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Investigation into the mixed precision linear solver HSL MA79

H. Sue Thorne12

ABSTRACT

In software development, a large amount of work is done to ensure that the resulting code is efficient, where the

wall clock execution time is the normal measure for efficiency. In the future, there will be an increasing desire

for codes to be energy efficient, that is, the amount of energy consumed whilst the code is run is minimised.

The use of mixed precision is one proposed methodology for reducing both wall clock execution times and

energy consumption of some codes. In this report, we consider the HSL code HSL MA79, which is a mixed

precision code for solving linear systems of the form Ax = b, where x is the unknown. We compare execution

times and energy consumption of the code for a number of different matrices A in a bid to reveal whether there

are classes of sparse, symmetric matrix problems where the mixed precision approach may be advantageous. In

particular, we will consider the application area that the matrix is from.
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Keywords: Energy Efficient Computing, Intel Xeon (IvyBridge), Linear Solver, Single Precision, Double

Precision, Mixed Precision, CCP

September 8, 2016

1Scientific Computing Department, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Campus,

Didcot, OX11 0QX, UK.
2Correspondence to: sue.thorne@stfc.ac.uk



1 Background and motivation

The desire for scientific codes to be efficient is governed both by wanting to minimise the execution time and,

increasingly, trying to reduce the amount of energy consumed whilst running the code. With the move from

petascale computing to exascale computing on the horizon and the associated requirement to increase the floating-

point operation rate by a factor of 100 whilst only increasing the power usage by a factor of 10, energy efficient

computing is raising its head in importance. Additionally, some HPC service providers are proposing to base

their service fees on the amount of energy consumed by the user rather than a metric purely base on the time

and number of cores used.

In this report, we consider the use of a mixed precision approach to solving linear systems of the form Ax = b,

where A is a real, sparse, symmetric matrix with n rows and columns, and nz non-zero entries (nz ≪ n2), b is a

real vector of length n and x is the vecotr we wish to compute. Such matrix problems arise in a large number of

applications and it is not unusual to need to solve a sequence of similar yet slightly different linear systems. Our

investigations will centre around the HSL [10] code HSL MA79 [9], which is a mixed precision solver for problems

of the form AX = B, where A is as above but X and B can have more than one column.

In Section 2, we outline the mixed precision solver HSl MA79 and we outline our benchmark tests in Section 3.

The results of our tests can be found in Section 4, with our conclusions in Section 5.

2 Mixed precision solver HSL MA79

When solving Ax = b, HSL MA79’s default method for measuring the accuracy of the computed x is the scaled

norm

β =
‖Ax− b‖

∞

‖A‖
∞

‖x‖
∞

+ ‖b‖
∞

. (1)

The smaller the value of β for fixed A and b, the more accurate the computed value of x is with respect to this

scaled norm.

An outline of the method used within HSL MA79 is given in Algorithm 1. The user sets the precision of the

initial factorisation, prec, the choice of linear solver, solver, and accuracy, the value that β should not exceed

for the method to successfully terminate.

HSL MA79 incorporates two different linear solvers for the factorisation of sparse, symmetric matrices: MA57

and HSL MA77. MA57 is a serial, in-core code whilst HSL MA77 is a multi-threaded and out-of-core code. Given

the nature of our test matrices (Section 3) and the fact that we are concerned with the effect of using mixed

precision over that of using just single or double precision, we chose to only use MA57.

Iterative refinement is a cheap iterative method that takes an approximation to the solution x and aims to

incrementally improve the solution. Whilst each iteration is cheap, it may be slow to converge. If iterative

refinement is not converging very quickly, HSL MA79 switches to using the iterative method FGMRES, which, on

average, is a lot more expensive than iterative refinement with respect to the cost of each iteration but it normally

has better convergence properties. Further details about the methods used within HSL MA79 can be found in [9].

By default, HSL MA79 will switch to using a double precision factorisation if the required level of accuracy is not

reached: in these tests, we have turned off this default setting by setting fallback double = .FALSE.. All other

default controls were used.

