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ABSTRACT

In recent years a variety of preconditioners have been proposed for use in solving large sparse linear least-

squares problems. These include simple diagonal preconditioning, preconditioners based on a number of

different approaches to incomplete factorization and stationary inner iterations used with Krylov subspace

methods. In this study, we briefly review available preconditioners for which software has been made

available and then present a numerical evaluation of them using performance profiles and a large set of

problems arising from practical applications. Comparisons are made with state-of-the-art sparse direct

methods.
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1 Introduction

The method of least-squares is a commonly used approach to find an approximate solution of

overdetermined or inexactly specified systems of equations. Since the development of the principle of

least squares by Gauss in 1795 [23], the solution of least-squares problems has been, and continues to

be, a fundamental method in scientific data fitting. Least-squares solvers are used across a wide range

of disciplines, for everything from simple curve fitting, through the estimation of satellite image sensor

characteristics, data assimilation for weather forecasting and for climate modelling, to powering internet

mapping services, exploration seismology, NMR spectroscopy, piezoelectric crystal identification (used in

ultrasound for medical imaging), aerospace systems, and neural networks.

In this study, we are interested in the important special case of the linear least-squares problem,

min
x
‖b−Ax‖2, (1.1)

where A ∈ IRm×n with m ≥ n is large and sparse and b ∈ IRm. Solving (1.1) is mathematically equivalent

to solving the n× n normal equations

Cx = AT b, C = ATA, (1.2)

and this, in turn, is equivalent to solving the (m+ n)× (m+ n) augmented system

Ky = c, K =

[
Im A

AT 0

]
, y =

[
r(x)

x

]
, c =

[
b

0

]
, (1.3)

where r(x) = b−Ax is the residual vector and Im is the m×m identity matrix. Increasingly, the sizes of

the problems that scientists and engineers wish to solve are getting larger (problems in many millions of

variables are becoming typical); they are also often ill-conditioned. In other applications, it is necessary

to solve many thousands of problems of modest size and so efficiency in this case is essential. The normal

equations are attractive in that they are always consistent and positive semidefinite (positive definite if A

is of full column rank). However, a well-known drawback is that the condition number of C is the square of

the condition number of A so that the normal equations are often highly ill-conditioned [10]. Furthermore,

the density of C can be much greater than that of A (if A has a single dense row, C will be dense). The

main disadvantages of working with the augmented system are that K is symmetric indefinite and is much

larger than C (particularly if m� n).

Two main classes of methods may be used to try and solve these linear systems: direct methods and

iterative methods. A direct method proceeds by computing an explicit factorization, either a sparse LLT

Cholesky factorization of the normal equations (1.2) (assuming A is of full column rank so that C is positive

definite) or a sparse LDLT factorization of the augmented system (1.3). Alternatively, a QR factorization

of A may be used, that is, a “thin” QR factorization of the form

A = Q

[
R

0

]
,

where Q is an m×m orthogonal matrix and R is an n×n upper triangular matrix. Whilst direct solvers are

generally highly reliable, iterative methods may be preferred because they often require significantly less

storage and in some applications it may not be necessary to solve the system with the high accuracy offered

by a direct solver. However, the successful application of an iterative method often requires a suitable

preconditioner to achieve acceptable (and ideally, fast) convergence rates. Currently, there is much less

knowledge of preconditioners for least-squares problems than there is for sparse symmetric linear systems

and, as remarked in [12], “the problem of robust and efficient iterative solution of least-squares problems

is much harder than the iterative solution of systems of linear equations”. This is, at least in part, because

A does not have the properties of differential problems that can make standard preconditioners effective.

In the past decade or so, a number of different techniques for preconditioning Krylov subspace methods

for least-squares problems have been developed. A brief overview with a comprehensive list of references is
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included in the introduction to the recent paper by Bru et al [12]. However, in the literature the reported

experiments on the performance of different preconditioners are often limited to a small set of problems,

generally arising from a specific application. Moreover, they may use prototype codes that are not available

for others to test and they may only be run using MATLAB. Our aim is to perform a wider study in which

we use a large set of test problems to evaluate the performance of a range of preconditioners for which

software has been made available. The intention is to gain a clearer understanding of when particular

preconditioners perform well (or, indeed, perform poorly) and we will use this to influence our future work

on linear least-squares. Our attention is limited to preconditioners for which software in Fortran or C is

available; it is beyond the scope of this work to provide efficient and robust implementations for all the

approaches that have appeared in the literature (although even then, as we discuss in Section 8, we have

found it necessary in some cases to modify and possibly re-engineer some of the existing software to make

it suitable for use in this study).

The rest of the paper is organised as follows. In Section 2, we describe our test environment, including

the set of problems used in this study. Direct solvers for solving the normal equations and/or the

augmented system are briefly recalled in Section 3. One of these (HSL MA97) is used for comparison

with the performance of the preconditioned iterative methods. In Section 4, we report on experiments

with two methods, LSQR and LSMR, that are mathematically equivalent to applying conjugate gradients

and MINRES, respectively, to the normal equations but have favourable numerical properties. On the

basis of our findings, LSMR is used in the rest of our experiments. Preconditioning strategies are briefly

described in Sections 5 to 7. The software used in our experiments is discussed in Section 8. We present

numerical results in Section 10 and finally, in Section 11, concluding remarks are made.

2 Test environment

The characteristics of the machine used to perform our tests are given in Table 2.1. In our experiments,

Table 2.1: Test machine characteristics

Processor 8× Intel i7-4790 (3.6 GHz)

Memory 15.6 Gbytes

Compiler gfortran version 4.7 with option -O

BLAS open BLAS (serial) or Intel MKL (serial vs parallel)

the direct solvers (see Section 3) are run in parallel, using four processors. Our initial experiments on

iterative methods (those in Sections 4 and 8) are run on a single processor, although where BLAS are

used, these may take advantage of parallelism. Later, when comparing iterative and direct approaches (in

Sections 9 and 10), we repeat the calculations on 4 processors for the methods we have found to be best.

Here sparse matrix-vector products and sparse triangular solves (if any) required by the preconditioner

are performed in parallel using Intel Mathematics Kernel Library (MKL) routines; no attempt is made to

parallelize any of the iterative methods themselves, nor the software for constructing the preconditioners.

Throughout this study, all reported times are elapsed times in seconds measured using the Fortran

system clock. For each solver and each problem, a time limit of 600 seconds is imposed; if this limit is

exceeded, the solver is flagged as having failed on that problem. Failures resulting from insufficient memory

are also flagged and, in the case of the iterative solvers, the number of iterations per problem is limited

to 107. We observe that, although the tests were performed on a lightly loaded machine, the timings can

vary if the experiments are repeated. In our experience, this variation is small (typically less than 5%),

although for large problems for which memory becomes an issue, the variation can be more significant.

Unfortunately, given the large scale nature of this study and time taken to perform the experiments, it

was not possible to produce average timings. However, variations in time that may arise from reruns will
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have little effect on the conclusions we can draw from the performance profiles that we use as our main

tool for assessing performance (see Section 2.3). In order to obtain close-to-repeatable times when running

in parallel on 4 processors, we specify which processors are to be used via the Linux numactl -C 0,1,2,3

command.

2.1 Test problems

The problems used in our study are all taken from the CUTEst linear programme set [26] and the UFL

Collection [18]. To determine the test set that we shall use for the majority of our experiments, we

selected all the rectangular matrices A and removed “duplicates” (that is, similar problems belonging to

same group), leaving a single representative. This gave us a set of 921 problems. In all our tests, we check

A for duplicate entries (they are summed), out-of-range entries (they are removed) and explicit zeros (they

are removed). In addition, A is checked for null rows and columns. Any such rows or columns are removed

and if, after removal n > m, the matrix is transposed. The computation then continues with the resulting

cleaned matrix. If values for the matrix entries are not supplied, we generate random values in the range

(−1, 1).

To ensure we only include non-trivial problems, for each cleaned matrix we solved the normal equations

(1.2) using LSMR (see Section 4, with the local reorthogonalization parameter set to 10) without

preconditioning and retained those problems for which convergence (using the stopping criteria discussed

in Section 2.2) was not achieved within 100,000 iterations or required more than 10 seconds (when run on

a single processor). Using the provided right-hand side vector b if available or taking b to be the vector

of 1’s if not (so that the problems are not necessarily consistent but at the same time this choice makes

it straightforward to regenerate the same b for running tests with a range of solvers) resulted in a test set

T of 83 problems. This set is listed along with some of the characteristics of each problem (including the

number of entries, the density of the row with the most entries, an estimate of the deficiency in the rank)

in Table A.1 in the Appendix (see [30] for details of the full set).

2.2 Stopping criteria

Recall that the linear LS problem we seek to solve is

minφ(x), φ(x) = ‖r(x)‖2,

where r(x) = b − Ax is the residual. If the minimum residual is zero, φ(x) is non differentiable at the

solution and so the first check we make at iteration k is on the kth residual ‖rk‖2, where rk = b − Axk
with xk the computed solution on the kth iteration. If the minimum residual is non zero then

∇φ(x) = −A
T r(x)

‖r(x)‖2
,

and we want to terminate once ∇φ(x) is small. Thus, in our tests with iterative solvers we use the following

stopping rules:

C1: Stop if ‖rk‖2 < δ1

C2: Stop if
‖AT rk‖2
‖rk‖2

<
‖AT r0‖2
‖r0‖2

∗ δ2,

where A is the “cleaned” matrix and δ1 and δ2 are convergence tolerances that we set to 10−8 and 10−6,

respectively. In all our experiments, we take the initial solution guess to be x0 = 0 and in this case C2

reduces to
‖AT rk‖2
‖rk‖2

<
‖AT b‖2
‖b‖2

∗ δ2.
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Note that these stopping criteria are independent of the preconditioner and thus they enable

us to compare the performances of different preconditioners. In the case of no preconditioning, these

stopping criteria are closely related to those used by Fong and Saunders [24] in their 2010 implementation

of LSMR (see http://web.stanford.edu/group/SOL/download.html). However, if a preconditioner is

used, the Fong and Saunders implementation bases the stopping criteria on ‖(AM−1)T r‖2, where M is

the (right) preconditioner. This means that a different test is applied for different preconditioners and

thus is not appropriate for comparing the performances of different preconditioners. Using C1 and C2

involves additional work; in our tests, we have chosen to exclude the cost of computing the residuals for

testing C1 and C2 from the reported runtimes (and from the 600s time limit per problem) and we use a

modified reverse communication version of LSMR that enables us to use C1 and C2 in place of the Fong

and Saunders stopping criteria. We note that new results on estimating backward errors for least-squares

problems have been derived by a number of authors, including [31, 42].

2.3 Performance profiles

To assess the performance of different solvers on our test set T , we report the raw data but we also employ

performance profiles [19], which in recent years have become a popular and widely used tool for providing

objective information when benchmarking software. The performance ratio for an algorithm on a particular

problem is the performance measure for that algorithm divided by the smallest performance measure for

the same problem over all the algorithms being tested (here we are assuming that the performance measure

is one for which smaller is better, for example, the iteration count or time taken). The performance profile

is the set of functions {pi(f) : f ∈ [1,∞)}, where pi(f) is the proportion of problems where the performance

ratio of the ith algorithm is at most f . Thus pi(f) is a monotonically increasing function taking values in

the interval [0, 1]. In particular, pi(1) gives the fraction of the examples for which algorithm i is the winner

(that is, the best according to the performance measure), while if we assume failure to solve a problem (for

example, through the maximum iteration count or time limit being exceeded) is signaled by a performance

measure of infinity, p∗i := limf→∞ pi(f) gives the fraction for which algorithm i is successful. If we are just

interested in the number of wins, we need only compare the values of pi(1) for all the algorithms but, if

we are interested in algorithms with a high probability of success, we should choose the ones for which p∗i
has the largest values. In our performance profile plots, we use a logarithmic scale in order to observe the

performance of the algorithms over a large range of f while still being able to discern in some detail what

happens for small f .

Whilst performance profiles are a very helpful tool when working with a large test set and several

algorithms, as Dolan and Moré point out, they do need to be used and interpreted with care. This is

especially true if we want to try and rank the algorithms in order. Our preliminary experiments for this

study led us to re-examine performance profiles [29]. We found that, while they give a clear measure of

which is the better algorithm for a chosen f and given set T , if performance profiles are used to compare

more than two algorithms, they determine which algorithm has the best probability pi(f) for f in a chosen

interval, but we cannot necessarily assess the performance of one algorithm relative to another that is not

the best using a single performance profile plot. Thus in Section 10, we limit some of our performance

profiles to two solvers at a time.

2.4 Parameter setting

Where codes offer a number of options (such as orderings and scalings), we normally use the default or

otherwise recommended settings; no attempt is made to tune the parameters for a particular problem

(this would not be realistic given the size of the test set and number of solvers). However, it is recognised

that, for some examples, choosing settings other than the defaults may significantly enhance performance

(or adversely effect it) and, in practice, a user may find it advisable to invest time in experimenting with

different choices to try and optimize performance for his/her application. Details of the software we use

are given in Section 8, together with the parameter settings.
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3 Direct solvers

While the focus of our study is on preconditioning iterative methods for least-squares problems, it is of

interest to look at how these methods perform in comparison to sparse direct methods. For the normal

equations (1.2), a positive definite solver that computes a sparse Cholesky factorization can be used,

such as CHOLMOD [14] or HSL MA87 [37]. Alternatively, there are sparse packages that can factorize

both positive definite and indefinite systems. These include a number of HSL codes (notably, MA57 [20],

HSL MA86 [39], and HSL MA97 [38]) as well as MUMPS [50], WSMP [33], PARDISO [56] and SPRAL SSIDS

[36]. Comparisons of some of these packages for solving sparse linear systems may be found in [25, 28].

