfaces to allow FABADA 

minimiser use in GUIs.  

Currently in the indirect geometry interfaces, FABADA has been implemented within ConvFit and 

I(Q, t) Fit with plans to implement it in the ResNorm interface as well (see section 11.4) . Figure 13 

shows the additional section added to these interfaces in order to better control FABADA, these 

options are described in more detail online at 

http://docs.mantidproject.org/v3.7.1/concepts/FABADA.html  

When complete, FABADA will output the Probability Density Function (PDF) for each fitted 

parameter and the cost function as well as an optional plot for the chain showing parameter values 

for each iteration of the chain. 

The usage example described in http://docs.mantidproject.org/v3.7.1/concepts/FABADA.html , uses 

the irs26176_graphite002 data set. After execution, both the PDF and chain are output as Matrix 

Workspaces. The chain for the amplitude parameter, Figure 14, shows the initial sharp increase 

while exploring the parameter space until it converges to a final value of ~2.45.The PDF agrees in 

Figure 15, showing the probability of the amplitude being 2.45 being the most likely.  

Whilst the example in the documentation runs well, due to the complexity of the FABADA minimiser 

the execution time when used in ConvFit, which performs sequential fitting over many spectra, the 

run time is significantly longer. This has been reported to occasionally cause crashes and is believed 

to be related to the converge criteria. This is being addressed (see section 11.4 for more details). 

 

Figure 13: FABADA minimiser options in the ConvFit and I(Q, t) Fit interface 

http://docs.mantidproject.org/v3.7.1/concepts/FABADA.html
http://docs.mantidproject.org/v3.7.1/concepts/FABADA.html
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Figure 14: The FABADA chain for the fitting parameter amplitude for the irs26176_graphite002 data 

set.

 

Figure 15: the FABADA PDF for the fitting parameter amplitude for the irs26176_graphite002 data 

set.  
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6 VESUVIO 
VESUVIO, housed at the ISIS pulsed neutron and muon source, is an electron volt neutron 

spectrometer and is primarily used for the measurement of proton distributions in condensed 

matter system. Additionally, VESUVIO can be used to measure kinetic energies of heavier masses 

and sample compositions [11]. 

6.1 Integration within MANTID 
Previous versions of MANTID had basic support for the workflow of VESUVIO. Much of this was in a 

separate repository and not automatically tested. The VESUVIO workflow consisted of multiple 

scripts and algorithms which were all required to be moved into the MANTID framework in order to 

allow Reduction and Analysis to take place for VESUVIO data. Alongside this, tests were also required 

to ensure that the reduction and analysis workflow was working as expected but also to ensure that 

further development did not have unexpected effects on the output. 

6.1.1 Algorithms  

VESUVIO algorithms are housed in the Framework > PythonInterface > Plugins > Algorithms section 

of the MANTID code base. These already used the MANTID style syntax for algorithm definitions. 

 

Figure 16 shows the example data set of run numbers 15039-15045. Initially the data is loaded using 

the LoadVesuvio algorithm. In this example a single spectrum number, 135, is loaded (the first of the 

forward scattering detectors) using the single difference mode with the instrument parameter file 

‘Vesuvio_IP_file_test.par’. Further information on the operation of and improvements to 

LoadVesuvio can be found in section 6.2. 

 

 
Figure 16: Spectrum 135 of loaded VESUVIO data for run numbers 15039-15045 using the single 

difference mode 
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6.1.1.1 VesuvioPreFit 

VesuvioPreFit performs initial pre-processing steps on reduced VESUVIO data obtained from 

LoadVesuvio, see Figure 16. First the data is smoothed using the SmoothData algorithm in MANTID, 

smoothing by a number of points defined by the user. Following this, any bad data, which is 

classified as data that has a higher error than the user defined threshold, is masked. The purpose of 

this algorithm is to make the data easier to fit and less prone to reaching incorrect local minima as 

well as removing any obvious outliers in the data.  

 

Figure 17 shows the difference between the loaded data in Figure 16 and the outcome of running 

that data through the VesuvioPreFit algorithm. The red curve (output of VesuvioPreFit) shows 

smoother data with fewer sharp peaks. In the workflow, this algorithm would then pass the output 

to the VesuvioTOFFit algorithm (see section 6.1.1.2). 

 

 
Figure 17: Shows the difference between the Loaded Vesuvio data from Figure 15 (black) and the 

VesuvioPreFit data (red) 
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6.1.1.2 VesuvioTOFFit 

VesuvioTOFFit performs the main fitting of the expected model to the experimental data. The 

algorithm takes the Input workspace in time of flight, the individual masses to be fitted (as a list) and 

a function for each mass that is used to approximate the profile of the mass (as a list). The output of 

the algorithm is a workspace containing the contribution of each mass in the sample (as determined 

by the Fit algorithm), the fit parameters and the chi squared value for the fit. Additionally, 

VesuvioTOFFit allows for the optional declaration of function for the background, additional 

intensity constraints, an option for fitting by bank or spectra as well as options to set the maximum 

iterations for the fit and the minimizer to use when fitting. 

Additional information about the parameters can be found at 

http://docs.mantidproject.org/v3.7.1/algorithms/VesuvioTOFFit-v1.html  

 

During execution, the masses, mass profiles, background function and intensity constraints are 

parsed into a single fit string. Two fits are then performed on the data. The first uses the number of 

iterations defined by the user in the input parameters and produces fit parameters from this. These 

parameters are then used in a second fit to calculate the chi squared value for the fit function (how 

well the function fits the data). This secondary fit only has a single iteration. 

Figure 18 shows the output of the VesuvioTOFFit algorithm. The algorithm will output the 

contribution from each mass that was defined in the mass profiles. In this case there are four: the 

first a GramCharlierComptonProfile (shown in green in Figure 18), and three 

GaussianComptonProfiles that all contribute to the final peak in the sample. 

Figure 19 shows the fitting parameters per mass that are also an output from the VesuvioTOFFit 

algorithm. The fx values in the parameter names denote which mass the following parameter 

references, where x is (in this case) value between 0 and 3 to represent the 4 different masses.  

http://docs.mantidproject.org/v3.7.1/algorithms/VesuvioTOFFit-v1.html
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Figure 18: The contribution from the Masses of interest in the sample as calculated by VesuvioTOFFit 

algorithm 

 

 

Figure 19: The fit parameters produced by the VesuvioTOFFit algorithm 
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6.1.1.3 VesuvioCorrections 

VesuvioCorrections performs the corrections to fitted VESUVIO data. These corrections include a 

scaling factor for the fit, background contribution, total scattering contribution and multiple 

scattering contribution. The algorithm has input of a reduced VESUVIO workspace in time of flight 

and also requires the mass, mass profiles and intensity constraints used for fitting the data and the 

fit parameters calculated for the workspace. Additionally, the algorithm also requires details about 

the gamma background, the container and the sample material and beam in order to calculate 

multiple scattering. A full list of inputs can be found online at 

http://docs.mantidproject.org/v3.7.1/algorithms/VesuvioCorrections-v1.html .  