3 Benchmark tests

In Table 1, we list the matrices considered in our tests. The matrices were all obtained from the University of

Florida Sparse Matrix Collection [5] and have been grouped according to their classification within [5]. For our

test set, we have chosen real, symmetric problems were the number of rows/columns, n, are fairly modest and

the matrices are all sparse, that is, nz ≪ n2. We always set the right-hand side, b, to be a vector of length n

with entries all equal to 1. For each matrix, we compare four different methods:
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Algorithm 1 HSL MA79 outline

Analyse matrix A using MA57

Choose solver and initialise precision prec

loop

Factor A using solver with prec precision

Use computed factors to (approximately solve Ax = b

Compute scaled residual β

if β ≤ accuracy then

return x

end if

Apply iterative refinement and recompute β

if β ≤ accuracy then

return x

end if

Apply FGMRES and recompute β

if prec = SINGLE and fallback double then

prec = DOUBLE

else

Return x with warning

end if

end loop

S Factor A using single precision and use accuracy = 2× 105 (i.e., no iterative refinement or FGMRES);

D Factor A using double precision and use accuracy = 2× 105 (i.e., no iterative refinement or FGMRES);

M1 Factor A using single precision and use accuracy = 5× 10−15;

M2 Factor A using single precision and use accuracy = 5× 10−12.

For each matrix and method, we report

tf , the time to factor A (only reported for Methods S and D);

tafs, the time to analyse A, factor A and compute x to desired level of accuracy;

Etot, the total energy consumption to read in A, analyse and factor A, and compute x;

β, the scaled norm (1) for the computed x;

ItRef, the number of iterative refinement iterations performed;

ItFG, the number of FGMRES iterations performed.

All of the tests were run on Neale, a system provided by STFC’s Hartree Centre [1]. Neale contains Intel Xeon

(IvyBridge ES-2650v2) based nodes: each node has 8 cores (16 threads), the clock speed is 2.6GHz (3.6 GHz

Max) and the L1 and L2 Cache sizes are 32 kB and 256 kB, respectively. Each node has 64 GB of memory.

Energy monitoring on Neale uses the PAPI (Performance API) interface to begin an energy monitoring thread

on an individual node while the test runs. Results consist of a trace of total power consumption from the A2

node and memory domains and the energy consumption is approximated from this power trace.

In all of the figures, the test problems have been ordered in the same order as in Table 1 and vertical lines

have been used to separate different classes of problems.
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Class Name n nz

Structural apache1 80800 542184

apache2 715176 4817870

bcsstk36 23052 1143140

bmw3 2 227362 11288630

bmw7st 1 141347 7339667

crankseg 1 52804 10614210

ct20stif 52329 2698463

dawson5 51537 1010777

F2 71505 5294285

hood 220542 9895422

msc23052 23052 1154814

nasasrb 54870 2677324

oilpan 73752 3597188

pwtk 217918 11634424

s3dkq4m2 90449 4820891

s4dkt3m2 90449 3753461

ship 003 121728 8086034

shipsec8 114919 6653399

thread 29736 4470048

vanbody 47072 2329056

Network case39 40216 1042160

TSOPF FS b39 c30 120216 3121160

Model order boneS01 127224 6715152

reduction filter3D 106437 2707179

rail 79841 79841 553921

t3dl 20360 509866

Comp. cfd1 70656 1828364

fluid cfd2 123440 3087898

dynamics copter2 55476 759952

parabolic fem 525825 3674625

shallow water1 81920 327680

stokes128 49666 558594

Optimisation a0nsdsil 80016 355034

Class Name n nz

Optimisation a5esindl 60008 255004

blockqp1 60012 640033

boyd2 466316 1500397

brainpc2 27607 179395

c-56 35910 380900

cont-201 80595 438795

cont-300 180895 988195

dixmaanl 60000 299998

jnlbrng1 40000 19920

k1 san 67759 559774

ncvxbqp1 50000 349968

torsion1 40000 197608

Circuit sim. G2 circuit 150102 726674

Economics finan512 74752 596992

Comp. graphics Andrews 60000 760154

Acoustics qa8fk 66127 1660579

Thermal thermal1 82654 574458

thermomech dM 204316 1423116

Electromagn. tmt sym 726713 5080961

2D/3D aug3dcqp 35543 128115

cant 62451 4007383

d pretok 182730 1641672

darcy003 389874 2101242

Dubcova2 65025 1030225

Dubcova3 146689 3636649

ecology1 1000000 4996000

ecology2 999999 4995991

helm2d03 392257 2741935

helm3d01 32226 428444

tuma1 22967 87760

turon m 189924 1690876

wathen120 36441 565761

Materials crystk03 24696 1751178

Table 1: The test matrices considered in our tests along with the number of rows/columns, n, and the number

of non-zero entries, nz. The class of each matrix is also given.