When used to solve the augmented system (1.3), the solvers employ some kind of pivoting to try and ensure

numerical stability, and this can impose a non trivial runtime overhead (as well as adding significantly to

the complexity of the software and the memory requirements).

Most modern sparse direct solvers are designed to run in parallel, either through the use of MPI,

OpenMP or GPUs. It is beyond the scope of the current study to conduct a detailed comparison of the

performance of direct solvers on least-squares problems; instead we opt to use HSL MA87 (Version 2.4.0)

for the normal equations and HSL MA97 (Version 2.3.0) for the augmented system in our comparisons with

iterative methods. This choice was made since HSL MA87 and HSL MA97 are recent state-of-the-art packages

that are designed for multicore machines, and, because we are responsible for their development, we find

them convenient to use and to incorporate into our test environment. We note that CHOLMOD has an

attractive feature that is not currently offered by any of the HSL codes which is that it can factor the

normal equations without being given C explicitly; just providing AT suffices and this saves memory.

For sparse QR, far fewer software packages have been developed. Those that are available include MA49

[2] from the mid 1990s and, much more recently, SuiteSparseQR [17] and qr mumps [13]. Here we use

SuiteSparseQR version 4.4.4 (for which we have written a Fortran interface).

Although a straightforward application of a direct method to (1.2) or (1.3) is usually successful,

computer rounding can have a profound effect. In particular, for problems that are (or are close to)

rank deficient, simply forming the (theoretically) positive semidefinite normal matrix C may result in a

matrix that is slightly indefinite and a Cholesky factorization will breakdown. Likewise, the symmetric,

indefinite factorization of the augmented matrix K may produce a numerical inertia (i.e., a count of the

numbers of positive, negative and zero eigenvalues) that is impossible had the matrix been factorized

exactly. Thus, in addition to applying the appropriate factorization routine to our test problems, we

also consider employing a “scale-and-shift” strategy that aims to reduce the impact of poor conditioning.

In particular, we modify the normal equations and augmented system so that the required solution x is

x = Sz, where z is the solution of the system

C̄z = ĀT b, C̄ = ĀT Ā+ δCIn, (3.1)

or

K̄ȳ = c, K̄ =

[
Im Ā

ĀT −δKIn

]
, y =

[
r(x)

z

]
, c =

[
b

0

]
, (3.2)

where Ā = AS and the diagonal matrix S scales the columns of A so that each has a unit 2-norm, and

the scalars 0 < δC , δK � 1. In our experiments, we have found that δC = 10−12 and δK = 10−10 are

generally suitable choices, and although they necessarily perturb the computed solution, our experience

is that the perturbation is sufficiently small to be acceptable. Similar regularizations have been proposed

by many authors, e.g., [63, 65]. On our test set T , HSL MA87 and HSL MA97 both failed to solve 26 of

the 83 problems without prescaling and shifting (the solvers used their own default scalings of C and K,

respectively), and this reduced to 15 and 20, respectively, with prescaling and shifting (see Tables 4.17–4.20

in [30] for details). Thus, in what follows, we use the HSL direct solvers combined with the scale-and-shift

approach in all remaining comparisons.

A time performance profile comparing SuiteSparseQR (denoted by SPQR), HSL MA87 applied to the

normal equations (MA87 normal equations) and HSL MA97 applied to the the augmented system (MA97
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augmented system) is given in Figure 3.1. In our experiments, one step of iterative refinement was used.

We see that using HSL MA87 for the normal equations leads to the smallest number of failures while it is the

fastest approach for more than half of the problems. The failures are for some of the largest problems and

are because of insufficient memory (see Tables 4.17–4.21 in [30] for details). In addition, for SPQR there

are three problems (f855 mat9, mri1 and mri2) for which no error is flagged but the returned residuals

are clearly too large when compared with those computed by the other solvers. Although a direct solver

such as HSL MA77 [57] that allows the main work arrays and the matrix factors to be held out of core can

extend the size of problem that can be solved, such solvers can be significantly slower. Thus there is a

clear need for iterative solvers that require less memory.
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Time performance profile - 83 CUTEst LP & UFL problems

MA87 normal equations (15 failures)

MA97 augmented system (20 failures)

SPQR (25 failures)

Figure 3.1: Time performance profile for the direct solvers HSL MA87, HSL MA97 and SuiteSparseQR (SPQR)

for test set T .

4 LSQR vs LSMR

CGLS (or CGNR) [35] is a long-established extension of the conjugate gradient method (CG) to least-

squares problems. It is mathematically equivalent to applying CG to the normal equations, without

actually forming them. The well-known and widely used LSQR algorithm of Paige and Saunders [53, 54]

is algebraically identical to CGLS and, as shown in [11], both achieve similar final accuracy consistent

with numerical stability. LSQR is based on the Golub-Kahan bidiagonalization of A and has the property

of reducing ‖rk‖2 monotonically, where rk = b−Axk is the residual for the approximate solution xk.

The more recent LSMR algorithm of Fong and Saunders [24] is similar to LSQR in that it too is based

on Golub-Kahan bidiagonalization of A. However, in exact arithmetic LSMR is equivalent to MINRES

[52] applied to the normal equations, so that the quantities ‖AT rk‖2 (as well as, perhaps more surprisingly,

‖rk‖2) are monotonically decreasing. Fong and Saunders report that LSMR may be a preferable solver

because of this and because it may be able to terminate significantly earlier. Observe that if right-

preconditioning with preconditioner M is employed, then ‖(AM−1)T r‖2 is monotonic decreasing.

The implementation of LSMR used in this paper is a slightly modified version of the 2010 one of Fong

and Saunders. The modifications include using allocatable arrays rather than automatic arrays (the latter

can cause the code to crash with a segmentation fault error if the problem is large whereas allocated arrays

allow memory failures to be captured and the code to be terminated with a suitable error flag set). More

importantly, we incorporate a reverse communication interface that allows greater flexibility in how the

user performs matrix vector products Ax and ATx and applies the (optional) preconditioner as well as

enabling us to use our stopping criteria C1 and C2 (independently of the preconditioner used). The same
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Figure 4.1: Iteration performance profile (left) and time performance profile for LSMR and LSQR (right)

for the complete CUTEst and UFL test set of 921 eligible problems with no preconditioning.

modifications are made to LSQR for our tests. Both the modified version of LSMR and the Fong and

Saunders code are available from http://web.stanford.edu/group/SOL/download.html.

In Figure 4.1, we present an iteration performance profile and a time performance for LSQR and LSMR

with no preconditioning on the entire CUTEst and UFL set of 921 eligible examples. We see that LSMR

has fewer failures compared to LSQR and requires a smaller number of iterations, which results in faster

execution time. This confirms the findings of Fong and Saunders; in the remainder of this study we will

limit our attention to LSMR.

Fong and Saunders propose incorporating local reorthogonalization in which each new basis vector

is reorthogonalized with respect to the previous localSize vectors, where localSize is a user specified

parameter. Setting localSize to 0 corresponds to no reorthogonalization while setting localSize to n

gives full reorthogonalization. Fong and Saunders report iteration counts for two linear programming

problems with localSize set to 0, 5, 10, 50 and n. These illustrate that, compared with no

reorthogonalization, setting localSize = 10 or 50 can lead to a worthwhile reduction in the number

of iterations for convergence but, as expected, more iterations are needed than for full reorthogonalization.

Note that as n vectors of size localSize are needed, for large problems full reorthogonalization is

impractical both in terms of the computational time and memory requirements.

To examine the effect of localSize on our much larger test set, an iteration performance profile

and a time performance profile for localSize set to 0, 10, 100 and 1000 are given in Figure 4.2 (no

preconditioning). We see that using a large value for localSize can significantly reduce the number of

iterations and improve the success rate; the disadvantage is that the cost of each iteration (in terms of

time and memory) increases with localSize.

5 Preconditioning strategies for normal equations

In this section, we first consider a number of ways to choose the preconditioner M for use with LSMR.

5.1 Diagonal preconditioning

The simplest form of preconditioning is diagonal preconditioning in which we solve

min
y
‖b−ASy‖2, x = Sy,
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Figure 4.2: Iteration performance profile (left) and time performance profile for LSMR with a range

of values of localSize for the complete CUTEst and UFL test set of 921 eligible problems with no

preconditioning.

where S is a diagonal matrix that scales the columns of A to give each unit 2-norm. This requires only

the diagonal entries of the normal matrix C to be computed or, equivalently, the squares of the 2-norms

of the columns of A. This can be done in parallel, making the computation of the preconditioner and its

application both straightforward and efficient (in terms of time and memory).

5.2 Incomplete Cholesky factorizations

Incomplete Cholesky (IC) factorizations have long been an important tool in the armoury of preconditioners

for the numerical solution of large sparse, symmetric positive definite linear systems of equations; for an

introduction and overview see, for example, [7, 60, 67] and the long lists of references therein. Since (if A

has full column rank) the coefficient matrix C of the normal equations (1.2) is positive definite, an obvious

choice for the preconditioner is an IC factorization of C.

An IC factorization takes the form LLT in which some of the fill entries (entries in L that were zero

in the system matrix C) that would occur in a complete factorization are ignored. The preconditioned

normal equations become

(AL−T )T (AL−T )y = L−1CL−T y = L−1AT b, y = LTx.

Performing preconditioning operations involves solving triangular systems with L and LT . Over the years,

a wealth of different variants have been proposed, including structure-based methods, those based on

dropping entries below a prescribed threshold and others that prescribe the maximum number of entries

allowed in L. We employ the recent limited memory approach of Scott and Tůma [66, 67] that exploits

ideas from the positive semidefinite Tismenetsky-Kaporin modification scheme [44, 71]. The basic scheme

employs a matrix factorization of the form

C = (L+ L̂)(L+ L̂)T − E, (5.1)

where L is the lower triangular matrix with positive diagonal entries that is used for preconditioning, L̂ is

a strictly lower triangular matrix with small entries that is used to stabilize the factorization process but

is subsequently discarded, and E has the structure

E = L̂L̂T ;

for details, see [66, 67]. The user specifies the maximum number of entries in each column of L and L̂.

At each step of the factorization, the largest entries are kept in the current column of L, the next largest
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in the current column of L̂, and the remainder are dropped. In practice, C is optionally preordered and

scaled and, if necessary, shifted to avoid breakdown of the factorization (which occurs if a non positive

pivot is encountered) [47]. Thus the LLT incomplete factorization of the matrix

C = SQTCQS + αI

is computed, where Q is a permutation matrix chosen on the basis of sparsity, S is a diagonal scaling matrix

and α is a non-negative shift. It follows that M = LL
T

with L = QS−1L is the incomplete factorization

preconditioner.

When used to compute an incomplete factorization of the normal equations, there is no need to form

and store all of C explicitly; rather, the lower triangular part of its columns can be computed one at a

time, used to perform the corresponding step of the incomplete Cholesky algorithm and then discarded.

Of course, forming the normal matrix, even piecemeal, can entail a significant overhead (particularly if

m and n are large and if A has one or more dense rows) and potentially may lead to a severe loss of

information in very ill-conditioned cases.

5.3 MIQR

An alternative to an incomplete Cholesky factorization of C is an approximate orthogonal factorization of

A. If

A ≈ Q
[
R

0

]
,

where Q is orthogonal and R is upper triangular, then C = ATA ≈ RTR and, M = RTR can be used as

a preconditioner. Again, applying the preconditioner involves triangular solves. Observe that the factor

Q is not used. There have been a number of approaches based on incomplete orthogonal factorizations of

A [4, 5, 41, 55, 59, 72]. Most recently, there is the Multilevel Incomplete QR (MIQR) factorization of Li

and Saad [46].

When A is sparse, many of its columns are likely to be orthogonal because of their structure. These

structurally orthogonal columns form an independent set S. Once S is obtained, the remaining columns of

A are orthogonalized against the columns in S. Since the matrix of remaining columns will in general still

be sparse, it is natural to recursively repeat the process until the number of columns is small enough to

orthogonalize with standard methods, or a prescribed number of reductions (levels) has been reached, or

the matrix cannot be reduced further. This process results in a QR factorization of a column-permuted A

and forms the basis of the MIQR factorization. In practice, the QR factorization causes significant fill-in

and so MIQR improves sparsity by relaxing the orthogonality and applying dropping strategies.

The MIQR algorithm does not require the normal matrix C to be computed explicitly; only one row

of C is needed at any given time. Moreover, since C is symmetric, only its upper triangular part (i.e., the

inner products between the i-th column of A and columns i+ 1 to n) needs to be calculated.

5.4 RIF

The RIF (Robust Incomplete Factorization) algorithm of Benzi and Tůma [8, 9] computes an LDLT

factorization of the normal matrix C without forming any entries of C, working only with A. The method

is based on C-orthogonalization, i.e., orthogonalization with respect to the C-inner product defined by

〈x, y〉C := xTCy = (Ax)T (Ay) for all x, y ∈ IRn. (5.2)

Assuming A is of full column rank, C is symmetric positive definite and this then provides an inner

product on IRn. Given the n linear independent vectors e1, e2, ..., en (ei is the i-th unit basis vector), a

C-orthogonal set of vectors z1, z2, ..., zn is built using a Gram-Schmidt process with respect to (5.2). This

can be written in the form

ZTCZ = D = diag(d1, d2, ..., dn), (5.3)
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where Z = [z1, z2, ..., zn] is unit upper triangular and the di are positive. It follows that ZT = L−1, where

L is the unit lower triangular factor of the root-free Cholesky factorization C = LDLT . It can be shown

[8] that the L factor can be obtained as a by-product of the C-orthogonalization process at no extra cost.