 

VesuvioCorrections performs the corrections for one spectrum, as defined by the user, in the 

supplied workspace. The calculated fit parameters are used to construct a fit string which is then fit 

to the workspace containing the time of flight data to obtain the scaling values.  

Gamma background corrections, Figure 20, are then calculated using the 

VesuvioCalculateGammaBackground algorithm which produces two workspaces, a corrected 

workspace, containing the time of flight data with the gamma background corrections applied to it, 

and the Background workspace which represents the corrections applied to the workspace. More 

information on this algorithm can be found online at 

http://docs.mantidproject.org/v3.7.1/algorithms/VesuvioCalculateGammaBackground-v1.html .  

 

 
Figure 20 shows the gamma background contribution that is calculated by the VesuvioCorrections 

algorithm. The contribution (green) is the subtracted from the original data from Figure 16 (black) in 

order to obtain the corrected data (red). 

  

http://docs.mantidproject.org/v3.7.1/algorithms/VesuvioCorrections-v1.html
http://docs.mantidproject.org/v3.7.1/algorithms/VesuvioCalculateGammaBackground-v1.html
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The next corrections are for multiple scattering and total scattering, Figure 21, which is calculated 

using the algorithm VesuvioCalculateMS. This algorithm follows the procedures to calculate multiple 

scattering for VESUVIO as defined by J. Mayers et al [12]. 

In order to run VesuvioCalculateMS, a sample shape must be defined for the input workspace. This is 

done using an xml definition that represents a cuboid with vertices that are formed by the user input 

for sample height, width and depth. This is applied to the workspace using the CreateSampleShape 

algorithm. The workspace is then passed to VesuvioCalculateMS which performs the multiple 

scattering corrections for the data. This will produce two workspaces, the total scattering workspace 

containing the counts for the total scattering, Figure 22, and the multiple scattering workspace 

containing the summed contributions of multiple scattering for all orders, Figure 21. After the 

execution is complete both the total scattering and multiple scattering workspaces are smoothed to 

a number of points defined by the users initial input.  More information on VesuvioCalculateMS can 

be found online at http://docs.mantidproject.org/v3.7.1/algorithms/VesuvioCalculateMS-v1.html . 

 

Figure 21: shows the multiple scattering contribution as calculated by the VesuvioCorrections 

algorithm. The multiple scattering (green) is subtracted from the original data from Figure 16 (black) 

in order to show the corrected data (red). 

 

http://docs.mantidproject.org/v3.7.1/algorithms/VesuvioCalculateMS-v1.html
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Figure 22: shows the Total scattering contribution as calculated by the VesuvioCorrections 

algorithm. The total scattering (green) is subtracted from the original data from Figure 16 (black) in 

order to show the corrected data (red). 

 

The VesuvioCorrections algorithm returns two group workspaces upon completion, one containing 

the corrections that will be applied to the data (workspaces in the ‘_corrections’ group workspace in 

Figure 23) and the other, the data after the corrections have been applied to it (workspaces in the 

‘_corrected’ group workspace in Figure 23). Furthermore, the algorithm returns the parameters used 

to linearly fit the corrections data as well as the workspace containing all the corrections (total 

scattering, gamma background and multiple scattering) applied to the initial time of flight input 

workspace. Figure 23 Shows these workspaces. 

 

Figure 23: All workspaces that are outputs of the VesuvioCorrections algorithm displayed in the 

workspace windows of MANTID.  
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6.1.2 Scripts 

Several VESUVIO specific scripts are now being shipped with MANTID. These scripts include common 

functionality used within the VESUVIO algorithms and are designed to support fit string parsing, the 

definition and comprehension of mass profiles and helper functions for the definition of complex 

background functions. All the scripts can be found in the MantidInstall\scripts\Inelastic\Vesuvio 

directory. 

Additionally the main commands algorithm (commands.py) is contained in the same folder. This 

script contains the main workflow for the VESUVIO data reduction and is normally operated by a 

driver script. The driver script sets multiple flags that will be used as input for the function. These 

flags will include all the values mentioned in the description of the algorithms (see section 6.1.1) 

such as mass profiles and intensity constraints. The commands.py file also allows for multiple 

iterations of the fit to be carried out and this can be set in the driver script but defaults to a single 

iteration. 

The full workflow of VESUVIO data reduction will include the algorithms LoadVesuvio, VesuvioPreFit, 

VesuvioTOFFit and VesuvioCorrections. The output of the main function in the commands.py script 

(fit_tof) can be by bank see Figure 24, or by spectra see Figure 25. 

Figure 24 shows all the workspaces produced by a single iteration of the fit_tof function in 

commands.py, all workspaces are prefixed with the run numbers used to create them and then the 

remaining name describing what data is contained within it. Table 2 shows the contents of each 

workspace using Figure 24 as a reference. 

 

 

Figure 24: Output from a single iteration of the VESUVIO reduction workflow by bank 
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Workspace name Workspace 
type 

Contains 

23115-
23153_backward_bank_1_iter
ation_1 

Workspace 
Group 

Results of fitting the first of the 3 banks in back 
scattering. This workspace group contains the data, 
scaling parameters for the fit the correction data 
for the background, the total scattering and the 
multiple scattering contributions as well as the 
corrected fit curves for the background, total 
scattering and multiple scattering contributions. 
 
23115-23153_backward_bank_2_iteration_1 and  
23115-23153_backward_bank_3_iteration_1 
contain the same as bank_1 but for each of the 
banks in back scattering. 

23115-23153_backward_tof Matrix 
Workspace 

The reduced time of flight data for the backwards 
banks on VESUVIO for runs 23115-23153 

23115-
23153_params_iteration_1 

Matrix 
Workspace 

The fit parameters produced by the VesuvioTOFFit 
algorithm for each bank in back scattering after 
applying corrections 

23115-
23153_params_pre_correctio
n_iteration_1 

Matrix 
Workspace 

The fit parameters produced by the VesuvioTOFFit 
algorithm for each bank in back scattering before 
corrections 

Table 2: Shows the contents of each workspace produced by the VESUVIO reduction workflow 

 

 

Figure 25: Output from a single iteration of the VESUVIO reduction workflow by spectra 
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6.2 Data loading and VESUVIO operation 
Vesuvio data is loaded using the LoadVesuvio algorithm. LoadVesuvio is designed to take the raw 

VESUVIO data and convert it into time of flight spectra that, after corrections are applied, can be 

used for analysis. This algorithm takes, as input, a range of run numbers, a range of spectra, a 

differencing mode (which deliberates how the periods are treated – see section 6.2.2 for more 

detail), an optional instrument parameter file to adjust for the calibration of the instrument as well 

as options to sum the spectra defined in the list as well as loading monitor data (see section 6.2.4).  