4 Results and discussion

In Table 2 (at the end of the report), we list the values of tafs, Etot, β, ItRef and ItFG for each test problem

and method. In Figure 1, we compare the value of tafs for Methods S and D. As expected, using single precision

is faster than double precision for most test problems. For those classed as structural problems, there is between

a 13 and 30% reduction in tf but, as seen in Figure 2, the value of β is roughly 108 times larger. With regards

the optimisation problems, for 7 out of the 13 problems there is no difference in the value of tafs but the value

of β is about 108 times larger when single precision is used. It should also be noted that the values of β from

Method D for 5 of the optimisation problems were also several orders of magnitude larger than that of most other

problems in our large test set, which indicates the difficult nature of these problems.

Factorising A using double precision and computing x using these factors resulted in β being larger than

5 × 10−15 for 11 out of the 65 test problems. For all of these 11 test problems, Method M1 computed an x for

which β was smaller than 5 × 10−15 and, hence, the mixed precision methodology produced a more accurate

value of x for these problems. The most extreme case was the optimisation test problem k1 san, Method D

resulted in β = 6.5× 10−7 whilst Method M1 achieved β < 5× 10−15 with 1 iterative refinement iteration and 12
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FGMRES iterations. Thus, even without time and energy consumption considerations, a mixed precision approach

may be advantageous over a double precision factorisation. This also makes it an attractive approach for when

higher than double precision accuracy is required but the factorisation can only be done using double precision

arithmetic.
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Figure 1: Value of tafs(S)/tafs(D).

In Figures 3 and 4, we compare the execution times and energy consumption values for Methods D and M1.

For the 11 problems where Method D failed to calculate an x satisfying β < 5× 10−15, Method M1 took slightly

less time for 3 of the problems, the same amount of time for 2 of the problems and between 15 and 45% longer

for the remaining 6 problems. If it is important that β < 5× 10−15, then this increase in time will generally be

acceptable. The energy consumption ratios are slightly larger than those of the execution times but, again, the

values are almost certainly within an acceptable level. Method M1 failed to compute an x satisfying β < 5×10−15

for 9 of the problems. For 8 of these problems, the method had longer execution times than when Method D was

used: this is due to the large number of FGMRES iterations. For our two network problems, Method M1 failed to

reach the desired level of accuracy with the execution times and energy consumption values increased by at least

45% and, hence, if the method had been allowed to fallback to using double precision, then the mixed precision

method would take roughly 2.5 times the time and energy to calculate an acceptable x. This highlights that, if

very high accuracy is required, then there may be some classes of problems where it is best to stay with using

double precision factorisations. For the computational fluid dynamics problems, there was always an advantage

to using Method M1 over Method D with respect to execution time; there was little difference when energy

consumption is considered. For the 12 optimisation problems, Method M1 failed to reach the desired accuracy

for one problem but, for the 6 problems where Method D performed well, there was little difference in time and

energy consumption for 4 of the problems. Certainly, when high accuracy is required for linear systems from

optimisation, mixed precision should be seriously considered. For the 13 2D/3D problems, the execution times

differ by up to 20% (increase and decrease) but Method M1 achieved the required accuracy for the 3 problems

where Method D failed; there is normally a slight increase in energy consumption. In general, the results show
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Figure 2: Value of β for Methods S, D, M1 and M2.

that, when high accuracy is required, the mixed precision approach may be of use and it is worth investigating

whether it should be used for your particular application.

By the nature of some applications and the methods used to formulate the linear system, finding an x that

satisfies β < 5× 10−15 is often overkill because the data involved has much lower levels of accuracy. If, instead,

we require that β < 5×10−12, then we will expect the number of iterations to decrease and, hence, for execution

times and energy consumption values to drop. In Figures 5 and 6, we observe that the execution times and

energy consumption values are similar for the vast majority of problems but Method M2 only fails for four of

the problems: again, there are failures for the two network problems. For the four structural problems where

Method M1 fails but Method M2 is successful, the execution times for Method M2 are between 43 and 62% lower

than Method M2 because the number of FGMRES iterations have dramatically dropped; the energy consumption

values have dropped by between 23 and 46%.