Two different types of preconditioner can be obtained by carrying out the C-orthogonalization process

incompletely. The first drops small entries from the computed vectors as the C-orthogonalization proceeds,

resulting in a sparse matrix Z̃ ≈ L−T ; that is, an incomplete inverse factorization of C of the form

C−1 ≈ Z̃D̃−1Z̃T ,

where D̃ is diagonal with positive entries, is computed. This is a factored sparse approximate inverse that

can be used as a preconditioner for the CG algorithm applied to the normal equations. The preconditioner

is guaranteed to be positive definite and can be applied in parallel since its application requires only matrix-

vector products. It is generally known as the stabilized approximate inverse (SAINV) preconditioner.

The second approach (the RIF preconditioner) is obtained by discarding the computed sparsified vector

z̃i as soon as it has been used to form the corresponding parts of the incomplete factor L̃ of C. This gives

an algorithm for computing an incomplete Cholesky factorization for the normal equations

C ≈ L̃D̃L̃T .

Again, the preconditioner M = L̃D̃L̃T is positive definite and (in exact arithmetic) breakdown during its

computation is not possible. An important feature of the RIF preconditioner is that it incurs only modest

intermediate storage costs, although implementing the algorithm for its construction so as to exploit the

sparsity of A is far from straightforward (see [9] for a brief discussion). Benzi and Tůma report that the

RIF preconditioner is generally more effective at reducing the number of CG iterations than the SAINV one

and is thus the one included in this study. Over the past few years, a number of papers on preconditioners

for least-squares problems have used RIF as a benchmark, but these papers limit their reported tests to a

small number of examples [3, 12, 46, 48].

6 BA-GMRES

The BA-GMRES method for solving least-squares problems combines using a stationary inner iteration

method with the Krylov subspace method GMRES [61] applied to the normal equations. For problems

for which convergence is slow and for very large problems for which storage is an issue, restarted GMRES

is used. In contrast to the other methods discussed so far, rather than forming an explicit preconditioner,

a number of steps of a stationary iterative method are applied within the GMRES algorithm whenever an

application of the preconditioner is needed. Such techniques are often called inner-outer iteration methods.

While the basic idea is not new, it has recently been explored in the context of least-squares problems by

Hayami et al. [34, 48, 49]. In particular, for overdetermined least-squares problems, they propose using

Jacobi- (Cimmino [16]) and SOR-type (Kaczmarz [43]) iterative methods as inner-iteration preconditioners

for GMRES and advocate their so-called BA-GMRES approach for the efficient solution of rank-deficient

problems. Jacobi iterations can be advantageous for parallel implementations but in this study, we limit

our attention to serial implementations and use SOR iterations with automatic selection of the relaxation

parameter ω as described in [48, 49].

BA-GMRES corresponds to GMRES applied to

min
x
‖Bb−BAx‖2, (6.1)

where the rectangular matrix B ∈ IRn×m is the (left) preconditioner. Morikuni and Hayami [48, 49] show

that if B satisfies R(A) = R(BT ) and R(AT ) = R(B), the solution of (6.1) is also a solution of the

least-squares problem (1.1). B is not formed or stored explicitly. Instead, at each GMRES iteration k,

when preconditioning is needed a fixed number of steps of a stationary iterative method are applied to a

system of the form

ATAz = ATAvk
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to obtain z for a given vk, which is used to compute the next GMRES basis vector vk+1. Thus at

each GMRES iteration, another system of normal equations is solved approximately using a stationary

iterative method and this can be done without forming any entries of ATA explicitly (see [60], Section

8.2 for details); all that is required are repeated matrix-vector products with A and AT . This allows

nonsymmetric preconditioning for least-squares problems. Another potential advantage of BA-GMRES is

that it avoids forming and storing an incomplete factorization; the memory used is determined solely by

the number of steps of GMRES that are applied before restarting.

Morikuni and Hayami observe that inner iteration preconditioners can also be applied to CGLS and

LSMR. This has the merit of using only short-term recurrences and so the memory requirements are less

than for BA-GMRES. The results reported in [48, 49] for a small set of test problems (including rank-

deficient examples) indicate faster times, fewer iterations and greater robustness using BA-GMRES; thus

BA-GMRES (for which software is available, see Section 8.5) is used in this study.

7 Preconditioning strategies for the augmented system

An alternative to preconditioning the normal equations is to precondition the augmented system (1.3).

In some applications, preconditioning the augmented system is advocated when the normal equations

are highly ill-conditioned (see, for instance, [51]). A number of possible approaches exist, including

employing an incomplete factorization designed for general indefinite symmetric systems or a signed

incomplete Cholesky factorization [68] designed specifically for systems of the form (1.3). Chow and

Saad [15] considered the class of incomplete LU preconditioners for solving indefinite problems and later

Li and Saad [45] integrated pivoting procedures with scaling and reordering. Building on this, Greif, He,

and Liu [32] recently developed a new incomplete factorization package SYM-ILDL for general sparse

symmetric indefinite matrices. The factorization is of the form

K ≈ LDLT , (7.1)

where L is unit lower triangular and D is block diagonal, with 1 × 1 and 2 × 2 blocks on the diagonal

(corresponding to 1 × 1 and 2 × 2 pivots). For SYM-ILDL, K may be any sparse indefinite matrix; no

advantage is made of the specific block structure of (1.3). Independently, Scott and Tůma [69] report on

the development of incomplete factorization algorithms for symmetric indefinite systems and propose a

number of new ideas with the goal of improving the stability, robustness and efficiency of the resulting

preconditioner. The SYM-ILDL software is available [32]. It is written in C++ and is designed either to be

called from within MATLAB or from the command line. The user may save the computed factor data to a

file but (when used from the command line) the package offers no procedure to take that data and use it as

a preconditioner. Without substantial further work to set up a more flexible and convenient user interface,

we were restricted to running individual problems one at a time. We performed limited experiments

using SYM-ILDL (see also [68, 69]). These demonstrated that there are least-squares problems for which

SYM-ILDL is able to provide an effective preconditioner but for other problems we were unsuccessful in

obtaining the required least-squares solution. The prototype code of Scott and Tůma likewise gave very

mixed results. We conclude that further work is needed for these codes to be useful for least-squares

problems; they are not explored further in this study.

For matrices K of the augmented form (1.3), Scott and Tůma [68] propose extending their limited

memory IC approach to a limited memory signed incomplete Cholesky factorization of the form (7.1)

where L is a lower triangular matrix with positive diagonal entries and D is a diagonal matrix with entries

±1. In practice, an LDLT factorization of

K = SQTKQS +

[
α1I

−α2I

]
is computed, where Q is a permutation matrix, S is a diagonal scaling matrix, and α1 and α2 are non-

negative shifts chosen to prevent breakdown. The preconditioner is M = LDL
T

, with L = QS−1L. In
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this case, the permutation Q is chosen not only on the basis of sparsity but also so that a variable in the

(2, 2) block of K is not ordered ahead of any of its neighbours in the (1, 1) block; see [68] for details of this

so-called constrained ordering.

An important advantage of a signed IC factorization over a general indefinite incomplete factorization

is its simplicity in that it avoids the use of numerical pivoting. If we use the natural order (Q = I), the

factorization becomes

K ≈
[
I

L1 L2

] [
I

−I

] [
I LT

1

LT
2

]
and so

L1 ≈ AT and L1L
T
1 ≈ L2L

T
2 .

If we choose L1 = AT then this reduces to an IC factorization of the normal equations. However, by

choosing L1 6= AT or Q 6= I, this approach can exploit the structure of the augmented system while

avoiding the normal equations.

As the signed IC preconditioner is indefinite, a general non symmetric iterative method such as

GMRES [61] is needed; we use right preconditioned restarted GMRES. Since GMRES is applied to the

augmented system matrix K, the stopping criteria is applied to K. With the available implementations of

GMRES, it is not possible during the computation to check whether either of the stopping conditions C1

or C2 (which are based on A) is satisfied; they can, of course, be checked once GMRES has terminated.

Instead, we use the scaled backward error

‖Kyk − c‖2
‖c‖2

< δ3, (7.2)

where yk is the computed solution on the kth step. In our experiments we set δ3 = 10−6.

If we want to use a solver that is designed for symmetric indefinite systems, in place of GMRES we can

use MINRES [52]. However, MINRES requires a positive definite preconditioner and so we use M = LL
T

,

that is, we replace the entries −1 in D by +1 so that D becomes the identity. Again, the stopping

conditions C1 or C2 cannot be checked inside MINRES and we use instead (7.2).

8 Preconditioning software and parameter settings

8.1 Diagonal preconditioning

In Figure 8.1 we present iteration and time performance profiles for LSMR with diagonal preconditioning

using a range of values for the LSMR reorthogonalization parameter localSize. A large value reduces

the iteration count but increases the time (and memory) required (so that a number of problems exceed

the time limit if localSize is set to 1000, which accounts for the increase in the number of failures).

8.2 IC preconditioner for normal equations

A software package HSL MI35 that implements the limited memory IC algorithm discussed in Section 5.2

for the normal equations has been developed for the HSL mathematical software library [40]. This code is

a modified version of HSL MI28 [66]. Modifications were needed to allow the user to specify the maximum

number of entries allowed in each column of the incomplete factor L (in HSL MI28 the user specified the

amount of fill allowed but as columns of C may be dense, or close to dense, this change was needed to

keep L sparse). In addition, the user may either supply the matrix A and call a subroutine within the

package to form C explicitly or, to save memory, A may be passed directly to the factorization routine.

In this case, the lower triangular part of each column of the (permuted) normal matrix is computed as

needed during the factorization (although the sparsity pattern of C is computed if reordering is selected).

Note that, if A and not C is supplied, the range of scaling options is restricted since the equilibration

and maximum matching-based scalings that are offered through the use of the packages MC77 [58] and
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Figure 8.1: Iteration performance profile (left) and time performance profile (right) for LSMR with diagonal

preconditioning using a range of values of localSize for test set T .

MC64 [21, 22], respectively, require C explicitly. The default scaling is l2 scaling, in which column j of

C is normalised by its 2-norm; this needs only one column of C at a time. We observe that HSL MI35 is

designed to solve the weighted least-squares problem but in our tests the weights are set to one.

The parameters lsize and rsize respectively control the maximum number of entries in each column

of L and each column of the matrix L̂ that is used in the computation of L (recall (5.1)). Iteration

and time performance profiles for LSMR preconditioned by HSL MI35 using lsize = rsize = 10 and

lsize = rsize = 20 are given in Figure 8.2. Here and elsewhere, the time used for the time performance

profile are the total solution time (that is, the time to compute the preconditioner plus the time to run

preconditioned LSMR). We see that the iteration count is reduced by increasing the number of entries

allowed and as the time is not significantly adversely effected, lsize = rsize = 20 is used in all other

experiments with HSL MI35.
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Figure 8.2: Iteration performance profile (left) and time performance profile (right) for LSMR

preconditioned by HSL MI35 with lsize = rsize = 10 and lsize = rsize = 20 for test set T .

In Figure 8.3 we present iteration and time performance profiles for LSMR preconditioned by HSL MI35

using a range of values for the LSMR reorthogonalization parameter localSize. As expected, using a

large value reduces the iteration count but increases the time (and memory) required; localSize = 10 is
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used in all other experiments with HSL MI35.

log(f)

0 0.5 1 1.5 2 2.5 3 3.5

fr
a

c
ti
o

n
 f

o
r 

w
h

ic
h

 s
o

lv
e

r 
w

it
h

in
 f

 o
f 

b
e

s
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Iteration performance profile - 83 CUTEst LP & UFL problems

MI35-LSMR(0) (15 failures)

MI35-LSMR(10) (15 failures)

MI35-LSMR(100) (15 failures)

MI35-LSMR(1000) (17 failures)

log(f)

0 0.5 1 1.5 2 2.5 3 3.5

fr
a

c
ti
o

n
 f

o
r 

w
h

ic
h

 s
o

lv
e

r 
w

it
h

in
 f

 o
f 

b
e

s
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Time performance profile - 83 CUTEst LP & UFL problems

MI35-LSMR(0) (15 failures)

MI35-LSMR(10) (15 failures)

MI35-LSMR(100) (15 failures)

MI35-LSMR(1000) (17 failures)

Figure 8.3: Iteration performance profile (left) and time performance profile (right) for LSMR

preconditioned by HSL MI35 using a range of values of localSize for test set T .

8.3 MIQR

The MIQR package available at http://www-users.cs.umn.edu/~saad/software/ is for solving least-

squares systems by a preconditioned CGNR algorithm and is written in C. As all our experiments are

performed in Fortran, we have chosen to use a Fortran version of MIQR that is available from the GALAHAD

optimization software library [27]. This is essentially a translation of Li and Saad [46]’s code, but with

extra checks and features to make the problem data input easier. Key parameters, such as the maximum

number of recursive levels of orthogonalization, the required angles between approximately orthogonal

columns, the drop tolerance, and the maximum number of fills permitted per column, are precisely as

given by Li and Saad.
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Figure 8.4: Iteration performance profile (left) and time performance profile (right) for LSMR with MIQR

preconditioning using a range of values of localSize for test set T .

Figure 8.5 presents iteration and time performance profiles for MIQR-preconditioned LSMR using a

range of values of the reorthogonalization parameter localSize. The number of failures appears relatively
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insensitive to the choice of localSize but the iteration count decreases as localSize increases while using

a value of 10 is the best in terms of time.

8.4 RIF

A right-looking implementation of RIF is available at http://www2.cs.cas.cz/~tuma/sparslab.html.