6.2.1 Periods 

The VESUVIO instrument is capable of measuring data using different periods. The gold foils on the 

instrument that are situated between the sample and the detectors can be moved in and out to 

allow various orientations of data collection. This varies depending on the bank of detectors 

(forward scattering or back scattering) in use.  

Forward scattering has 2 foil changers, left and right hand side of the beam, which have 2 sets of 

foils each for the corresponding 4 detector banks. This allows for 2 foil set ups, foil-in and foil-out 

which mean data is collected in 2 periods. If only the forward scattering detectors are used, 

detectors labelled S135-S198 in Figure 26, this data will have only exactly 2 periods. 

Back scattering has a single foil changer with 3 possible states: foil-out, foil-in and foil-thick. Foil-thick 

is a double thickness foil is placed between the detectors and the sample as opposed to the single 

thickness foil observed in foil-in. This allows for the collection of 3 period data which only includes 

data that is collected from the back scattering detectors labelled S3-S134 in Figure 26. 

VESUVIO is also capable of collecting 6 period data. This is a combination of collecting both 2 and 3 

period data at the same time. The orientation of the foils in forward and back scattering is shown in 

Table 3. 

The pre-existing LoadVesuvio algorithm present in MANTID has been adapted to correctly deal with 

all periods used on VESUVIO as well as the differencing modes (see section 6.2.2)  

Period Forward scattering Foil Back scattering Foil 

1 In Thick 

2 Out In 

3 In Out 

4 Out Thick 

5 In In 

6 Out Out 

Table 3: VESUVIO Foil orientation for 6 period data collection 
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Figure 26: VESUVIO instrument Layout July 2009. Taken from User guide to VESUVIO data analysis 

[13] 
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6.2.2 Differencing modes 

As VESUVIO has the ability to collect data with foils in different positions (see section 6.2.1), these 

can be treated in different ways to obtain differing results. VESUVIO currently has 3 main 

differencing options available and these are stated in Table 4. Table 4 also details the equations that 

used in order to calculate the final time of flight spectra for Vesuvio that is the output of 

LoadVesuvio. 

Differencing mode Equation 

Single Difference fi - fo 

Thick Difference ft - fo 

Double Difference fi – fo AND ft -fo  

Table 4: Table showing the VESUVIO differencing modes and the equations relating to periods. 

Period positions are referenced as foil-out (fo), foil-in (fi) and foil-thick (ft). See section 6.2.1 for an 

explanation of foil states. 

6.2.3 Difference Mode vs. Period validation 

The LoadVesuvio algorithm will automatically determine the period of the data when it is loading 

based on the experiment information stored with the raw data. Given the number of periods, the 

spectra numbers that are being loaded (provided by the user upon execution) and the equations for 

differencing modes (see Table 4) it is possible to work out that if the current period/difference 

mode/scattering banks are of a valid combination. As such additional validation has been added to 

the LoadVesuvio algorithm to ensure that incorrect combinations of these variables are not possible 

to select, see Figure 27. 

 

Figure 27: Valid combination of period/scattering/Differencing modes for VESUVIO data. The full 

version and accompanying documentation can be found online at 

http://docs.mantidproject.org/v3.7.1/algorithms/LoadVesuvio-v1.html   

http://docs.mantidproject.org/v3.7.1/algorithms/LoadVesuvio-v1.html
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6.2.4 Load Monitors 

The transmission spectrum for a sample on VESUVIO can be calculated and will show the probability 

of a neutron to be scattered by the sample as a function of wavelength. This is calculated by dividing 

the monitor spectra from the sample by the monitor spectra of the empty container, converting to 

wavelength and dividing the counts of the first monitor (labelled S1 in Figure 26) by the counts from 

the second monitor (labelled S2 in Figure 26). In order to make this operation easier for users the 

LoadVesuvio algorithm now has the option of loading the monitor workspaces along with the in a 

separate workspace, see Figure 28. 

 

Figure 28: LoadVesuvio dialogue showing load monitor option 
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6.3 Vesuvio Thickness 
The VesuvioThickness algorithm was original designed to mirror the THICK routine on the VMS and  

calculates the sample density and transmission using a list of known masses within the sample and 

their corresponding amplitudes, the thickness of the sample (in cm), the number density of the 

sample material and an initial guess for the Transmission value. 

The algorithm iteratively improves values for sample density and transmission over 10 iterations and 

then outputs the iterations of both values. These values are returned in two table workspaces, see 

Figure 29. The final value from the sample density iteration is then used as input to the 

VesuvioCorrections algorithm which uses the value to aid in calculating the multiple scattering 

contribution. 

 

Figure 29:  Table workspace showing the iterative improvement of sample density (left) and 

transmission (right) over the 10 iterations of VesuvioThickness  
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6.4 Notable bug fixes for Vesuvio 
During the implementation of VESUVIO in MANTID it was necessary to address some of the bugs 

that had arisen in the older algorithms. 

6.4.1 Fitting data in VesuvioCorrections 

The VesuvioCorrections algorithm (see section 6.1.1.3 for more detail) was showing unexpected 

behaviour for fitting multiple spectra in a reduced workspace containing VESUVIO data. It appeared 

that the fit from the first spectra was the same as all the following spectra and the therefore the 

parameters were not propagated between fits. 

The algorithm takes each workspace and extracts the spectrum to work on (this is a value obtained 

from the algorithm properties declared as “WorkspaceIndex”). The cause of the bug was discovered 

to be by the extracted spectrum not being passed to the next stage of the algorithm. Instead, the 

whole workspace containing the full list of spectra was being fitted and this resulted in the first 

spectrum in the workspace being fitted for every iteration of the algorithm. 

In order to guard against similar problems in the future, the unit test for the algorithm 

(VesuvioCorrectionsTest.py) as well as the system test for the over-arching Vesuvio workflow 

(VesuvioCommandsTest.py) were updated. These tests now ensure that both the first and second 

spectrum of an input workspace are used in the algorithm. In addition, the values of the output 

workspaces are now tested. Previously only checks to ensure the expected workspaces were created 

and were of the correct type and size were in place. 
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6.4.2 Intensity constraints bug 

When modelling data obtained on VESUVIO, in many cases, the composition of the sample will be 

known before any analysis takes place. With this, the relative intensities of each mass that 

contribute to the observed spectra from the sample can be calculated. In order to improve fitting, 

these relative intensities can be entered in the fit string (the input to the Fit algorithm that describes 

the model) as constraints between intensities. Given how VESUVIO defines masses to be used in 

fitting the constraint can be defined as follows: 

flags['intensity_constraints'] = list([0,0,0,1, -0.25], [1,-0.5,0,0,0]) 

The above shows the intensity_constraints flag that is parsed as an additional argument when the fit 

string is constructed. In the above case, 5 masses are present in the sample. The constraints string 

describes two constraints on the intensity of each Compton profile (contribution from mass), the 

first that the final mass is 0.25 times smaller than the penultimate mass and the second is that the 

second mass is half the intensity of the first. The third mass has no constraints and is stated as 0 in 

both constraints. 

