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The VISAR - A Simple Analysis 
 
1. Introduction 

The Velocity Interferometer System for Any Reflector (VISAR) [1,2], also known as the 
Delay Leg Interferometer, Laser Velocity Interferometer or Doppler Velocity Interferometer, 
is analysed. A number of analyses of the operation of the VISAR are given in the literature 
[1-7], culminating in that of Goosman [8]. More recently a detailed account with extensive 
references has been given by Dolan [9]. The VISAR basically measures acceleration.  

In this note the analysis considers the times for the light waves at a particular phase to 
traverse different parts of the VISAR, arriving at the difference in time for the interfering 
waves and avoiding the pitfalls of working in wavelengths and frequencies,. In this respect 
the analysis is similar to that of Goosman [8], but a simpler derivation of the solution for the 
VISAR with an accelerating reflector is given in Section 5. The resultant expressions are 
identical to those of Goosman. 
 
2. The VISAR 

Figure 1 shows the VISAR schematically. A laser, near ‘A’, sends out a beam of light of 
wavelength λ, (frequency f, angular frequency ω and velocity of light c). It hits a surface at 
‘B’ and is reflected to ‘C’, where it is split into two legs: the delay leg, ‘CDE’ of length δ and 
finally passing along ‘EF’ to the detector at ‘F’, and the un-delayed leg ‘CF’. The delayed 
and un-delayed beams produce interference patterns where they combine at F. 

 
 
Figure 1. Schematic diagram of the VISAR. For practical views of the optical arrangement, 
see Dolan [8]. 
 
It is important to note that in this report the two beams that interfere at F are termed 
the delayed and un-delayed beam, by which is meant the beam which travels down the 
delay leg and the beam which does not travel down the delay leg, respectively. Thus the 
un-delayed beam sets off from A after the delayed beam. 
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3.0 Stationary Reflector 
Assume that the reflector is stationary – see upper diagram of Figure 1. A wave from A 

taking the un-delayed route takes time, tud to travel to the detector at F via B and C. The 
delayed wave travelling down the delay leg from A to B, C, D, E to F, takes time, 

τ+= udd ττ                     (3.1) 
where τ is the delay time, τ = δ/c. 
Thus the phase difference between the delayed beam (i.e. the beam travelling down the delay 
leg) and the un-delayed beam interfering at F is constant in time. Note that the delayed beam 
starts out from A at a time Δt = τ before the un-delayed beam. The electric fields from the 
two beams at A are, 
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where the amplitude of the electric field from the laser is E0 before it is split into equal parts 
at the point C, t is the time at A and δt is a phase constant to account for the phase of the 
beam at A. For convenience let δt = 0. The resultant fields at F are, 
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where tF is the time at F. The result of the two fields adding at F is, 
( ) ( ) ( )FudFdF tEtEtE +=  

and the intensity is, 
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This equation may be expressed as, 
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or, 
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or, 
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The terms in ωt of equations 3.4, 3.5 and 3.6 are too high in frequency to be observable, but 
the amplitude of the intensity is modulated by the term cos2(½ωΔt) (or (1 + cosωΔt)). For 
(3.4) and (3.5) the time averaged value of the high frequency terms over one or more periods 
of the light are ½, and Goosman [8] shows that the time integrals of the last three terms of 
(3.6) are very small and can be ignored, so the intensity becomes, 

( )tEtI F ∆+= ωcos1
4

)(
2

0                   (3.8) 

Thus, for a reflector at rest the observable intensity of the interference pattern at F varies with 
the length of the delay leg, δ, given by (see Figure 2), 
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Figure 2. Variation of intensity with delay leg length, δ, in metres, E0 =1, ω = 1.209x1015 s-1, 
λ = 1.559x10-6 m; reflector stationary. In practice the delay leg is of the order of a meter long. 
 

Note that the maximum intensity that can be achieved on recombination at F is one half 
of that before the laser beam hit the beam splitter, unless ωtud = ωtd, - i.e. the delay leg is 
zero. (Furthermore, the long-time average intensity before the beam splitter is ½E0

2.   
 
4.0  The Reflector at Constant Velocity 

For the beam passing down the delay leg and the beam bypassing the delay leg to arrive 
at F simultaneously, the un-delayed beam must have started from A at time Δt later than the 
delayed beam, given by, 

τ+=−=∆
c

τττ udd
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                     (4.1) 

Note that Δt is independent of AB1, B1C, CE and EF, so that we can choose to make these 
distances zero. Any change in any of these distances affects the delayed and un-delayed 
beams equally. Let us put B1C CE and EF equal to zero, then as the reflector moves at 
constant velocity V from B to B1 in the time t1, the delayed beam from B passes along the 
delay leg to F. Thus, 
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and hence, 
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Rearranging this equation gives, 







 −

=

c
V

VBB
1

1
τ     

Then the time difference for the delayed and un-delayed beams becomes, 
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c
V

=β  

Then, 

τ
β
β

−
+

=∆
1
1τ                     (4.3) 

Ignoring terms of higher order in β, 
( )τβ21−≅∆τ                     (4.4) 

Once again the interference pattern does not vary with time – but will vary with changing 
velocity (i.e. acceleration). 