However, for our tests, Tůma provided a more recent left-looking version (see [70] for details of the right-

and left-looking variants). The latter works only with A and AT and has the advantage that the required

memory can be computed before the factorization begins using a symbolic preprocessing step [70]. As

full documentation for the software is lacking, we relied on Tůma for advice on the parameter settings; in

particular, we used absolute dropping with a drop tolerance of 0.1. In Figure 8.5, we give iteration and

time performance profiles for RIF-preconditioned LSMR using a range of values of the reorthogonalization

parameter localSize. There is no uniformly best value; in the rest of our experiments, we set localSize

to 10.
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Figure 8.5: Iteration performance profile (left) and time performance profile (right) for LSMR with RIF

preconditioning using a range of values of localSize for test set T .

8.5 BA-GMRES

There are codes for the BA-GMRES method preconditioned by NR-SOR inner iterations developed

by Morikuni available at http://researchmap.jp/KeiichiMorikuni/Implementations (March 2015).

However, these are not in the form that we can readily use for large-scale testing purposes. In particular,

they employ automatic arrays (and will thus fail for a very large problem for which there is insufficient

memory) and they contain “stop” statements (so again, they can fail without prior warning). As a result,

we implemented a modified version of BA-GMRES. This also allowed us to use the stopping criteria C1 and

C2 for consistency with the preconditioned LSMR tests (as in our tests with other methods, the time for

computing the residuals needed for checking C1 and C2 at each iteration are excluded from the reported

times).

As restarted GMRES is employed, the user must choose the number gmres its of iterations between

restarts. A compromise between a large value that reduces the overall number of iterations and a small

value that limits the storage should be used. We performed some preliminary experiments to try and

choose a suitable value to use for all our tests; our findings are in Figure 8.6. On the basis of these,

we set gmres its = 1000. Note that if the number (iter) of iterations required for convergence is less

than gmres its, so that we do not unfairly overestimate the memory required, the reported memory for

BA-GMRES is for gmres its = iter. Following Morikuni, our implementation of BA-GMRES allows the
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Figure 8.6: Iteration performance profile (left) and time performance profile for BA-GMRES with different

restart parameters for test set T .

user to choose between using NR-SOR and Cimmino inner iterations. For the former, the user may supply

the number of inner iterations and the relaxation parameter; otherwise, these are computed automatically

using the procedure proposed in [48, 49]. We use NR-SOR inner iteration with automatic parameter

selection in our tests.

8.6 Signed IC preconditioner: augmented system

A software package HSL MI30 that implements the limited memory signed IC algorithm discussed in

Section 7 for the augmented system is available within HSL; details are given in [68]. In our tests, we use

the default settings for HSL MI30 and the parameters lsize and size that control the number of entries

in L and the intermediate memory used to compute the factorization are both set to 20. For GMRES and

MINRES we use the HSL implementations MI24 (with the restart parameter set to 1000) and HSL MI32,

respectively.

9 Benefits of simple parallelism

Having selected what we consider to be good parameter settings, a natural question is how much the

methods in question might benefit from simple parallelism? Figure 9.1 illustrates the improvements

possible simply by performing sparse matrix-vector products and triangular preconditioning solves on

4 rather than a single processor. Each preconditioner gains from parallelism, and perhaps unsurprisingly

the most significant gains are for those methods for which (MKL-assisted) matrix-vector products and

triangular solves dominate the solution time. Note that the serial experiments were necessarily repeated

to obtain this data, since here we use MKL BLAS while our earlier experiments used the open BLAS. On

the basis of these findings, our remaining comparisons use data from these runs on 4 processors.

10 Solver comparison results

10.1 Performance comparison for preconditioning LSMR

Figure 10.1 presents iteration and time performance profiles for LSMR run both without preconditioning

and with diagonal, MIQR, RIF and IC (HSL MI35) preconditioning run on 4 processors. Here we chose

localSize = 0 for no preconditioning and diagonal preconditioning and localSize = 10 for MIQR,
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Figure 9.1: Time performance profiles for serial and parallel execution of the methods described in Section 8

for test set T .
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Figure 10.1: Iteration performance profile (left) and time performance profile for different preconditioners

used with LSMR for test set T .

RIF and IC preconditioning since these appeared to give the best (time) performances in the individual

preconditioner comparisons reported in Sections 4 and 8. We see that, in terms of iteration counts, the

incomplete factorization is the best preconditioner but, in terms of time, the simplest option of diagonal

preconditioning is slightly better than IC preconditioning (and has the advantages of needing minimal

memory and being trivially parallelizable). The close time-ranking of the diagonal and IC preconditioners

is confirmed in Figure 10.2. We observe that Morikuni and Hayami [48] also found diagonal preconditioning

to give the fastest solution times in some of their tests.
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Figure 10.2: Time performance profile for diagonal and IC preconditioners used with LSMR for test set

T .

In Figure 10.3 we compare the remaining three preconditioners. We see that in terms of time MIQR

preconditioning is broadly similar to running without a preconditioner, and that the effects of a reduction

in iteration counts for the former is balanced by the cost of computing and applying the preconditioner.

This is reinforced in Figure 10.4 when RIF is removed from the picture.

The current implementation of RIF is somewhat slow. For problems for which the RIF preconditioner

performs reasonably well (including the IG5-1x problems), more than 95% of the total solution time can

be spent on computing the preconditioner, even though it can be significantly sparser than that computed

18
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Figure 10.3: Iteration and time performance profiles for LSMR with no preconditioning and MIQR and

RIF preconditioning for test set T .
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Figure 10.4: Time performance profile for LSMR with no preconditioning and MIQR preconditioning for

test set T .
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using HSL MI35 or MIQR. The uncompetitive construction time appears to be largely attributable to the

searches performed to determine which C-inner products need to be computed; this is currently a subject

of separate investigation [70]. For 21 of the 83 test problems, computing the RIF preconditioner exceeded

our time limit of 600 seconds. Furthermore, for our test set T as a whole and the current settings, RIF is

not especially effective. For the 62 problems for which the RIF preconditioner was successfully computed,

22 went on to exceed the LSMR iteration limit and a further 2 exceeded the total time limit. Again, this

is consistent with [48]. We observe, however, that in many cases the RIF preconditioner is sparser than,

for example, the IC preconditioner. Using a smaller drop tolerance may improve the quality at the cost of

more fill but the time to compute the preconditioner can also increase significantly.

10.2 Performance comparison with BA-GMRES

Time performance profiles for BA-GMRES are given in Figure 10.5. We see that, on our test set, BA-

GMRES is slower than using LSMR with diagonal or IC preconditioning but is faster than LSMR with no

preconditioning and MIQR preconditioning. However, a closer look at the results (see the summary tables

given in the Appendix and [30]) shows that BA-GMRES is able to efficiently solve some examples that

preconditioned LSMR and the direct solvers struggle with. In particular, BA-GMRES performs strongly

on the GL7dxx problems and solves problem SPAL 004 in only one iteration. However, it is poor for the

pseex problems.
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Figure 10.5: Time performance profile for BA-GMRES(1000) and LSMR with diagonal, IC (HSL MI35),

MIQR and no preconditioning for test set T .
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10.3 Performance comparison with signed incomplete factorization

In Figure 10.6, time performance profiles are given for solving the augmented system using the signed

incomplete Cholesky factorization preconditioner (HSL MI30) run with GMRES(1000) and MINRES; the

IC preconditioner (HSL MI35) for the normal equations run with LSMR is also included. We see that

HSL MI35 preconditioned LSMR is faster than solving the augmented system and has the least number of

failures. Note that the number of entries in the factors for the normal equations is approximately n×lsize
whereas for the augmented system the number is bounded above by m+nz(A) + (m+n)× lsize (where

nz(A) is the number of entries in A). Thus when working with the augmented system each application of

the preconditioner is considerably more expensive.
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Figure 10.6: Time performance profile for LSMR with IC (HSL MI35) preconditioning and GMRES(1000)

and MINRES with signed IC (HSL MI30) preconditioning for test set T .

As observed in Section 7, for the signed incomplete factorization run with MINRES or GMRES, the

stopping criteria is the scaled backward error for the augmented system (1.3) and thus conditions C1

and/or C2 may not be satisfied. For a significant portion of our test set, if δ3 in (7.2) is set to be 10−8

then either C1 or C2 is satisfied (see Tables 3.25 and 3.26 in [30]). Indeed, in some cases where we report

a failure because the time limit or iteration count limit has been reached without satisfying (7.2), C1 or

C2 is actually satisfied and for other examples, a larger value of δ3 would still have resulted in C1 or C2

holding (and thus our reported iteration counts and total times can sometimes be larger than necessary).

However, for some problems, including the TFxx examples, a smaller δ3 is needed to satisfy C1 or C2.

For example, for MINRES with δ3 = 10−11, C1 is satisfied for problems TF14 and TF15 (the iteration

counts increase from 1987 and 1107 to 10,700 and 46,341, respectively, which are similar to those needed

by LSMR with HSL MI35). But for the other TFxx problems, the number of iterations needed to satisfy C1

exceeds our limit of 100,000. Note that we were unable to solve problem IMDB to the required accuracy

(with our time and iteration count limits) using any of the direct solvers or preconditioners in this study,

while problems NotreDame actors, TF17, TF18, TF19 and wheel 601 proved impossible to all but a few

solvers.

10.4 Performance comparison with a direct solver

In Figure 10.7, we present time performance profiles for the direct solver HSL MA87, applied to the (prescaled

and slightly shifted) normal equations (3.1), and for diagonal and IC (HSL MI35) preconditioned LSMR.

We see that for the set T the direct solver is the fastest for almost 70% of the problems, but it is unable to

solve 18% of the problems for which there was insufficient memory. If we look at the results for individual

21



problems given in Table A.6, we see that both diagonal and IC preconditioned LSMR solve some problems

that HSL MA87 fail on, including SPAL 004 and the GL7dxx examples.
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Figure 10.7: Time performance profile for direct solver HSL MA87 and diagonal and IC (HSL MI35)

preconditioned LSMR for test set T .

10.5 Summary tables

In Tables A.2–A.6, we present summary data that allows a direct comparison of a particular statistic

across the range of methods considered. We remove SPQR and HSL MA97 (for the augmented system) as

these perform less well than HSL MA87 (for the normal equations). Similarly, MINRES preconditioned by

HSL MI30 is included (denoted by MI30-MIN) while GMRES preconditioned by HSL MI30 is omitted. Full

results for all methods (including those omitted here) may be found in [30]. For the iterative methods,

we have selected what appears to be the “best” global choice of localsize or gmres its as appropriate;

these are localsize=0 for the un-preconditioned and diagonal LSMR, localsize=10 for the MIQR,

RIF, and HSL MI35 versions, and gmres its=1000 for BA-GMRES (denoted in the tables by BA-G). We

summarise the storage required for the factors (and for GMRES), the number of iterations performed, the

elapsed time required to build the preconditioner and the total elapsed time to solve the problem (using 4

processors) and report the computed least squares residual. Note that, in Table A.3, the iteration count for

BA-GMRES is the number of GMRES iterations whereas for the other methods it is the LSMR iteration

count; the direct solvers are not included in this table since the iteration count is always 1. Similarly,

we omit columns for the space and times required to obtain factors when no preconditioning is used in

Tables A.2 and A.4, respectively, as well as the factorization times for BA-GMRES from the later, as the

computation of this preconditioner is integrated within the overall algorithm. A − indicates that the run

was unsuccessful; again, for full details the reader is referred to [30].

11 Concluding remarks

In this study, we have compared the performances of a number of preconditioning techniques for sparse

linear least-squares problems. Our main tool has been performance profiles, but the complete numerical

results are also available [30]. The findings of our study confirm that preconditioning least-squares problems

is hard and that at present there is no single approach that works well for all problems; we thus conclude

that there is scope for considerable further developments in this area. We have found that, in many cases,

diagonal preconditioning performs as well as or better than more sophisticated approaches and, as it is

very simple to implement and to apply (and can be used in parallel), we would suggest trying diagonal
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preconditioning first. Investigating extending simple diagonal preconditioning to a block diagonal approach

(combined with a preordering step) would be interesting (note that block diagonal preconditioning is

currently offered by the Ceres non-linear least-squares solver [1]). In terms of iteration counts, using an

incomplete factorization of the normal equations performs well and, as we would expect since diagonal

preconditioning can be regarded as a special case in which only one entry per row/column is retained, it

generally requires far fewer iterations than diagonal preconditioning.

We observe that the direct solvers and the incomplete factorization codes HSL MI30 and HSL MI35

include options for scaling (and use scaling by default) whereas the software for MIQR, RIF and BA-

GMRES that is currently available does not offer scaling. It would be of interest in the future to examine

how much the performance of these approaches can be improved by the incorporation of scaling.

A further contribution of this study has been a detailed comparison of the LSQR and LSMR methods

and of the effect of local reorthogonalization within LSMR. Our findings have confirmed those of Fong and

Saunders [24] and have shown that the choice of the best local reorthogonalization parameter is problem

and preconditioner dependent and also depends on whether reducing the iteration count or the total time

is the primary objective.