In more complex intensity constraint scenarios, an issue was discovered causing intensity constraints 

to not be correctly applied to the fitting of the data. The results produced by the VesuvioTOFFit 

algorithm (see section 6.1.1.2 for more details) did not take into account the intensity constraints 

that were specified. This was however not noticed in simple cases as the Fit algorithm was able to 

make a close to accurate approximation to the expected simple constraints. However in the complex 

case, the Fit algorithm struggled to meet the constraints and was far more likely to choose the result 

of another acceptable local maximum.  

The VesuvioTOFFit algorithm performs 2 fits; the first is a fit using the user specified number of 

iterations (defaulting to 500) and the second, a single iteration fit using the fit parameters of the first 

in order to assess the Chi squared value of the fit parameters. The bug is introduced here were the 

fit parameters from the second fit are used as the output of the VesuvioTOFFit algorithm. These 

parameters are created from running Fit using a fit string generated from the parameters of the 

initial fit but do not explicitly consider the constraints applied in the first fit. As such, the output fit 

parameters are liable to change even over a single iteration in the case of complex constraints on 

the data. 

This problem is resolved by making the fit parameters that are returned by the VesuvioTOFFit 

algorithm the fit parameters that are obtained from the first call to Fit (the algorithm run that uses 

multiple iterations rather than the second call that only uses a single iteration). This is because the 

first set of fit parameters still contains the constraints that were specified by the user. 

This VesuvioTOFFit unit test has been updated to validate this behaviour. The data previously used in 

the test was artificially generated and the origin of the fit parameters being provided was unknown. 

The test itself had already proven to be unstable and the decision was made to update the test to 

use better data which has since improved the stability of the test.  
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7 Simulations 
There are several tools designed to support Simulations currently implemented in MANTID. These 

can be found in the simulation interface (Interfaces ⇒ Indirect ⇒ Simulation) and include MolDyn, 

Sassena and DensityOfStates.  

MolDyn is designed to aid in the loading and visualisation of nMoldyn functions. The algorithms that 

support loading functions from nMoldyn version 3 and 4 are named LoadNMoldyn3Ascii and 

LoadNMoldyn4Ascii. Documentation for these algorithms can be found online at 

http://docs.mantidproject.org/v3.7.1/algorithms/LoadNMoldyn3Ascii-v1.html and 

http://docs.mantidproject.org/v3.7.1/algorithms/LoadNMoldyn4Ascii-v1.html. 

Similar to the MolDyn interface, the Sassena interface is design to load simulations from the Sassena 

simulation software. The interface uses the LoadSassena algorithm, the documentation for this can 

be found at http://docs.mantidproject.org/v3.7.1/algorithms/LoadSassena-v1.html.   

The DensityOfStates interface is used to load CASTEP data in both the CASTEP and PHONON file 

formats using the SimulatedDensityOfStates algorithm. The algorithm supports loading full and 

partial densities of states, Raman and IR spectroscopy. The documentation for this algorithm can be 

found online at http://docs.mantidproject.org/v3.7.1/algorithms/SimulatedDensityOfStates-v1.html.  

7.1 Rebinning in Simulated Density of States 
A bug was found with the rebinning parameter for the SimulatedDensityOfStates algorithm causing 

the output workspace to be scaled in the X axis rather than changing the binning.  

In order to obtain the expected outcome from the SimulatedDensityOfStates algorithm in DOS 

mode, the peaks have to be created. The creation of peaks is handled by the _draw_peaks() function 

within the algorithm. Previously this had been using the user defined bin width as a scaling factor in 

X to draw the peaks whereas the width should have been used instead. After changing these 

variables, a call to the Rebin algorithm is used to set the binning of the output workspace to the 

binning expected by the user. This change also ensured that the interface for Simulated Density of 

States (the location the bug was original found in) worked as expected, see Figure 30. Figure 30 

shows the resulting workspace after running the algorithm with a binning of 3.0 (default binning is 

1.0). 

In order to validate this change, an additional test case was added to 

SimulatedDensityOfStatesTest.py to check that the rebinning had been correctly applied and the 

binning of the output workspace is that which is expected. 

 

 

Figure 30: Shows the X axis binning for the H contribution in the squaricn data set.   

http://docs.mantidproject.org/v3.7.1/algorithms/LoadNMoldyn3Ascii-v1.html
http://docs.mantidproject.org/v3.7.1/algorithms/LoadNMoldyn4Ascii-v1.html
http://docs.mantidproject.org/v3.7.1/algorithms/LoadSassena-v1.html
http://docs.mantidproject.org/v3.7.1/algorithms/SimulatedDensityOfStates-v1.html
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8 Consistency and Robustness 
Much of the user feedback for MANTID was to reduce the focus on the addition of new features in 

favour of improved consistency and robustness. This request has led to updates in the indirect 

interfaces to be more consistent with the rest of the project and to improve validation. 

8.1 Progress tracking 
To aid users, MANTID offers the facility to show the current completion of an algorithm as a 

percentage with optional additional information such as the current task being performed, see 

Figure 31. This has now been implemented in almost all indirect specific algorithms. 

Progress tracking is implemented using a polling style system in which a Progress object is initialised 

to report within a percentage range of the algorithms completion. An initial guess for the number of 

times the progress percentage should be updated is also given. The progress is then updated by 

calling the report function on the progress object with an optional additional message to give further 

information.  

The progress tracking bar is normally located in the bottom right hand corner of the MANTID GUI 

and has an accompanying button labelled ‘Details’. When clicked, the ‘Details’ button shows further 

information regarding the algorithm that is currently being executed, see Figure 32. These details 

include input parameters, percentage completion and current task as well as the option to cancel 

the execution of the algorithm. The ‘Cancel’ button will abort the algorithm during its execution 

when it reaches the next point at which it was expecting to report its progress. 

 
Figure 31: Progress Tracking bar during execution 

 
Figure 32: Progress tracking interface giving more details for ConvolutionFitSequential with IRIS data  
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8.2 Validation improvements 
Many MANTID interfaces, including those in the indirect section, have known values or 

configurations that it would be impossible or illogical to compute. A significant effort has been made 

in indirect interfaces to ensure that they are stopping users from entering these values by the means 

of validation. This not only helps to warn users that they are entering invalid inputs but also directs 

them as to why the inputs are invalid. 

Most indirect interfaces perform operations on spectra within a specified range of X values or a 

fitting range. This potentially allows a user to enter values that are either the same for the low and 

high fields or the incorrect way round, with low being more than high. Previously this would result in 

an uninformative error message in the results log.  Now an error message is displayed stating the 

problem, see Figure 33. In Figure 33, the EMin has been set to a larger value than EMax and when 

the tab is run, a message box is produced and the algorithm is not executed until the problem is 

resolved. 

