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1 Introduction

In this paper we study the global convergence properties of successive linear programming
algorithms for nonlinear programming. The problem under consideration is

minimize  f(z) (1.1a)
subject to  hi(z) =0, i€& (1.1b)
gi(z) >0, i€l (1.1c)

where the objective function f : IR"™ — IR, and the constraint functions h; : IR® — IR, i € £
gi ' IR" — IR, i € T, are assumed to be twice continuously differentiable. Our interest is in
the case where there are a large number of unknowns.

The class of algorithms studied in this paper solve (1.1) by minimizing an exact penalty
function [4, 8] of the form

¢(z,v) = f(z) +vlh(@)]] + vig™ ()], (1.2)

where || - || is a (monotonic) norm,

g;(:c) = min(g;(z),0),

and v > 0 is a parameter which is adaptively chosen so that critical points of (1.1) corre-
spond to those of (1.2). For fixed v, each iteration of a typical algorithm comprises two
phases. First a piecewise linear model of the penalty function ¢ is minimized subject to a
trust region bound. The constraints that are active at the solution of this problem deter-
mine the current working set. The second phase computes a step by minimizing a quadratic
model of the penalty function subject to a set of equality constraints given by the working
set, and subject to a trust region bound. A particular instance of this approach is the
SLP-EQP algorithm proposed by Fletcher and Sainz de la Maza [7].

The main purpose of this article is to establish the global convergence of this class
of penalty methods. The analysis will be phrased in the general context of composite
nonsmooth optimization problems of the form

min ¢(z) = w(F(z)),

where F' is a smooth function from IR" to IRP, and w is a convex function on IRP. This
includes (1.1)—(1.2) as a special case as well as several other important problems, such
as linear and nonlinear fitting. Notice that, in the context of (1.1)—(1.2), this analysis
presupposes that the penalty parameter v has been fixed at a sufficiently large value such
that critical points of (1.1) correspond to those of (1.2), and we will not consider here
suitable mechanisms to ensure that this is so. In practice, v will be adjusted a finite
number of times as the iteration proceeds with this in mind.

This article is a companion to [1], which presents an actual implementation of this
penalty approach in which the ¢; norm is used to define the penalty function (1.2). As a
result of this choice of norm (and by selecting an £y-norm trust-region), the linear phase
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consists of solving the (linear programming) problem
minimize  £(d"")
drp
subject to  ||d"" |0 < Avpp.

where

d) =Vi)ld+v Z |hi(x) + Vh(z)Td] + v z max(0, —g;(z) — Vg;(z)Td).
icE i€z
The working set W is subsequently defined as the set of constraints which are active at the
solution of this problem if these constraints are linearly independent, or otherwise, some
linearly independent subset of these.
The quadratic phase computes a step d by solving a (quadratic programming) problem
of the form

minimize  id" H(z,\)d + Vf(z)"d (1.3a)
d

such that  h;(z) + Vhi(z)Td =0, i€e&EnwW (1.3b)

gi(z) + Vgi(x)Td=0, ieZnw (1.3¢)

d]l2 < A, (1.3d)

where H is the Hessian of the Lagrangian of the nonlinear program (1.1) (or some symmetric
approximation of it) and A is a vector of Lagrange multipliers. Notice that in this phase, an
£o-norm trust region is used. The overall step taken by the algorithm is a linear combination
of dip and the solution to (1.3) that guarantees a decrease in a quadratic approximation to
(1.2). If this step does not decrease the objective, both trust regions are reduced.

Unlike Fletcher and Sainz de la Maza [7] our algorithm imposes a trust-region restric-
tion on the second subproblem, and thus permits the use of second derivatives of the
objective function and constraints. The two trust region radii, A and A, operate quasi-
independently. The update rules we propose are sufficiently weak to offer global convergence
guarantees, but also to encourage accurate optimal active-set identification. The numerical
results presented in our companion paper [1] suggest that a method of this type holds much
promise.

In the next section we describe the algorithm to be analyzed, and in §3 we present the
global convergence results. We note that the theory of non-smooth optimization developed
by Yuan [12, 14] cannot be applied because in our algorithms the two trust regions influence
each other, whereas Yuan assumes that a single trust region is used. The analysis presented
here is significantly different from that in the literature due to the effects caused by the
interactions between the two trust regions.