In Figures 7 and 8, we compare Methods D and M2. Method D on failed to the reach the desired accuracy of

β < 5× 10−12 for one problem (k1 san). Of the 65 test problems, Method M2 is successful for 61 of the problems

and, of these problems, it has a negative impact on the execution times for just 16 of the problems (we consider

there to be no negative impact for the problem that Method D failed on); the ratios for energy consumption are

slightly larger. Hence, when lower levels of accuracy for are required for the solution of linear, mixed precision

methods are even more attractive, particularly for structural, model order reduction and computational fluid

dynamics problems.

5 Conclusions

We have seen that if a linear system is being solved by factoring the matrix using double precision accuracy, then

switching to a mixed precision approach may be beneficial, particularly for execution times. For problems where

the solution needs calculating to a very high accuracy but the double precision factorisation does not compute
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a good enough solution, the mixed precision approach is very attractive. When a lower level of accuracy is

required, the mixed precision approach becomes even more attractive for some problems. For some problems, a

double precision factorisation may not be possible due to memory restrictions but a single precision factorisation

is possible and the mixed precision approach could then be used. We should also note that iterative refinement

did not converge quickly enough and FGMRES had to be used for many of the problems. FGMRES can be a very

expensive method and cheaper Krylov-based methods may be available for certain classes of matrix, for example,

the preconditioned conjugate gradient method for symmetric, sparse, positive definite matrices, which has well

understood convergence properties [12]. For problems where a factorisation of A is not possible in either double

or single precision due to memory or time constraints, there are a number of iterative method possibilities along

with ways to improve the rate of convergence, for example, the use of preconditioners [6, 7, 12].

Below we list some of the available sparse linear solvers that contain methods for refining the solution x.

HSL MA79 Either in-core and serial, or out-of-core and multi-threaded. Single and double precision versions

available with iterative refinement and FGMRES

MUMPS Parallel code (MPI and OpenMP) for symmetric and unsymmetric problems. Single and double

precision versions available with iterative refinement [2]

PaStiX Parallel code (MPI and OpenMP) for symmetric and unsymmetric problems. Single precision

factorisation NOT available but has a number of iterative refinement methods available to improve accuracy

of the solution [8, 3]

SuperLU Parallel code (MPI and OpenMP) for unsymmetric with single and double precision versions available

with iterative refinement [11, 4].

The ideal linear solver would be an in-core parallel code that has both single and double precision versions and

methods for refining x that include Krylov-subspace iterative methods. Such a code does not seem to be publicly

available at the moment.
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Table 2: Time to factor A, tf ; time to analyse A, factor A and compute x to desired level of

accuracy, tafs; total energy consumption to read in A, analyse and factor A, and compute x,

Etot; the scaled norm (1) for the computed x, β; number of iterative refinement iterations and

FGMRES iterations performed, ItRef and ItFG, respectively.

tf (s) tafs (s) Etot (kJ) β ItRef ItFG

Name S D S D M1 M2 S D M1 M2 S D M1 M2 M1 M2 M1 M2

apache1 0.47 0.61 0.93 1.08 0.98 0.95 0.0502 0.0577 0.0527 0.0513 2.3043e-07 6.2802e-16 1.6923e-16 1.9011e-12 4 2 0 0

apache2 10.89 13.36 15.60 20.43 16.17 15.99 0.814 1.580 0.846 0.878 4.7828e-07 9.8703e-16 2.2223e-16 4.3381e-12 4 2 0 0

bcsstk36 0.09 0.11 0.13 0.16 0.34 0.16 0.0144 0.0148 0.0262 0.0148 3.8931e-12 9.9955e-20 3.8931e-12 3.8931e-12 1 0 28 0

bmw3 2 2.37 3.21 3.63 4.50 3.62 3.64 0.244 0.288 0.244 0.246 6.1978e-16 4.7241e-25 6.1978e-16 6.1978e-16 0 0 0 0

bmw7st 1 1.03 1.37 1.73 2.09 2.16 1.74 0.159 0.167 0.182 0.147 2.8843e-12 2.0451e-19 2.4077e-17 2.8843e-12 1 0 4 0

crankseg 1 2.84 4.13 3.30 4.61 3.38 3.37 0.223 0.289 0.227 0.233 4.0596e-10 7.2813e-18 1.1989e-18 3.1028e-14 2 1 0 0

ct20stif 0.66 0.93 0.78 1.05 1.79 0.98 0.0597 0.0698 0.108 0.0713 8.5320e-11 2.0592e-19 4.3354e-15 1.5450e-14 1 1 32 4

dawson5 0.15 0.20 0.25 0.30 0.28 0.28 0.0188 0.0216 0.0223 0.0222 1.1317e-05 2.8573e-14 1.5044e-15 1.6487e-13 5 4 0 0