Note that Δt is the difference in time that particular phases of the delayed and un-delayed 
beam set off from A and that these phases are retained as the beams pass through the optical 
system to the detector. That is, if the delayed beam is at a peak of the wave and the un-
delayed beam at a trough, for example, they will still be at a peak and a trough throughout the 
system. (Even though the frequency may vary due to the Doppler Effect after the beams hit 
the moving reflector – see section 7.) 
 
5.0  The Reflector in Motion; Varying Velocity –i.e. Acceleration. 

Let us consider the interference of the delayed and un-delayed beams at F. It is assumed 
that the reflector is stationary at t = 0 and then moves at a varying velocity V(t). There are 2 
time regimes to be considered: 

1) The delayed beam is reflected from the stationary reflector but the un-delayed beam 
hits the reflector at t > 0 when the reflector is moving. 

2) The reflector is moving when both the delayed and un-delayed beams hit the reflector. 
This is the section (5.2.1) that departs from the analysis by Goosman [8]. 

 
5.1 Time Regime 1; time, 0 < t <τ 

At t = 0, the reflector starts to move and the un-delayed beam from this time forward is 
reflected from a moving reflector. At time dt the reflector moves a distance dz towards A and 
B and the time taken for the beam to reach F, but not travelling down the delay leg is, 

dttt BCud 2−=   
The time that the beam took to travel from the stationary reflector down the delay leg to F is, 

τ+= BCd ττ  
The un-delayed beam leaving the reflector at dt will arrive at F at time, 

dttt udF 2+=  
The delayed beam arrives at F at the same instant in time to interfere with the un-delayed 
beam, and the phase difference is, 
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where the velocity is given by )(tV
dt
dz

= . From (3.7) the intensity at the detector becomes, 
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In terms of the velocity of the reflector, the intensity becomes, 
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Note that the intensity will only change with time if the velocity varies with time – i.e. there 
is acceleration. At constant velocity the intensity is constant at some value between 0 and 
½E0

2 depending on the value of the cosine term. 
 
5.2.1  Time Regime 2; time, t > τ 

The time taken for the delayed laser beam to go from A to F via the delay leg (see Figure 
1) is given by (3.1) and the time for the un-delayed beam is given by (3.2), but the time 
difference, given by (4.2) and (4.3), is incorrect since the velocity varies. However, for a very 
short delay leg dt, the equations (4.2) and (4.3) are exact, so that the time difference becomes, 
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and, on integration with respect to time from t to t-τ, Δt(t) becomes, 
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The intensity of the interference signal at F is, 
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5.2.2 Time Regime 2; time, t > τ. Approximate Solution – see [1-7]. 

The distance BB1 can be expressed as,  
)()(BB1 τ−−= τzτz                    (5.7) 

and from (4.3), 
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The intensity at the detector, at F, is, 
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In terms of the velocity at the mid-point in time, this becomes, 
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6.0 The Fringe Constant 

From (5.9), the fringe pattern will change by one wavelength when, 

V
c

∆=
ωτπ 22  

where ΔV is the change in velocity. For the case where the velocity is initially zero, ΔV  = V, 
this becomes, 

τ
λ
2

=V  

This value of V is called the Fringe Constant Kf ; it corresponds to a change of velocity 
producing one fringe shift of the interference pattern at the detector.  

δ
λ

τ
λ

22
cK f ==                    (6.1) 

A slightly better approximation to take account of the varying velocity is, 
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τ
λτ
2

)½( =−∆= τVK f                   (6.2)  

 
6.1  The Fringe Count 

Generally, for n fringe shifts (the fringe count) 

fnKnV ==
τ
λ
2

                   (6.3) 

If the initial velocity of the reflector at t = 0 is V(0) then the velocity is, 
fnKVV += )0(                    (6.4) 

where n is the number of fringe shifts counted from t = 0.  
Using (4.3) for Δt(t), the number of fringe shifts (fringe count) as a function of time 

becomes 
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The number of wavelength changes is, 
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When the initial velocity is zero, β(t) = 0, and the fringe count becomes, 
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Goosman [8] gives the fringe count as, 

( ) ( )( )τβ
λ
τ ½21 −−=∆ τcτn                   (6.8) 

This can be obtained from (6.7) by ignoring the terms of higher order than β and using the 
approximate correction for the time (t-½ τ) in the velocity term. 

The VISAR can only measure whilst accelerating. If the reflector is originally at rest and 
then moves to reach a constant velocity V from t = 0, the fringes only change during the 
acceleration of the mirror. After this the delayed and un-delayed beams are both reflected 
from the mirror travelling at constant velocity. 

In practice the VISAR is generally only useful at high accelerations such as in explosions 
where velocities can exceed the speed of sound producing shock waves. Thermal shock 
waves in materials travel at the speed of sound; measuring these motions presents real 
challenges for the VISAR. 
 