2 The Algorithm

We now study the global convergence of the exact penalty algorithms outlined above. As
mentioned in the introduction, for greater generality we will state the problem as

min ¢(z) = w(F(z)), (2.1)
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where Fj(z) = fi(x), i = 1,...,p are smooth functions of z, and w : IRP — IR is convex
but may be nonsmooth. Such problems have been considered by a number of authors over
the years [5, 6, 7, 9, 10, 11, 12, 13]. The penalty function (1.2) used to solve the nonlinear
program is a special case of (2.1) obtained when £ENZ = () and EUZ = {2,...,p} by setting

filz) = f(z), filz)=hi(z),i€&, fi(z)=gi(x), i €T,

and defining w appropriately. is convex but nonsmooth.

Let us describe our class of algorithms in this general setting. It consists of two phases
based, respectively, on linear and quadratic models [2, 5, 7, 12] at the current estimate zy
of the minimizer. The linear model is

le(d) = w (F(ax) + F'(zx)d) , (2.2)

where F'(z) is the Jacobian of F(z). Notice that it is only the smooth component of
the problem, F'(z), which is linearized. By including a second-order term to account for
curvature, an appropriate quadratic model is

ak(d) = w (F(zx) + F'(z4)d) + {d, Byd). (2.3)

for some symmetric, not-necessarily positive definite, By.

We will impose trust-region bounds on our models. It is important in practice that we
are allowed to use different norms to define the trust regions for the different models. For
the linear model, we will use a (polyhedral) trust region of the form || - ||, < A, while
for the quadratic model it will be || - || < A. Since all norms are equivalent in IR", there is
a constant v > 1 such that

ldll < ylldll.e (2.4)

for all d € IR".
Without further ado, we now define our algorithm.
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Algorithm 2.1: Algorithm to minimize ¢(x) = w(F(x)) ‘

Initial data: zy, Ay > 0, A" >0,0<p, <p, <1,0< K, <K, <1,7>0,
0<7<1,and 0 <86.

For k£ = 0,1,..., until a stopping test is satisfied, perform the following steps.
1. Compute
di¥ = argmin /i(d)

lldll p <AEY

2a. Cauchy point. Compute ar < 1 as the first member of the sequence
{7" min(1, A/ ||d;" || }i=o,1,... for which

d(zk) — arlowdy”) = n[p(zk) — le(andi”)] - (2.5)
Set dy, = apd;”.
2b. Compute dj, so that ||dg|| < Ay and

ar(di) < qi(dy).

3. Compute

¢(ak) — Pk +dy)

Pk =
¢(zk) — qr(dk)
4da. If pp > ps, choose
Agy1 > Ay,
otherwise set
Apy1 € [Killdill; kulg] - (2.6)
4b. If Pk > Pu» set
T+1 = Tk + d,
otherwise set
Lh+1 = Tk-
5. If p > pu pick
ARy > ldille  such that AR, < AR if ap <1, (27)
otherwise pick
k1 € min(O||dgllLp , AT), AFT]- (2.8)

Step 1 aims to find the largest reduction in the linearized model within its trust region—
we refer to this as the linearized problem, and attach the suffix tr to quantities associated
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with it. The intentions here are twofold. First, the aim for certain classes of problem, such
as those for which w is polyhedral, is ultimately to be able to identify which polyhedral
components define the minimizer to (2.1). This is not the issue under consideration here,
but it does have some ramifications on the design of our algorithm since we hope that our
algorithm class is broad enough to permit correct component identification in the polyhedral
case.

Secondly, the direction given by d.p is also used to define the Cauchy step which, as
in many trust-region methods, is used to guarantee convergence and to ensure that a step
will ultimately be taken from a non-critical iterate. This happens since the linear model
and true objective may be made arbitrarily close in the event that the trust-region radius
shrinks to zero. The convergence analysis in Section 3 confirms this intuition. Because the
quadratic model g, is used in defining the final step d in Step 2b, we define the Cauchy point
in Step 2a to give decrease on the quadratic model. Notice that we are simply requiring
that the decrease in the quadratic model should be no less than a fraction of that achieved
by the linear model for steps of the same length. Since, as we shall see in Section 3, this
step is sufficient to ensure convergence, Step 2b simply allows us to pick a step that gives
at least as much reduction in the quadratic model as at its Cauchy point, but also allows
the step to expand into a possibly enlarged master trust region.