Finally, we observe that a number of other approaches have been proposed in recent years, including

the limited memory preconditioner (LMP) of Bellavia, Gonzio and Morini [6] and the balanced incomplete

factorization (BIF) preconditioner of Bru, Maŕın Mas and Tůma [12]. LU preconditioning, which was

discussed by Saunders [62] in 1979 (see also Section 7.5.3 of the book by Björck [10]), has also received

renewed attention (see the 2015 paper by Arioli and Duff [3] and presentation by Saunders [64]). These

are not included in this study since implementations that allow timings that are suitable for making fair

comparisons with our software are not currently available and the algorithms are sufficiently complicated

for it to be infeasible for us to develop efficient implementations for use here. Note that in [3] and

[6], experimental results are reported using MATLAB codes. Unfortunately, the recent Fortran results

reported by Saunders [64] do not encourage us to expect that the LU approach will be efficient in terms of

time. But it would be interesting to see if it can be used to solve some of the examples that are currently

intractable. In particular, we recommend that future comparisons of linear least-squares software includes

the test examples PDE1, IMDB, GLRD17–21, NotreDame actors, TF17–19 and wheel 601, since these

challenge many of the methods we have considered here.
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Appendix: statistics for our test set

For each problem in the test subset T described in Section 2.1, m, n and nz(A) are the row and column

counts and the number of nonzeros in A. In addition, “nullity” is the estimated deficiency in the rank as

computed by HSL MA97, “density(A)” is the largest ratio of number of nonzeros in a row to n over all rows,

and “density(C)” is the ratio of the number of entries in C to n2. A ∗ indicates a right-hand side vector b

was supplied and − denotes insufficient memory to compute the statistic.

Table A.1: Statistics for the test set T .

name m n nz(A) nullity density(A) density(C)

CUTEst examples

BAS1LP 9825 5411 587775 0 6.75E-2 8.87E-2

BAXTER 30733 27441 111576 2993 1.68E-3 1.63E-3

BCDOUT 7078 5412 67344 2 1.55E-1 6.86E-2

CO9 22924 10789 109651 0 2.60E-3 2.14E-3

CONT11 L 1961394 1468599 5382999 0 4.77E-6 8.38E-6

DBIR1 45775 18804 1077025 103 1.19E-2 6.89E-3

DBIR2 45877 18906 1158159 101 1.23E-2 7.38E-3

D2Q06C 5831 2171 33081 0 1.57E-2 1.19E-2

DELF000 5543 3128 13741 0 2.88E-3 2.74E-3

GE 16369 10099 44825 0 3.56E-3 1.10E-3

LARGE001 7176 4162 18887 0 2.64E-3 2.46E-3

LPL1 129959 39951 386218 44 4.00E-4 3.39E-4

MOD2 66409 34774 199810 0 4.60E-4 5.00E-4

MODEL10 16819 4400 150372 0 3.86E-3 1.51E-2

MPSBCD03 7078 5412 66210 2 1.55E-1 6.82E-2

NSCT2 37563 23003 697738 287 2.73E-2 1.57E-2

NSIR2 10057 4453 154939 0 5.28E-2 2.39E-2

PDE1 271792 270595 990587 - 6.70E-1 -

PDS-100 514577 156016 1096002 227 1.92E-5 6.04E-5

PDS-90 475448 142596 1014136 227 2.10E-5 6.71E-5

PILOT-JA 2267 940 14977 0 5.85E-2 3.36E-2

PILOTNOV 2446 975 13331 0 4.10E-2 2.65E-2

RAIL2586 923269 2586 8011362 0 4.64E-3 7.05E-2

RAIL4284 1096894 4284 11284032 0 2.80E-3 1.19E-1

SPAL 004 321696 10203 46168124 0 1.65E-2 4.99E-1

STAT96V2 957432 29089 2852184 0 4.13E-4 4.17E-4

STAT96V3 1113780 33841 3317736 0 3.55E-4 3.58E-4

STAT96V4 63076 3173 491336 0 2.84E-3 5.43E-3

STORMG21K 1377306 526185 3459881 0 1.93E-3 3.00E-4

WATSON 1 386992 201155 1055093 0 4.47E-5 4.79E-5

WATSON 2 677224 352013 1846391 0 4.26E-5 2.74E-5

WORLD 67147 34506 198883 0 4.64E-4 4.89E-4

UF Sparse Matrix Collection examples

12month1 872622 12471 22624727 - 2.74E-1 6.87E-1

162bit 3606 3476 37118 16 4.03E-3 1.95E-2

176bit 7441 7150 82270 40 2.24E-3 1.03E-2

192bit 13691 13093 154303 82 1.22E-3 5.73E-3

208bit 24430 23191 299756 199 7.76E-4 3.56E-3

beaflw 500 492 53403 4 8.13E-1 8.94E-1
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Table A.1: Statistics for the test set T (continued).

name m n nz(A) nullity density(A) density(C)

c8 mat11 5761 4562 2462970 0 5.30E-1 8.12E-1

connectus 394707 458 1127525 0 1.59E-1 1.58E-1

ESOC 327062 37349 6019939 0 5.09E-4 5.16E-3

EternityII Etilde 204304 10054 1170516 0 6.96E-4 1.70E-2

f855 mat9 2511 2456 171214 0 3.38E-1 7.44E-1

GL7d16 955127 460260 14488881 - 1.39E-4 9.46E-4

GL7d17 1548649 955127 25978098 - 7.22E-5 4.43E-4

GL7d18 1955309 1548645 35590540 - 4.71E-5 2.54E-4

GL7d19 1955296 1911130 37322725 - 2.83E-5 1.97E-4

GL7d20 1911124 1437546 29893084 - 2.99E-5 2.23E-4

GL7d21 1437546 822922 18174775 - 4.37E-5 3.26E-4

GL7d22 822906 349443 8251000 - 7.44E-5 6.28E-4

GL7d23 349443 105054 2695430 - 1.81E-4 1.65E-3

graphics 29493 11822 117954 0 3.38E-4 5.91E-4

HFE18 96 in 2372 2371 933343 0 5.07E-1 9.91E-1

IG5-15 11369 6146 323509 0 1.95E-2 1.52E-1

IG5-16 18846 9519 588326 0 1.26E-2 1.28E-1

IG5-17 30162 14060 1035008 0 8.53E-3 1.14E-1

IG5-18 47894 20818 1790490 0 5.76E-3 9.91E-2

IMDB 896302 303617 3782463 - 5.24E-3 1.51E-3

kneser 10 4 1 349651 330751 992252 - 4.84E-5 8.89E-5

landmark 71952 2673 1146848 2 5.99E-3 1.68E-2

LargeRegFile 2111154 801374 4944201 0 4.99E-6 9.93E-6

Maragal 6∗ 21251 10144 537694 516 5.86E-1 7.49E-1

Maragal 7∗ 46845 26525 1200537 2046 3.60E-1 3.10E-1

Maragal 8∗ 60845 33093 1308415 7107 5.03E-2 3.56E-2

mri1 114637 65536 589824 603 3.66E-3 2.57E-4

mri2 104597 63240 569160 - 6.60E-2 7.84E-3

NotreDame actors 383640 127823 1470404 - 5.05E-3 2.52E-3

psse0∗ 26722 11028 102432 0 3.63E-4 5.88E-4

psse1∗ 14318 11028 57376 0 1.63E-3 6.67E-4

psse2∗ 28634 11028 115262 0 2.54E-3 7.68E-4

rel9 5921786 274667 23667183 - 1.46E-5 5.09E-4

relat9 9746232 274667 38955420 - 1.46E-5 5.09E-4

Rucci1 1977885 109900 7791168 0 3.64E-5 8.07E-4

sls 1748122 62729 6804304 0 6.38E-5 1.20E-3

TF14 3159 2644 29862 0 4.92E-3 3.12E-2

TF15 7741 6334 80057 0 2.21E-3 1.63E-2

TF16 19320 15437 216173 0 9.72E-4 8.17E-3

TF17 48629 38132 586218 - 4.20E-4 3.98E-3

TF18 123867 95368 1597545 - 1.78E-4 1.88E-3

TF19 317955 241029 4370721 - 7.47E-5 8.70E-4

tomographic1∗ 59360 45908 647495 3436 3.27E-4 8.68E-4

Trec14 15904 3159 2872265 0 7.91E-1 9.32E-1

wheel 601 902103 723605 2170814 - 8.32E-4 4.22E-4
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Table A.2: Storage required for factors (or for GMRES) for subset CUTEst problems by each method

name m n nz(A) diagonal MIQR RIF BA-G MI35 MI30-MIN MA87

BAS1LP 9825 5411 587775 5411 154335 58422 6419411 113414 858406 2525076

BAXTER 30733 27441 111576 27441 166672 254733 27441 218513 709648 6763027

BCDOUT 7078 5412 67344 5412 227118 38953 5412 97350 214193 2155189

CO9 22924 10789 109651 10789 139168 52621 11802789 122520 346055 1233194

CONT11 L 1961394 1468599 5382999 1468599 >6823917 4883216 149807602 10208898 22208667 128552555

DBIR1 45775 18804 1077025 18804 306833 92947 7055662 264644 1977702 4589933

DBIR2 45877 18906 1158159 18906 311225 94898 17102778 172316 1876024 4846892

D2Q06C 5831 2171 33081 2171 22404 13660 700243 30258 100726 203218

DELF000 5543 3128 13741 3128 9959 11667 4134128 11314 33260 136175

GE 16369 10099 44825 10099 98350 49164 8719998 134483 248210 710847

LARGE001 7176 4162 18887 4162 14243 16930 5169162 16000 46375 204012

LPL1 129959 39951 386218 39951 184639 143744 28994143 541699 1605246 7939663

MOD2 66409 34774 199810 34774 559518 229986 20505898 527770 1300573 4521661

MODEL10 16819 4400 150372 4400 34670 24083 1863308 78015 378047 659462

MPSBCD03 7078 5412 66210 5412 228815 38965 5412 98584 220678 2055166

NSCT2 37563 23003 697738 23003 561767 109287 4781258 165302 1407946 8399426

NSIR2 10057 4453 154939 4453 98551 27196 984313 54142 305406 635304

PDE1 271792 270595 990587 270595 >7750326 >996368 270595 - - -

PDS-100 514577 156016 1096002 156016 1027112 618440 12019236 2891511 7696832 57854930

PDS-90 475448 142596 1014136 142596 950792 570713 10557652 2626289 7233396 51441581

PILOT-JA 2267 940 14977 940 9650 5780 427458 10870 47073 105608

PILOTNOV 2446 975 13331 975 9320 5958 449095 11317 44818 98127

RAIL2586 923269 2586 8011362 2586 6235 24447 495112 51833 9613272 1503568

RAIL4284 1096894 4284 11284032 4284 6345 45055 958072 89219 15880038 6776270

SPAL 004 321696 10203 46168124 10203 18683 >6911 20410 213972 40754070 46763011

STAT96V2 957432 29089 2852184 29089 38807 81055 12573814 276290 4210897 1702787

STAT96V3 1113780 33841 3317736 33841 45145 94273 14216653 319109 4901099 1977377

STAT96V4 63076 3173 491336 3173 11493 10513 415798 47295 512268 149650

STORMG21K 1377306 526185 3459881 526185 6933837 >1850507 526185 7505682 34433755 853778245

WATSON 1 386992 201155 1055093 201155 1005650 519977 11469139 2634818 6106788 11698276

WATSON 2 677224 352013 1846391 352013 2808070 1171936 17251085 4648375 10588235 17953039

WORLD 67147 34506 198883 34506 535778 224464 20065186 511951 1288095 4555752
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Table A.2: Storage required for factors (or for GMRES) for subset UF problems by each method

name m n nz(A) diagonal MIQR RIF BA-G MI35 MI30-MIN MA87

12month1 872622 12471 22624727 12471 73375 >64026 764511 260889 34096963 72985572

162bit 3606 3476 37118 3476 193542 28550 1215038 70512 166083 2844518

176bit 7441 7150 82270 7150 388870 56269 5121390 145649 349258 10258362

192bit 13691 13093 154303 13093 685467 96275 14109093 267084 654954 29643489

208bit 24430 23191 299756 23191 1202798 168273 24217191 471420 1177025 85199435

beaflw 500 492 53403 492 28073 5307 452608 9814 71656 114801

c8 mat11 5761 4562 2462970 4562 78255 49640 4562 95477 2621770 10254646

connectus 394707 458 1127525 458 478 1744 1850 5185 1527818 29414

ESOC 327062 37349 6019939 37349 698366 >265992 37349 776570 12993333 37844216

EternityII Etilde 204304 10054 1170516 10054 24368 103380 4019398 205375 4202504 5074041

f855 mat9 2511 2456 171214 2456 136743 26961 2456 51366 264054 2893837

GL7d16 955127 460260 14488881 460260 9346036 >320334 4602708 9665201 36508148 -

GL7d17 1548649 955127 25978098 955127 - >328160 8596231 20057165 - -

GL7d18 1955309 1548645 35590540 1548645 - >352792 17035225 32520973 - -

GL7d19 1955296 1911130 37322725 1911130 - >550233 19111408 40133312 - -

GL7d20 1911124 1437546 29893084 1437546 - >527911 8625316 30188087 - -

GL7d21 1437546 822922 18174775 822922 - >526636 5760508 17281075 - -

GL7d22 822906 349443 8251000 349443 12616485 >535015 2446155 7337962 30115416 -

GL7d23 349443 105054 2695430 105054 1721600 >558111 735432 2205827 10424076 -

graphics 29493 11822 117954 11822 31960 30470 11822 24901 194127 466587

HFE18 96 in 2372 2371 933343 2371 10978 26016 3376371 49576 1028976 2810425

IG5-15 11369 6146 323509 6146 189538 62626 580318 128833 643103 13575427

IG5-16 18846 9519 588326 9519 279931 97466 1470142 199678 1115361 31235491

IG5-17 30162 14060 1035008 14060 409603 145262 1758938 295028 1843157 69381526

IG5-18 47894 20818 1790490 20818 587680 216979 2260114 436954 2992054 155805819

IMDB 896302 303617 3782463 303617 15909318 >487530 303617 5858164 13438747 >4216225900

kneser 10 4 1 349651 330751 992252 330751 6394519 - 330751 6759341 11405272 362087118

landmark 71952 2673 1146848 2673 11307 17778 75654 26909 873043 378177

LargeRegFile 2111154 801374 4944201 801374 3615761 >461966 6411062 4106048 24923112 15941094