F2 0.97 1.31 1.23 1.58 1.58 1.58 0.0973 0.115 0.115 0.115 5.2479e-08 9.0260e-17 1.6575e-15 1.6575e-15 1 1 4 4

hood 0.95 1.21 1.78 2.07 1.88 1.84 0.159 0.174 0.164 0.174 8.2467e-11 3.0020e-19 1.0720e-16 5.7692e-14 2 1 0 0

msc23052 0.08 0.10 0.13 0.16 0.34 0.13 0.0149 0.0155 0.0266 0.0158 4.9256e-12 1.3191e-19 4.3782e-12 4.9256e-12 1 0 28 0

nasasrb 0.43 0.57 0.56 0.70 0.65 0.60 0.0458 0.0532 0.0509 0.0519 8.9084e-09 2.7733e-17 8.3262e-16 3.7799e-12 7 3 0 0

oilpan 0.39 0.52 0.50 0.62 0.70 0.70 0.0473 0.0537 0.0576 0.0610 5.2672e-08 3.6102e-17 4.5208e-15 4.5208e-15 2 2 4 4

pwtk 1.90 2.52 2.89 3.54 6.56 3.62 0.232 0.251 0.411 0.275 1.1980e-11 1.6871e-20 2.2834e-13 1.1112e-12 1 1 33 4

s3dkq4m2 0.86 1.18 1.04 1.37 1.70 1.70 0.0877 0.103 0.122 0.130 5.6467e-08 9.7050e-17 6.5989e-17 6.5989e-17 1 1 12 12

s3dkt3m2 0.59 0.77 0.74 0.93 1.27 1.27 0.0640 0.0742 0.0979 0.0989 2.1728e-08 1.0306e-16 5.4217e-17 5.4217e-17 1 1 12 12

ship 003 5.40 7.96 6.16 8.75 6.30 6.15 0.368 0.501 0.375 0.395 1.3291e-14 2.1702e-23 1.3699e-16 1.3291e-14 1 0 0 0

shipsec8 2.59 3.75 3.18 4.35 5.64 3.19 0.222 0.268 0.361 0.198 3.4866e-13 4.9033e-22 1.3850e-13 3.4866e-13 1 0 28 0

thread 2.77 3.93 3.25 4.43 5.07 5.07 0.194 0.255 0.290 0.311 1.1477e-08 1.0015e-16 1.1477e-08 1.1477e-08 1 1 28 28

vanbody 0.18 0.23 0.29 0.34 0.41 0.29 0.0340 0.0365 0.0432 0.0366 4.3586e-14 1.2249e-22 2.4848e-15 4.3586e-14 2 0 4 0

case39 0.38 0.53 0.47 0.62 1.00 1.01 0.0339 0.0397 0.0638 0.0609 2.9628e-10 6.2324e-18 3.3708e-11 3.3708e-11 1 1 33 33

TSOPF FS b39 c30 0.64 0.90 1.59 1.87 2.70 2.71 0.104 0.118 0.172 0.174 9.8540e-11 4.9384e-18 5.0510e-11 5.0510e-11 1 1 28 28

boneS01 2.93 4.13 3.77 4.99 3.96 3.88 0.228 0.289 0.238 0.234 1.5710e-07 2.4605e-16 4.2061e-16 1.1844e-12 5 3 0 0

filter3D 0.72 0.94 1.97 2.20 2.04 2.03 0.120 0.131 0.124 0.124 5.9545e-08 1.7062e-16 3.2143e-16 1.8888e-13 3 2 0 0

rail 79841 0.07 0.07 0.12 0.12 0.13 0.13 0.0111 0.0106 0.0120 0.0118 2.4373e-07 2.2440e-16 7.6461e-16 4.5294e-13 3 2 0 0

t3dl 0.21 0.28 0.43 0.51 0.50 0.50 0.0252 0.0300 0.0292 0.0294 7.2351e-08 2.0181e-16 1.0876e-16 1.0876e-16 1 1 4 4