When numeric spinners are used, it is possible to restrict the upper and lower bounds to ensure that 

values entered are expected. Figure 34 shows an example from the Data Reduction interface where 

this is used. The instrument has been set to IRIS with graphite analysers and a reflection of 002. In 

this configuration it is known that spectra of interest are only between a minimum of 3 (1 and 2 are 

monitors) and a maximum 53. In order to stop potentially invalid user input, the numerical spinners 

are bounded making it impossible to enter values outside of this range. 

 
Figure 33: Error massage displayed with invalid EMin/EMax range in Indirect Bayes 

 
Figure 34: Bounded Spectra Min/Max spinners in ISIS Energy Transfer for IRIS graphite 002  
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9 Documentation 

9.1 Release Notes 
The release notes, previously stored as a standalone set of pages on the mantidproject.org webpage 

are now integrated with the build. This ensures that within our MANTID workflow (see section 10.4) 

the initial reviewer checks also include reading and reviewing the release notes as well as checking if 

embedded links work as expected.  

Figure 35 shows the indirect release notes for the MANTID release 3.7.1, however, a full set of 

release notes for all scientific areas of MANTID are available online at 

http://docs.mantidproject.org/v3.7.1/release/ 

 

Figure 35: MANTID Release notes for the Indirect Inelastic changes. The full list of indirect inelastic 

specific changes can be found online at 

http://docs.mantidproject.org/v3.7.1/release/v3.7.1/indirect_inelastic.html 

  

http://docs.mantidproject.org/v3.7.1/release/
http://docs.mantidproject.org/v3.7.1/release/v3.7.1/indirect_inelastic.html
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9.2 Documentation improvements 
Much work in this period has gone towards improving the standard of documentation for indirect 

algorithms, in particular the workflow algorithm. It has become standard practice in MANTID that to 

aid both the software developers and the users understanding of complex algorithms, workflow 

diagrams are used in the documentation to explain the flow of execution of the algorithm. 

Workflow diagrams are written in the DOT plain text graph description language and then compiled 

with the documentation and displayed graphically. An example of a simple workflow diagram used in 

MANTID can be seen in Figure 36. Figure 37 shows a simple dot graph and the accompanying 

definition used as an example in Ref [14]. 

Almost all indirect workflow algorithms used in MANTID now have documentation accompanied by a 

workflow diagram. The only notable exceptions are the newer VESUVIO algorithms for which 

workflow diagrams have yet to be created. All the updated workflow algorithms can be found at the 

links provided in Table 5. 

 

Algorithm Documentation link 

ConvolutionFitSequential http://docs.mantidproject.org/v3.7.1/algorithms/ConvolutionFitSe
quential-v1.html  

FlatPlatePaalmanPingsCorrect
ion 

http://docs.mantidproject.org/v3.7.1/algorithms/FlatPlatePaalman
PingsCorrection-v1.html  

IndirectAnnulusAbsorption  http://docs.mantidproject.org/v3.7.1/algorithms/IndirectAnnulusA
bsorption-v1.html  

IndirectCylinderAbsorption   http://docs.mantidproject.org/v3.7.1/algorithms/IndirectCylinderA
bsorption-v1.html  

IndirectFlatPlateAbsorption http://docs.mantidproject.org/v3.7.1/algorithms/IndirectFlatPlateA
bsorption-v1.html  

IqtFitMultiple http://docs.mantidproject.org/v3.7.1/algorithms/IqtFitMultiple-
v1.html  

IqtFitSequential http://docs.mantidproject.org/v3.7.1/algorithms/IqtFitSequential-
v1.html  

OSIRISDiffractionReduction  http://docs.mantidproject.org/v3.7.1/algorithms/OSIRISDiffraction
Reduction -v1.html  

ProcessIndirectFitParameters  http://docs.mantidproject.org/v3.7.1/algorithms/ProcessIndirectFit
Parameters-v1.html  

SimulatedDensityOfStates  http://docs.mantidproject.org/v3.7.1/algorithms/SimulatedDensity
OfStates-v1.html  

TOSCABankCorrection http://docs.mantidproject.org/v3.7.1/algorithms/TOSCABankCorrec
tion-v1.html  

VesuvioDiffractionReduction http://docs.mantidproject.org/v3.7.1/algorithms/VesuvioDiffractio
nReduction-v1.html  

Table 5: Table showing indirect specific algorithms with accompanying links to their updated 

documentation pages.  

  

http://docs.mantidproject.org/v3.7.1/algorithms/ConvolutionFitSequential-v1.html
http://docs.mantidproject.org/v3.7.1/algorithms/ConvolutionFitSequential-v1.html
http://docs.mantidproject.org/v3.7.1/algorithms/FlatPlatePaalmanPingsCorrection-v1.html
http://docs.mantidproject.org/v3.7.1/algorithms/FlatPlatePaalmanPingsCorrection-v1.html
http://docs.mantidproject.org/v3.7.1/algorithms/IndirectAnnulusAbsorption-v1.html
http://docs.mantidproject.org/v3.7.1/algorithms/IndirectAnnulusAbsorption-v1.html
http://docs.mantidproject.org/v3.7.1/algorithms/IndirectCylinderAbsorption-v1.html
http://docs.mantidproject.org/v3.7.1/algorithms/IndirectCylinderAbsorption-v1.html
http://docs.mantidproject.org/v3.7.1/algorithms/IndirectFlatPlateAbsorption-v1.html
http://docs.mantidproject.org/v3.7.1/algorithms/IndirectFlatPlateAbsorption-v1.html
http://docs.mantidproject.org/v3.7.1/algorithms/IqtFitMultiple-v1.html
http://docs.mantidproject.org/v3.7.1/algorithms/IqtFitMultiple-v1.html
http://docs.mantidproject.org/v3.7.1/algorithms/IqtFitSequential-v1.html
http://docs.mantidproject.org/v3.7.1/algorithms/IqtFitSequential-v1.html
http://docs.mantidproject.org/v3.7.1/algorithms/OSIRISDiffractionReduction -v1.html
http://docs.mantidproject.org/v3.7.1/algorithms/OSIRISDiffractionReduction -v1.html
http://docs.mantidproject.org/v3.7.1/algorithms/ProcessIndirectFitParameters-v1.html
http://docs.mantidproject.org/v3.7.1/algorithms/ProcessIndirectFitParameters-v1.html
http://docs.mantidproject.org/v3.7.1/algorithms/SimulatedDensityOfStates-v1.html
http://docs.mantidproject.org/v3.7.1/algorithms/SimulatedDensityOfStates-v1.html
http://docs.mantidproject.org/v3.7.1/algorithms/TOSCABankCorrection-v1.html
http://docs.mantidproject.org/v3.7.1/algorithms/TOSCABankCorrection-v1.html
http://docs.mantidproject.org/v3.7.1/algorithms/VesuvioDiffractionReduction-v1.html
http://docs.mantidproject.org/v3.7.1/algorithms/VesuvioDiffractionReduction-v1.html
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Figure 36: Workflow diagram for VesuvioDiffractionReduction. A size version is available at: 

http://docs.mantidproject.org/v3.7.1/algorithms/VesuvioDiffractionReduction-v1.html 

 

Figure 37: Simple DOT graph used as an example in the dot User’s Manual [14]  

http://docs.mantidproject.org/v3.7.1/algorithms/VesuvioDiffractionReduction-v1.html
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10 Testing 

10.1 Test best practices 
To ensure that development changes made by the MANTID team do not have unexpected effects on 

the code base, a suite of system and unit tests are in place that run automatically when a new 

change is proposed in a Pull Request (see section 10.4). Unit tests, as well as system test cases (see 

below); can be separated into two sections, success cases and failure cases. 