Steps 3 and 4 are standard trust-region acceptance rules [3]. The ratio py of the actual to
the predicted reduction of ¢ is used as a step acceptance criterion. If this ratio is negative,
or close to zero, the step is rejected and the overall trust-region radius reduced. Otherwise
the step will be accepted and, if p; is close to one, the radius may be enlarged. We say
that iteration k is successful if px > p,. It is very successful if py > ps.

Step 5 indicates how we plan to manage the radius for the linear model. If the master
radius has been reduced, we require that the trust region for the linear model be related to
the norm of the overall step (and thus A" will ultimately also be reduced), but no larger
than its previous value. For successful iterations, if aj has not been unduly restricted at
the Cauchy point, we attribute some of this success to the linear model and increase the
linear-model radius. Conversely, if the iteration was successful, but oy is small, we have no
reason to attribute this success to the step from the linear model, so we ensure that the
radius does not increase but it may decrease if it is clearly too large. !

3 Convergence Results

In this section, we investigate the global convergence properties of Algorithm 2.1. In order
to proceed, we need to make the following assumptions on the problem and the algorithm:

P1. F is continuously differentiable and its derivatives are Lipschitz continuous, with Lip-
schitz constant A", throughout a convex region containing the iterates {zy} generated
by Algorithm 2.1.

P2. w is convex and Lipschitz continuous, with Lipschitz constant A, throughout a com-
pact region containing the values {F'(zx)} generated by Algorithm 2.1.

!The upper bound of one on ay in (2.7) is used for simplicity. However this bound can be generalized.
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P3. The Hessian matrices By in (2.3) are bounded; thus there exists 8 > 0 such that
d'' Byd < B||d||? for all k and all d € IR™.

Assumption P3 is made to simplify the analysis; see [12] for an analysis of a composite
nonsmooth optimization algorithm in which By is computed by quasi-Newton updating.

Under assumptions P1-P2 it follows immediately that both ¢(z) and £(d) are Lipschitz
continuous, and in particular that

|2k (d) — £,(0)| < Alld].p (3-1)

for some Lipschitz constant A > 0.

The goal of our analysis is to prove that Algorithm 2.1 will find a critical point, i.e.,
a point where the directional derivative of ¢ is nonegative in all directions. To measure
criticality, we follow Yuan [12] and define

Ui (A) = ¢(zg) — £ (d), (3.2)

min
lldll p <A

which is the optimal decrease in the linear model /; for a radius of size A. For future
reference we note that, from assumption P2 and the subsequent convexity of £x(d), we have

P(z) — L (ad) > afd(zr) — £x(d)] (3-3)

for any « € [0,1].
The first result, which is well known, shows that ¥;(1) may be used to measure criti-
cality.

Lemma 3.1 [12, Lemma 2.1] Suppose that P1-P2 hold, that

lim Uj(1) =0
k—00
keK

and that {zy}x converges to z.. Then x. is a critical point of ().

Our next result provides a lower bound on the achievable reduction in the linearized
model for a radius of size A relative to that achieved with a radius of one. For the proof of
this and the following lemma we define da to be a minimizer of

2(d). (3.4)

min
lldll;,p <A

Lemma 3.2 Suppose that assumptions P1-P2 hold. Then
T4(A) > min(A, 1) (1) (3.5)

for any scalar A > 0.
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Proof. Let di be a minimizer of (3.4) when A =1, so that

Uy (1) = ¢(zk) — Li(dr).

There are two cases to consider. First consider the case A > 1. Since ||di||,, < A, the
definition (3.2) implies that

Uy (A) > ¢(z) — Le(dr) = Tg(1),

which gives (3.5) in this case.
In the second case, A < 1, and we need to show that Uy (A) > AU.(1). By definition
of di we have that ||Ad||,, <A, and so by (3.2) and (3.3),

(D) > plax) — Lr(Ady)
> A(d(zr) — Lr(dr))
— AT,

O

We shall also need the following result which states that, at a non-critical point of ¢,

the trust-region bound for the linearized problem, ||da|., < A, is active whenever the
radius A is small enough.