cfd1 0.95 1.31 1.83 2.21 1.89 1.88 0.109 0.121 0.112 0.111 9.7009e-08 9.4014e-17 6.5401e-17 1.3781e-14 3 2 0 0

cfd2 2.19 3.06 3.56 4.45 3.67 3.65 0.209 0.241 0.215 0.209 1.3805e-07 1.0586e-16 8.7176e-17 4.1914e-14 3 2 0 0

copter2 0.48 0.63 0.98 1.14 1.06 1.04 0.0495 0.0571 0.0570 0.0564 3.1027e-05 1.0599e-13 4.2681e-15 4.9110e-12 7 5 0 0

parabolic fem 0.97 1.21 3.62 3.87 3.79 3.74 0.214 0.227 0.223 0.222 5.0959e-07 7.5833e-16 1.5511e-15 1.1547e-12 3 2 0 0

shallow water1 0.07 0.09 0.35 0.37 0.37 0.36 0.0220 0.0215 0.0225 0.0224 3.0114e-07 7.1967e-16 2.0391e-16 1.2796e-13 2 1 0 0

stokes128 0.07 0.09 0.11 0.13 0.16 0.16 0.0107 0.0111 0.0131 0.0129 8.3321e-06 3.2026e-14 1.0054e-15 1.0054e-15 1 1 4 4

a0nsdsil 0.02 0.02 0.06 0.06 0.07 0.06 0.0057 0.0056 0.0061 0.0061 2.8434e-10 1.2970e-18 2.0195e-17 1.3332e-12 3 1 0 0

a5esindl 0.01 0.01 0.04 0.04 0.04 0.04 0.0039 0.0040 0.0044 0.0038 5.4069e-10 1.3010e-18 2.4379e-17 1.3745e-12 3 1 0 0

blockqp1 0.03 0.03 0.07 0.07 0.08 0.07 0.0081 0.0084 0.0092 0.0085 1.6571e-06 1.0505e-14 2.2717e-16 7.0114e-13 3 2 0 0

boyd2 84.01 156.53 84.22 156.93 98.01 88.73 4.572 1.987 5.291 4.811 3.1674e-09 1.7893e-17 1.3139e-12 2.0722e-12 2 2 33 4

brainpc2 0.02 0.02 0.03 0.04 0.04 0.04 0.0034 0.0033 0.0035 0.0037 7.3372e-07 9.3950e-16 3.5660e-16 3.5660e-16 2 2 0 0

c-56 0.04 0.05 0.11 0.11 0.17 0.11 0.0089 0.0087 0.0123 0.0091 1.6866e-11 5.4522e-20 1.3617e-16 4.4217e-13 4 1 12 0

cont-201 0.56 0.76 0.93 1.15 1.56 1.39 0.0516 0.0598 0.0871 0.0778 9.4863e-05 2.2078e-13 9.6909e-17 1.5005e-13 1 1 24 16

cont-300 1.16 1.58 1.93 2.36 3.39 3.42 0.102 0.123 0.190 0.173 2.2748e-04 4.0072e-13 4.3510e-16 4.3510e-16 1 1 28 28

dixmaanl 0.02 0.02 0.05 0.05 0.06 0.05 0.0056 0.0056 0.0065 0.0062 2.0930e-05 4.2226e-14 1.1610e-16 6.9768e-14 3 2 0 0

jnlbrng1 0.03 0.04 0.16 0.16 0.16 0.16 0.0104 0.0099 0.0107 0.0107 1.5541e-07 4.9092e-16 1.8882e-16 2.0713e-13 2 1 0 0

k1 san 0.10 0.11 0.49 0.50 0.64 0.56 0.0278 0.0286 0.0361 0.0338 6.5304e-07 6.5304e-07 1.0906e-17 5.1150e-15 1 1 12 4

ncvxbqp1 0.08 0.10 0.32 0.35 0.57 0.57 0.0190 0.0193 0.0323 0.0327 5.0848e-07 5.5830e-16 6.3422e-08 6.3422e-08 2 2 28 28

torsion1 0.03 0.03 0.05 0.05 0.05 0.05 0.0041 0.0038 0.0041 0.0040 2.7399e-07 5.4982e-16 1.4803e-16 3.4396e-13 2 1 0 0