Success cases are designed to exercise the algorithm in the way they are expected to be used and 

test the functionality of the algorithm. These will cause the algorithm to run without failure and 

produce an outcome that can be verified by comparison of data values or, more often done in 

system tests, comparing the data to a reference file. Normal data and data that can be considered an 

edge case, extreme example, are tested in success case tests. 

Failure cases are used to test how the algorithm copes with unexpected input. These tests are 

designed to fail when they are run and they should catch an exception that is thrown by the 

algorithm. In many cases, when testing unexpected input, this will be a ValueError either thrown by 

the property validator or by the validate() function in the algorithm. Failure cases normally do not 

test the execution of the algorithm workflow as they should fail before that point. 

  



 
 

Elliot Oram  45 

10.2 Types of tests in MANTID 
Unit tests are small isolated tests that are designed to test the functionality of a single segment of 

code. In most cases these are written for a single algorithm. The aim is to ensure that, ideally, all 

execution paths of the code are covered by the test including as many edge cases as possible. Their 

execution time should be kept a short. 

System tests are more often used to test a number of steps a user takes to reach a certain goal for 

example the IRISIqtandIqtFit test found in the ISISIndirectInelastic system test performs the same 

operations as the I(Q, t) and I(Q, t) Fit interface sequentially with the standard IRIS data set (see 

section 10.3.1). These tests will normally have a longer run time and are a more realistic 

representation of how users interact with MANTID. Full version of ISISIndirectInelastic system test 

available from: 

https://github.com/mantidproject/mantid/blob/master/Testing/SystemTests/tests/analysis/ISISIndir

ectInelastic.py 

Most documentation contains a usage example which is a simple example of how to use an 

algorithm in a python script format. Usage examples may include a test to ensure the expected 

output is obtained. This output as well as an external links to documentation, such as workflow 

diagrams, are checked by the documentation tests. 

Several static analysis tools, designed to ensure code is syntactically correct and properly formatted, 

check the whole code base. There are four internal project tools that are used regularly to checked 

for consistency:  

 Clang format – Ensures C++ code is formatted according to a C++ standard of your choosing 

(the default for the MANTID project being LLVM) more information for LLVM can be found 

here http://llvm.org/docs/CodingStandards.html  

 Pylint – Ensures python code is formatted correctly in line with the PEP8 style guide 

including restrictions on line length, variable names and module imports [15]. Pylint also 

offers help in error detection with validating function names and implementation. 

 Doxygen – Ensures that C++ style comments are correctly formatted and use the correct 

syntactical tags to define metadata. 

 CppCheck – Performs checks on C++ code for errors, warnings, style, performance and 

portability. 

  

https://github.com/mantidproject/mantid/blob/master/Testing/SystemTests/tests/analysis/ISISIndirectInelastic.py
https://github.com/mantidproject/mantid/blob/master/Testing/SystemTests/tests/analysis/ISISIndirectInelastic.py
http://llvm.org/docs/CodingStandards.html
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10.3 Indirect specific testing 
In order to test the functionality of MANTID algorithms and scripts, instrument specific data files are 

used and stored in the MANTID test data directory. As many of the algorithms are independent of 

instrument, the IRIS data set (see 10.3.1.1) is used to perform the bulk of the testing with the OSIRIS 

(see 10.3.2.1) and TOSCA (see 10.3.2.2) data sets are used to test only instrument specific 

algorithms. As VESUVIO operation differs from the other indirect geometry instruments, the IRIS 

data set cannot be used to test its algorithms, as such it has its own data set (see section 10.3.3.1). 

10.3.1 IRIS 

10.3.1.1 IRIS testing files 

 Sample:  26176 

 Container:  26174 

 Resolution:  26173 

Reduced versions of these files are already stored in the Mantid test data directory. The test data 

directories contain these files in various states, see Table 6. 

Run number Name Description 

IRS26176 
Sample 

IRS26176.raw Raw experimental data used to test loading 
and workflow (system tests). 

irs26176_graphite002_red.nxs Reduced raw file. Used as the input for the 
sample data. 

irs26176_graphite002_cyl_Abs.nxs Cylinder absorption corrections workspace 
used in unit tests for corrections algorithms. 

irs26176_graphite002_conv_1LFixF_
s0_to_9_Result.nxs 

A single Lorentzian model fitted to the 
irs26176 data set in the ConvFit interface. 
This is used in further analysis such as 
JumpFit. 

iris26176_graphite002_iqt.nxs An I(Q, t) file for use in the IqtFitMultiple and 
IqtFitSequential testing. Note: This file is the 
first to use the new naming convention (‘iris’ 
as opposed to ‘irs’). Other files will be 
updated to this convention in the future. 

IRS26173 
Resolution 

IRS26173.raw Raw experimental data used to test loading 
and in workflow system tests. 

irs26173_graphite002_res.nxs Reduced raw file of the resolution. 

irs26173_graphite002_red.nxs Reduced raw file of the resolution as a 
reduction. Used in the unit test for ResNorm. 

irs26173_graphite002_ResNorm.nxs Output of the ResNorm algorithm. Used for 
testing Bayesian analysis  

Table 6: The standard testing data used for iris 
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10.3.2 OSIRIS and TOSCA 

OSIRIS and TOSCA files are only used for specific OSIRIS and TOSCA algorithms and in most cases this 

is for the loaders. Once data has been reduced, the majority of indirect algorithms will be executed 

in the same way regardless of the instrument definition. Therefore the only files stored in the 

MANTID test data directory are the raw files. These file are used for unit, system and doc tests. 

 

10.3.2.1 OSIRIS testing files 

Run Number Name Description 

OSI10203-10204 
Sample 

OSI10203-10204.raw Raw files containing the sample run data. 

OSI10241-10242 
Container 

OSI10241-10242.raw Raw files containing the container run data. 

OSI10156-10157 
Vanadium 

OSI10156-10157.raw 
 

Raw files containing the vanadium run data. 

Osiris_041-RES10 
Calibration 

Osiris_041-RES10.cal The aerial calibration file containing the offsets for 
the detector positions as well as any masking for 
spectra. 

Table 7: OSIRIS standard testing data 

10.3.2.2 TOSCA testing files 

Run Number Name Description 

TSC14007 
Sample 

TSC14007.raw An older TOSCA raw data file containing sample 
information used for testing compatibility with 
older formats. 