Lemma 3.3 Suppose that assumptions P1-P2 hold (and thus that there is a Lipschitz con-
stant X for which (3.1) holds) and that Ur(1) # 0. Then if da is a minimizer of (3.4),

) (1
ldallr > min(a, ) (3.6
Proof. As before, let d; denote a minimizer of (3.4) when A = 1. Suppose that
ldall.p < ¥r(1)/A. Then (3.1) gives that
le(da) = €x(0) — Alldallp > £k(0) — Wr(1) = £x(dy). (3.7)

If A > 1 this contradicts our definition of da as a minimizer of (3.4), so we must have
ldall;p = ¥r(1)/A and thus (3.6) in this case. If A < 1 then (3.7) and the convexity of #
imply that £ is strictly decreasing along a line from da to d; (at least initially). Therefore,
since da minimizes £, it cannot lie in the strict interior of the trust region ||d||,, < A,
and hence ||da|.p = A. O

The next result provides a lower bound on the achievable reduction in the quadratic
model in terms of the stepsize, the trust-region radius for the linearized problem and our
criticality measure.

Lemma 3.4 Suppose that assumptions P1-P2 hold. Then the model decrease satisfies

d(zr) — qe(di) > d(zr) — qr(di) > now¥r(ALT) > nog min(AR", 1) Ty (1).
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Proof.  The first inequality follows directly from the requirement in step 2b of Algo-
rithm 2.1. To prove the second, note that inequality (3.3) and the requirement in step 2a
give that

¢(zr) —arld) = ¢lax) — arlandi”) > n[p(zr) — lr(andi”)]

> nay [p(zr) — Le(di)] = nowTr(ART).

The third inequality follows immediately from Lemma 3.2. O
We will also require an upper bound on the achievable reduction in the objective func-

tion, ¢.

Lemma 3.5 Suppose that assumptions P1-P3 hold. Then

|gk (di) — d(wk + di)| < M||dy|?

for some positive constant M.

Proof. Since F € C! with Lipschitz derivatives, assumption P1 implies that
|F (zk + di,) — F(zx) — F'(zx)dg]| < A|ldill.
Using this, the Lipschitz continuity of w from assumption P2, and assumption P3 we have
gk (di) — (zx + di)| = |w(F(zx) + F'(zx)dy) + 5{dk, Brdr) — w(F(zx + di))|
X\ F (g, + di) — F(z) — F'(z1)di || + 38ldx |1?
(X" + 38) g
M||dy]?
where M = AT + 15. O

IN N

The following technical result essentially says that either the Cauchy step is on the
boundary of a trust region, or it has a lower bound proportional to the optimality criterion.

Lemma 3.6 Suppose that assumptions P1-P3 hold. Then at any iteration of Algorithm 2.1

D > Sl Zmin(%,A,@P, ‘I”“(”,min(l L )2(1‘"’T‘I’k(1)>. (3.8)

A AR By
Proof.  The first inequality in (3.8) follows immediately since
||dg||LP = O‘k“d};PHLP < akAkP-

To establish the second inequality, suppose first that the decrease condition (2.5) in step
2a of Algorithm 2.1 is immediately satisfied for o = min(1, Ag/||d;"||). Then, using (2.4)
and Lemma 3.3,

. Ay
ke = llogdy”]] = min (mJ) 1" e
k

. (Ag ‘I’k(l)>
> — A .
> mln(fy,Ak, 3 , (3.9)




On the Convergence of Successive Linear Programming Algorithms 9

which gives the first three terms in (3.8). On the other hand if o < min(1, Ag/[|dg"])),
then the decrease condition (2.5) must have been violated for oy /7, and so

d(zi)—qe(wdi” /7) = ¢(mp) —Li(ardi” /7)— 5 (o /7)*(d”, Brdi”) < nld(zr) — Le(ardi” /7)) .

Now using Assumption P3, (2.4), (3.3) and Lemma 3.2, this inequality implies that

ow/T)Xd, Bedi®) > (1—n) [plan) — Lr(cndi” /7)]
Wow/T)?BANG T = (1 —n)(an/7)Tk(AF)
S /T) BN e AR > (1 — ) min(AR", 1) (1)
aglldF|l . > Mmin(l L )\I!k(l). (3.10)
LP = 13,72 ’AEP

Since oy d}” = dj, this inequality combined with (3.9) gives the second inequality in (3.8).
a

Our next result is crucial. It provides lower bounds on both the master trust-region
radius Ag and the length of the Cauchy step at a non-critical iterate in the case where the
trust-region radius for the linearized problem stays bounded.