Maragal 6 21251 10144 537694 10144 246737 71907 5289072 212144 679769 50574842

Maragal 7 46845 26525 1200537 26525 662167 166881 5156765 553856 1641051 139030659

Maragal 8 60845 33093 1308415 33093 1702715 229119 33093 597971 1392093 88830058

mri1 114637 65536 589824 65536 519051 325965 62016508 636290 1776829 8157680

mri2 104597 63240 569160 63240 1486341 392461 47669568 781491 2575072 35347277

NotreDame actors 383640 127823 1470404 127823 6768455 >708376 127823 2506265 6151175 1179796747

psse0 26722 11028 102432 11028 31603 23833 12042028 35197 180414 371305

psse1 14318 11028 57376 11028 40288 28925 12042028 35771 133438 381958

psse2 28634 11028 115262 11028 38437 34657 11028 40814 216020 394467

rel9 5921786 274667 23667183 274667 498966 >313371 3570851 5764774 - -

relat9 9746232 274667 38955420 274667 337475 >263449 3845546 5763434 - -

Rucci1 1977885 109900 7791168 109900 638743 932200 109900 2306811 19056222 136755107

sls 1748122 62729 6804304 62729 71400 108831 3013342 1226997 13636543 110829629

TF14 3159 2644 29862 2644 150764 28727 3649644 55249 148306 2209059

TF15 7741 6334 80057 6334 379663 69250 6334 132747 368065 11277723

TF16 19320 15437 216173 15437 933646 169320 15437 323886 928743 64337506

TF17 48629 38132 586218 38132 2304372 418887 38132 800458 2359904 360007876

TF18 123867 95368 1597545 95368 5699962 >808291 95368 2002386 6080905 >2147378630

TF19 317955 241029 4370721 241029 14260905 >811388 241029 5061262 15718547 >8629432746

tomographic1 59360 45908 647495 45908 988212 280726 45908 906437 2247216 31002372

Trec14 15904 3159 2872265 3159 11942 34692 2661039 66099 3251107 4909829

wheel 601 902103 723605 2170814 723605 7796970 4253762 723605 14201674 25831230 -
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Table A.3: Iterations required for subset CUTEst problems by each method

name m n nz(A) no diagonal MIQR RIF BA-G MI35 MI30-MIN

BAS1LP 9825 5411 587775 14838 7625 48418 >741606 4406 7977 11618

BAXTER 30733 27441 111576 172315 >940092 101 >875045 >18992 >322351 >144158

BCDOUT 7078 5412 67344 129755 122022 >452954 >1774726 >73955 142047 154786

CO9 22924 10789 109651 24953 5078 3612 6990 2619 379 194

CONT11 L 1961394 1468599 5382999 206 206 - 60 101 22 19

DBIR1 45775 18804 1077025 1450 2228 31060 >224685 367 1858 >59884

DBIR2 45877 18906 1158159 19116 2211 33561 >400186 864 793 >60617

D2Q06C 5831 2171 33081 58912 1597 472 12219 284 209 18

DELF000 5543 3128 13741 298427 26446 691 30615 4665 60 58

GE 16369 10099 44825 69740 6244 573 832 799 28 81

LARGE001 7176 4162 18887 52556 26777 53702 2233527 7422 75 90

LPL1 129959 39951 386218 31755 3217 564 >171967 712 420 66

MOD2 66409 34774 199810 10674 1370 1515 46985 579 151 88

MODEL10 16819 4400 150372 34343 2229 5899 131196 388 744 202

MPSBCD03 7078 5412 66210 153952 149821 >450987 >1782418 >70943 145960 172717

NSCT2 37563 23003 697738 10090 1397 13476 >645872 205 610 >88277

NSIR2 10057 4453 154939 9622 1033 20198 >1646173 210 388 76281

PDE1 271792 270595 990587 903 943 - - >2291 - -

PDS-100 514577 156016 1096002 682 342 228 203 76 90 64

PDS-90 475448 142596 1014136 639 331 216 195 73 88 74

PILOT-JA 2267 940 14977 137401 2346 61 26428 334 323 54

PILOTNOV 2446 975 13331 83019 1931 41 18021 340 214 20

RAIL2586 923269 2586 8011362 912 400 809 233 178 151 9

RAIL4284 1096894 4284 11284032 883 732 913 374 212 224 19

SPAL 004 321696 10203 46168124 >5212 3258 >5630 - 1 3764 >1397

STAT96V2 957432 29089 2852184 985 726 464 414 425 19 22

STAT96V3 1113780 33841 3317736 1054 765 484 433 414 20 27

STAT96V4 63076 3173 491336 4087 809 1757 449 125 17 24

STORMG21K 1377306 526185 3459881 1401 183 >7602 - >919 2281 >3327

WATSON 1 386992 201155 1055093 2161 422 165 249 56 73 8

WATSON 2 677224 352013 1846391 1812 349 119 185 48 54 7

WORLD 67147 34506 198883 9814 1369 1084 24839 571 154 70
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Table A.3: Iterations required for subset UF problems by each method

name m n nz(A) no diagonal MIQR RIF BA-G MI35 MI30-MIN

12month1 872622 12471 22624727 >9415 266 973 - 60 369 293

162bit 3606 3476 37118 29440 2540 729 1493 319 247 252

176bit 7441 7150 82270 147449 6538 2697 3892 655 454 981

192bit 13691 13093 154303 326126 12200 4800 7238 6005 1281 1519

208bit 24430 23191 299756 606439 17074 9741 13993 6219 2197 3132

beaflw 500 492 53403 43174 41103 38035 >5 469 33910 >2951677

c8 mat11 5761 4562 2462970 40930 38679 >176239 >193279 >7647 30090 >67344

connectus 394707 458 1127525 1753 7 114 7 3 6 3

ESOC 327062 37349 6019939 5596 15011 >20554 - >2671 >21840 >9045

EternityII Etilde 204304 10054 1170516 1356 1122 2098 883 384 585 81

f855 mat9 2511 2456 171214 19082 20175 267667 321572 >72874 12324 >832602

GL7d16 955127 460260 14488881 61 48 265 - 9 32 35

GL7d17 1548649 955127 25978098 58 48 - - 8 28 -

GL7d18 1955309 1548645 35590540 79 64 - - 10 40 -

GL7d19 1955296 1911130 37322725 204 53 - - 9 46 -

GL7d20 1911124 1437546 29893084 137 31 - - 5 28 -

GL7d21 1437546 822922 18174775 143 26 - - 6 25 -

GL7d22 822906 349443 8251000 238 24 124 - 6 22 30

GL7d23 349443 105054 2695430 340 24 91 - 6 21 22

graphics 29493 11822 117954 >1623343 302842 312745 177862 >44385 1908 221

HFE18 96 in 2372 2371 933343 30425 15101 30092 12419 1632 14635 16052

IG5-15 11369 6146 323509 4567 610 126 323 92 240 533

IG5-16 18846 9519 588326 7421 866 150 478 151 347 771

IG5-17 30162 14060 1035008 7243 828 169 411 123 329 705

IG5-18 47894 20818 1790490 7281 735 205 446 107 312 889

IMDB 896302 303617 3782463 >15970 >15288 >3043 - >899 >8031 >3368

kneser 10 4 1 349651 330751 992252 17207 10782 >9032 - >1755 3258 1866

landmark 71952 2673 1146848 19557 894 36 274 27 12 25

LargeRegFile 2111154 801374 4944201 784 54 168 - 7 12 21

Maragal 6 21251 10144 537694 5400 3254 10031 >579407 496 1016 1756

Maragal 7 46845 26525 1200537 7469 2683 5150 >1913 192 680 1112

Maragal 8 60845 33093 1308415 >134737 >131006 >43588 >103951 >8548 >91721 >52936

mri1 114637 65536 589824 6150 6103 8744 1603 932 2217 65

mri2 104597 63240 569160 11848 11853 4126 >1 744 2933 10317

NotreDame actors 383640 127823 1470404 >64753 >63129 >8938 - >3314 >26248 >9268

psse0 26722 11028 102432 190067 41438 1564 20222 40001 104 26

psse1 14318 11028 57376 190737 58420 5113 >1072010 51952 665 138

psse2 28634 11028 115262 191582 51664 7598 >887601 >51962 687 161

rel9 5921786 274667 23667183 110 81 107 - 12 37 -

relat9 9746232 274667 38955420 88 76 82 - 13 36 -

Rucci1 1977885 109900 7791168 >13607 8330 >13414 1822 >1813 >12647 555

sls 1748122 62729 6804304 610 188 619 - 47 68 13

TF14 3159 2644 29862 34774 25705 44459 12884 1758 11389 1091

TF15 7741 6334 80057 107320 81868 246138 43583 >63793 41012 1723

TF16 19320 15437 216173 323986 227796 >107703 142169 >29019 144257 1102

TF17 48629 38132 586218 >440453 >465868 >43370 >182890 >10465 >145969 1212

TF18 123867 95368 1597545 >146295 >130859 >17063 - >3960 >50392 1469

TF19 317955 241029 4370721 >42857 >44132 >5160 - >1478 >14317 1086

tomographic1 59360 45908 647495 65478 18912 >75149 >157297 >8915 1867 1837

Trec14 15904 3159 2872265 2005 1600 8542 >1 690 1598 16105

wheel 601 902103 723605 2170814 >21448 >21212 >4579 >7467 >762 >6083 >3554
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Table A.4: Time required for factors for subset CUTEst problems by each method