TSC15352-15354 
Sample 

TSC15352-15354.raw Newer TOSCA raw data file containing sample 
information. These are the more commonly used 
files now. 

Table 8: TOSCA standard testing data  
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10.3.3 VESUVIO 

10.3.3.1 VESUVIO testing files 

VESUVIO unit tests use artificially generated data where possible. This is to enforce encapsulation of 

the test by restricting its access to LoadVesuvio as well as reduce the number of raw files stored in 

the test directory and reduce the execution time of the tests. The files are generated from the script 

testing.py stored in the inelastic/Vesuvio/ directory of the code base. The script has two functions, 

create_test_ws() which returns a workspace containing data and instrument meta data replicating a 

sample and create_test_container_ws() which returns a workspace containing data and instrument 

meta data replicating a container. The raw data used to create these is taken from the reduced data 

used in the system tests which is EVS14188-15045 using single difference and spectra numbers 134-

135 (the first two back scattering detectors). 

In order to test the workflow of VESUVIO data reduction and analysis, the system test 

VesuvioCommands.py uses all the algorithms required for a full reduction and analysis run from their 

unprocessed (.raw) state. The files used are EVS14188-15045 reduced in the single differencing 

mode and using spectra numbers 134-135. Additionally, the system tests use the 

Vesuvio_IP_file_test.par. This is a mock version of an actual Vesuvio IP file and is used in tests to 

ensure that adjustments are made relative to its contents.  

 

10.3.3.2 VesuvioCorrections system test 

Due to the complex operations performed by the VesuvioCorrections algorithm the execution time is 

longer than most algorithms. Unit tests are designed to be short and to test the algorithm in 

question in isolation but due to a long run time, the decision was made to move this test to be a 

system test. This has not affected performance or the values checked by the test itself, but the 

location and layout of the test file VesuvioCorrectionsTest.py has changed. This is an internal change 

to MANTID with no effect on the user. 

10.3.3.3 Testing meaningful values 

Many of the unit and system tests used previously for VESUVIO required updating as their expected 

values were not those being produced by the algorithms. This was due to the age of the tests and 

changes that had taken place to the algorithms that had already been implemented in MANTID, such 

as LoadVesuvio.  

Additionally to updating the values, the aspect of the data being tested was also changed. Originally, 

the test checked the extremities of the data (the first and last bin). Whilst this is a reasonable testing 

practice in the majority of cases, due to the noisy background of VESUVIO data, see Figure 38, 

testing a more meaningful value such as the maximum height of the peak and its corresponding bin 

index is more appropriate.  

Whilst most changes were made during the development period leading up to the 3.7 release, some 

of the final changes were made just after the release. As such, all tests will be using the peak height 

and bin index test values in 3.8.  
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Figure 38: Example of VESUVIO data from run 15039 loaded with the LoadVesuvio algorithm and 

single difference mode highlighting noise in the initial bin. 
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10.3.3.4 Tolerance values and justification 

During test migiration, some Linux systems were producing marginally different values to Windows 

and more recent distributions of linux. This minor difference is within scientific error, but was 

causing an issue in the comparison of test data. More specifically, unit tests that were expecting 

specific values were failing due to the small amount of difference in the values.  

This difference in values has been found to be caused by a change in the boost library, upon which 

MANTID depends. In more recent versions of the boost library, those newer than 1.56, the random 

number generation used in boost::variate_generator was altered.  

The algorithm VesuvioCalculateMS uses the variate_generator and, as such, this the algorithm will 

produce marginally different values depending on the version of boost that is standard in the 

operating system. Due to this,  the algorithms that run VesuvioCalculateMS are now required to 

have a tolerance on certain values for testing. This was deemed a more acceptable solution than 

having multiple lists of values that are expected between version as the difference between version 

is small. The ideal scenario would be to check the version of boost in use but unfortunately this 

operation is not easily performed in python. 

These tolerance values will no longer be required when all operating systems are using newer 

versions of boost. When all supported platforms running MANTID have upgraded, it will be possible 

to remove the tolerance. 
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10.3.4 Simulations 

10.3.4.1 Simulations testing files 

Simulations algorithms require a different set of data as they are designed to take input from 

external simulation packages such as Sassena and NMoldyn. The files used to test simulations 

algorithms are shown in Table 9. 

Type Name Description 

nMoldyn 

NaF_DISF.cdl nMoldyn version 3 .cdl file 
format. Contains a function 
called ‘Sqw-total’ 

WSH_test.dat nMoldyn version 3 .dat file 
format. 

/nmoldyn4_data/ Directory containing a set of 
nMoldyn version 4 functions. 

Sassena 
outputSassena_1.4.1.h5 An output from the Sassena 

simulations package used to 
test the LoadSassena algorithm 

SimulatedDensityOfStates 

squaricn.phonon A PHONON file used to test the 
SimulatedDensityOfStates 
algorithm 

squaricn.castep A CASTEP file used to test the 
SimulatedDensityOfStates 
algorithm 

Table 9: Describes the files used to test simulations algorithms in MANTID.  
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10.4 Modifying Mantid Workflow 
MANTID uses Git and GitHub for issue tracking, bug reports as well as new development and the 

workflow for fixing these bugs has changed in the 3.6 release development period, see Figure 39. 

The workflow remains similar in many respects to its description by D. Nixon (figure 27 [7]) with the 

exception of the introduction of Gatekeepers. Gatekeepers, or second reviewers, are more senior 

members of the development team who perform a second review of the proposed changes. 

Functionality is rarely checked in the second review phase but instead coding style and best 

practices are reviewed to attempt to find points in which code can be better optimised or more 

clear.  

After every change that is made to the proposed solution, all tests are run and if any fail then the 

code cannot be merged in the main repository. The way in which test execute has been changed in 

order to streamline the build servers. Previously all static analysis, unit and system tests ran 

simultaneously but in order to reduce the amount of redundant tests being run these are now run in 

a sequence. Clang Format is run as it is the fastest and has the shortest fix time. In the event of this 

test failing, all subsequent tests will be cancelled and no other tests will be run on the build server 

until the Clang Format issue is fixed. Figure 40 shows the order of the remaining tests as well as their 

dependencies on one another. 

To ensure all changes are correctly tested and a good test description is supplied for the reviewer, a 

new pull request template has been added to ensure consistency across all pull requests, see Figure 

41. When changes are made to the code base locally, a developer must submit a pull request in 

order to have their code reviewed and, providing it is of good quality and the tests pass, merged 

with the main code for the project. This template encourages the developer to fill in a description of 

the changes, a guide on how to test the changes, a link to any release notes that may have been 

updated as well as which issue number the pull request will resolve. The most important section is 

the guide to testing the changes, which should mention any files that are required and where they 

can be found, as well as a step by step guide of how to test the code, as shown in Figure 42. It is 

expected that tester also attempt to break the change to ensure robustness. This is normally done 

by using unexpected values and observing how the newly developed code handles this. 