6.2 Constant Acceleration 

If the acceleration is constant 
( )

constant. a is       where)( ddattV

a
dt

tdV

+=

=
 

Putting this into equation (6.7) with initial velocity zero, d = 0, gives 
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λ
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1

2
≈




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=∆  when at/c << 1 

This gives a linear increase in Δn with time while β(t) is << 1; and of course β(t) can not 
exceed 1. 
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6.3 Sinusoidal Variation in Velocity 
An example of the fringe count for a mirror moving vibrating at a sinusoidal velocity 

with time is given in this section. This is the type of signal to be expected by observing the 
radial or longitudinal vibration of a wire subject to thermal shock as a result of passing a 
short, high current pulse down the wire - see [10]. In practice the accelerations produced in 
these experiments [10] are rather low for the VISAR (the resulting signal to noise was too 
low to allow measurements of the motions), although measurements of the frequency were 
just obtainable by Fourier analysis of the signal. The laser Doppler vibrometer proved to be a 
much more suitable instrument for these measurements. 

If V(t) is sinusoidal, 
( ) tVtV sωsin0=  
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
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ω
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ωt
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1
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0

0  

This is shown in Figure 3 for two different values of the delay time τ. Also shown is the 
acceleration, 

)cos()()( 0 tV
dt

tdVta ss ωω==  

 
Figure 3. The number of fringes in the interference pattern as a function of time for delay leg 
lengths δ = 1 m (red dashed curve) and 10 m (blue dashed curve); ωs = 2.5x107 radian s-1, V0 
=  25 m s-1, λ = 1.6x10-6 m. The bold orange curve shows the acceleration divided by 109 - to 
get the curve on the figure; the peak value is 6.28x108 m s-1. 
 
7.0 The Doppler Effect 

So far the Doppler Effect has not entered the analysis, mainly because it is unnecessary, 
yet is often cited [1-6] as the cause of the fringe shifts. However, it is useful to consider the 
effect, since there is undoubtedly a Doppler shift in frequency of the light reflected from the 
moving reflector. 
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The Doppler Effect arises when a source of light moves towards or away from an 
observer. Consider a particular phase of the light wave of frequency f and wavelength λ, 
emitted at time t from the source moving towards an observer at velocity V. At time t + T, 
where T is the periodic time of the oscillation, the source will have emitted one wave. But the 
source has moved towards the observer a distance of VT, so the wavelength appears to the 
observer as, 







 −=−=

c
VVT 1| λλλ  

Special relativity has been ignored and this relation is only approximate for small values of 
V/c. The relativistic result is, 

β
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+
−

=
−

−
=

1
1

1
1

2

|        

or, in terms of the angular frequency, 

β
βωω

−
+

=
1
1|  

and is true for the relative motion of observer and source towards each other. 
The result for the moving reflector is different [9]. Consider a reflector M, moving 

towards the source S and observer O, at velocity V as in Figure 4. Assume S and O are 
coincident and distance X from M at time t = 0; also the waves from the source reach M at t = 
0. The reflector travels from M to S in time t, moving a distance X = Vt. The observer counts 
the number of wavelengths received at O from t = 0 until the reflector arrives at O.  
 

 
 
Figure 4. Doppler Effect with a moving mirror. 
 

The total number of waves is the number that were filling the path SM at t = 0 plus the 
number emitted by the source in the time that the reflector took to travel from M to S (and O), 

λλ
ctVtN +=  

where f is the frequency and λ the wavelength of the waves emitted from the source. These 
waves are received at O over the time t + X/c, so the Doppler shifted wave angular frequency 
observed at O is, 

β
βωω

−
+

=
+

=
1
1|

c
Xt

N          or            
β
βλλ

+
−

=
1
1|               (7.1) 

where β = V/c. Note that special relativity does not enter into the analysis since all the 
observations are in one frame of reference – the source and observer are in the same frame of 
reference and there is no discussion of the frequency observed by the moving reflector. 
Goosman [8] notes that the relation is correct for general relativity except at very high 
reflector velocities. 
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7.1  The Doppler Effect and the VISAR 
An analysis of the VISAR was given in preceding sections without reference to the 

Doppler Effect. Yet the frequency of the light coming from the moving reflector is Doppler 
shifted in frequency. The previous analysis has deliberately avoided the use of frequency but 
used the times for the light to take to pass down the two legs of the VISAR to calculate the 
time differences that the light from the source took to interfere at the detector. Since the 
analysis followed a particular phase of the vibration at the source to the detector it is correct 
to use the frequency of the source and not the Doppler shifted frequency; the difference in the 
times for the two interfering beams takes into account the effective change in frequency. The 
difference in time for the interfering beams is given by (from section 4.2.1), 

( ) ( )
( ) τβ

β








−
+

=∆
τ
τττ

1
1  

From section 6.0, this becomes, 

( ) ( )τ
ω

ω τττ
|

=∆                            (7.2) 

where ω|(t) is the Doppler shifted frequency as a function of time. However, it is necessary to 
take into account frequency modulation theory, which is not discussed here. 
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