name m n nz(A) diagonal MIQR RIF MI35 MI30-MIN MA87

BAS1LP 9825 5411 587775 0.00 0.66 7.30 1.35 2.07 0.95

BAXTER 30733 27441 111576 0.00 0.31 1.34 0.28 0.98 0.38

BCDOUT 7078 5412 67344 0.00 0.40 1.51 0.46 0.29 0.39

CO9 22924 10789 109651 0.00 0.17 1.06 0.21 0.99 0.10

CONT11 L 1961394 1468599 5382999 0.02 >15.95 45.92 9.15 20.14 8.38

DBIR1 45775 18804 1077025 0.00 0.82 42.48 2.14 5.12 0.99

DBIR2 45877 18906 1158159 0.00 0.84 49.64 1.90 4.38 1.11

D2Q06C 5831 2171 33081 0.00 0.03 0.06 0.03 0.17 0.03

DELF000 5543 3128 13741 0.00 0.01 0.01 0.04 0.01 0.02

GE 16369 10099 44825 0.00 0.06 0.17 0.08 0.39 0.06

LARGE001 7176 4162 18887 0.00 0.01 0.01 0.01 0.02 0.02

LPL1 129959 39951 386218 0.00 0.26 0.44 0.92 3.59 0.38

MOD2 66409 34774 199810 0.00 0.43 2.23 0.98 1.31 0.29

MODEL10 16819 4400 150372 0.00 0.20 0.40 0.09 0.53 0.08

MPSBCD03 7078 5412 66210 0.00 0.39 1.57 0.42 0.37 0.40

NSCT2 37563 23003 697738 0.00 1.42 38.78 2.51 4.21 2.05

NSIR2 10057 4453 154939 0.00 0.21 2.49 0.21 0.18 0.15

PDE1 271792 270595 990587 0.00 >591.48 >600.02 >0.01 >600.82 >0.01

PDS-100 514577 156016 1096002 0.00 1.17 22.99 1.55 13.34 2.53

PDS-90 475448 142596 1014136 0.00 1.07 21.69 1.43 12.40 2.40

PILOT-JA 2267 940 14977 0.00 0.02 0.04 0.02 0.02 0.02

PILOTNOV 2446 975 13331 0.00 0.02 0.03 0.02 0.02 0.02

RAIL2586 923269 2586 8011362 0.01 2.33 110.81 2.17 3.83 1.25

RAIL4284 1096894 4284 11284032 0.02 4.75 352.77 4.18 11.91 2.46

SPAL 004 321696 10203 46168124 0.08 9.61 >601.39 71.76 43.20 73.46

STAT96V2 957432 29089 2852184 0.01 0.15 0.65 0.27 1.12 0.26

STAT96V3 1113780 33841 3317736 0.01 0.17 0.78 0.32 1.32 0.37

STAT96V4 63076 3173 491336 0.00 0.04 2.36 0.08 0.22 0.05

STORMG21K 1377306 526185 3459881 0.01 42.59 >600.04 30.21 62.51 113.37

WATSON 1 386992 201155 1055093 0.00 1.69 0.53 1.48 1.02 1.15

WATSON 2 677224 352013 1846391 0.01 5.04 4.22 2.85 1.97 2.21

WORLD 67147 34506 198883 0.00 0.41 2.17 0.74 3.73 0.29

33



Table A.4: Time required for factors for subset UF problems by each method

name m n nz(A) diagonal MIQR RIF MI35 MI30-MIN MA87

12month1 872622 12471 22624727 0.04 15.03 >600.67 170.63 363.98 117.64

162bit 3606 3476 37118 0.00 0.43 1.80 0.13 0.17 0.14

176bit 7441 7150 82270 0.00 1.16 8.51 0.28 0.47 0.64

192bit 13691 13093 154303 0.00 2.40 30.75 0.46 0.75 2.54

208bit 24430 23191 299756 0.00 4.77 109.27 0.98 1.91 11.70

beaflw 500 492 53403 0.00 0.06 0.18 0.09 0.12 0.07

c8 mat11 5761 4562 2462970 0.01 4.37 66.65 30.65 8.03 23.21

connectus 394707 458 1127525 0.00 0.11 2.32 0.22 0.60 0.17

ESOC 327062 37349 6019939 0.01 6.34 >600.14 3.35 340.01 3.94

EternityII Etilde 204304 10054 1170516 0.00 0.63 38.64 1.14 2.25 0.47

f855 mat9 2511 2456 171214 0.00 0.63 3.01 0.88 0.55 0.74

GL7d16 955127 460260 14488881 0.03 278.05 >600.74 74.74 229.19 >600.86

GL7d17 1548649 955127 25978098 0.06 >600.05 >601.73 311.42 >600.18 >600.11

GL7d18 1955309 1548645 35590540 0.08 >600.00 >602.63 >600.40 >600.43 >600.59

GL7d19 1955296 1911130 37322725 0.08 >600.32 >602.93 >600.46 >600.00 >600.45

GL7d20 1911124 1437546 29893084 0.07 >600.27 >602.04 412.34 >600.59 >600.22

GL7d21 1437546 822922 18174775 0.04 >600.30 >601.12 75.82 >600.79 >600.90

GL7d22 822906 349443 8251000 0.02 167.10 >600.39 22.34 198.70 >600.65

GL7d23 349443 105054 2695430 0.01 23.48 >600.09 5.26 98.90 >600.43

graphics 29493 11822 117954 0.00 0.09 0.17 0.04 0.08 0.06

HFE18 96 in 2372 2371 933343 0.00 1.13 14.67 5.80 0.76 3.31

IG5-15 11369 6146 323509 0.00 0.99 9.91 0.70 1.98 1.50

IG5-16 18846 9519 588326 0.00 1.84 27.11 1.68 1.59 3.75

IG5-17 30162 14060 1035008 0.00 3.26 70.73 2.72 7.52 11.09

IG5-18 47894 20818 1790490 0.00 5.88 182.75 6.82 10.52 38.25

IMDB 896302 303617 3782463 0.01 51.43 >600.23 40.43 131.77 >205.71

kneser 10 4 1 349651 330751 992252 0.00 9.22 >20.61 5.69 15.88 31.95

landmark 71952 2673 1146848 0.00 0.27 1.12 0.28 0.52 0.18

LargeRegFile 2111154 801374 4944201 0.01 10.46 >600.08 2.50 57.99 127.40

Maragal 6 21251 10144 537694 0.00 2.41 41.79 13.15 2.31 17.11

Maragal 7 46845 26525 1200537 0.00 8.64 145.90 45.06 8.91 56.28

Maragal 8 60845 33093 1308415 0.00 16.17 205.65 5.18 3.10 14.09

mri1 114637 65536 589824 0.00 1.25 95.20 2.23 2.07 0.53

mri2 104597 63240 569160 0.00 4.07 68.05 4.84 6.73 3.98

NotreDame actors 383640 127823 1470404 0.01 11.45 >600.04 9.09 31.35 591.52

psse0 26722 11028 102432 0.00 0.07 0.04 0.02 0.07 0.14

psse1 14318 11028 57376 0.00 0.09 0.05 0.03 0.03 0.03

psse2 28634 11028 115262 0.00 0.08 0.13 0.04 0.06 0.04

rel9 5921786 274667 23667183 0.04 15.81 >601.16 56.51 >600.26 >600.42

relat9 9746232 274667 38955420 0.07 14.14 >602.27 62.22 >600.49 >600.26

Rucci1 1977885 109900 7791168 0.01 2.40 179.08 2.55 39.35 7.97

sls 1748122 62729 6804304 0.01 1.60 >601.94 6.62 14.26 24.23

TF14 3159 2644 29862 0.00 0.23 0.43 0.06 0.21 0.11

TF15 7741 6334 80057 0.00 0.76 2.66 0.20 0.46 0.59

TF16 19320 15437 216173 0.00 2.47 17.64 0.45 1.17 5.74

TF17 48629 38132 586218 0.00 7.66 120.76 1.21 4.23 77.31

TF18 123867 95368 1597545 0.00 24.45 >600.03 3.50 13.48 >21.69

TF19 317955 241029 4370721 0.01 84.67 >600.09 10.60 40.42 >224.19

tomographic1 59360 45908 647495 0.00 2.92 3.12 1.46 1.61 1.52

Trec14 15904 3159 2872265 0.00 2.39 58.89 26.88 11.27 19.05

wheel 601 902103 723605 2170814 0.01 20.63 39.95 30.90 49.67 >600.25
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Table A.5: Total time required for subset CUTEst problems by each method

name m n nz(A) no diagonal MIQR RIF BA-G MI35 MI30-MIN MA87

BAS1LP 9825 5411 587775 8.37 5.80 74.22 >600.33 92.27 8.77 49.65 0.99

BAXTER 30733 27441 111576 73.77 >600.00 0.51 >601.34 >600.01 >600.28 >600.33 0.40

BCDOUT 7078 5412 67344 15.18 18.57 >600.40 >601.51 >600.00 64.14 142.05 0.40

CO9 22924 10789 109651 6.59 1.69 4.68 5.62 32.24 0.53 1.53 0.10

CONT11 L 1961394 1468599 5382999 9.58 11.24 - 51.37 39.39 11.83 25.45 9.65

DBIR1 45775 18804 1077025 2.91 4.87 131.85 >600.49 8.02 8.02 >600.27 1.03

DBIR2 45877 18906 1158159 43.93 5.16 148.55 >600.67 26.50 4.40 >600.46 1.15

D2Q06C 5831 2171 33081 3.70 0.12 0.16 2.03 0.48 0.07 0.20 0.03

DELF000 5543 3128 13741 16.12 1.98 0.14 4.38 27.21 0.05 0.03 0.03

GE 16369 10099 44825 11.81 1.46 0.60 0.61 7.31 0.11 0.54 0.06

LARGE001 7176 4162 18887 3.65 2.51 13.35 427.11 38.54 0.03 0.06 0.03

LPL1 129959 39951 386218 62.09 6.99 2.76 >600.45 30.19 2.85 4.46 0.41

MOD2 66409 34774 199810 7.86 1.28 7.44 99.95 14.93 1.44 2.06 0.31

MODEL10 16819 4400 150372 6.23 0.48 3.06 47.21 1.55 0.44 0.87 0.08

MPSBCD03 7078 5412 66210 17.87 22.69 >600.39 >601.57 >600.00 65.92 158.56 0.41

NSCT2 37563 23003 697738 12.03 1.88 67.30 >600.79 2.90 3.84 >600.28 2.10

NSIR2 10057 4453 154939 2.19 0.17 16.27 >600.50 0.66 0.38 104.00 0.15

PDE1 271792 270595 990587 5.79 7.59 - - >600.05 - - -

PDS-100 514577 156016 1096002 7.75 3.88 5.51 25.92 3.82 3.53 17.60 2.73

PDS-90 475448 142596 1014136 6.45 3.56 4.80 24.24 3.47 3.12 16.83 2.57

PILOT-JA 2267 940 14977 4.00 0.08 0.04 1.71 0.17 0.08 0.04 0.02

PILOTNOV 2446 975 13331 2.35 0.07 0.03 1.17 0.14 0.04 0.03 0.02

RAIL2586 923269 2586 8011362 31.83 14.22 25.87 117.90 47.76 6.58 4.79 1.54

RAIL4284 1096894 4284 11284032 41.94 35.47 44.83 369.62 88.69 14.09 14.59 2.91

SPAL 004 321696 10203 46168124 >600.18 374.89 >600.81 - 4.76 466.94 >600.72 74.99

STAT96V2 957432 29089 2852184 12.98 9.55 6.27 6.09 16.31 0.55 2.39 0.35

STAT96V3 1113780 33841 3317736 16.34 11.98 7.63 7.46 18.75 0.65 3.13 0.48

STAT96V4 63076 3173 491336 3.48 0.69 1.64 2.75 1.53 0.10 0.32 0.06

STORMG21K 1377306 526185 3459881 33.31 5.09 >600.67 - >600.94 167.08 >600.67 115.19

WATSON 1 386992 201155 1055093 14.62 3.25 4.28 3.27 3.77 2.83 1.40 1.25

WATSON 2 677224 352013 1846391 22.86 5.03 9.25 8.22 5.98 4.67 2.59 2.38

WORLD 67147 34506 198883 6.57 1.24 5.23 54.05 14.52 1.24 4.33 0.31
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Table A.5: Total time required for subset UF problems by each method

name m n nz(A) no diagonal MIQR RIF BA-G MI35 MI30-MIN MA87

12month1 872622 12471 22624727 >600.12 17.11 73.17 - 29.84 192.66 419.45 118.47

162bit 3606 3476 37118 2.77 0.33 1.24 2.18 0.67 0.18 0.34 0.15

176bit 7441 7150 82270 32.68 1.77 7.35 10.64 4.98 0.60 1.88 0.66

192bit 13691 13093 154303 145.33 6.80 23.16 38.23 107.45 2.19 5.50 2.61

208bit 24430 23191 299756 566.32 20.49 83.52 137.37 215.02 7.12 23.16 11.88

beaflw 500 492 53403 1.83 1.85 7.26 >0.18 0.50 2.61 >600.61 0.08

c8 mat11 5761 4562 2462970 123.49 116.55 >600.38 >600.66 >600.03 125.79 >600.84 23.29

connectus 394707 458 1127525 10.86 0.05 0.75 2.37 0.16 0.26 0.71 0.20

ESOC 327062 37349 6019939 152.70 398.52 >600.39 - >600.23 >603.38 >600.05 4.21

EternityII Etilde 204304 10054 1170516 6.88 5.81 10.79 43.13 7.94 4.16 4.36 0.52

f855 mat9 2511 2456 171214 2.08 2.54 219.75 77.67 >600.01 4.25 >600.44 0.75

GL7d16 955127 460260 14488881 7.11 5.82 333.57 - 7.04 80.55 246.11 -

GL7d17 1548649 955127 25978098 14.63 12.47 - - 15.01 323.25 - -

GL7d18 1955309 1548645 35590540 30.68 25.32 - - 26.39 - - -

GL7d19 1955296 1911130 37322725 79.19 21.12 - - 38.93 - - -

GL7d20 1911124 1437546 29893084 43.87 10.14 - - 23.70 428.69 - -

GL7d21 1437546 822922 18174775 24.30 4.82 - - 10.40 83.70 - -

GL7d22 822906 349443 8251000 14.51 1.63 191.82 - 3.51 25.00 210.17 -

GL7d23 349443 105054 2695430 4.70 0.43 27.15 - 0.97 5.88 101.50 -

graphics 29493 11822 117954 >600.00 131.90 266.73 117.27 >600.00 1.42 0.51 0.07

HFE18 96 in 2372 2371 933343 28.72 12.30 31.62 25.68 51.44 19.44 54.85 3.34

IG5-15 11369 6146 323509 2.51 0.31 1.19 10.19 0.88 0.91 3.44 1.54

IG5-16 18846 9519 588326 8.14 0.96 2.27 27.85 2.64 2.27 5.54 3.82

IG5-17 30162 14060 1035008 19.59 1.92 4.11 71.91 3.90 3.81 14.00 11.25

IG5-18 47894 20818 1790490 47.51 4.77 7.96 185.81 8.09 9.31 28.20 38.58

IMDB 896302 303617 3782463 >600.08 >600.06 >600.69 - >600.35 >640.51 >600.87 -

kneser 10 4 1 349651 330751 992252 162.24 120.85 >600.28 - >600.14 138.66 152.51 32.83

landmark 71952 2673 1146848 33.28 1.67 0.34 1.58 1.85 0.31 0.69 0.21

LargeRegFile 2111154 801374 4944201 42.50 3.00 24.82 - 3.08 3.66 67.27 127.83

Maragal 6 21251 10144 537694 3.78 2.11 24.19 >600.80 4.42 14.48 7.85 17.22

Maragal 7 46845 26525 1200537 16.32 6.08 41.25 >151.90 5.28 47.83 18.50 56.57

Maragal 8 60845 33093 1308415 >600.01 >600.01 >600.18 >600.66 >600.07 >605.19 >600.18 14.30

mri1 114637 65536 589824 13.39 15.33 60.08 102.66 68.69 16.27 2.99 0.58

mri2 104597 63240 569160 20.90 24.62 49.53 >68.07 43.48 22.23 156.20 4.07

NotreDame actors 383640 127823 1470404 >600.02 >600.02 >600.52 - >600.05 >609.12 >600.39 593.90

psse0 26722 11028 102432 49.79 13.48 1.28 11.99 358.86 0.09 0.12 0.14

psse1 14318 11028 57376 38.77 15.38 3.96 >600.05 509.79 0.41 0.19 0.04

psse2 28634 11028 115262 56.29 17.98 6.44 >600.13 >600.01 0.49 0.37 0.05

rel9 5921786 274667 23667183 25.00 16.49 38.17 - 24.04 66.04 - -

relat9 9746232 274667 38955420 33.85 26.92 42.44 - 39.81 76.63 - -

Rucci1 1977885 109900 7791168 >600.05 343.67 >600.47 261.20 >600.42 >602.63 133.04 8.51

sls 1748122 62729 6804304 30.31 8.59 30.25 - 9.41 10.11 16.99 24.94

TF14 3159 2644 29862 1.84 1.83 36.66 2.71 7.02 2.53 0.76 0.11

TF15 7741 6334 80057 14.57 14.46 513.65 21.79 >600.01 21.91 2.64 0.62

TF16 19320 15437 216173 110.15 99.55 >600.48 172.42 >600.00 195.85 5.27 5.87

TF17 48629 38132 586218 >600.00 >600.01 >600.68 >600.77 >600.01 >601.21 17.34 77.98

TF18 123867 95368 1597545 >600.01 >600.01 >600.49 - >600.01 >603.52 70.49 -

TF19 317955 241029 4370721 >600.03 >600.03 >600.75 - >600.03 >610.63 179.21 -

tomographic1 59360 45908 647495 119.00 33.46 >600.93 >600.18 >600.10 11.05 22.58 1.61