G2 circuit 0.42 0.55 0.52 0.65 0.57 0.56 0.0316 0.0382 0.0345 0.0342 9.3088e-08 5.1094e-17 2.3525e-17 1.2924e-14 3 2 0 0

finan512 0.07 0.07 0.43 0.43 0.45 0.44 0.0267 0.0256 0.0277 0.0272 3.9712e-08 1.1616e-16 3.5138e-17 3.1115e-14 2 1 0 0

qa8fk 1.38 1.94 2.15 2.73 2.50 2.51 0.120 0.149 0.138 0.140 2.3260e-06 1.5754e-15 2.8583e-16 2.8583e-16 1 1 4 4

thermal1 0.09 0.10 0.16 0.17 0.18 0.18 0.0143 0.0144 0.0157 0.0154 3.9185e-07 5.3882e-16 2.0527e-16 7.2083e-14 3 2 0 0

thermomech dM 0.23 0.26 1.17 1.20 1.22 1.20 0.0701 0.0726 0.0727 0.0766 9.8505e-09 2.9112e-17 6.1288e-18 5.4852e-15 2 1 0 0

tmt sym 1.21 1.50 4.92 5.23 5.77 5.81 0.292 0.308 0.358 0.326 3.0980e-07 2.0406e-16 6.6903e-17 6.6903e-17 2 2 4 4

aug3dcqp 0.04 0.05 0.22 0.23 0.22 0.22 0.0126 0.0123 0.0126 0.0114 3.1344e-16 7.5887e-25 3.1344e-16 3.1344e-16 0 0 0 0

cant 0.70 0.93 1.92 2.17 2.51 2.52 0.131 0.135 0.164 0.165 9.7857e-08 2.7082e-16 1.6021e-16 1.6021e-16 1 1 12 12

d pretok 0.55 0.70 1.63 1.80 1.89 1.90 0.0985 0.100 0.106 0.112 5.0041e-09 1.3495e-17 8.3858e-20 8.3858e-20 1 1 4 4

darcy003 0.29 0.33 0.62 0.66 0.70 0.68 0.0502 0.0527 0.0550 0.0545 8.0935e-07 1.4268e-15 4.4588e-17 1.7657e-14 3 2 0 0

Dubcova2 0.13 0.16 0.18 0.22 0.20 0.20 0.0194 0.0199 0.0202 0.0210 2.9705e-07 4.3318e-16 2.6094e-16 2.6094e-16 2 2 0 0

Dubcova3 0.24 0.29 1.04 1.10 1.08 1.07 0.0829 0.0862 0.0845 0.0852 8.8322e-08 2.3664e-16 1.1648e-16 1.6047e-12 2 1 0 0

ecology1 2.12 2.75 2.73 3.40 3.75 3.74 0.192 0.213 0.232 0.249 1.6257e-06 7.7664e-16 3.2838e-16 3.2838e-16 1 1 4 4

ecology2 2.10 2.72 2.71 3.37 3.35 3.17 0.190 0.211 0.211 0.217 1.2482e-06 9.5026e-16 2.2080e-15 6.8880e-13 7 5 0 0

helm2d03 0.68 0.83 2.47 2.64 2.64 2.61 0.157 0.159 0.155 0.150 8.5695e-05 9.7370e-14 1.3157e-16 5.5712e-15 4 3 0 0

helm3d01 0.27 0.35 0.56 0.64 0.59 0.58 0.0309 0.0355 0.0325 0.0344 5.5628e-05 1.0883e-13 2.6408e-16 4.6545e-12 5 3 0 0

tuma1 0.02 0.02 0.09 0.09 0.09 0.09 0.0054 0.0051 0.0055 0.0055 3.0377e-06 6.5697e-15 2.4636e-17 2.4636e-17 2 2 0 0

turon m 0.50 0.63 1.62 1.75 1.87 1.88 0.0916 0.0987 0.105 0.0997 1.9880e-06 4.4638e-15 4.4807e-18 4.4807e-18 1 1 4 4

wathen120 0.05 0.06 0.08 0.09 0.08 0.08 0.0096 0.0096 0.0097 0.0098 4.7024e-10 1.1000e-18 3.8770e-16 3.8770e-16 1 1 0 0

crystk03 0.43 0.59 0.61 0.78 0.75 0.76 0.0480 0.0539 0.0559 0.0570 2.8861e-08 8.1166e-17 6.7088e-16 6.7088e-16 1 1 4 4
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