Lemma 3.7 Suppose Algorithm 2.1 is applied to the problem (2.1) and that assumptions
P1-P3 hold. Suppose that {Ap"} is bounded above, and that Uy(1) > 6 > 0, V k. Then
there exists a constant A,,;, > 0 such that

Ap > A, and apAL > = (3.11)

~y
for all k.

Proof. By assumption, there exists A, > 1 such that
AP < A,y for all k. (3.12)

This inequality, the assumption ¥y (1) > ¢ and Lemma 3.6 imply

A
1Sl > min (7’“, F B ) (3.13)
where
1 2(1—n)r
A, = min (/\ ' B AL ) J. (3.14)

If the iteration is successful (px > py), the rule (2.7) for choosing A;” in Step 5 of the
algorithm ensures that Ap%, > ||d}|| and therefore

A
Akl—T—l Z min (7k’ AEP’ Acrit) . (3.15)
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Let us now consider the case when the iteration is unsuccessful. Using Lemma 3.4 and
equation (3.13) we have that

v

. . 1
dzk) — qu(de) > d(zk) — qr(dy) noy min (AP, 1) 0 = naxAp” min (A—kp, 1) )

A
> AR > n9 min(—k,A,I;P,Acm).
v

Amax o Ama,x
(3.16)
From Lemma 3.5 and (3.16) we have that
_ 2
1= pp < |¢(zk + di) — qi(dy)| < MHXkH Anax _ (3.17)
¢($k) - Qk(dk) 76 min (_k’ AII;P,AH“)
v
This implies that ||dg|| and (1 — pg) are related by the inequality
1—pp)nd . (A
2 ( Pk <_ LP ) ) . )
||dk|| il MAmax min y ’ k aAcmt (3 18)

at each step. Now since the iteration is unsuccessful, py < p, and 1 — p > 1 — p,,, which,
using (2.4) and (3.18), implies

62 1-— 0 . (A
Pl > Gl > 0 b min (S5 A, a,)

2
(A (1 — pu)nd>d
2> min (71AkPaAcritafy2M7uAm( :

Using this fact and the lower bound in (2.8) we have that, if the step is unsuccessful

. Ak (1 pu)37626
o >min | —, AP A, ———r— . N
k+1 = 1 ( ? k > crit) ZMQ — (3 9)

Since the right side of (3.19) is clearly less than or equal to the right side of (3.15), which
holds when the step is accepted, then (3.19) must hold at each iteration.

We can consider Ay in a similar fashion. If A was decreased because p, < ps then
1—pr>1—ps and (3.18) implies

1-— 2 A
( VQJ&inHl i min (Tka AIEPa Acrit)

2
. (A (1 = ps)nKid
> Sk are p L P)IRON
= mm( R ) V7 N

Vv

2
K 2
— lldk|l
2

Together with (2.6) this implies

AIc+1 . Ay LP (1 — ps)n";lzé
£ > — Aigy —5—— | . 2
ol min ( 7 Bk e g A — (3.20)

Since A is not reduced when py > ps, (3.20) must then hold at each iteration.
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Now we can combine the recursions (3.19) and (3.20) to yield

Aki1 o p ) . A (1 = ps)nK2d (1 — py)n6?%s
> - ALP A . l u . 2].
n ( 7 ; k+1 ~Z 1Inin 7 P k crit ) ")/ZM 2 o 9 ’)’2M 2 o (3 )

which holds at every iteration. Applying this recursion over the entire sequence implies
that for all &

(A N (1= ps)nsfs (1 — pu)n6?s
min (7,A,I;P> > min <7aA3P=Acrit’ VMA,... = VMA,,,

= A10w7

Thus we can conclude that Ay > A, = YA for all k. It then follows from Lemma 3.6

that
Amin

v

ak}AzP Z Alow =

for all k. O
This immediately enables us to deduce that if the algorithm is unable to make progress,
it must be because it has reached a critical point.

