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Abstract. The large variation in betatron tune over the energy range ofthe EMMA non-scaling FFAG, and the rapidity of
the acceleration, result in novel features in the properties of orbit distortion. The crossing of many integer tune resonances
is achieved through fast crossing. It is clear that standardharmonic correction is not applicable since the phase advance
between lattice elements varies with momentum. Two correction methods that reduce orbit distortion due to transverse magnet
misalignments are presented.
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INTRODUCTION

Bending and focusing in the EMMA FFAG is achieved using quadrupole doublets in which the beam pipe is offset
from the magnet centres. There are 42 cells and in every second cell a 1.3 GHz rf cavity sits in the middle of the
long drift (apart from at injection and extraction). For thepurposes of this paper the 19 cavities are each set to 120kV
allowing acceleration from 10-20 MeV to be completed in 6 turns. This is the maximum allowed voltage on each
cavity in the current EMMA design. A novel ’serpentine’ modeof acceleration is followed in which the rf frequency
remains fixed [1], [2]. The details of the EMMA lattice are discussed in [3] and [4].

The quadrupoles are mounted on mechanical sliders which enable correction of misalignments in the horizontal
direction. There is also the possibility to install vertical corrector magnets at various points in the lattice. The dipole
field of these magnets will remain constant during the short acceleration time.

In this study the tracking code PTC (Polymorphic tracking code) [5], [6] and the beam optics code MAD-X [9] are
employed to calculate the orbit distortion. PTC allows modelling of offset quadrupoles and includes an analytic model
of the quadrupole fringe field [7].

ORBIT DISTORTION

A feature of a non-scaling FFAG with rapid acceleration is that the orbit distortion does not see the integer tune
resonances that, in a slow cycling machine, are excited by magnet misalignments. As the tune in EMMA varies by
approximately one integer for every turn, the concept of resonance is not applicable (Fig. 1). As is clear from the
figure, the peaks in the closed orbit distortion that correspond to integer values of total tune do not appear when
acceleration is included. The fact that there is no structure in the orbit distortion with acceleration that is related to
integer tune values shows that a non-scaling FFAG with rapidacceleration does not experience resonances. Instead the
orbit distortion is excited by random dipole kicks due to themagnet misalignments [8]. This orbit distortion we may
refer to as the ’accelerated orbit distortion’ to make a distinction with the closed orbit distortion that is calculatedat
fixed momentum.

In order to find the level of magnet misalignments that can be tolerated in EMMA, the amplification factor, defined
as the ratio of the maximum orbit distortion to the standard deviation of the input misalignments, is calculated. The
beam is tracked through 300 lattices, each with different random misalignments. The standard deviation of the magnet
misalignments is increased from 1-150µm and the maximum orbit distortion noted. A linear fit throughthis set of
data yields the amplification factor (Fig. 2). This is found to be 89 in the horizontal plane and 72 in the vertical when
operating at 120kV per cavity.

It should be noted that the injection phase space coordinates of the beam are found by calculating the closed orbit
at injection energy. If the tune is too close to integer at theinjection energy, a significant increase in the accelerated



orbit distortion will result. Even if the injection tune is not close to integer, it should be noted that the closed orbit
at injection energy does not give optimal initial conditions that minimise the accelerated orbit distortion. A method
to optimise the injection parameters is presented in the next section of this paper, but at this point it is reasonable to
assume that the closed orbit should be used.
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FIGURE 1. Vertical tune as a function of kinetic energy (top) and a comparison of the closed and accelerated orbit distortion in
the vertical plane due to magnet misalignments (bottom). The peaks in the closed orbit distortion coincide with integervertical tune
(circles, top). It is clear that no such structure exists in the case with acceleration.
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FIGURE 2. Dependence of maximum horizontal (pluses) and vertical (circles) accelerated orbit distortion on the standard
deviation of random magnet misalignments. The lines show the linear fit to the data in the horizontal (solid) and vertical(dash)
cases.