Trec14 15904 3159 2872265 7.24 5.53 32.63 >58.91 44.57 32.66 203.92 19.13

wheel 601 902103 723605 2170814 >600.05 >600.06 >600.77 >600.07 >600.40 >631.06 >600.76 -
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Table A.6: Residuals obtained for subset CUTEst problems by each method

name no diagonal MIQR RIF BA-G MI35 MI30-MIN MA87 MA97 SPQR

BAS1LP 5.54E+1 5.54E+1 5.54E+1 - 5.54E+1 5.54E+1 5.54E+1 5.54E+1 5.54E+1 5.54E+1

BAXTER 9.76E+1 - 9.18E+1 - - - - 5.93E+1 6.50E+1 5.92E+1

BCDOUT 3.54E+1 3.53E+1 - - - 3.53E+1 3.54E+1 3.53E+1 3.53E+1 3.53E+1

CO9 8.91E+1 8.91E+1 8.91E+1 8.91E+1 8.91E+1 8.91E+1 8.92E+1 8.91E+1 8.91E+1 8.91E+1

CONT11 L 8.09E+2 8.09E+2 - 8.09E+2 8.09E+2 8.09E+2 8.09E+2 8.09E+2 8.09E+2 8.09E+2

DBIR1 1.67E+2 1.66E+2 1.66E+2 - 1.66E+2 1.67E+2 - 1.66E+2 1.66E+2 1.66E+2

DBIR2 1.67E+2 1.66E+2 1.66E+2 - 1.66E+2 1.67E+2 - 1.66E+2 1.66E+2 1.66E+2

D2Q06C 3.49E+1 3.49E+1 3.49E+1 3.49E+1 3.49E+1 3.49E+1 3.49E+1 3.49E+1 3.49E+1 3.49E+1

DELF000 5.38E+1 5.38E+1 5.38E+1 5.38E+1 5.38E+1 5.38E+1 5.38E+1 5.38E+1 5.38E+1 5.38E+1

GE 7.25E+1 7.24E+1 7.24E+1 7.24E+1 7.24E+1 7.24E+1 7.24E+1 7.24E+1 7.24E+1 7.24E+1

LARGE001 6.06E+1 6.06E+1 6.06E+1 6.06E+1 6.06E+1 6.06E+1 6.07E+1 6.06E+1 6.06E+1 6.06E+1

LPL1 7.08E+1 7.08E+1 7.08E+1 - 7.08E+1 7.08E+1 7.09E+1 7.08E+1 7.08E+1 7.08E+1

MOD2 1.38E+2 1.38E+2 1.38E+2 1.38E+2 1.38E+2 1.38E+2 1.39E+2 1.38E+2 1.38E+2 1.38E+2

MODEL10 5.35E+1 5.35E+1 5.35E+1 5.35E+1 5.35E+1 5.35E+1 5.36E+1 5.35E+1 5.35E+1 5.35E+1

MPSBCD03 3.53E+1 3.53E+1 - - - 3.53E+1 3.53E+1 3.52E+1 3.52E+1 3.52E+1

NSCT2 1.83E+2 1.83E+2 1.83E+2 - 1.83E+2 1.83E+2 - 1.83E+2 1.83E+2 1.83E+2

NSIR2 8.05E+1 8.04E+1 8.04E+1 - 8.04E+1 8.05E+1 8.05E+1 8.04E+1 8.04E+1 8.04E+1

PDE1 3.03E+2 3.03E+2 - - - - - - 3.03E+2 -

PDS-100 2.84E+2 2.84E+2 2.84E+2 2.84E+2 2.84E+2 2.84E+2 2.85E+2 2.84E+2 2.84E+2 2.84E+2

PDS-90 2.68E+2 2.68E+2 2.68E+2 2.68E+2 2.68E+2 2.68E+2 2.68E+2 2.68E+2 2.68E+2 2.68E+2

PILOT-JA 3.32E+1 3.19E+1 3.19E+1 3.19E+1 3.19E+1 3.19E+1 3.20E+1 3.19E+1 3.19E+1 3.19E+1

PILOTNOV 3.50E+1 3.28E+1 3.28E+1 3.28E+1 3.28E+1 3.28E+1 3.29E+1 3.28E+1 3.28E+1 3.28E+1

RAIL2586 1.41E+2 1.41E+2 1.41E+2 1.41E+2 1.41E+2 1.41E+2 1.41E+2 1.41E+2 1.41E+2 1.41E+2

RAIL4284 1.69E+2 1.69E+2 1.69E+2 1.69E+2 1.69E+2 1.69E+2 1.69E+2 1.69E+2 1.69E+2 -

SPAL 004 - 5.65E-6 - - 3.24E-11 5.65E-6 - 5.31E-8 - -

STAT96V2 9.72E+2 9.72E+2 9.72E+2 9.72E+2 9.72E+2 9.72E+2 9.73E+2 9.72E+2 9.72E+2 9.72E+2

STAT96V3 1.04E+3 1.04E+3 1.04E+3 1.04E+3 1.04E+3 1.04E+3 1.05E+3 1.04E+3 1.04E+3 1.04E+3

STAT96V4 1.20E+2 1.20E+2 1.20E+2 1.20E+2 1.20E+2 1.20E+2 1.21E+2 1.20E+2 1.20E+2 1.20E+2

STORMG21K 8.96E+2 8.96E+2 - - - 8.96E+2 - 8.96E+2 - -

WATSON 1 2.54E+2 2.54E+2 2.54E+2 2.54E+2 2.54E+2 2.54E+2 2.55E+2 2.54E+2 2.54E+2 2.54E+2

WATSON 2 3.35E+2 3.35E+2 3.35E+2 3.35E+2 3.35E+2 3.35E+2 3.36E+2 3.35E+2 3.35E+2 3.35E+2

WORLD 1.40E+2 1.40E+2 1.40E+2 1.40E+2 1.40E+2 1.40E+2 1.41E+2 1.40E+2 1.40E+2 1.40E+2
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Table A.6: Residuals obtained for subset UF problems by each method

name no diagonal MIQR RIF BA-G MI35 MI30-MIN MA87 MA97 SPQR

12month1 - 9.27E+2 9.27E+2 - 9.27E+2 9.27E+2 9.27E+2 9.27E+2 - -

162bit 1.17E+1 1.17E+1 1.17E+1 1.17E+1 1.17E+1 1.17E+1 1.18E+1 1.17E+1 1.17E+1 1.17E+1

176bit 1.84E+1 1.84E+1 1.84E+1 1.84E+1 1.84E+1 1.84E+1 1.84E+1 1.84E+1 1.84E+1 1.84E+1

192bit 2.48E+1 2.48E+1 2.48E+1 2.48E+1 2.48E+1 2.48E+1 2.49E+1 2.48E+1 2.48E+1 2.48E+1

208bit 3.86E+1 3.85E+1 3.84E+1 3.85E+1 3.84E+1 3.84E+1 3.85E+1 3.84E+1 3.84E+1 3.84E+1

beaflw 5.05E+0 4.57E+0 4.60E+0 - 4.33E+0 4.68E+0 - 4.37E+0 4.52E+0 4.16E+0

c8 mat11 2.21E+1 2.19E+1 - - - 2.19E+1 - 2.12E+1 2.14E+1 2.12E+1

connectus 6.27E+2 6.27E+2 6.27E+2 6.27E+2 6.27E+2 6.27E+2 6.28E+2 6.27E+2 6.27E+2 6.27E+2

ESOC 4.04E+2 2.23E+1 - - - - - 3.64E-1 1.51E+1 5.97E-9

EternityII Etilde 4.47E-6 4.43E-6 4.37E-6 4.47E-6 5.33E-6 4.33E-6 1.19E-4 1.03E-7 1.03E-5 1.08E-12

f855 mat9 1.79E+1 1.79E+1 1.75E+1 1.67E+1 - 1.79E+1 - 1.34E+1 1.60E+1 1.90E+4

GL7d16 7.48E+2 7.48E+2 7.48E+2 - 7.48E+2 7.48E+2 7.49E+2 - - -

GL7d17 8.98E+2 8.98E+2 - - 8.98E+2 8.98E+2 - - - -

GL7d18 9.31E+2 9.31E+2 - - 9.31E+2 9.31E+2 - - - -

GL7d19 1.04E+3 1.04E+3 - - 1.04E+3 1.04E+3 - - - -

GL7d20 1.09E+3 1.09E+3 - - 1.09E+3 1.09E+3 - - - -

GL7d21 1.00E+3 1.00E+3 - - 1.00E+3 1.00E+3 - - - -

GL7d22 7.89E+2 7.89E+2 7.89E+2 - 7.89E+2 7.89E+2 7.89E+2 - - -

GL7d23 5.35E+2 5.35E+2 5.35E+2 - 5.35E+2 5.35E+2 5.36E+2 - - -

graphics - 3.03E-4 3.03E-4 3.03E-4 - 3.03E-4 3.03E-4 3.55E+0 3.93E+1 3.03E-4

HFE18 96 in 4.91E-1 4.90E-1 4.90E-1 4.90E-1 4.90E-1 4.90E-1 4.91E-1 4.90E-1 4.90E-1 4.90E-1

IG5-15 5.48E+1 5.48E+1 5.48E+1 5.48E+1 5.48E+1 5.48E+1 5.49E+1 5.48E+1 5.48E+1 5.48E+1

IG5-16 7.15E+1 7.15E+1 7.15E+1 7.15E+1 7.15E+1 7.15E+1 7.15E+1 7.15E+1 7.15E+1 7.15E+1

IG5-17 9.10E+1 9.10E+1 9.10E+1 9.10E+1 9.10E+1 9.10E+1 9.10E+1 9.10E+1 9.10E+1 9.10E+1

IG5-18 1.15E+2 1.15E+2 1.15E+2 1.15E+2 1.15E+2 1.15E+2 1.15E+2 1.15E+2 1.15E+2 1.15E+2

IMDB - - - - - - - - - -

kneser 10 4 1 1.62E+2 1.62E+2 - - 1.62E+2 1.62E+2 1.62E+2 - 1.63E+2

landmark 1.31E-5 1.12E-5 1.12E-5 1.12E-5 1.15E-5 1.12E-5 8.59E-5 1.12E-5 1.12E-5 1.12E-5

LargeRegFile 4.44E+2 4.44E+2 4.44E+2 - 4.44E+2 4.44E+2 4.44E+2 4.44E+2 4.44E+2 4.44E+2

Maragal 6 9.39E+1 9.39E+1 9.38E+1 - 9.38E+1 9.39E+1 9.39E+1 9.38E+1 9.38E+1 9.48E+1

Maragal 7 1.33E+2 1.33E+2 1.33E+2 - 1.33E+2 1.33E+2 1.33E+2 1.33E+2 1.33E+2 1.34E+2

Maragal 8 - - - - - - - 2.38E+2 2.38E+2 2.37E+2

mri1 2.67E+1 2.67E+1 2.67E+1 2.67E+1 2.67E+1 2.67E+1 2.67E+1 2.67E+1 2.67E+1 3.56E+13

mri2 1.41E+2 1.41E+2 1.41E+2 - 1.41E+2 1.41E+2 1.41E+2 1.41E+2 - 1.25E+24

NotreDame actors - - - - - - - 5.18E+2 - -

psse0 1.62E+2 1.62E+2 1.62E+2 1.62E+2 1.62E+2 1.62E+2 1.63E+2 1.62E+2 1.62E+2 1.62E+2

psse1 5.44E+1 5.43E+1 5.43E+1 - 5.43E+1 5.43E+1 5.44E+1 5.43E+1 5.43E+1 5.43E+1

psse2 1.65E+2 1.65E+2 1.65E+2 - - 1.65E+2 1.66E+2 1.65E+2 1.65E+2 1.65E+2

rel9 1.54E+3 1.54E+3 1.54E+3 - 1.54E+3 1.54E+3 - - - -

relat9 3.05E+3 3.05E+3 3.05E+3 - 3.05E+3 3.05E+3 - - - -

Rucci1 - 7.27E+2 - 7.27E+2 - - 7.28E+2 7.27E+2 7.27E+2 7.27E+2

sls 1.29E-5 1.23E-5 1.28E-5 1.18E-5 2.09E-4 1.01E-5 1.73E-5 1.06E-7 1.06E-5 -

TF14 5.57E-7 5.61E-7 5.50E-7 5.41E-7 5.37E-9 5.61E-7 6.23E-3 6.34E-8 6.29E-6 5.63E-14

TF15 8.78E-7 8.77E-7 8.79E-7 8.69E-7 - 8.77E-7 1.13E-2 2.40E-7 2.28E-5 1.35E-13

TF16 1.38E-6 1.38E-6 - 1.38E-6 - 1.38E-6 1.52E-2 9.42E-7 6.96E-5 3.16E-13

TF17 - - - - - - 2.14E-2 3.66E-6 - -

TF18 - - - - - - 3.19E-2 - - -

TF19 - - - - - - 4.26E-2 - - -

tomographic1 4.20E+1 4.19E+1 - - - 4.19E+1 4.19E+1 4.18E+1 4.18E+1 4.18E+1

Trec14 1.12E+2 1.12E+2 1.12E+2 - 1.12E+2 1.12E+2 1.12E+2 1.12E+2 1.12E+2 1.12E+2

wheel 601 - - - - - - - - 4.22E+2 -
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