The pull request template also contains a section below that is used by the first reviewer. The first 

reviewer should follow these steps and ensure that the changes made by the initial developer 

adhere to specifications stated (where applicable). Once the first reviewer is satisfied with the 

changes they add a comment detailing the steps they took to review the code as well as any 

additional comments and end this with the shipit emoji, as mentioned at the end of Figure 41. The 

Gatekeepers are then alerted that the changes are ready for a second review. 
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Figure 39: Workflow for changing code in the MANTID project 
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Figure 40: Shows the order in which tests run on the MANTID build servers as well as their 

dependencies on one another. Ubuntu unit tests and Documentation tests are bundled into a single 

test and similarly, RHEL 7 and system tests are bundled.
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Figure 41: A blank preview view of the Mantid Project GitHub pull request template  

 

Figure 42: An example of a completed Mantid Project GitHub pull request  
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11 Future Planning 

11.1 Vesuvio 
Whilst the main workflow of the VESUVIO data reduction and analysis has been implemented into 

MANTID, some additional functionality has been requested from the VESUVIO users and instrument 

scientists.  

11.1.1 LoadVesuvio 

Given the operations performed and the validation in place for LoadVesuvio (see section 6.2) it 

should be possible to have mixed period loading (for example, loading 6 period and 3 period data at 

the same time providing the spectra, or banks, are in back scattering).  

It should be possible use LoadVesuvio without using a difference mode. Instead, all periods in the 

data would be summed together and normalised by the monitors. 

LoadVesuvio operations are clearly partitioned by differencing mode. As such, refactoring the 

differencing modes into separate scripts would make the algorithm far more comprehensible. The 

suggestion would be to have multiple scripts in a LoadVesuvio directory alongside the algorithm that 

handle the implementation of the differencing modes. It is possible that actions such as data 

loading, normalisation and validation can remain in the top level of the algorithm as these will be 

common across all difference modes, see Figure 43. 

 

Figure 43: Possible refactoring method for LoadVesuvio.  

created using tool provided by www.gliffy.com  

 

http://www.gliffy.com/
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11.1.2 Vesuvio Commands 

The current script containing the main workflow for VESUVIO (commands.py), see section 6.1.2 for 

more details, has a long execution time. This is for the most part due to the calculations of multiple 

scattering contributions which needs to be done for every fit. During the execution of the workflow, 

spectra, or banks depending on the mode of operation, are analysed sequentially in a loop. As the 

analysis of a single spectra, or bank, is independent of another, this process could be parallelised to 

allow multiple spectra to be processed simultaneously.  This should result in a noticeable increase in 

run time for the algorithm. 

11.1.3 Documentation and testing 

The VESUVIO documentation is of varying quality throughout. Whilst most documentation pages 

contain usage examples, very few contain detailed descriptions of how the algorithm functions and 

currently there are no workflow diagrams for algorithms. In order to actually be useful to both 

developers and users, these should be updated to a good and consistent standard throughout. 

Almost all the functionality in VESUVIO is being tested although there is currently no testing for the 2 

and 3 period case of LoadVesuvio due to not having any data at present. This data would also be 

required in order to allow for testing of the mixed period case example discussed in section 11.1.1. 

 

11.2 Data Analysis  
In order to obtain a quick overview of a data set an algorithm that takes a set of run numbers and 

reduces them (if required) then runs performs the same process as the Elwin interface could be 

beneficial. This algorithm should be capable of handling data files from any instrument as well as 

files that consist of multiple runs. The algorithm should also handle an input consisting of a mixture 

of NeXuS and/or raw files. The simple workflow for this algorithm is shown in Figure 44. 

 

Figure 44: Basic workflow for IndirectQuickRun algorithm  
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11.3 Bayesian Analysis 
Bayesian analysis in MANTID is currently performed by FORTRAN routines that have been converted, 

using the F2Py library to Python and is currently only distributed on windows. The main algorithm 

that runs Bayesian analysis, BayesQuasi, has the advantage of outputting the relative probabilities of 

the fit as well as not requiring any fit parameters initially. However, due to the age and structure of 

this code, as well as the lack of documentation, it is becoming increasingly difficult to maintain and is 

acting as a black box for Bayesian analysis in MANTID. 

A new alternative has been proposed in order to replace the existing FORTRAN code using a fitting 

process similar to ConvolutionFitSequential in order to obtain similar results to BayesQuasi. 

However, a method was required to determine the start parameters automatically. The current trial 

implementation uses the moments of the input data to determine the input parameters where 

background is taken from the data, the intensity is the 0th moment and width is the √2nd moment.  

This case works for single peak fitting however in two peak fitting; the parameters for the second 

peak is calculated by taking the 0th and 2nd moments of the fitted difference (Calculation – data) of 

the first peak. In order to guard against poor fits, several constraints are also used: 

 Background > 0 

 Peak centres are tied 

 Peak amplitude and FWHM > 0  

The first iteration of this algorithm has been created by W.S. Howells and is currently being tested. 

Once feedback has been obtained, this algorithm can be implemented in MANTID accompanied by 

automatic testing. 

11.4 FABADA 
The FABADA minimizer is a very powerful tool for Bayesian analysis within MANTID. However, it 

does still require some improvements in order to bring it up to standard with the other minimizers in 

MANTID.  

Currently FABADA is unable to handle using ties in the function. Whilst this does not cause crashing, 

it does mean that it is not possible to use the minimiser to full affect if you are already aware of 

parameters that are related. 

By nature, FABADA is very sensitive to initial parameters which can lead to a poor chance of 

convergence. FABADA has shown some instability in previous releases which appears to be due to 

convergence. When the minimiser is set to have a large tolerance for convergence FABADA will 

normally perform a reasonable fit but, due to the easily met convergence criteria, it can also get 

stuck at a local minima producing a poor fit. By contrast setting the convergence criteria too low will 

normally result in a crash as the minimizer is unable to converge within the number of steps. 

Both the issues above are currently being investigated by B. Llopis Vidal during his summer 

internship with the Molecular Spectroscopy group at ISIS, Rutherford Appleton Laboratory, UK. 

Once FABADA is fully operational, work can continue on implementing it into the Indirect Interfaces. 

The next interface that should use FABADA is ResNorm. 
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11.5 Simulations 

11.5.1 aCLIMAX 

aCLIMAX is a software package designed to interpret Inelastic Neutron Scattering from, ab initio, 

TOSCA-like spectrometer data. Originally an unsupported software package in Microsoft Excel [16], 

by version 4, the package was converted to the Visual Basic programming language and a GUI was 

also developed [17]. aCLIMAX is not open source therefore it can only be treated as a black box. 

Furthermore, in its current state it is not optimised for the indirect instruments housed as ISIS. 

In order to maintain support for aCLIMAX in the future, a new python version of the aCLIMAX code, 

current named ABINS is being developed by K. Dymkowski at the Rutherford Appleton Laboratory. 

ABINS, when complete, will be distributed with MANTID and therefore open source. Furthermore, 

this will allow automated testing of the algorithms.  
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