Since the orbit distortion is due to the cumulative effect ofrandom dipole kicks at the misaligned quadrupoles, the
amplification factor should scale with the square root of thenumber of quadrupoles, i.e. the number of turns taken to
complete acceleration. Therefore a prediction of the amplification factor can be made at different acceleration rates,
scaling from the already calculated value at 120kV per cavity. This scaling is applied to predict the amplification factor
in the range 55kV− 180kV per cavity, corresponding to a range of 4− 18 in the number of turns required to reach
20MeV. These predicted values are compared to the amplification factor calculated by tracking in 100 misaligned
lattices (Fig.3). It is clear that the prediction is consistent with the tracking results (apart from a deviation in the
horizontal case above 16 turns per cavity). The maximum voltage on each cavity in EMMA is about 120kV. As
mentioned above, the horizontal amplification factor at this acceleration rate is about 90. This means that a magnet
misalignment of 50µm will lead to a maximum orbit distortion of 4.5mm. This level of orbit distortion is significantly
above tolerance≈ 1mm.
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FIGURE 3. Dependence of the amplification factor on the number of turnsrequired to complete acceleration corresponding
to horizontal (pluses) and vertical (circles) misalignments. The amplification factor is calculated based on 100 random magnet
misalignments with standard deviation in the range 1− 60µm. The lines show the predicted amplification factor based onthe
square root of the number of turns in the horizontal (solid) and vertical (dash) cases.

ORBIT CORRECTION

Conventional orbit correction relies on a constant phase advance between the corrector magnet and beam position
monitor (BPM). This is shown in Eq. 1 whereδxi is the horizontal shift in the beam orbit at BPMi, β is the the
betatron function,ncorr is the number of correctors,B j andl j is the dipole field and length of correctorj, Bρ is the
rigidity, νx is the horizontal betatron tune andφi −φ j is the phase advance between correctorj and BPMi. In EMMA
the phase advanceφi −φ j, and thereforeδxi, varies strongly with momentum (assuming that corrector magnet dipole
field B j remains constant during acceleration).

δxi =

√

βi

2sin(πνx)

ncorr

∑
j=1

B jl j

Bρ

√

β j cos[νxπ +(φi −φ j)] (1)

Local Correction

The inclusion of horizontal sliders under each quadrupole enables correction of misalignments in that plane.
Determining the magnet misalignments is the subject of thissection. Since a quadrupole misalignment is equivalent
to a dipole kick, the BPM measurementsmi will follow from Eq. 1.

mi = mideal +
nquad

∑
j=1

∆x jRi j +
ncorr

∑
j=1

θ jTi j (2)

where∆x j is the misalignment of quadrupolej, mideal is BPM measurement that would be made with perfectly
aligned magnets andRi j is the response coefficient that gives the closed orbit distortion at the measurement points
due to the magnet misalignments,Ti j is the response matrix relating closed orbit distortion to corrector magnet kick

angleθi j =
B j l j
Bρ (as in Eq. 1). The beam optics code MAD-X [9] includes the MICADO correction algorithm [10]

that will find the set of corrector kick anglesθ j that minimises the closed orbit distortion at the BPMs. The magnet
misalignments can be calculated from the corrector kick angles by placing ’virtual’ corrector magnets in the centre of
each quadrupole and noting∆x j = θ j/(k jl j), wherek j is the normal quadrupole coefficient andl j its length.

To begin, we assume that the BPMs have no errors associated with them. We also make the assumption that the
BPM measurementsmideal in the perfect lattice are known. The accuracy, i.e. the standard deviation of the absolute
difference between the calculated and input misalignments, is shown in Fig. 4. A linear fit to the data implies that the
standard deviation in the misalignment calculation error is about 2% of the standard deviation of the misalignments
themselves.

BPM offset errors can be included in the MAD-X correction algorithm. The effect of their inclusion is shown in
Fig. 5. As before, the standard deviation in the magnet misalignment calculation is shown, in this case against the
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FIGURE 4. Dependence of standard deviation in magnet misalignment calculation on the standard deviation of the input magnet
misalignments. Each data point uses a different misalignment error pattern. The BPM measurements are assumed to be perfect.
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FIGURE 5. Dependence of standard deviation in magnet misalignment calculation on the standard deviation of the BPM offsets.
Each data point uses a different misalignment error pattern. The magnets were misaligned with a standard deviation of 50µm.

standard deviation in the BPM offsets. In the figure it was assumed that the magnets are misaligned with a standard
deviation of 50µm. In fact, the dependence is found to be so insensitive to theinput magnet misalignments that any
adjustments made would not be visible in the figure. It is clear that the calculation of magnet displacements is extremely
sensitive to the level of BPM errors. The accuracy with whichthe magnetic misalignments should be determined is
given by the amplification factor discussed above. Methods that reduce this sensitivity to BPM errors are currently
under investigation.