Corollary 3.8 Suppose that there are only finitely number of iterations for which pg > py.
Then xy, = x4« for all sufficiently large k, and . is a critical point of ¢(x).

Proof. Step 4 of the algorithm ensures that if there are only a finite number of (successful)

iterations for which p; > p,, then =, = z, for all k& > k¢ for some ky > 0. Moreover,

V(1) = Uy, (1) for all & > ko. Furthermore, as py < p, for all & > ko, the update rules

for the trust regions imply that A, converges to zero and A}” is bounded above for all .

But then ¥y(1) = 0 for all £ > ko, since otherwise Lemma 3.7 contradicts the fact that Ay

converge to zero. It thus follows from Lemma 3.1 that x, is a critical point of ¢. O
Finally we are able to state our main global-convergence result.

Theorem 3.9 Suppose Algorithm 2.1 is applied to the problem (2.1) and that P1-P3 hold.
Then either

Uy(1) =0 for some 1 >0

or
lim ¢(zg) = —o0
k—o0

or
liminf ¥y (1) = 0.
k—o0

Proof.  If there are only a finite number of successful iterations, the first of the stated
possibilities follows immediately from Corollary 3.8. The second of these possibilities might
also occur. Consequently, we need only consider the remaining case where there is an

infinite subsequence K of successful iterations, that is that pi > p, for all k € K, for which
{#(zx)} is bounded from below.
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The proof proceeds by contradiction. Assume there is a constant § such that ¥y (1) >
0 >0, V k. We will consider separately the two cases, when the LP trust region radius
{A"} is bounded above, and the case when {A}"} is unbounded.

Case 1. If {A;"} is bounded above, it follows from Lemma 3.7 that A, > A, > 0.

For our infinite subsequence K of successful iterations, Lemmas 3.2, 3.4 and 3.7 give

$(zk) — ¢(@rr1) 2 puld(zr) — gr(di))
> nay min(AgF,1)8
> noyp A" min(1,1/Ap")6
Z nAminé/(’yAmax) > O
for all k € K, where A, > 1is the upper bound for A;*. But then summing this inequality
over all k£ € K contradicts the fact that the sequence {¢(zx)} is bounded from below. Thus
Case 1 does not occur.

Case 2. Suppose that the LP trust region radius {A;"} is unbounded. Then, since the
radius is only incresed in step 5 of Algorithm 2.1 when «y, > 1, there is an infinite sequence
K such that A" > 1, og, > 1 and pg > py, for all k € K. Then from Lemmas 3.2 and 3.4
we have

b(@k) — d(@rr1) > puld(zr) — qr(di))
> punag min(Ap", 1) T(1)

> pun¥i(1)
> Pu775,

for all k¥ € K. This again contradicts the assumption that {¢(x)} is bounded from below,
and Case 2 cannot occur.
Cases 1 and 2 therefore imply that the assumption ¥x(1) > § > 0, V k must be false
which proves the desired result
lim inf ¥y (1) = 0.

k—o00
O
This result guarantees that, if ¢(z) is bounded below, the criticality criterion W (1)
eventually becomes arbitrarily small. This implies that if the sequence {z} is bounded
there exists an accumulation point of Algorithm 2.1 which is a critical point for (2.1).
However, it does not imply that the optimal polyhedral components are identified in a
finite number of steps for polyhedral w — an important result which will not be covered.

4 Conclusions and Perspectives

In this paper we have proposed a trust-region algorithm for composite non-smooth opti-
mization that uses a combination of linear and quadratic model steps and has separate
quasi-autonomous trust-regions to control these. At least one subsequence generated by
the algorithm is shown to be globally convergent to a critical point of the problem under
modest assumptions.
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Our framework for trust-region radius updates is deliberately general. This is because we
wished it to apply both in the case of the current implementation of our evolving nonlinear
programming code SLIQUE [1] as well as to cover its future evolution.

We have not considered the ultimate convergence rate of the algorithm, nor its ability
to identify the optimal active polyhedral components in a finite number of iterations (these
two aspects are most likely strongly linked [7]), although we have strong numerical evidence
to suggest that the latter does occur and that the convergence rate may thereafter be made
to be superlinear. The study of these and other issues is ongoing.
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