Overall correction

As noted above, conventional harmonic correction with corrector magnets will not work in a non-scaling FFAG
such as EMMA. Instead a method that, on average, reduces the accelerated orbit distortion calculated over the entire
energy range is proposed. The parameters to be adjusted in this optimisation are the corrector magnet strengths and
the injection phase space variables. In the PTC code differential algebra is used to construct Taylor maps of arbitrary
order. A set of Taylor coefficientsAi j corresponding to the linear dependence of each BPM measurementyi on each

corrector magnetj that preceded it can then be created, i.e.Ai j = δyi
δθ j

. Note that the number of measurements is the

product of the number of BPMs and the number of turns. We may write

A ·θ = −ybpm (3)

whereθ is the set of corrector strengths andybpm the measured distortion. The least squares problem can be solved for
the corrector strengthsθ via QR Decomposition.



The same method can be used to calculate the optimal injection phase space variables. Eq. 3 in this case becomes

A ·ζinitial = −ξbpm (4)

whereζ is the set of transverse phase space coordinates. In this example we consider only the vertical component of
BPM measurements and injection phase variables, i.e.ζinitial = (y,y′). Fig. 6 show how the vertical orbit distortion
is, on average, reduced by optimisingζinitial . Alternative constraints may be preferred when determining ζinitial , for
example it might be preferred to reduce the maximum orbit distortion rather than the mean value. Calculated as a mean
over 100 misalignment error patterns, the orbit distortionstandard deviation is improved by 36%.
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FIGURE 6. Vertical accelerated orbit distortion measured at BPMs against kinetic energy with initial(y,y′) from the closed orbit
at the injection energy (dash) or set to values optimised by overall correction (solid). The magnets were misaligned with a standard
deviation of 50µm.

Having optimised the injection parameters, further improvements in the orbit distortion can be made by optimising
the corrector magnet strengths (Eq. 3). It is of interest to determine the dependence of the orbit distortion reduction on
the number of corrector magnets added. In the case of EMMA there are 16 points in the ring where a corrector magnet
could be installed. The number of corrector magnets is increased from 1 to 16 and in each case the best corrector
locations are found for each of 100 misalignment error patterns. The mean improvement in orbit distortion with number
of correctors is shown in Fig. 7. It is apparent that each corrector magnet added produces a smaller improvement in orbit
distortion than the last and that the bulk of the improvementis achieved by the injection optimisation. Two corrector
magnets together with injection optimisation results in a mean 50% reduction in orbit distortion, while adding another
12 corrector magnets provide a mean 58% reduction.
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FIGURE 7. Mean ratio of orbit distortionσ with and without corrector magnet optimisation over 100 misalignment error patterns
against number of correctors included. In each case the bestset of corrector magnets from 16 locations was used. The firstpoint
shows the mean improvement with injection optimisation only. The error bars show 1σ over the 100 cases and are almost identical
for each data point; just two are shown for clarity. The magnets were misaligned with a standard deviation of 50µm.



SUMMARY

It has been shown that in EMMA the amplification factor that relates the maximum orbit distortion to the level of
transverse magnet misalignments is about 90 in the horizontal plane and 70 in the vertical plane at the maximum rate
of acceleration (120kV per cavity). Given tolerances in orbit distortion of the order of 1mm, this figure places stringent
requirements on orbit correction accuracy.

It was demonstrated that although traditional harmonic correction of orbit distortion with corrector magnets will
not work in a non-scaling FFAG, other approaches can be adopted. In the horizontal plane, magnet sliders allow the
misalignments to be corrected. The misalignments themselves are found by finding the closed orbit distortion at fixed
energy and adapting the standard MAD-X correction algorithm. The accuracy of the misalignment calculation is very
sensitive to the BPM errors. In the vertical plane the absence of sliders means that this method of local correction will
not be convenient. However, vertical (and horizontal) orbit distortion can instead be reduced using the so called overall
correction method. Optimisation of the injection phase space parameters results in a substantial reduction in orbit
distortion (∼ 40%). The orbit distortion can be further improved by including vertical corrector whose strengths are
determined by the overall correction. However, the improvements that can can be gained in this way rapidly become
insignificant with each corrector magnet added.
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